* c-valprint.c (print_function_pointer_address): Move...
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 TYPE_NFIELDS (type) = num_types;
773 TYPE_FIELDS (type) = (struct field *)
774 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
775
776 while (num_types-- > 0)
777 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
778
779 return type;
780 }
781
782 struct value *
783 evaluate_subexp_standard (struct type *expect_type,
784 struct expression *exp, int *pos,
785 enum noside noside)
786 {
787 enum exp_opcode op;
788 int tem, tem2, tem3;
789 int pc, pc2 = 0, oldpos;
790 struct value *arg1 = NULL;
791 struct value *arg2 = NULL;
792 struct value *arg3;
793 struct type *type;
794 int nargs;
795 struct value **argvec;
796 int upper, lower;
797 int code;
798 int ix;
799 long mem_offset;
800 struct type **arg_types;
801 int save_pos1;
802 struct symbol *function = NULL;
803 char *function_name = NULL;
804
805 pc = (*pos)++;
806 op = exp->elts[pc].opcode;
807
808 switch (op)
809 {
810 case OP_SCOPE:
811 tem = longest_to_int (exp->elts[pc + 2].longconst);
812 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
813 if (noside == EVAL_SKIP)
814 goto nosideret;
815 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
816 &exp->elts[pc + 3].string,
817 expect_type, 0, noside);
818 if (arg1 == NULL)
819 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
820 return arg1;
821
822 case OP_LONG:
823 (*pos) += 3;
824 return value_from_longest (exp->elts[pc + 1].type,
825 exp->elts[pc + 2].longconst);
826
827 case OP_DOUBLE:
828 (*pos) += 3;
829 return value_from_double (exp->elts[pc + 1].type,
830 exp->elts[pc + 2].doubleconst);
831
832 case OP_DECFLOAT:
833 (*pos) += 3;
834 return value_from_decfloat (exp->elts[pc + 1].type,
835 exp->elts[pc + 2].decfloatconst);
836
837 case OP_ADL_FUNC:
838 case OP_VAR_VALUE:
839 (*pos) += 3;
840 if (noside == EVAL_SKIP)
841 goto nosideret;
842
843 /* JYG: We used to just return value_zero of the symbol type
844 if we're asked to avoid side effects. Otherwise we return
845 value_of_variable (...). However I'm not sure if
846 value_of_variable () has any side effect.
847 We need a full value object returned here for whatis_exp ()
848 to call evaluate_type () and then pass the full value to
849 value_rtti_target_type () if we are dealing with a pointer
850 or reference to a base class and print object is on. */
851
852 {
853 volatile struct gdb_exception except;
854 struct value *ret = NULL;
855
856 TRY_CATCH (except, RETURN_MASK_ERROR)
857 {
858 ret = value_of_variable (exp->elts[pc + 2].symbol,
859 exp->elts[pc + 1].block);
860 }
861
862 if (except.reason < 0)
863 {
864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
865 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
866 not_lval);
867 else
868 throw_exception (except);
869 }
870
871 return ret;
872 }
873
874 case OP_VAR_ENTRY_VALUE:
875 (*pos) += 2;
876 if (noside == EVAL_SKIP)
877 goto nosideret;
878
879 {
880 struct symbol *sym = exp->elts[pc + 1].symbol;
881 struct frame_info *frame;
882
883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
884 return value_zero (SYMBOL_TYPE (sym), not_lval);
885
886 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
887 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
888 error (_("Symbol \"%s\" does not have any specific entry value"),
889 SYMBOL_PRINT_NAME (sym));
890
891 frame = get_selected_frame (NULL);
892 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
893 }
894
895 case OP_LAST:
896 (*pos) += 2;
897 return
898 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
899
900 case OP_REGISTER:
901 {
902 const char *name = &exp->elts[pc + 2].string;
903 int regno;
904 struct value *val;
905
906 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
907 regno = user_reg_map_name_to_regnum (exp->gdbarch,
908 name, strlen (name));
909 if (regno == -1)
910 error (_("Register $%s not available."), name);
911
912 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
913 a value with the appropriate register type. Unfortunately,
914 we don't have easy access to the type of user registers.
