PR exp/15364:
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static struct value *evaluate_struct_tuple (struct value *,
60 struct expression *, int *,
61 enum noside, int);
62
63 static LONGEST init_array_element (struct value *, struct value *,
64 struct expression *, int *, enum noside,
65 LONGEST, LONGEST);
66
67 struct value *
68 evaluate_subexp (struct type *expect_type, struct expression *exp,
69 int *pos, enum noside noside)
70 {
71 return (*exp->language_defn->la_exp_desc->evaluate_exp)
72 (expect_type, exp, pos, noside);
73 }
74 \f
75 /* Parse the string EXP as a C expression, evaluate it,
76 and return the result as a number. */
77
78 CORE_ADDR
79 parse_and_eval_address (const char *exp)
80 {
81 struct expression *expr = parse_expression (exp);
82 CORE_ADDR addr;
83 struct cleanup *old_chain =
84 make_cleanup (free_current_contents, &expr);
85
86 addr = value_as_address (evaluate_expression (expr));
87 do_cleanups (old_chain);
88 return addr;
89 }
90
91 /* Like parse_and_eval_address, but treats the value of the expression
92 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
93 LONGEST
94 parse_and_eval_long (char *exp)
95 {
96 struct expression *expr = parse_expression (exp);
97 LONGEST retval;
98 struct cleanup *old_chain =
99 make_cleanup (free_current_contents, &expr);
100
101 retval = value_as_long (evaluate_expression (expr));
102 do_cleanups (old_chain);
103 return (retval);
104 }
105
106 struct value *
107 parse_and_eval (const char *exp)
108 {
109 struct expression *expr = parse_expression (exp);
110 struct value *val;
111 struct cleanup *old_chain =
112 make_cleanup (free_current_contents, &expr);
113
114 val = evaluate_expression (expr);
115 do_cleanups (old_chain);
116 return val;
117 }
118
119 /* Parse up to a comma (or to a closeparen)
120 in the string EXPP as an expression, evaluate it, and return the value.
121 EXPP is advanced to point to the comma. */
122
123 struct value *
124 parse_to_comma_and_eval (const char **expp)
125 {
126 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
127 struct value *val;
128 struct cleanup *old_chain =
129 make_cleanup (free_current_contents, &expr);
130
131 val = evaluate_expression (expr);
132 do_cleanups (old_chain);
133 return val;
134 }
135 \f
136 /* Evaluate an expression in internal prefix form
137 such as is constructed by parse.y.
138
139 See expression.h for info on the format of an expression. */
140
141 struct value *
142 evaluate_expression (struct expression *exp)
143 {
144 int pc = 0;
145
146 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
147 }
148
149 /* Evaluate an expression, avoiding all memory references
150 and getting a value whose type alone is correct. */
151
152 struct value *
153 evaluate_type (struct expression *exp)
154 {
155 int pc = 0;
156
157 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
158 }
159
160 /* Evaluate a subexpression, avoiding all memory references and
161 getting a value whose type alone is correct. */
162
163 struct value *
164 evaluate_subexpression_type (struct expression *exp, int subexp)
165 {
166 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
167 }
168
169 /* Find the current value of a watchpoint on EXP. Return the value in
170 *VALP and *RESULTP and the chain of intermediate and final values
171 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
172 not need them.
173
174 If a memory error occurs while evaluating the expression, *RESULTP will
175 be set to NULL. *RESULTP may be a lazy value, if the result could
176 not be read from memory. It is used to determine whether a value
177 is user-specified (we should watch the whole value) or intermediate
178 (we should watch only the bit used to locate the final value).
179
180 If the final value, or any intermediate value, could not be read
181 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
182 set to any referenced values. *VALP will never be a lazy value.
183 This is the value which we store in struct breakpoint.
184
185 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
186 value chain. The caller must free the values individually. If
187 VAL_CHAIN is NULL, all generated values will be left on the value
188 chain. */
189
190 void
191 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
192 struct value **resultp, struct value **val_chain)
193 {
194 struct value *mark, *new_mark, *result;
195 volatile struct gdb_exception ex;
196
197 *valp = NULL;
198 if (resultp)
199 *resultp = NULL;
200 if (val_chain)
201 *val_chain = NULL;
202
203 /* Evaluate the expression. */
204 mark = value_mark ();
205 result = NULL;
206
207 TRY_CATCH (ex, RETURN_MASK_ALL)
208 {
209 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
210 }
211 if (ex.reason < 0)
212 {
213 /* Ignore memory errors, we want watchpoints pointing at
214 inaccessible memory to still be created; otherwise, throw the
215 error to some higher catcher. */
216 switch (ex.error)
217 {
218 case MEMORY_ERROR:
219 break;
220 default:
221 throw_exception (ex);
222 break;
223 }
224 }
225
226 new_mark = value_mark ();
227 if (mark == new_mark)
228 return;
229 if (resultp)
230 *resultp = result;
231
232 /* Make sure it's not lazy, so that after the target stops again we
233 have a non-lazy previous value to compare with. */
234 if (result != NULL)
235 {
236 if (!value_lazy (result))
237 *valp = result;
238 else
239 {
240 volatile struct gdb_exception except;
241
242 TRY_CATCH (except, RETURN_MASK_ERROR)
243 {
244 value_fetch_lazy (result);
245 *valp = result;
246 }
247 }
248 }
249
250 if (val_chain)
251 {
252 /* Return the chain of intermediate values. We use this to
253 decide which addresses to watch. */
254 *val_chain = new_mark;
255 value_release_to_mark (mark);
256 }
257 }
258
259 /* Extract a field operation from an expression. If the subexpression
260 of EXP starting at *SUBEXP is not a structure dereference
261 operation, return NULL. Otherwise, return the name of the
262 dereferenced field, and advance *SUBEXP to point to the
263 subexpression of the left-hand-side of the dereference. This is
264 used when completing field names. */
265
266 char *
267 extract_field_op (struct expression *exp, int *subexp)
268 {
269 int tem;
270 char *result;
271
272 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
273 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
274 return NULL;
275 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
276 result = &exp->elts[*subexp + 2].string;
277 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
278 return result;
279 }
280
281 /* This function evaluates brace-initializers (in C/C++) for
282 structure types. */
283
284 static struct value *
285 evaluate_struct_tuple (struct value *struct_val,
286 struct expression *exp,
287 int *pos, enum noside noside, int nargs)
288 {
289 struct type *struct_type = check_typedef (value_type (struct_val));
290 struct type *field_type;
291 int fieldno = -1;
292
293 while (--nargs >= 0)
294 {
295 struct value *val = NULL;
296 int bitpos, bitsize;
297 bfd_byte *addr;
298
299 fieldno++;
300 /* Skip static fields. */
301 while (fieldno < TYPE_NFIELDS (struct_type)
302 && field_is_static (&TYPE_FIELD (struct_type,
303 fieldno)))
304 fieldno++;
305 if (fieldno >= TYPE_NFIELDS (struct_type))
306 error (_("too many initializers"));
307 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
308 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
309 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
310 error (_("don't know which variant you want to set"));
311
312 /* Here, struct_type is the type of the inner struct,
313 while substruct_type is the type of the inner struct.
314 These are the same for normal structures, but a variant struct
315 contains anonymous union fields that contain substruct fields.
316 The value fieldno is the index of the top-level (normal or
317 anonymous union) field in struct_field, while the value
318 subfieldno is the index of the actual real (named inner) field
319 in substruct_type. */
320
321 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
322 if (val == 0)
323 val = evaluate_subexp (field_type, exp, pos, noside);
324
325 /* Now actually set the field in struct_val. */
326
327 /* Assign val to field fieldno. */
328 if (value_type (val) != field_type)
329 val = value_cast (field_type, val);
330
331 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
332 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
333 addr = value_contents_writeable (struct_val) + bitpos / 8;
334 if (bitsize)
335 modify_field (struct_type, addr,
336 value_as_long (val), bitpos % 8, bitsize);
337 else
338 memcpy (addr, value_contents (val),
339 TYPE_LENGTH (value_type (val)));
340
341 }
342 return struct_val;
343 }
344
345 /* Recursive helper function for setting elements of array tuples for
346 (the deleted) Chill. The target is ARRAY (which has bounds
347 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
348 and NOSIDE are as usual. Evaluates index expresions and sets the
349 specified element(s) of ARRAY to ELEMENT. Returns last index
350 value. */
351
352 static LONGEST
353 init_array_element (struct value *array, struct value *element,
354 struct expression *exp, int *pos,
355 enum noside noside, LONGEST low_bound, LONGEST high_bound)
356 {
357 LONGEST index;
358 int element_size = TYPE_LENGTH (value_type (element));
359
360 if (exp->elts[*pos].opcode == BINOP_COMMA)
361 {
362 (*pos)++;
363 init_array_element (array, element, exp, pos, noside,
364 low_bound, high_bound);
365 return init_array_element (array, element,
366 exp, pos, noside, low_bound, high_bound);
367 }
368 else if (exp->elts[*pos].opcode == BINOP_RANGE)
369 {
370 LONGEST low, high;
371
372 (*pos)++;
373 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
374 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
375 if (low < low_bound || high > high_bound)
376 error (_("tuple range index out of range"));
377 for (index = low; index <= high; index++)
378 {
379 memcpy (value_contents_raw (array)
380 + (index - low_bound) * element_size,
381 value_contents (element), element_size);
382 }
383 }
384 else
385 {
386 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
387 if (index < low_bound || index > high_bound)
388 error (_("tuple index out of range"));
389 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
390 value_contents (element), element_size);
391 }
392 return index;
393 }
394
395 static struct value *
396 value_f90_subarray (struct value *array,
397 struct expression *exp, int *pos, enum noside noside)
398 {
399 int pc = (*pos) + 1;
400 LONGEST low_bound, high_bound;
401 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
402 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
403
404 *pos += 3;
405
406 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
407 low_bound = TYPE_LOW_BOUND (range);
408 else
409 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410
411 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
412 high_bound = TYPE_HIGH_BOUND (range);
413 else
414 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
415
416 return value_slice (array, low_bound, high_bound - low_bound + 1);
417 }
418
419
420 /* Promote value ARG1 as appropriate before performing a unary operation
421 on this argument.
422 If the result is not appropriate for any particular language then it
423 needs to patch this function. */
424
425 void
426 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
427 struct value **arg1)
428 {
429 struct type *type1;
430
431 *arg1 = coerce_ref (*arg1);
432 type1 = check_typedef (value_type (*arg1));
433
434 if (is_integral_type (type1))
435 {
436 switch (language->la_language)
437 {
438 default:
439 /* Perform integral promotion for ANSI C/C++.
440 If not appropropriate for any particular language
441 it needs to modify this function. */
442 {
443 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
444
445 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
446 *arg1 = value_cast (builtin_int, *arg1);
447 }
448 break;
449 }
450 }
451 }
452
453 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
454 operation on those two operands.