915 So for these registers, we fetch the register value regardless
916 of the evaluation mode. */
917 if (noside == EVAL_AVOID_SIDE_EFFECTS
918 && regno < gdbarch_num_regs (exp->gdbarch)
919 + gdbarch_num_pseudo_regs (exp->gdbarch))
920 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
921 else
922 val = value_of_register (regno, get_selected_frame (NULL));
923 if (val == NULL)
924 error (_("Value of register %s not available."), name);
925 else
926 return val;
927 }
928 case OP_BOOL:
929 (*pos) += 2;
930 type = language_bool_type (exp->language_defn, exp->gdbarch);
931 return value_from_longest (type, exp->elts[pc + 1].longconst);
932
933 case OP_INTERNALVAR:
934 (*pos) += 2;
935 return value_of_internalvar (exp->gdbarch,
936 exp->elts[pc + 1].internalvar);
937
938 case OP_STRING:
939 tem = longest_to_int (exp->elts[pc + 1].longconst);
940 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
941 if (noside == EVAL_SKIP)
942 goto nosideret;
943 type = language_string_char_type (exp->language_defn, exp->gdbarch);
944 return value_string (&exp->elts[pc + 2].string, tem, type);
945
946 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
947 NSString constant. */
948 tem = longest_to_int (exp->elts[pc + 1].longconst);
949 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
950 if (noside == EVAL_SKIP)
951 {
952 goto nosideret;
953 }
954 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
955
956 case OP_BITSTRING:
957 tem = longest_to_int (exp->elts[pc + 1].longconst);
958 (*pos)
959 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
960 if (noside == EVAL_SKIP)
961 goto nosideret;
962 return value_bitstring (&exp->elts[pc + 2].string, tem,
963 builtin_type (exp->gdbarch)->builtin_int);
964 break;
965
966 case OP_ARRAY:
967 (*pos) += 3;
968 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
969 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
970 nargs = tem3 - tem2 + 1;
971 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
972
973 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
974 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
975 {
976 struct value *rec = allocate_value (expect_type);
977
978 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
979 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
980 }
981
982 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
983 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
984 {
985 struct type *range_type = TYPE_INDEX_TYPE (type);
986 struct type *element_type = TYPE_TARGET_TYPE (type);
987 struct value *array = allocate_value (expect_type);
988 int element_size = TYPE_LENGTH (check_typedef (element_type));
989 LONGEST low_bound, high_bound, index;
990
991 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
992 {
993 low_bound = 0;
994 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
995 }
996 index = low_bound;
997 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
998 for (tem = nargs; --nargs >= 0;)
999 {
1000 struct value *element;
1001 int index_pc = 0;
1002
1003 if (exp->elts[*pos].opcode == BINOP_RANGE)
1004 {
1005 index_pc = ++(*pos);
1006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1007 }
1008 element = evaluate_subexp (element_type, exp, pos, noside);
1009 if (value_type (element) != element_type)
1010 element = value_cast (element_type, element);
1011 if (index_pc)
1012 {
1013 int continue_pc = *pos;
1014
1015 *pos = index_pc;
1016 index = init_array_element (array, element, exp, pos, noside,
1017 low_bound, high_bound);
1018 *pos = continue_pc;
1019 }
1020 else
1021 {
1022 if (index > high_bound)
1023 /* To avoid memory corruption. */
1024 error (_("Too many array elements"));
1025 memcpy (value_contents_raw (array)
1026 + (index - low_bound) * element_size,
1027 value_contents (element),
1028 element_size);
1029 }
1030 index++;
1031 }
1032 return array;
1033 }
1034
1035 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1036 && TYPE_CODE (type) == TYPE_CODE_SET)
1037 {
1038 struct value *set = allocate_value (expect_type);
1039 gdb_byte *valaddr = value_contents_raw (set);
1040 struct type *element_type = TYPE_INDEX_TYPE (type);
1041 struct type *check_type = element_type;
1042 LONGEST low_bound, high_bound;
1043
1044 /* Get targettype of elementtype. */
1045 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1046 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1047 check_type = TYPE_TARGET_TYPE (check_type);
1048