455 If the result is not appropriate for any particular language then it
456 needs to patch this function. */
457
458 void
459 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
460 struct value **arg1, struct value **arg2)
461 {
462 struct type *promoted_type = NULL;
463 struct type *type1;
464 struct type *type2;
465
466 *arg1 = coerce_ref (*arg1);
467 *arg2 = coerce_ref (*arg2);
468
469 type1 = check_typedef (value_type (*arg1));
470 type2 = check_typedef (value_type (*arg2));
471
472 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
473 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
474 && !is_integral_type (type1))
475 || (TYPE_CODE (type2) != TYPE_CODE_FLT
476 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
477 && !is_integral_type (type2)))
478 return;
479
480 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
481 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
482 {
483 /* No promotion required. */
484 }
485 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
486 || TYPE_CODE (type2) == TYPE_CODE_FLT)
487 {
488 switch (language->la_language)
489 {
490 case language_c:
491 case language_cplus:
492 case language_asm:
493 case language_objc:
494 case language_opencl:
495 /* No promotion required. */
496 break;
497
498 default:
499 /* For other languages the result type is unchanged from gdb
500 version 6.7 for backward compatibility.
501 If either arg was long double, make sure that value is also long
502 double. Otherwise use double. */
503 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
504 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
505 promoted_type = builtin_type (gdbarch)->builtin_long_double;
506 else
507 promoted_type = builtin_type (gdbarch)->builtin_double;
508 break;
509 }
510 }
511 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
512 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
513 {
514 /* No promotion required. */
515 }
516 else
517 /* Integral operations here. */
518 /* FIXME: Also mixed integral/booleans, with result an integer. */
519 {
520 const struct builtin_type *builtin = builtin_type (gdbarch);
521 unsigned int promoted_len1 = TYPE_LENGTH (type1);
522 unsigned int promoted_len2 = TYPE_LENGTH (type2);
523 int is_unsigned1 = TYPE_UNSIGNED (type1);
524 int is_unsigned2 = TYPE_UNSIGNED (type2);
525 unsigned int result_len;
526 int unsigned_operation;
527
528 /* Determine type length and signedness after promotion for
529 both operands. */
530 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
531 {
532 is_unsigned1 = 0;
533 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
534 }
535 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
536 {
537 is_unsigned2 = 0;
538 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
539 }
540
541 if (promoted_len1 > promoted_len2)
542 {
543 unsigned_operation = is_unsigned1;
544 result_len = promoted_len1;
545 }
546 else if (promoted_len2 > promoted_len1)
547 {
548 unsigned_operation = is_unsigned2;
549 result_len = promoted_len2;
550 }
551 else
552 {
553 unsigned_operation = is_unsigned1 || is_unsigned2;
554 result_len = promoted_len1;
555 }
556
557 switch (language->la_language)
558 {
559 case language_c:
560 case language_cplus:
561 case language_asm:
562 case language_objc:
563 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
564 {
565 promoted_type = (unsigned_operation
566 ? builtin->builtin_unsigned_int
567 : builtin->builtin_int);
568 }
569 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
570 {
571 promoted_type = (unsigned_operation
572 ? builtin->builtin_unsigned_long
573 : builtin->builtin_long);
574 }
575 else
576 {
577 promoted_type = (unsigned_operation
578 ? builtin->builtin_unsigned_long_long
579 : builtin->builtin_long_long);
580 }
581 break;
582 case language_opencl:
583 if (result_len <= TYPE_LENGTH (lookup_signed_typename
584 (language, gdbarch, "int")))
585 {
586 promoted_type =
587 (unsigned_operation
588 ? lookup_unsigned_typename (language, gdbarch, "int")
589 : lookup_signed_typename (language, gdbarch, "int"));
590 }
591 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
592 (language, gdbarch, "long")))
593 {
594 promoted_type =
595 (unsigned_operation
596 ? lookup_unsigned_typename (language, gdbarch, "long")
597 : lookup_signed_typename (language, gdbarch,"long"));
598 }
599 break;
600 default:
601 /* For other languages the result type is unchanged from gdb
602 version 6.7 for backward compatibility.
603 If either arg was long long, make sure that value is also long
604 long. Otherwise use long. */
605 if (unsigned_operation)
606 {
607 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
608 promoted_type = builtin->builtin_unsigned_long_long;
609 else
610 promoted_type = builtin->builtin_unsigned_long;
611 }
612 else
613 {
614 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
615 promoted_type = builtin->builtin_long_long;
616 else
617 promoted_type = builtin->builtin_long;
618 }
619 break;
620 }
621 }
622
623 if (promoted_type)
624 {
625 /* Promote both operands to common type. */
626 *arg1 = value_cast (promoted_type, *arg1);
627 *arg2 = value_cast (promoted_type, *arg2);
628 }
629 }
630
631 static int
632 ptrmath_type_p (const struct language_defn *lang, struct type *type)
633 {
634 type = check_typedef (type);
635 if (TYPE_CODE (type) == TYPE_CODE_REF)
636 type = TYPE_TARGET_TYPE (type);
637
638 switch (TYPE_CODE (type))
639 {
640 case TYPE_CODE_PTR:
641 case TYPE_CODE_FUNC:
642 return 1;
643
644 case TYPE_CODE_ARRAY:
645 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
646
647 default:
648 return 0;
649 }
650 }
651
652 /* Constructs a fake method with the given parameter types.
653 This function is used by the parser to construct an "expected"
654 type for method overload resolution. */
655
656 static struct type *
657 make_params (int num_types, struct type **param_types)
658 {
659 struct type *type = XZALLOC (struct type);
660 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
661 TYPE_LENGTH (type) = 1;
662 TYPE_CODE (type) = TYPE_CODE_METHOD;
663 TYPE_VPTR_FIELDNO (type) = -1;
664 TYPE_CHAIN (type) = type;
665 if (num_types > 0)
666 {
667 if (param_types[num_types - 1] == NULL)
668 {
669 --num_types;
670 TYPE_VARARGS (type) = 1;
671 }
672 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
673 == TYPE_CODE_VOID)
674 {
675 --num_types;
676 /* Caller should have ensured this. */
677 gdb_assert (num_types == 0);
678 TYPE_PROTOTYPED (type) = 1;
679 }
680 }
681
682 TYPE_NFIELDS (type) = num_types;
683 TYPE_FIELDS (type) = (struct field *)
684 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
685
686 while (num_types-- > 0)
687 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
688
689 return type;
690 }
691
692 struct value *
693 evaluate_subexp_standard (struct type *expect_type,
694 struct expression *exp, int *pos,
695 enum noside noside)
696 {
697 enum exp_opcode op;
698 int tem, tem2, tem3;
699 int pc, pc2 = 0, oldpos;
700 struct value *arg1 = NULL;
701 struct value *arg2 = NULL;
702 struct value *arg3;
703 struct type *type;
704 int nargs;
705 struct value **argvec;
706 int code;
707 int ix;
708 long mem_offset;
709 struct type **arg_types;
710 int save_pos1;
711 struct symbol *function = NULL;
712 char *function_name = NULL;
713
714 pc = (*pos)++;
715 op = exp->elts[pc].opcode;
716
717 switch (op)
718 {
719 case OP_SCOPE:
720 tem = longest_to_int (exp->elts[pc + 2].longconst);
721 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
722 if (noside == EVAL_SKIP)
723 goto nosideret;
724 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
725 &exp->elts[pc + 3].string,
726 expect_type, 0, noside);
727 if (arg1 == NULL)
728 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
729 return arg1;
730
731 case OP_LONG:
732 (*pos) += 3;
733 return value_from_longest (exp->elts[pc + 1].type,
734 exp->elts[pc + 2].longconst);
735
736 case OP_DOUBLE:
737 (*pos) += 3;
738 return value_from_double (exp->elts[pc + 1].type,
739 exp->elts[pc + 2].doubleconst);
740
741 case OP_DECFLOAT:
742 (*pos) += 3;
743 return value_from_decfloat (exp->elts[pc + 1].type,
744 exp->elts[pc + 2].decfloatconst);
745
746 case OP_ADL_FUNC:
747 case OP_VAR_VALUE:
748 (*pos) += 3;
749 if (noside == EVAL_SKIP)
750 goto nosideret;
751
752 /* JYG: We used to just return value_zero of the symbol type
753 if we're asked to avoid side effects. Otherwise we return
754 value_of_variable (...). However I'm not sure if
755 value_of_variable () has any side effect.
756 We need a full value object returned here for whatis_exp ()
757 to call evaluate_type () and then pass the full value to
758 value_rtti_target_type () if we are dealing with a pointer
759 or reference to a base class and print object is on. */
760
761 {
762 volatile struct gdb_exception except;
763 struct value *ret = NULL;
764
765 TRY_CATCH (except, RETURN_MASK_ERROR)
766 {
767 ret = value_of_variable (exp->elts[pc + 2].symbol,
768 exp->elts[pc + 1].block);
769 }
770
771 if (except.reason < 0)
772 {
773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
774 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
775 not_lval);
776 else
777 throw_exception (except);
778 }
779
780 return ret;
781 }
782
783 case OP_VAR_ENTRY_VALUE:
784 (*pos) += 2;
785 if (noside == EVAL_SKIP)
786 goto nosideret;
787
788 {
789 struct symbol *sym = exp->elts[pc + 1].symbol;
790 struct frame_info *frame;
791
792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
793 return value_zero (SYMBOL_TYPE (sym), not_lval);
794
795 if (SYMBOL_COMPUTED_OPS (sym) == NULL
796 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
797 error (_("Symbol \"%s\" does not have any specific entry value"),
798 SYMBOL_PRINT_NAME (sym));
799
800 frame = get_selected_frame (NULL);
801 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
802 }
803
804 case OP_LAST:
805 (*pos) += 2;
806 return
807 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
808
809 case OP_REGISTER:
810 {
811 const char *name = &exp->elts[pc + 2].string;
812 int regno;
813 struct value *val;
814
815 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
816 regno = user_reg_map_name_to_regnum (exp->gdbarch,
817 name, strlen (name));
818 if (regno == -1)
819 error (_("Register $%s not available."), name);
820
821 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
822 a value with the appropriate register type. Unfortunately,
823 we don't have easy access to the type of user registers.