1049 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1050 error (_("(power)set type with unknown size"));
1051 memset (valaddr, '\0', TYPE_LENGTH (type));
1052 for (tem = 0; tem < nargs; tem++)
1053 {
1054 LONGEST range_low, range_high;
1055 struct type *range_low_type, *range_high_type;
1056 struct value *elem_val;
1057
1058 if (exp->elts[*pos].opcode == BINOP_RANGE)
1059 {
1060 (*pos)++;
1061 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1062 range_low_type = value_type (elem_val);
1063 range_low = value_as_long (elem_val);
1064 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1065 range_high_type = value_type (elem_val);
1066 range_high = value_as_long (elem_val);
1067 }
1068 else
1069 {
1070 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1071 range_low_type = range_high_type = value_type (elem_val);
1072 range_low = range_high = value_as_long (elem_val);
1073 }
1074 /* Check types of elements to avoid mixture of elements from
1075 different types. Also check if type of element is "compatible"
1076 with element type of powerset. */
1077 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1078 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1079 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1080 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1081 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1082 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1083 && (range_low_type != range_high_type)))
1084 /* different element modes. */
1085 error (_("POWERSET tuple elements of different mode"));
1086 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1087 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1088 && range_low_type != check_type))
1089 error (_("incompatible POWERSET tuple elements"));
1090 if (range_low > range_high)
1091 {
1092 warning (_("empty POWERSET tuple range"));
1093 continue;
1094 }
1095 if (range_low < low_bound || range_high > high_bound)
1096 error (_("POWERSET tuple element out of range"));
1097 range_low -= low_bound;
1098 range_high -= low_bound;
1099 for (; range_low <= range_high; range_low++)
1100 {
1101 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1102
1103 if (gdbarch_bits_big_endian (exp->gdbarch))
1104 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1105 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1106 |= 1 << bit_index;
1107 }
1108 }
1109 return set;
1110 }
1111
1112 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1113 for (tem = 0; tem < nargs; tem++)
1114 {
1115 /* Ensure that array expressions are coerced into pointer
1116 objects. */
1117 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1118 }
1119 if (noside == EVAL_SKIP)
1120 goto nosideret;
1121 return value_array (tem2, tem3, argvec);
1122
1123 case TERNOP_SLICE:
1124 {
1125 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1126 int lowbound
1127 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1128 int upper
1129 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1130
1131 if (noside == EVAL_SKIP)
1132 goto nosideret;
1133 return value_slice (array, lowbound, upper - lowbound + 1);
1134 }
1135
1136 case TERNOP_SLICE_COUNT:
1137 {
1138 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1139 int lowbound
1140 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1141 int length
1142 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1143
1144 return value_slice (array, lowbound, length);
1145 }
1146
1147 case TERNOP_COND:
1148 /* Skip third and second args to evaluate the first one. */
1149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1150 if (value_logical_not (arg1))
1151 {
1152 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1153 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1154 }
1155 else
1156 {
1157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1158 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1159 return arg2;
1160 }
1161
1162 case OP_OBJC_SELECTOR:
1163 { /* Objective C @selector operator. */
1164 char *sel = &exp->elts[pc + 2].string;
1165 int len = longest_to_int (exp->elts[pc + 1].longconst);
1166 struct type *selector_type;
1167
1168 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1169 if (noside == EVAL_SKIP)
1170 goto nosideret;
1171
1172 if (sel[len] != 0)
1173 sel[len] = 0; /* Make sure it's terminated. */
1174
1175 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1176 return value_from_longest (selector_type,