824 So for these registers, we fetch the register value regardless
825 of the evaluation mode. */
826 if (noside == EVAL_AVOID_SIDE_EFFECTS
827 && regno < gdbarch_num_regs (exp->gdbarch)
828 + gdbarch_num_pseudo_regs (exp->gdbarch))
829 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
830 else
831 val = value_of_register (regno, get_selected_frame (NULL));
832 if (val == NULL)
833 error (_("Value of register %s not available."), name);
834 else
835 return val;
836 }
837 case OP_BOOL:
838 (*pos) += 2;
839 type = language_bool_type (exp->language_defn, exp->gdbarch);
840 return value_from_longest (type, exp->elts[pc + 1].longconst);
841
842 case OP_INTERNALVAR:
843 (*pos) += 2;
844 return value_of_internalvar (exp->gdbarch,
845 exp->elts[pc + 1].internalvar);
846
847 case OP_STRING:
848 tem = longest_to_int (exp->elts[pc + 1].longconst);
849 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
850 if (noside == EVAL_SKIP)
851 goto nosideret;
852 type = language_string_char_type (exp->language_defn, exp->gdbarch);
853 return value_string (&exp->elts[pc + 2].string, tem, type);
854
855 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
856 NSString constant. */
857 tem = longest_to_int (exp->elts[pc + 1].longconst);
858 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
859 if (noside == EVAL_SKIP)
860 {
861 goto nosideret;
862 }
863 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
864
865 case OP_ARRAY:
866 (*pos) += 3;
867 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
868 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
869 nargs = tem3 - tem2 + 1;
870 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
871
872 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
873 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
874 {
875 struct value *rec = allocate_value (expect_type);
876
877 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
878 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
879 }
880
881 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
882 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
883 {
884 struct type *range_type = TYPE_INDEX_TYPE (type);
885 struct type *element_type = TYPE_TARGET_TYPE (type);
886 struct value *array = allocate_value (expect_type);
887 int element_size = TYPE_LENGTH (check_typedef (element_type));
888 LONGEST low_bound, high_bound, index;
889
890 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
891 {
892 low_bound = 0;
893 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
894 }
895 index = low_bound;
896 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
897 for (tem = nargs; --nargs >= 0;)
898 {
899 struct value *element;
900 int index_pc = 0;
901
902 if (exp->elts[*pos].opcode == BINOP_RANGE)
903 {
904 index_pc = ++(*pos);
905 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
906 }
907 element = evaluate_subexp (element_type, exp, pos, noside);
908 if (value_type (element) != element_type)
909 element = value_cast (element_type, element);
910 if (index_pc)
911 {
912 int continue_pc = *pos;
913
914 *pos = index_pc;
915 index = init_array_element (array, element, exp, pos, noside,
916 low_bound, high_bound);
917 *pos = continue_pc;
918 }
919 else
920 {
921 if (index > high_bound)
922 /* To avoid memory corruption. */
923 error (_("Too many array elements"));
924 memcpy (value_contents_raw (array)
925 + (index - low_bound) * element_size,
926 value_contents (element),
927 element_size);
928 }
929 index++;
930 }
931 return array;
932 }
933
934 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
935 && TYPE_CODE (type) == TYPE_CODE_SET)
936 {
937 struct value *set = allocate_value (expect_type);
938 gdb_byte *valaddr = value_contents_raw (set);
939 struct type *element_type = TYPE_INDEX_TYPE (type);
940 struct type *check_type = element_type;
941 LONGEST low_bound, high_bound;
942
943 /* Get targettype of elementtype. */
944 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
945 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
946 check_type = TYPE_TARGET_TYPE (check_type);
947
948 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
949 error (_("(power)set type with unknown size"));
950 memset (valaddr, '\0', TYPE_LENGTH (type));
951 for (tem = 0; tem < nargs; tem++)
952 {
953 LONGEST range_low, range_high;
954 struct type *range_low_type, *range_high_type;
955 struct value *elem_val;
956
957 if (exp->elts[*pos].opcode == BINOP_RANGE)
958 {
959 (*pos)++;
960 elem_val = evaluate_subexp (element_type, exp, pos, noside);
961 range_low_type = value_type (elem_val);
962 range_low = value_as_long (elem_val);
963 elem_val = evaluate_subexp (element_type, exp, pos, noside);
964 range_high_type = value_type (elem_val);
965 range_high = value_as_long (elem_val);
966 }
967 else
968 {
969 elem_val = evaluate_subexp (element_type, exp, pos, noside);
970 range_low_type = range_high_type = value_type (elem_val);
971 range_low = range_high = value_as_long (elem_val);
972 }
973 /* Check types of elements to avoid mixture of elements from
974 different types. Also check if type of element is "compatible"
975 with element type of powerset. */
976 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
977 range_low_type = TYPE_TARGET_TYPE (range_low_type);
978 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
979 range_high_type = TYPE_TARGET_TYPE (range_high_type);
980 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
981 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
982 && (range_low_type != range_high_type)))
983 /* different element modes. */
984 error (_("POWERSET tuple elements of different mode"));
985 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
986 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
987 && range_low_type != check_type))
988 error (_("incompatible POWERSET tuple elements"));
989 if (range_low > range_high)
990 {
991 warning (_("empty POWERSET tuple range"));
992 continue;
993 }
994 if (range_low < low_bound || range_high > high_bound)
995 error (_("POWERSET tuple element out of range"));
996 range_low -= low_bound;
997 range_high -= low_bound;
998 for (; range_low <= range_high; range_low++)
999 {
1000 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1001
1002 if (gdbarch_bits_big_endian (exp->gdbarch))
1003 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1004 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1005 |= 1 << bit_index;
1006 }
1007 }
1008 return set;
1009 }
1010
1011 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1012 for (tem = 0; tem < nargs; tem++)
1013 {
1014 /* Ensure that array expressions are coerced into pointer
1015 objects. */
1016 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1017 }
1018 if (noside == EVAL_SKIP)
1019 goto nosideret;
1020 return value_array (tem2, tem3, argvec);
1021
1022 case TERNOP_SLICE:
1023 {
1024 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1025 int lowbound
1026 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1027 int upper
1028 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1029
1030 if (noside == EVAL_SKIP)
1031 goto nosideret;
1032 return value_slice (array, lowbound, upper - lowbound + 1);
1033 }
1034
1035 case TERNOP_COND:
1036 /* Skip third and second args to evaluate the first one. */
1037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1038 if (value_logical_not (arg1))
1039 {
1040 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1041 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1042 }
1043 else
1044 {
1045 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1047 return arg2;
1048 }
1049
1050 case OP_OBJC_SELECTOR:
1051 { /* Objective C @selector operator. */
1052 char *sel = &exp->elts[pc + 2].string;
1053 int len = longest_to_int (exp->elts[pc + 1].longconst);
1054 struct type *selector_type;
1055
1056 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1057 if (noside == EVAL_SKIP)
1058 goto nosideret;
1059
1060 if (sel[len] != 0)
1061 sel[len] = 0; /* Make sure it's terminated. */
1062
1063 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1064 return value_from_longest (selector_type,
1065 lookup_child_selector (exp->gdbarch, sel));
1066 }
1067
1068 case OP_OBJC_MSGCALL:
1069 { /* Objective C message (method) call. */
1070
1071 CORE_ADDR responds_selector = 0;
1072 CORE_ADDR method_selector = 0;
1073
1074 CORE_ADDR selector = 0;
1075
1076 int struct_return = 0;
1077 int sub_no_side = 0;
1078
1079 struct value *msg_send = NULL;
1080 struct value *msg_send_stret = NULL;
1081 int gnu_runtime = 0;
1082
1083 struct value *target = NULL;
1084 struct value *method = NULL;
1085 struct value *called_method = NULL;
1086
1087 struct type *selector_type = NULL;
1088 struct type *long_type;
1089
1090 struct value *ret = NULL;
1091 CORE_ADDR addr = 0;
1092
1093 selector = exp->elts[pc + 1].longconst;
1094 nargs = exp->elts[pc + 2].longconst;
1095 argvec = (struct value **) alloca (sizeof (struct value *)
1096 * (nargs + 5));
1097
1098 (*pos) += 3;
1099
1100 long_type = builtin_type (exp->gdbarch)->builtin_long;
1101 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1102
1103 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1104 sub_no_side = EVAL_NORMAL;
1105 else
1106 sub_no_side = noside;
1107
1108 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1109
1110 if (value_as_long (target) == 0)
1111 return value_from_longest (long_type, 0);
1112
1113 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1114 gnu_runtime = 1;
1115
1116 /* Find the method dispatch (Apple runtime) or method lookup
1117 (GNU runtime) function for Objective-C. These will be used
1118 to lookup the symbol information for the method. If we
1119 can't find any symbol information, then we'll use these to
1120 call the method, otherwise we can call the method
1121 directly. The msg_send_stret function is used in the special
1122 case of a method that returns a structure (Apple runtime
1123 only). */
1124 if (gnu_runtime)
1125 {
1126 struct type *type = selector_type;
1127
1128 type = lookup_function_type (type);
1129 type = lookup_pointer_type (type);
1130 type = lookup_function_type (type);
1131 type = lookup_pointer_type (type);
1132
1133 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1134 msg_send_stret
1135 = find_function_in_inferior ("objc_msg_lookup", NULL);
1136
1137 msg_send = value_from_pointer (type, value_as_address (msg_send));
1138 msg_send_stret = value_from_pointer (type,
1139 value_as_address (msg_send_stret));
1140 }
1141 else
1142 {
1143 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1144 /* Special dispatcher for methods returning structs. */
1145 msg_send_stret
1146 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1147 }
1148
1149 /* Verify the target object responds to this method. The
1150 standard top-level 'Object' class uses a different name for
1151 the verification method than the non-standard, but more
1152 often used, 'NSObject' class. Make sure we check for both. */
1153
1154 responds_selector
1155 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1156 if (responds_selector == 0)
1157 responds_selector
1158 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1159
1160 if (responds_selector == 0)
1161 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1162
1163 method_selector
1164 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1165 if (method_selector == 0)
1166 method_selector
1167 = lookup_child_selector (exp->gdbarch, "methodFor:");
1168
1169 if (method_selector == 0)
1170 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1171
1172 /* Call the verification method, to make sure that the target
1173 class implements the desired method. */
1174
1175 argvec[0] = msg_send;
1176 argvec[1] = target;
1177 argvec[2] = value_from_longest (long_type, responds_selector);
1178 argvec[3] = value_from_longest (long_type, selector);
1179 argvec[4] = 0;
1180
1181 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1182 if (gnu_runtime)
1183 {
1184 /* Function objc_msg_lookup returns a pointer. */
1185 argvec[0] = ret;
1186 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1187 }
1188 if (value_as_long (ret) == 0)
1189 error (_("Target does not respond to this message selector."));
1190
1191 /* Call "methodForSelector:" method, to get the address of a
1192 function method that implements this selector for this
1193 class. If we can find a symbol at that address, then we
1194 know the return type, parameter types etc. (that's a good
1195 thing). */
1196
1197 argvec[0] = msg_send;
1198 argvec[1] = target;
1199 argvec[2] = value_from_longest (long_type, method_selector);
1200 argvec[3] = value_from_longest (long_type, selector);
1201 argvec[4] = 0;
1202
1203 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1204 if (gnu_runtime)
1205 {
1206 argvec[0] = ret;
1207 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1208 }
1209
1210 /* ret should now be the selector. */
1211
1212 addr = value_as_long (ret);
1213 if (addr)
1214 {
1215 struct symbol *sym = NULL;
1216
1217 /* The address might point to a function descriptor;
1218 resolve it to the actual code address instead. */
1219 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1220 &current_target);
1221
1222 /* Is it a high_level symbol? */
1223 sym = find_pc_function (addr);
1224 if (sym != NULL)
1225 method = value_of_variable (sym, 0);
1226 }
1227
1228 /* If we found a method with symbol information, check to see
1229 if it returns a struct. Otherwise assume it doesn't. */
1230
1231 if (method)
1232 {
1233 CORE_ADDR funaddr;
1234 struct type *val_type;
1235
1236 funaddr = find_function_addr (method, &val_type);
1237
1238 block_for_pc (funaddr);
1239
1240 CHECK_TYPEDEF (val_type);
1241
1242 if ((val_type == NULL)
1243 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1244 {
1245 if (expect_type != NULL)
1246 val_type = expect_type;
1247 }
1248
1249 struct_return = using_struct_return (exp->gdbarch, method,
1250 val_type);
1251 }
1252 else if (expect_type != NULL)
1253 {
1254 struct_return = using_struct_return (exp->gdbarch, NULL,
1255 check_typedef (expect_type));
1256 }
1257
1258 /* Found a function symbol. Now we will substitute its
1259 value in place of the message dispatcher (obj_msgSend),
1260 so that we call the method directly instead of thru
1261 the dispatcher. The main reason for doing this is that
1262 we can now evaluate the return value and parameter values
1263 according to their known data types, in case we need to
1264 do things like promotion, dereferencing, special handling
1265 of structs and doubles, etc.
1266
1267 We want to use the type signature of 'method', but still
1268 jump to objc_msgSend() or objc_msgSend_stret() to better
1269 mimic the behavior of the runtime. */
1270
1271 if (method)
1272 {
1273 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1274 error (_("method address has symbol information "
1275 "with non-function type; skipping"));
1276
1277 /* Create a function pointer of the appropriate type, and
1278 replace its value with the value of msg_send or
1279 msg_send_stret. We must use a pointer here, as
1280 msg_send and msg_send_stret are of pointer type, and
1281 the representation may be different on systems that use
1282 function descriptors. */
1283 if (struct_return)
1284 called_method
1285 = value_from_pointer (lookup_pointer_type (value_type (method)),
1286 value_as_address (msg_send_stret));
1287 else
1288 called_method
1289 = value_from_pointer (lookup_pointer_type (value_type (method)),
1290 value_as_address (msg_send));
1291 }
1292 else
1293 {
1294 if (struct_return)
1295 called_method = msg_send_stret;
1296 else
1297 called_method = msg_send;
1298 }
1299
1300 if (noside == EVAL_SKIP)
1301 goto nosideret;
1302
1303 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1304 {
1305 /* If the return type doesn't look like a function type,
1306 call an error. This can happen if somebody tries to
1307 turn a variable into a function call. This is here
1308 because people often want to call, eg, strcmp, which
1309 gdb doesn't know is a function. If gdb isn't asked for
1310 it's opinion (ie. through "whatis"), it won't offer
1311 it. */
1312
1313 struct type *type = value_type (called_method);
1314
1315 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1316 type = TYPE_TARGET_TYPE (type);
1317 type = TYPE_TARGET_TYPE (type);
1318
1319 if (type)
1320 {
1321 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1322 return allocate_value (expect_type);
1323 else
1324 return allocate_value (type);
1325 }
1326 else
1327 error (_("Expression of type other than "
1328 "\"method returning ...\" used as a method"));
1329 }
1330
1331 /* Now depending on whether we found a symbol for the method,
1332 we will either call the runtime dispatcher or the method
1333 directly. */
1334
1335 argvec[0] = called_method;
1336 argvec[1] = target;
1337 argvec[2] = value_from_longest (long_type, selector);
1338 /* User-supplied arguments. */
1339 for (tem = 0; tem < nargs; tem++)
1340 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1341 argvec[tem + 3] = 0;
1342
1343 if (gnu_runtime && (method != NULL))
1344 {
1345 /* Function objc_msg_lookup returns a pointer. */
1346 deprecated_set_value_type (argvec[0],
1347 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1348 argvec[0]
1349 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1350 }
1351
1352 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1353 return ret;
1354 }
1355 break;
1356
1357 case OP_FUNCALL:
1358 (*pos) += 2;
1359 op = exp->elts[*pos].opcode;
1360 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1361 /* Allocate arg vector, including space for the function to be
1362 called in argvec[0] and a terminating NULL. */
1363 argvec = (struct value **)
1364 alloca (sizeof (struct value *) * (nargs + 3));
1365 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1366 {
1367 /* First, evaluate the structure into arg2. */
1368 pc2 = (*pos)++;
1369
1370 if (noside == EVAL_SKIP)
1371 goto nosideret;
1372
1373 if (op == STRUCTOP_MEMBER)
1374 {
1375 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1376 }
1377 else
1378 {
1379 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1380 }
1381
1382 /* If the function is a virtual function, then the
1383 aggregate value (providing the structure) plays
1384 its part by providing the vtable. Otherwise,
1385 it is just along for the ride: call the function
1386 directly. */
1387
1388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1389
1390 type = check_typedef (value_type (arg1));
1391 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR)
1392 {
1393 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1394 arg1 = value_zero (TYPE_TARGET_TYPE (type), not_lval);
1395 else
1396 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1397
1398 /* Now, say which argument to start evaluating from. */
1399 nargs++;
1400 tem = 2;
1401 argvec[1] = arg2;
1402 }
1403 else if (TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
1404 {
1405 struct type *type_ptr
1406 = lookup_pointer_type (TYPE_DOMAIN_TYPE (type));
1407 struct type *target_type_ptr
1408 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1409
1410 /* Now, convert these values to an address. */
1411 arg2 = value_cast (type_ptr, arg2);
1412
1413 mem_offset = value_as_long (arg1);
1414
1415 arg1 = value_from_pointer (target_type_ptr,
1416 value_as_long (arg2) + mem_offset);
1417 arg1 = value_ind (arg1);
1418 tem = 1;
1419 }
1420 else
1421 error (_("Non-pointer-to-member value used in pointer-to-member "
1422 "construct"));
1423 }
1424 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1425 {
1426 /* Hair for method invocations. */
1427 int tem2;
1428
1429 nargs++;
1430 /* First, evaluate the structure into arg2. */
1431 pc2 = (*pos)++;
1432 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1433 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1434 if (noside == EVAL_SKIP)
1435 goto nosideret;
1436
1437 if (op == STRUCTOP_STRUCT)
1438 {
1439 /* If v is a variable in a register, and the user types
1440 v.method (), this will produce an error, because v has
1441 no address.
1442
1443 A possible way around this would be to allocate a
1444 copy of the variable on the stack, copy in the
1445 contents, call the function, and copy out the
1446 contents. I.e. convert this from call by reference
1447 to call by copy-return (or whatever it's called).
1448 However, this does not work because it is not the
1449 same: the method being called could stash a copy of
1450 the address, and then future uses through that address
1451 (after the method returns) would be expected to
1452 use the variable itself, not some copy of it. */
1453 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1454 }
1455 else
1456 {
1457 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1458
1459 /* Check to see if the operator '->' has been
1460 overloaded. If the operator has been overloaded
1461 replace arg2 with the value returned by the custom
1462 operator and continue evaluation. */
1463 while (unop_user_defined_p (op, arg2))
1464 {
1465 volatile struct gdb_exception except;
1466 struct value *value = NULL;
1467 TRY_CATCH (except, RETURN_MASK_ERROR)
1468 {
1469 value = value_x_unop (arg2, op, noside);
1470 }
1471
1472 if (except.reason < 0)
1473 {
1474 if (except.error == NOT_FOUND_ERROR)
1475 break;
1476 else
1477 throw_exception (except);
1478 }
1479 arg2 = value;
1480 }
1481 }
1482 /* Now, say which argument to start evaluating from. */
1483 tem = 2;
1484 }
1485 else if (op == OP_SCOPE
1486 && overload_resolution
1487 && (exp->language_defn->la_language == language_cplus))
1488 {
1489 /* Unpack it locally so we can properly handle overload
1490 resolution. */
1491 char *name;
1492 int local_tem;
1493
1494 pc2 = (*pos)++;
1495 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1496 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1497 type = exp->elts[pc2 + 1].type;
1498 name = &exp->elts[pc2 + 3].string;
1499
1500 function = NULL;
1501 function_name = NULL;
1502 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1503 {
1504 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1505 name,
1506 get_selected_block (0),
1507 VAR_DOMAIN);
1508 if (function == NULL)
1509 error (_("No symbol \"%s\" in namespace \"%s\"."),
1510 name, TYPE_TAG_NAME (type));
1511
1512 tem = 1;
1513 }
1514 else
1515 {
1516 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1517 || TYPE_CODE (type) == TYPE_CODE_UNION);
1518 function_name = name;
1519
1520 arg2 = value_zero (type, lval_memory);
1521 ++nargs;
1522 tem = 2;
1523 }
1524 }
1525 else if (op == OP_ADL_FUNC)
1526 {
1527 /* Save the function position and move pos so that the arguments
1528 can be evaluated. */
1529 int func_name_len;
1530
1531 save_pos1 = *pos;
1532 tem = 1;
1533
1534 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1535 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1536 }
1537 else
1538 {
1539 /* Non-method function call. */
1540 save_pos1 = *pos;
1541 tem = 1;
1542
1543 /* If this is a C++ function wait until overload resolution. */
1544 if (op == OP_VAR_VALUE
1545 && overload_resolution
1546 && (exp->language_defn->la_language == language_cplus))
1547 {
1548 (*pos) += 4; /* Skip the evaluation of the symbol. */
1549 argvec[0] = NULL;
1550 }
1551 else
1552 {
1553 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1554 type = value_type (argvec[0]);
1555 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1556 type = TYPE_TARGET_TYPE (type);
1557 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1558 {
1559 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1560 {
1561 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1562 tem - 1),
1563 exp, pos, noside);
1564 }
1565 }
1566 }
1567 }
1568
1569 /* Evaluate arguments. */
1570 for (; tem <= nargs; tem++)
1571 {
1572 /* Ensure that array expressions are coerced into pointer
1573 objects. */
1574 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1575 }
1576
1577 /* Signal end of arglist. */
1578 argvec[tem] = 0;
1579 if (op == OP_ADL_FUNC)
1580 {
1581 struct symbol *symp;
1582 char *func_name;
1583 int name_len;
1584 int string_pc = save_pos1 + 3;
1585
1586 /* Extract the function name. */
1587 name_len = longest_to_int (exp->elts[string_pc].longconst);
1588 func_name = (char *) alloca (name_len + 1);
1589 strcpy (func_name, &exp->elts[string_pc + 1].string);
1590
1591 find_overload_match (&argvec[1], nargs, func_name,
1592 NON_METHOD, /* not method */
1593 NULL, NULL, /* pass NULL symbol since
1594 symbol is unknown */
1595 NULL, &symp, NULL, 0);
1596
1597 /* Now fix the expression being evaluated. */
1598 exp->elts[save_pos1 + 2].symbol = symp;
1599 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1600 }
1601
1602 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1603 || (op == OP_SCOPE && function_name != NULL))
1604 {
1605 int static_memfuncp;
1606 char *tstr;
1607
1608 /* Method invocation : stuff "this" as first parameter. */
1609 argvec[1] = arg2;
1610
1611 if (op != OP_SCOPE)
1612 {
1613 /* Name of method from expression. */
1614 tstr = &exp->elts[pc2 + 2].string;
1615 }
1616 else
1617 tstr = function_name;
1618
1619 if (overload_resolution && (exp->language_defn->la_language
1620 == language_cplus))
1621 {
1622 /* Language is C++, do some overload resolution before
1623 evaluation. */
1624 struct value *valp = NULL;
1625
1626 (void) find_overload_match (&argvec[1], nargs, tstr,
1627 METHOD, /* method */
1628 &arg2, /* the object */
1629 NULL, &valp, NULL,
1630 &static_memfuncp, 0);
1631
1632 if (op == OP_SCOPE && !static_memfuncp)
1633 {
1634 /* For the time being, we don't handle this. */
1635 error (_("Call to overloaded function %s requires "
1636 "`this' pointer"),
1637 function_name);
1638 }
1639 argvec[1] = arg2; /* the ``this'' pointer */
1640 argvec[0] = valp; /* Use the method found after overload
1641 resolution. */