1177 lookup_child_selector (exp->gdbarch, sel));
1178 }
1179
1180 case OP_OBJC_MSGCALL:
1181 { /* Objective C message (method) call. */
1182
1183 CORE_ADDR responds_selector = 0;
1184 CORE_ADDR method_selector = 0;
1185
1186 CORE_ADDR selector = 0;
1187
1188 int struct_return = 0;
1189 int sub_no_side = 0;
1190
1191 struct value *msg_send = NULL;
1192 struct value *msg_send_stret = NULL;
1193 int gnu_runtime = 0;
1194
1195 struct value *target = NULL;
1196 struct value *method = NULL;
1197 struct value *called_method = NULL;
1198
1199 struct type *selector_type = NULL;
1200 struct type *long_type;
1201
1202 struct value *ret = NULL;
1203 CORE_ADDR addr = 0;
1204
1205 selector = exp->elts[pc + 1].longconst;
1206 nargs = exp->elts[pc + 2].longconst;
1207 argvec = (struct value **) alloca (sizeof (struct value *)
1208 * (nargs + 5));
1209
1210 (*pos) += 3;
1211
1212 long_type = builtin_type (exp->gdbarch)->builtin_long;
1213 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1214
1215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1216 sub_no_side = EVAL_NORMAL;
1217 else
1218 sub_no_side = noside;
1219
1220 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1221
1222 if (value_as_long (target) == 0)
1223 return value_from_longest (long_type, 0);
1224
1225 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1226 gnu_runtime = 1;
1227
1228 /* Find the method dispatch (Apple runtime) or method lookup
1229 (GNU runtime) function for Objective-C. These will be used
1230 to lookup the symbol information for the method. If we
1231 can't find any symbol information, then we'll use these to
1232 call the method, otherwise we can call the method
1233 directly. The msg_send_stret function is used in the special
1234 case of a method that returns a structure (Apple runtime
1235 only). */
1236 if (gnu_runtime)
1237 {
1238 struct type *type = selector_type;
1239
1240 type = lookup_function_type (type);
1241 type = lookup_pointer_type (type);
1242 type = lookup_function_type (type);
1243 type = lookup_pointer_type (type);
1244
1245 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1246 msg_send_stret
1247 = find_function_in_inferior ("objc_msg_lookup", NULL);
1248
1249 msg_send = value_from_pointer (type, value_as_address (msg_send));
1250 msg_send_stret = value_from_pointer (type,
1251 value_as_address (msg_send_stret));
1252 }
1253 else
1254 {
1255 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1256 /* Special dispatcher for methods returning structs. */
1257 msg_send_stret
1258 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1259 }
1260
1261 /* Verify the target object responds to this method. The
1262 standard top-level 'Object' class uses a different name for
1263 the verification method than the non-standard, but more
1264 often used, 'NSObject' class. Make sure we check for both. */
1265
1266 responds_selector
1267 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1268 if (responds_selector == 0)
1269 responds_selector
1270 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1271
1272 if (responds_selector == 0)
1273 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1274
1275 method_selector
1276 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1277 if (method_selector == 0)
1278 method_selector
1279 = lookup_child_selector (exp->gdbarch, "methodFor:");
1280
1281 if (method_selector == 0)
1282 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1283
1284 /* Call the verification method, to make sure that the target
1285 class implements the desired method. */
1286
1287 argvec[0] = msg_send;
1288 argvec[1] = target;
1289 argvec[2] = value_from_longest (long_type, responds_selector);
1290 argvec[3] = value_from_longest (long_type, selector);
1291 argvec[4] = 0;
1292
1293 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1294 if (gnu_runtime)
1295 {
1296 /* Function objc_msg_lookup returns a pointer. */
1297 argvec[0] = ret;
1298 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1299 }
1300 if (value_as_long (ret) == 0)
1301 error (_("Target does not respond to this message selector."));
1302
1303 /* Call "methodForSelector:" method, to get the address of a
1304 function method that implements this selector for this
1305 class. If we can find a symbol at that address, then we
1306 know the return type, parameter types etc. (that's a good
1307 thing). */
1308
1309 argvec[0] = msg_send;
1310 argvec[1] = target;