1642 }
1643 else
1644 /* Non-C++ case -- or no overload resolution. */
1645 {
1646 struct value *temp = arg2;
1647
1648 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1649 &static_memfuncp,
1650 op == STRUCTOP_STRUCT
1651 ? "structure" : "structure pointer");
1652 /* value_struct_elt updates temp with the correct value
1653 of the ``this'' pointer if necessary, so modify argvec[1] to
1654 reflect any ``this'' changes. */
1655 arg2
1656 = value_from_longest (lookup_pointer_type(value_type (temp)),
1657 value_address (temp)
1658 + value_embedded_offset (temp));
1659 argvec[1] = arg2; /* the ``this'' pointer */
1660 }
1661
1662 if (static_memfuncp)
1663 {
1664 argvec[1] = argvec[0];
1665 nargs--;
1666 argvec++;
1667 }
1668 }
1669 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1670 {
1671 /* Pointer to member. argvec[1] is already set up. */
1672 argvec[0] = arg1;
1673 }
1674 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1675 {
1676 /* Non-member function being called. */
1677 /* fn: This can only be done for C++ functions. A C-style function
1678 in a C++ program, for instance, does not have the fields that
1679 are expected here. */
1680
1681 if (overload_resolution && (exp->language_defn->la_language
1682 == language_cplus))
1683 {
1684 /* Language is C++, do some overload resolution before
1685 evaluation. */
1686 struct symbol *symp;
1687 int no_adl = 0;
1688
1689 /* If a scope has been specified disable ADL. */
1690 if (op == OP_SCOPE)
1691 no_adl = 1;
1692
1693 if (op == OP_VAR_VALUE)
1694 function = exp->elts[save_pos1+2].symbol;
1695
1696 (void) find_overload_match (&argvec[1], nargs,
1697 NULL, /* no need for name */
1698 NON_METHOD, /* not method */
1699 NULL, function, /* the function */
1700 NULL, &symp, NULL, no_adl);
1701
1702 if (op == OP_VAR_VALUE)
1703 {
1704 /* Now fix the expression being evaluated. */
1705 exp->elts[save_pos1+2].symbol = symp;
1706 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1707 noside);
1708 }
1709 else
1710 argvec[0] = value_of_variable (symp, get_selected_block (0));
1711 }
1712 else
1713 {
1714 /* Not C++, or no overload resolution allowed. */
1715 /* Nothing to be done; argvec already correctly set up. */
1716 }
1717 }
1718 else
1719 {
1720 /* It is probably a C-style function. */
1721 /* Nothing to be done; argvec already correctly set up. */
1722 }
1723
1724 do_call_it:
1725
1726 if (noside == EVAL_SKIP)
1727 goto nosideret;
1728 if (argvec[0] == NULL)
1729 error (_("Cannot evaluate function -- may be inlined"));
1730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1731 {
1732 /* If the return type doesn't look like a function type, call an
1733 error. This can happen if somebody tries to turn a variable into
1734 a function call. This is here because people often want to
1735 call, eg, strcmp, which gdb doesn't know is a function. If
1736 gdb isn't asked for it's opinion (ie. through "whatis"),
1737 it won't offer it. */
1738
1739 struct type *ftype = value_type (argvec[0]);
1740
1741 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1742 {
1743 /* We don't know anything about what the internal
1744 function might return, but we have to return
1745 something. */
1746 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1747 not_lval);
1748 }
1749 else if (TYPE_GNU_IFUNC (ftype))
1750 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1751 else if (TYPE_TARGET_TYPE (ftype))
1752 return allocate_value (TYPE_TARGET_TYPE (ftype));
1753 else
1754 error (_("Expression of type other than "
1755 "\"Function returning ...\" used as function"));
1756 }
1757 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1758 return call_internal_function (exp->gdbarch, exp->language_defn,
1759 argvec[0], nargs, argvec + 1);
1760
1761 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1762 /* pai: FIXME save value from call_function_by_hand, then adjust
1763 pc by adjust_fn_pc if +ve. */
1764
1765 case OP_F77_UNDETERMINED_ARGLIST:
1766
1767 /* Remember that in F77, functions, substring ops and
1768 array subscript operations cannot be disambiguated
1769 at parse time. We have made all array subscript operations,
1770 substring operations as well as function calls come here
1771 and we now have to discover what the heck this thing actually was.
1772 If it is a function, we process just as if we got an OP_FUNCALL. */
1773
1774 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1775 (*pos) += 2;
1776
1777 /* First determine the type code we are dealing with. */
1778 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1779 type = check_typedef (value_type (arg1));
1780 code = TYPE_CODE (type);
1781
1782 if (code == TYPE_CODE_PTR)
1783 {
1784 /* Fortran always passes variable to subroutines as pointer.
1785 So we need to look into its target type to see if it is
1786 array, string or function. If it is, we need to switch
1787 to the target value the original one points to. */
1788 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1789
1790 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1791 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1792 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1793 {
1794 arg1 = value_ind (arg1);
1795 type = check_typedef (value_type (arg1));
1796 code = TYPE_CODE (type);
1797 }
1798 }
1799
1800 switch (code)
1801 {
1802 case TYPE_CODE_ARRAY:
1803 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1804 return value_f90_subarray (arg1, exp, pos, noside);
1805 else
1806 goto multi_f77_subscript;
1807
1808 case TYPE_CODE_STRING:
1809 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1810 return value_f90_subarray (arg1, exp, pos, noside);
1811 else
1812 {
1813 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1814 return value_subscript (arg1, value_as_long (arg2));
1815 }
1816
1817 case TYPE_CODE_PTR:
1818 case TYPE_CODE_FUNC:
1819 /* It's a function call. */
1820 /* Allocate arg vector, including space for the function to be
1821 called in argvec[0] and a terminating NULL. */
1822 argvec = (struct value **)
1823 alloca (sizeof (struct value *) * (nargs + 2));
1824 argvec[0] = arg1;
1825 tem = 1;
1826 for (; tem <= nargs; tem++)
1827 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1828 argvec[tem] = 0; /* signal end of arglist */
1829 goto do_call_it;
1830
1831 default:
1832 error (_("Cannot perform substring on this type"));
1833 }
1834
1835 case OP_COMPLEX:
1836 /* We have a complex number, There should be 2 floating
1837 point numbers that compose it. */
1838 (*pos) += 2;
1839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1840 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1841
1842 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1843
1844 case STRUCTOP_STRUCT:
1845 tem = longest_to_int (exp->elts[pc + 1].longconst);
1846 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1847 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1848 if (noside == EVAL_SKIP)
1849 goto nosideret;
1850 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1851 NULL, "structure");
1852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1853 arg3 = value_zero (value_type (arg3), not_lval);
1854 return arg3;
1855
1856 case STRUCTOP_PTR:
1857 tem = longest_to_int (exp->elts[pc + 1].longconst);
1858 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1860 if (noside == EVAL_SKIP)
1861 goto nosideret;
1862
1863 /* Check to see if operator '->' has been overloaded. If so replace
1864 arg1 with the value returned by evaluating operator->(). */
1865 while (unop_user_defined_p (op, arg1))
1866 {
1867 volatile struct gdb_exception except;
1868 struct value *value = NULL;
1869 TRY_CATCH (except, RETURN_MASK_ERROR)
1870 {
1871 value = value_x_unop (arg1, op, noside);
1872 }
1873
1874 if (except.reason < 0)
1875 {
1876 if (except.error == NOT_FOUND_ERROR)
1877 break;
1878 else
1879 throw_exception (except);
1880 }
1881 arg1 = value;
1882 }
1883
1884 /* JYG: if print object is on we need to replace the base type
1885 with rtti type in order to continue on with successful
1886 lookup of member / method only available in the rtti type. */
1887 {
1888 struct type *type = value_type (arg1);
1889 struct type *real_type;
1890 int full, top, using_enc;
1891 struct value_print_options opts;
1892
1893 get_user_print_options (&opts);
1894 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1895 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1896 {
1897 real_type = value_rtti_indirect_type (arg1, &full, &top,
1898 &using_enc);
1899 if (real_type)
1900 arg1 = value_cast (real_type, arg1);
1901 }
1902 }
1903
1904 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1905 NULL, "structure pointer");
1906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1907 arg3 = value_zero (value_type (arg3), not_lval);
1908 return arg3;
1909
1910 case STRUCTOP_MEMBER:
1911 case STRUCTOP_MPTR:
1912 if (op == STRUCTOP_MEMBER)
1913 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1914 else
1915 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1916
1917 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1918
1919 if (noside == EVAL_SKIP)
1920 goto nosideret;
1921
1922 type = check_typedef (value_type (arg2));
1923 switch (TYPE_CODE (type))
1924 {
1925 case TYPE_CODE_METHODPTR:
1926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1927 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1928 else
1929 {
1930 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1931 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1932 return value_ind (arg2);
1933 }
1934
1935 case TYPE_CODE_MEMBERPTR:
1936 /* Now, convert these values to an address. */
1937 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1938 arg1, 1);
1939
1940 mem_offset = value_as_long (arg2);
1941
1942 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1943 value_as_long (arg1) + mem_offset);
1944 return value_ind (arg3);
1945
1946 default:
1947 error (_("non-pointer-to-member value used "
1948 "in pointer-to-member construct"));
1949 }
1950
1951 case TYPE_INSTANCE:
1952 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1953 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1954 for (ix = 0; ix < nargs; ++ix)
1955 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1956
1957 expect_type = make_params (nargs, arg_types);
1958 *(pos) += 3 + nargs;
1959 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1960 xfree (TYPE_FIELDS (expect_type));
1961 xfree (TYPE_MAIN_TYPE (expect_type));
1962 xfree (expect_type);
1963 return arg1;
1964
1965 case BINOP_CONCAT:
1966 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1967 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1968 if (noside == EVAL_SKIP)
1969 goto nosideret;
1970 if (binop_user_defined_p (op, arg1, arg2))
1971 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1972 else
1973 return value_concat (arg1, arg2);
1974
1975 case BINOP_ASSIGN:
1976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1977 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1978
1979 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1980 return arg1;
1981 if (binop_user_defined_p (op, arg1, arg2))
1982 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1983 else
1984 return value_assign (arg1, arg2);
1985
1986 case BINOP_ASSIGN_MODIFY:
1987 (*pos) += 2;
1988 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1989 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1990 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1991 return arg1;
1992 op = exp->elts[pc + 1].opcode;
1993 if (binop_user_defined_p (op, arg1, arg2))
1994 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1995 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
1996 value_type (arg1))
1997 && is_integral_type (value_type (arg2)))
1998 arg2 = value_ptradd (arg1, value_as_long (arg2));
1999 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2000 value_type (arg1))
2001 && is_integral_type (value_type (arg2)))
2002 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2003 else
2004 {
2005 struct value *tmp = arg1;
2006
2007 /* For shift and integer exponentiation operations,
2008 only promote the first argument. */
2009 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2010 && is_integral_type (value_type (arg2)))
2011 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2012 else
2013 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2014
2015 arg2 = value_binop (tmp, arg2, op);
2016 }
2017 return value_assign (arg1, arg2);
2018
2019 case BINOP_ADD:
2020 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2021 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2022 if (noside == EVAL_SKIP)
2023 goto nosideret;
2024 if (binop_user_defined_p (op, arg1, arg2))
2025 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2026 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2027 && is_integral_type (value_type (arg2)))
2028 return value_ptradd (arg1, value_as_long (arg2));
2029 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2030 && is_integral_type (value_type (arg1)))
2031 return value_ptradd (arg2, value_as_long (arg1));
2032 else
2033 {
2034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2035 return value_binop (arg1, arg2, BINOP_ADD);
2036 }
2037
2038 case BINOP_SUB:
2039 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2040 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2041 if (noside == EVAL_SKIP)
2042 goto nosideret;
2043 if (binop_user_defined_p (op, arg1, arg2))
2044 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2045 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2046 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2047 {
2048 /* FIXME -- should be ptrdiff_t */
2049 type = builtin_type (exp->gdbarch)->builtin_long;
2050 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2051 }
2052 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2053 && is_integral_type (value_type (arg2)))
2054 return value_ptradd (arg1, - value_as_long (arg2));
2055 else
2056 {
2057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2058 return value_binop (arg1, arg2, BINOP_SUB);
2059 }
2060
2061 case BINOP_EXP:
2062 case BINOP_MUL:
2063 case BINOP_DIV:
2064 case BINOP_INTDIV:
2065 case BINOP_REM:
2066 case BINOP_MOD:
2067 case BINOP_LSH:
2068 case BINOP_RSH:
2069 case BINOP_BITWISE_AND:
2070 case BINOP_BITWISE_IOR:
2071 case BINOP_BITWISE_XOR:
2072 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2073 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2074 if (noside == EVAL_SKIP)
2075 goto nosideret;
2076 if (binop_user_defined_p (op, arg1, arg2))
2077 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2078 else
2079 {
2080 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2081 fudge arg2 to avoid division-by-zero, the caller is
2082 (theoretically) only looking for the type of the result. */
2083 if (noside == EVAL_AVOID_SIDE_EFFECTS
2084 /* ??? Do we really want to test for BINOP_MOD here?
2085 The implementation of value_binop gives it a well-defined
2086 value. */
2087 && (op == BINOP_DIV
2088 || op == BINOP_INTDIV
2089 || op == BINOP_REM
2090 || op == BINOP_MOD)
2091 && value_logical_not (arg2))
2092 {
2093 struct value *v_one, *retval;
2094
2095 v_one = value_one (value_type (arg2));
2096 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2097 retval = value_binop (arg1, v_one, op);
2098 return retval;
2099 }
2100 else
2101 {
2102 /* For shift and integer exponentiation operations,
2103 only promote the first argument. */
2104 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2105 && is_integral_type (value_type (arg2)))
2106 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2107 else
2108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2109
2110 return value_binop (arg1, arg2, op);
2111 }
2112 }
2113
2114 case BINOP_RANGE:
2115 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2116 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2117 if (noside == EVAL_SKIP)
2118 goto nosideret;
2119 error (_("':' operator used in invalid context"));
2120
2121 case BINOP_SUBSCRIPT:
2122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2123 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2124 if (noside == EVAL_SKIP)
2125 goto nosideret;
2126 if (binop_user_defined_p (op, arg1, arg2))
2127 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2128 else
2129 {
2130 /* If the user attempts to subscript something that is not an
2131 array or pointer type (like a plain int variable for example),
2132 then report this as an error. */
2133
2134 arg1 = coerce_ref (arg1);
2135 type = check_typedef (value_type (arg1));
2136 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2137 && TYPE_CODE (type) != TYPE_CODE_PTR)
2138 {
2139 if (TYPE_NAME (type))
2140 error (_("cannot subscript something of type `%s'"),
2141 TYPE_NAME (type));
2142 else
2143 error (_("cannot subscript requested type"));
2144 }
2145
2146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2147 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2148 else
2149 return value_subscript (arg1, value_as_long (arg2));
2150 }
2151
2152 case BINOP_IN:
2153 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2154 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2155 if (noside == EVAL_SKIP)
2156 goto nosideret;
2157 type = language_bool_type (exp->language_defn, exp->gdbarch);
2158 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2159
2160 case MULTI_SUBSCRIPT:
2161 (*pos) += 2;
2162 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2163 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2164 while (nargs-- > 0)
2165 {
2166 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2167 /* FIXME: EVAL_SKIP handling may not be correct. */
2168 if (noside == EVAL_SKIP)
2169 {
2170 if (nargs > 0)
2171 {
2172 continue;
2173 }
2174 else
2175 {
2176 goto nosideret;
2177 }
2178 }
2179 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2180 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2181 {
2182 /* If the user attempts to subscript something that has no target
2183 type (like a plain int variable for example), then report this
2184 as an error. */
2185
2186 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2187 if (type != NULL)
2188 {
2189 arg1 = value_zero (type, VALUE_LVAL (arg1));
2190 noside = EVAL_SKIP;
2191 continue;
2192 }
2193 else
2194 {
2195 error (_("cannot subscript something of type `%s'"),
2196 TYPE_NAME (value_type (arg1)));
2197 }
2198 }
2199
2200 if (binop_user_defined_p (op, arg1, arg2))
2201 {
2202 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2203 }
2204 else
2205 {
2206 arg1 = coerce_ref (arg1);
2207 type = check_typedef (value_type (arg1));
2208
2209 switch (TYPE_CODE (type))
2210 {
2211 case TYPE_CODE_PTR:
2212 case TYPE_CODE_ARRAY:
2213 case TYPE_CODE_STRING:
2214 arg1 = value_subscript (arg1, value_as_long (arg2));
2215 break;
2216
2217 default:
2218 if (TYPE_NAME (type))
2219 error (_("cannot subscript something of type `%s'"),
2220 TYPE_NAME (type));
2221 else
2222 error (_("cannot subscript requested type"));
2223 }
2224 }
2225 }
2226 return (arg1);
2227
2228 multi_f77_subscript:
2229 {
2230 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2231 int ndimensions = 1, i;
2232 struct value *array = arg1;
2233
2234 if (nargs > MAX_FORTRAN_DIMS)
2235 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2236
2237 ndimensions = calc_f77_array_dims (type);
2238
2239 if (nargs != ndimensions)
2240 error (_("Wrong number of subscripts"));
2241
2242 gdb_assert (nargs > 0);
2243
2244 /* Now that we know we have a legal array subscript expression
2245 let us actually find out where this element exists in the array. */
2246
2247 /* Take array indices left to right. */
2248 for (i = 0; i < nargs; i++)
2249 {
2250 /* Evaluate each subscript; it must be a legal integer in F77. */
2251 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2252
2253 /* Fill in the subscript array. */
2254
2255 subscript_array[i] = value_as_long (arg2);
2256 }
2257
2258 /* Internal type of array is arranged right to left. */
2259 for (i = nargs; i > 0; i--)
2260 {
2261 struct type *array_type = check_typedef (value_type (array));
2262 LONGEST index = subscript_array[i - 1];
2263
2264 array = value_subscripted_rvalue (array, index,
2265 f77_get_lowerbound (array_type));
2266 }
2267
2268 return array;
2269 }
2270
2271 case BINOP_LOGICAL_AND:
2272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2273 if (noside == EVAL_SKIP)
2274 {
2275 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2276 goto nosideret;
2277 }
2278
2279 oldpos = *pos;
2280 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2281 *pos = oldpos;
2282
2283 if (binop_user_defined_p (op, arg1, arg2))
2284 {
2285 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2286 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2287 }
2288 else
2289 {
2290 tem = value_logical_not (arg1);
2291 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2292 (tem ? EVAL_SKIP : noside));
2293 type = language_bool_type (exp->language_defn, exp->gdbarch);
2294 return value_from_longest (type,
2295 (LONGEST) (!tem && !value_logical_not (arg2)));
2296 }
2297
2298 case BINOP_LOGICAL_OR:
2299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2300 if (noside == EVAL_SKIP)
2301 {
2302 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2303 goto nosideret;
2304 }
2305
2306 oldpos = *pos;
2307 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2308 *pos = oldpos;
2309
2310 if (binop_user_defined_p (op, arg1, arg2))
2311 {
2312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2313 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2314 }
2315 else
2316 {
2317 tem = value_logical_not (arg1);
2318 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2319 (!tem ? EVAL_SKIP : noside));
2320 type = language_bool_type (exp->language_defn, exp->gdbarch);
2321 return value_from_longest (type,
2322 (LONGEST) (!tem || !value_logical_not (arg2)));
2323 }
2324
2325 case BINOP_EQUAL:
2326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2327 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2328 if (noside == EVAL_SKIP)
2329 goto nosideret;
2330 if (binop_user_defined_p (op, arg1, arg2))
2331 {
2332 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2333 }
2334 else
2335 {
2336 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2337 tem = value_equal (arg1, arg2);
2338 type = language_bool_type (exp->language_defn, exp->gdbarch);
2339 return value_from_longest (type, (LONGEST) tem);
2340 }
2341
2342 case BINOP_NOTEQUAL:
2343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2344 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2345 if (noside == EVAL_SKIP)
2346 goto nosideret;