1311 argvec[2] = value_from_longest (long_type, method_selector);
1312 argvec[3] = value_from_longest (long_type, selector);
1313 argvec[4] = 0;
1314
1315 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1316 if (gnu_runtime)
1317 {
1318 argvec[0] = ret;
1319 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1320 }
1321
1322 /* ret should now be the selector. */
1323
1324 addr = value_as_long (ret);
1325 if (addr)
1326 {
1327 struct symbol *sym = NULL;
1328
1329 /* The address might point to a function descriptor;
1330 resolve it to the actual code address instead. */
1331 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1332 &current_target);
1333
1334 /* Is it a high_level symbol? */
1335 sym = find_pc_function (addr);
1336 if (sym != NULL)
1337 method = value_of_variable (sym, 0);
1338 }
1339
1340 /* If we found a method with symbol information, check to see
1341 if it returns a struct. Otherwise assume it doesn't. */
1342
1343 if (method)
1344 {
1345 CORE_ADDR funaddr;
1346 struct type *val_type;
1347
1348 funaddr = find_function_addr (method, &val_type);
1349
1350 block_for_pc (funaddr);
1351
1352 CHECK_TYPEDEF (val_type);
1353
1354 if ((val_type == NULL)
1355 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1356 {
1357 if (expect_type != NULL)
1358 val_type = expect_type;
1359 }
1360
1361 struct_return = using_struct_return (exp->gdbarch,
1362 value_type (method),
1363 val_type);
1364 }
1365 else if (expect_type != NULL)
1366 {
1367 struct_return = using_struct_return (exp->gdbarch, NULL,
1368 check_typedef (expect_type));
1369 }
1370
1371 /* Found a function symbol. Now we will substitute its
1372 value in place of the message dispatcher (obj_msgSend),
1373 so that we call the method directly instead of thru
1374 the dispatcher. The main reason for doing this is that
1375 we can now evaluate the return value and parameter values
1376 according to their known data types, in case we need to
1377 do things like promotion, dereferencing, special handling
1378 of structs and doubles, etc.
1379
1380 We want to use the type signature of 'method', but still
1381 jump to objc_msgSend() or objc_msgSend_stret() to better
1382 mimic the behavior of the runtime. */
1383
1384 if (method)
1385 {
1386 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1387 error (_("method address has symbol information "
1388 "with non-function type; skipping"));
1389
1390 /* Create a function pointer of the appropriate type, and
1391 replace its value with the value of msg_send or
1392 msg_send_stret. We must use a pointer here, as
1393 msg_send and msg_send_stret are of pointer type, and
1394 the representation may be different on systems that use
1395 function descriptors. */
1396 if (struct_return)
1397 called_method
1398 = value_from_pointer (lookup_pointer_type (value_type (method)),
1399 value_as_address (msg_send_stret));
1400 else
1401 called_method
1402 = value_from_pointer (lookup_pointer_type (value_type (method)),
1403 value_as_address (msg_send));
1404 }
1405 else
1406 {
1407 if (struct_return)
1408 called_method = msg_send_stret;
1409 else
1410 called_method = msg_send;
1411 }
1412
1413 if (noside == EVAL_SKIP)
1414 goto nosideret;
1415
1416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1417 {
1418 /* If the return type doesn't look like a function type,
1419 call an error. This can happen if somebody tries to
1420 turn a variable into a function call. This is here
1421 because people often want to call, eg, strcmp, which
1422 gdb doesn't know is a function. If gdb isn't asked for
1423 it's opinion (ie. through "whatis"), it won't offer
1424 it. */
1425
1426 struct type *type = value_type (called_method);
1427
1428 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1429 type = TYPE_TARGET_TYPE (type);
1430 type = TYPE_TARGET_TYPE (type);
1431
1432 if (type)
1433 {
1434 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1435 return allocate_value (expect_type);
1436 else
1437 return allocate_value (type);
1438 }
1439 else
1440 error (_("Expression of type other than "
1441 "\"method returning ...\" used as a method"));
1442 }
1443
1444 /* Now depending on whether we found a symbol for the method,
1445 we will either call the runtime dispatcher or the method
1446 directly. */
1447
1448 argvec[0] = called_method;
1449 argvec[1] = target;
1450 argvec[2] = value_from_longest (long_type, selector);
1451 /* User-supplied arguments. */