2347 if (binop_user_defined_p (op, arg1, arg2))
2348 {
2349 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2350 }
2351 else
2352 {
2353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2354 tem = value_equal (arg1, arg2);
2355 type = language_bool_type (exp->language_defn, exp->gdbarch);
2356 return value_from_longest (type, (LONGEST) ! tem);
2357 }
2358
2359 case BINOP_LESS:
2360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2361 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2362 if (noside == EVAL_SKIP)
2363 goto nosideret;
2364 if (binop_user_defined_p (op, arg1, arg2))
2365 {
2366 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2367 }
2368 else
2369 {
2370 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2371 tem = value_less (arg1, arg2);
2372 type = language_bool_type (exp->language_defn, exp->gdbarch);
2373 return value_from_longest (type, (LONGEST) tem);
2374 }
2375
2376 case BINOP_GTR:
2377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2378 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2379 if (noside == EVAL_SKIP)
2380 goto nosideret;
2381 if (binop_user_defined_p (op, arg1, arg2))
2382 {
2383 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2384 }
2385 else
2386 {
2387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2388 tem = value_less (arg2, arg1);
2389 type = language_bool_type (exp->language_defn, exp->gdbarch);
2390 return value_from_longest (type, (LONGEST) tem);
2391 }
2392
2393 case BINOP_GEQ:
2394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2395 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2396 if (noside == EVAL_SKIP)
2397 goto nosideret;
2398 if (binop_user_defined_p (op, arg1, arg2))
2399 {
2400 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2401 }
2402 else
2403 {
2404 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2405 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2406 type = language_bool_type (exp->language_defn, exp->gdbarch);
2407 return value_from_longest (type, (LONGEST) tem);
2408 }
2409
2410 case BINOP_LEQ:
2411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2413 if (noside == EVAL_SKIP)
2414 goto nosideret;
2415 if (binop_user_defined_p (op, arg1, arg2))
2416 {
2417 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2418 }
2419 else
2420 {
2421 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2422 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2423 type = language_bool_type (exp->language_defn, exp->gdbarch);
2424 return value_from_longest (type, (LONGEST) tem);
2425 }
2426
2427 case BINOP_REPEAT:
2428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2430 if (noside == EVAL_SKIP)
2431 goto nosideret;
2432 type = check_typedef (value_type (arg2));
2433 if (TYPE_CODE (type) != TYPE_CODE_INT)
2434 error (_("Non-integral right operand for \"@\" operator."));
2435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2436 {
2437 return allocate_repeat_value (value_type (arg1),
2438 longest_to_int (value_as_long (arg2)));
2439 }
2440 else
2441 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2442
2443 case BINOP_COMMA:
2444 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2445 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2446
2447 case UNOP_PLUS:
2448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2449 if (noside == EVAL_SKIP)
2450 goto nosideret;
2451 if (unop_user_defined_p (op, arg1))
2452 return value_x_unop (arg1, op, noside);
2453 else
2454 {
2455 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2456 return value_pos (arg1);
2457 }
2458
2459 case UNOP_NEG:
2460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2461 if (noside == EVAL_SKIP)
2462 goto nosideret;
2463 if (unop_user_defined_p (op, arg1))
2464 return value_x_unop (arg1, op, noside);
2465 else
2466 {
2467 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2468 return value_neg (arg1);
2469 }
2470
2471 case UNOP_COMPLEMENT:
2472 /* C++: check for and handle destructor names. */
2473 op = exp->elts[*pos].opcode;
2474
2475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2476 if (noside == EVAL_SKIP)
2477 goto nosideret;
2478 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2479 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2480 else
2481 {
2482 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2483 return value_complement (arg1);
2484 }
2485
2486 case UNOP_LOGICAL_NOT:
2487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2488 if (noside == EVAL_SKIP)
2489 goto nosideret;
2490 if (unop_user_defined_p (op, arg1))
2491 return value_x_unop (arg1, op, noside);
2492 else
2493 {
2494 type = language_bool_type (exp->language_defn, exp->gdbarch);
2495 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2496 }
2497
2498 case UNOP_IND:
2499 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2500 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2501 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2502 type = check_typedef (value_type (arg1));
2503 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2504 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2505 error (_("Attempt to dereference pointer "
2506 "to member without an object"));
2507 if (noside == EVAL_SKIP)
2508 goto nosideret;
2509 if (unop_user_defined_p (op, arg1))
2510 return value_x_unop (arg1, op, noside);
2511 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2512 {
2513 type = check_typedef (value_type (arg1));
2514 if (TYPE_CODE (type) == TYPE_CODE_PTR
2515 || TYPE_CODE (type) == TYPE_CODE_REF
2516 /* In C you can dereference an array to get the 1st elt. */
2517 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2518 )
2519 return value_zero (TYPE_TARGET_TYPE (type),
2520 lval_memory);
2521 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2522 /* GDB allows dereferencing an int. */
2523 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2524 lval_memory);
2525 else
2526 error (_("Attempt to take contents of a non-pointer value."));
2527 }
2528
2529 /* Allow * on an integer so we can cast it to whatever we want.
2530 This returns an int, which seems like the most C-like thing to
2531 do. "long long" variables are rare enough that
2532 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2533 if (TYPE_CODE (type) == TYPE_CODE_INT)
2534 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2535 (CORE_ADDR) value_as_address (arg1));
2536 return value_ind (arg1);
2537
2538 case UNOP_ADDR:
2539 /* C++: check for and handle pointer to members. */
2540
2541 op = exp->elts[*pos].opcode;
2542
2543 if (noside == EVAL_SKIP)
2544 {
2545 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2546 goto nosideret;
2547 }
2548 else
2549 {
2550 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2551 noside);
2552
2553 return retvalp;
2554 }
2555
2556 case UNOP_SIZEOF:
2557 if (noside == EVAL_SKIP)
2558 {
2559 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2560 goto nosideret;
2561 }
2562 return evaluate_subexp_for_sizeof (exp, pos);
2563
2564 case UNOP_CAST:
2565 (*pos) += 2;
2566 type = exp->elts[pc + 1].type;
2567 arg1 = evaluate_subexp (type, exp, pos, noside);
2568 if (noside == EVAL_SKIP)
2569 goto nosideret;
2570 if (type != value_type (arg1))
2571 arg1 = value_cast (type, arg1);
2572 return arg1;
2573
2574 case UNOP_CAST_TYPE:
2575 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2576 type = value_type (arg1);
2577 arg1 = evaluate_subexp (type, exp, pos, noside);
2578 if (noside == EVAL_SKIP)
2579 goto nosideret;
2580 if (type != value_type (arg1))
2581 arg1 = value_cast (type, arg1);
2582 return arg1;
2583
2584 case UNOP_DYNAMIC_CAST:
2585 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2586 type = value_type (arg1);
2587 arg1 = evaluate_subexp (type, exp, pos, noside);
2588 if (noside == EVAL_SKIP)
2589 goto nosideret;
2590 return value_dynamic_cast (type, arg1);
2591
2592 case UNOP_REINTERPRET_CAST:
2593 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2594 type = value_type (arg1);
2595 arg1 = evaluate_subexp (type, exp, pos, noside);
2596 if (noside == EVAL_SKIP)
2597 goto nosideret;
2598 return value_reinterpret_cast (type, arg1);
2599
2600 case UNOP_MEMVAL:
2601 (*pos) += 2;
2602 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2603 if (noside == EVAL_SKIP)
2604 goto nosideret;
2605 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2606 return value_zero (exp->elts[pc + 1].type, lval_memory);
2607 else
2608 return value_at_lazy (exp->elts[pc + 1].type,
2609 value_as_address (arg1));
2610
2611 case UNOP_MEMVAL_TYPE:
2612 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2613 type = value_type (arg1);
2614 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2615 if (noside == EVAL_SKIP)
2616 goto nosideret;
2617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2618 return value_zero (type, lval_memory);
2619 else
2620 return value_at_lazy (type, value_as_address (arg1));
2621
2622 case UNOP_MEMVAL_TLS:
2623 (*pos) += 3;
2624 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2625 if (noside == EVAL_SKIP)
2626 goto nosideret;
2627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2628 return value_zero (exp->elts[pc + 2].type, lval_memory);
2629 else
2630 {
2631 CORE_ADDR tls_addr;
2632
2633 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2634 value_as_address (arg1));
2635 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2636 }
2637
2638 case UNOP_PREINCREMENT:
2639 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2640 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2641 return arg1;
2642 else if (unop_user_defined_p (op, arg1))
2643 {
2644 return value_x_unop (arg1, op, noside);
2645 }
2646 else
2647 {
2648 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2649 arg2 = value_ptradd (arg1, 1);
2650 else
2651 {
2652 struct value *tmp = arg1;
2653
2654 arg2 = value_one (value_type (arg1));
2655 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2656 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2657 }
2658
2659 return value_assign (arg1, arg2);
2660 }
2661
2662 case UNOP_PREDECREMENT:
2663 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2664 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2665 return arg1;
2666 else if (unop_user_defined_p (op, arg1))
2667 {
2668 return value_x_unop (arg1, op, noside);
2669 }
2670 else
2671 {
2672 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2673 arg2 = value_ptradd (arg1, -1);
2674 else
2675 {
2676 struct value *tmp = arg1;
2677
2678 arg2 = value_one (value_type (arg1));
2679 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2680 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2681 }
2682
2683 return value_assign (arg1, arg2);
2684 }
2685
2686 case UNOP_POSTINCREMENT:
2687 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2688 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2689 return arg1;
2690 else if (unop_user_defined_p (op, arg1))
2691 {
2692 return value_x_unop (arg1, op, noside);
2693 }
2694 else
2695 {
2696 arg3 = value_non_lval (arg1);
2697
2698 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2699 arg2 = value_ptradd (arg1, 1);
2700 else
2701 {
2702 struct value *tmp = arg1;
2703
2704 arg2 = value_one (value_type (arg1));
2705 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2706 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2707 }
2708
2709 value_assign (arg1, arg2);
2710 return arg3;
2711 }
2712
2713 case UNOP_POSTDECREMENT:
2714 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2715 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2716 return arg1;
2717 else if (unop_user_defined_p (op, arg1))
2718 {
2719 return value_x_unop (arg1, op, noside);
2720 }
2721 else
2722 {
2723 arg3 = value_non_lval (arg1);
2724
2725 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2726 arg2 = value_ptradd (arg1, -1);
2727 else
2728 {
2729 struct value *tmp = arg1;
2730
2731 arg2 = value_one (value_type (arg1));
2732 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2733 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2734 }
2735
2736 value_assign (arg1, arg2);
2737 return arg3;
2738 }
2739
2740 case OP_THIS:
2741 (*pos) += 1;
2742 return value_of_this (exp->language_defn);
2743
2744 case OP_TYPE:
2745 /* The value is not supposed to be used. This is here to make it
2746 easier to accommodate expressions that contain types. */
2747 (*pos) += 2;
2748 if (noside == EVAL_SKIP)
2749 goto nosideret;
2750 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2751 {
2752 struct type *type = exp->elts[pc + 1].type;
2753
2754 /* If this is a typedef, then find its immediate target. We
2755 use check_typedef to resolve stubs, but we ignore its
2756 result because we do not want to dig past all
2757 typedefs. */
2758 check_typedef (type);
2759 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2760 type = TYPE_TARGET_TYPE (type);
2761 return allocate_value (type);
2762 }
2763 else
2764 error (_("Attempt to use a type name as an expression"));
2765
2766 case OP_TYPEOF:
2767 case OP_DECLTYPE:
2768 if (noside == EVAL_SKIP)
2769 {
2770 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2771 goto nosideret;
2772 }
2773 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2774 {
2775 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2776 struct value *result;
2777
2778 result = evaluate_subexp (NULL_TYPE, exp, pos,
2779 EVAL_AVOID_SIDE_EFFECTS);
2780
2781 /* 'decltype' has special semantics for lvalues. */
2782 if (op == OP_DECLTYPE
2783 && (sub_op == BINOP_SUBSCRIPT
2784 || sub_op == STRUCTOP_MEMBER
2785 || sub_op == STRUCTOP_MPTR
2786 || sub_op == UNOP_IND
2787 || sub_op == STRUCTOP_STRUCT
2788 || sub_op == STRUCTOP_PTR
2789 || sub_op == OP_SCOPE))
2790 {
2791 struct type *type = value_type (result);
2792
2793 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2794 {
2795 type = lookup_reference_type (type);
2796 result = allocate_value (type);
2797 }
2798 }
2799
2800 return result;
2801 }
2802 else
2803 error (_("Attempt to use a type as an expression"));
2804
2805 case OP_TYPEID:
2806 {
2807 struct value *result;
2808 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2809
2810 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2811 result = evaluate_subexp (NULL_TYPE, exp, pos,
2812 EVAL_AVOID_SIDE_EFFECTS);
2813 else
2814 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2815
2816 if (noside != EVAL_NORMAL)
2817 return allocate_value (cplus_typeid_type (exp->gdbarch));
2818
2819 return cplus_typeid (result);
2820 }
2821
2822 default:
2823 /* Removing this case and compiling with gcc -Wall reveals that
2824 a lot of cases are hitting this case. Some of these should
2825 probably be removed from expression.h; others are legitimate
2826 expressions which are (apparently) not fully implemented.
2827
2828 If there are any cases landing here which mean a user error,
2829 then they should be separate cases, with more descriptive
2830 error messages. */
2831
2832 error (_("GDB does not (yet) know how to "
2833 "evaluate that kind of expression"));
2834 }
2835
2836 nosideret:
2837 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2838 }
2839 \f
2840 /* Evaluate a subexpression of EXP, at index *POS,
2841 and return the address of that subexpression.
2842 Advance *POS over the subexpression.
2843 If the subexpression isn't an lvalue, get an error.
2844 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2845 then only the type of the result need be correct. */
2846
2847 static struct value *
2848 evaluate_subexp_for_address (struct expression *exp, int *pos,
2849 enum noside noside)
2850 {
2851 enum exp_opcode op;
2852 int pc;
2853 struct symbol *var;
2854 struct value *x;
2855 int tem;
2856
2857 pc = (*pos);
2858 op = exp->elts[pc].opcode;
2859
2860 switch (op)
2861 {
2862 case UNOP_IND:
2863 (*pos)++;
2864 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2865
2866 /* We can't optimize out "&*" if there's a user-defined operator*. */
2867 if (unop_user_defined_p (op, x))
2868 {
2869 x = value_x_unop (x, op, noside);
2870 goto default_case_after_eval;
2871 }
2872
2873 return coerce_array (x);
2874
2875 case UNOP_MEMVAL:
2876 (*pos) += 3;
2877 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2878 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2879
2880 case UNOP_MEMVAL_TYPE:
2881 {
2882 struct type *type;
2883
2884 (*pos) += 1;
2885 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2886 type = value_type (x);
2887 return value_cast (lookup_pointer_type (type),
2888 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2889 }
2890
2891 case OP_VAR_VALUE:
2892 var = exp->elts[pc + 2].symbol;
2893
2894 /* C++: The "address" of a reference should yield the address
2895 * of the object pointed to. Let value_addr() deal with it. */
2896 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2897 goto default_case;
2898
2899 (*pos) += 4;
2900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2901 {
2902 struct type *type =
2903 lookup_pointer_type (SYMBOL_TYPE (var));
2904 enum address_class sym_class = SYMBOL_CLASS (var);
2905
2906 if (sym_class == LOC_CONST
2907 || sym_class == LOC_CONST_BYTES
2908 || sym_class == LOC_REGISTER)
2909 error (_("Attempt to take address of register or constant."));
2910
2911 return
2912 value_zero (type, not_lval);
2913 }
2914 else
2915 return address_of_variable (var, exp->elts[pc + 1].block);
2916
2917 case OP_SCOPE:
2918 tem = longest_to_int (exp->elts[pc + 2].longconst);
2919 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2920 x = value_aggregate_elt (exp->elts[pc + 1].type,
2921 &exp->elts[pc + 3].string,
2922 NULL, 1, noside);
2923 if (x == NULL)
2924 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2925 return x;
2926
2927 default:
2928 default_case:
2929 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2930 default_case_after_eval:
2931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2932 {
2933 struct type *type = check_typedef (value_type (x));
2934
2935 if (TYPE_CODE (type) == TYPE_CODE_REF)
2936 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2937 not_lval);
2938 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2939 return value_zero (lookup_pointer_type (value_type (x)),
2940 not_lval);
2941 else
2942 error (_("Attempt to take address of "
2943 "value not located in memory."));
2944 }
2945 return value_addr (x);
2946 }
2947 }
2948
2949 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2950 When used in contexts where arrays will be coerced anyway, this is
2951 equivalent to `evaluate_subexp' but much faster because it avoids
2952 actually fetching array contents (perhaps obsolete now that we have
2953 value_lazy()).
2954
2955 Note that we currently only do the coercion for C expressions, where
2956 arrays are zero based and the coercion is correct. For other languages,
2957 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2958 to decide if coercion is appropriate. */
2959
2960 struct value *
2961 evaluate_subexp_with_coercion (struct expression *exp,
2962 int *pos, enum noside noside)
2963 {
2964 enum exp_opcode op;
2965 int pc;
2966 struct value *val;
2967 struct symbol *var;
2968 struct type *type;
2969
2970 pc = (*pos);
2971 op = exp->elts[pc].opcode;
2972
2973 switch (op)
2974 {
2975 case OP_VAR_VALUE:
2976 var = exp->elts[pc + 2].symbol;
2977 type = check_typedef (SYMBOL_TYPE (var));
2978 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2979 && !TYPE_VECTOR (type)
2980 && CAST_IS_CONVERSION (exp->language_defn))
2981 {
2982 (*pos) += 4;
2983 val = address_of_variable (var, exp->elts[pc + 1].block);
2984 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2985 val);
2986 }
2987 /* FALLTHROUGH */
2988
2989 default:
2990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2991 }
2992 }
2993
2994 /* Evaluate a subexpression of EXP, at index *POS,
2995 and return a value for the size of that subexpression.
2996 Advance *POS over the subexpression. */
2997
2998 static struct value *
2999 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3000 {
3001 /* FIXME: This should be size_t. */
3002 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3003 enum exp_opcode op;
3004 int pc;
3005 struct type *type;
3006 struct value *val;
3007
3008 pc = (*pos);
3009 op = exp->elts[pc].opcode;
3010
3011 switch (op)
3012 {
3013 /* This case is handled specially
3014 so that we avoid creating a value for the result type.
3015 If the result type is very big, it's desirable not to
3016 create a value unnecessarily. */
3017 case UNOP_IND:
3018 (*pos)++;
3019 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3020 type = check_typedef (value_type (val));
3021 if (TYPE_CODE (type) != TYPE_CODE_PTR
3022 && TYPE_CODE (type) != TYPE_CODE_REF
3023 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3024 error (_("Attempt to take contents of a non-pointer value."));
3025 type = check_typedef (TYPE_TARGET_TYPE (type));
3026 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3027
3028 case UNOP_MEMVAL:
3029 (*pos) += 3;
3030 type = check_typedef (exp->elts[pc + 1].type);
3031 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3032
3033 case UNOP_MEMVAL_TYPE:
3034 (*pos) += 1;
3035 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3036 type = check_typedef (value_type (val));
3037 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3038
3039 case OP_VAR_VALUE:
3040 (*pos) += 4;
3041 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3042 return
3043 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3044
3045 default:
3046 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3047 return value_from_longest (size_type,
3048 (LONGEST) TYPE_LENGTH (value_type (val)));
3049 }
3050 }
3051
3052 /* Parse a type expression in the string [P..P+LENGTH). */
3053
3054 struct type *
3055 parse_and_eval_type (char *p, int length)
3056 {
3057 char *tmp = (char *) alloca (length + 4);
3058 struct expression *expr;
3059
3060 tmp[0] = '(';
3061 memcpy (tmp + 1, p, length);
3062 tmp[length + 1] = ')';
3063 tmp[length + 2] = '0';
3064 tmp[length + 3] = '\0';
3065 expr = parse_expression (tmp);
3066 if (expr->elts[0].opcode != UNOP_CAST)
3067 error (_("Internal error in eval_type."));
3068 return expr->elts[1].type;
3069 }
3070
3071 int
3072 calc_f77_array_dims (struct type *array_type)
3073 {
3074 int ndimen = 1;
3075 struct type *tmp_type;
3076
3077 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3078 error (_("Can't get dimensions for a non-array type"));
3079
3080 tmp_type = array_type;
3081
3082 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3083 {
3084 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3085 ++ndimen;
3086 }
3087 return ndimen;
3088 }
This page took 0.136323 seconds and 4 git commands to generate.