1452 for (tem = 0; tem < nargs; tem++)
1453 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1454 argvec[tem + 3] = 0;
1455
1456 if (gnu_runtime && (method != NULL))
1457 {
1458 /* Function objc_msg_lookup returns a pointer. */
1459 deprecated_set_value_type (argvec[0],
1460 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1461 argvec[0]
1462 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1463 }
1464
1465 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1466 return ret;
1467 }
1468 break;
1469
1470 case OP_FUNCALL:
1471 (*pos) += 2;
1472 op = exp->elts[*pos].opcode;
1473 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1474 /* Allocate arg vector, including space for the function to be
1475 called in argvec[0] and a terminating NULL. */
1476 argvec = (struct value **)
1477 alloca (sizeof (struct value *) * (nargs + 3));
1478 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1479 {
1480 nargs++;
1481 /* First, evaluate the structure into arg2. */
1482 pc2 = (*pos)++;
1483
1484 if (noside == EVAL_SKIP)
1485 goto nosideret;
1486
1487 if (op == STRUCTOP_MEMBER)
1488 {
1489 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1490 }
1491 else
1492 {
1493 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1494 }
1495
1496 /* If the function is a virtual function, then the
1497 aggregate value (providing the structure) plays
1498 its part by providing the vtable. Otherwise,
1499 it is just along for the ride: call the function
1500 directly. */
1501
1502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1503
1504 if (TYPE_CODE (check_typedef (value_type (arg1)))
1505 != TYPE_CODE_METHODPTR)
1506 error (_("Non-pointer-to-member value used in pointer-to-member "
1507 "construct"));
1508
1509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1510 {
1511 struct type *method_type = check_typedef (value_type (arg1));
1512
1513 arg1 = value_zero (method_type, not_lval);
1514 }
1515 else
1516 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1517
1518 /* Now, say which argument to start evaluating from. */
1519 tem = 2;
1520 }
1521 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1522 {
1523 /* Hair for method invocations. */
1524 int tem2;
1525
1526 nargs++;
1527 /* First, evaluate the structure into arg2. */
1528 pc2 = (*pos)++;
1529 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1530 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1531 if (noside == EVAL_SKIP)
1532 goto nosideret;
1533
1534 if (op == STRUCTOP_STRUCT)
1535 {
1536 /* If v is a variable in a register, and the user types
1537 v.method (), this will produce an error, because v has
1538 no address.
1539
1540 A possible way around this would be to allocate a
1541 copy of the variable on the stack, copy in the
1542 contents, call the function, and copy out the
1543 contents. I.e. convert this from call by reference
1544 to call by copy-return (or whatever it's called).
1545 However, this does not work because it is not the
1546 same: the method being called could stash a copy of
1547 the address, and then future uses through that address
1548 (after the method returns) would be expected to
1549 use the variable itself, not some copy of it. */
1550 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1551 }
1552 else
1553 {
1554 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1555
1556 /* Check to see if the operator '->' has been
1557 overloaded. If the operator has been overloaded
1558 replace arg2 with the value returned by the custom
1559 operator and continue evaluation. */
1560 while (unop_user_defined_p (op, arg2))
1561 {
1562 volatile struct gdb_exception except;
1563 struct value *value = NULL;
1564 TRY_CATCH (except, RETURN_MASK_ERROR)
1565 {
1566 value = value_x_unop (arg2, op, noside);
1567 }
1568
1569 if (except.reason < 0)
1570 {
1571 if (except.error == NOT_FOUND_ERROR)
1572 break;
1573 else
1574 throw_exception (except);
1575 }
1576 arg2 = value;
1577 }
1578 }
1579 /* Now, say which argument to start evaluating from. */
1580 tem = 2;
1581 }
1582 else if (op == OP_SCOPE
1583 && overload_resolution
1584 && (exp->language_defn->la_language == language_cplus))
1585 {
1586 /* Unpack it locally so we can properly handle overload
1587 resolution. */
1588 char *name;
1589 int local_tem;
1590
1591 pc2 = (*pos)++;
1592 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1593 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1594 type = exp->elts[pc2 + 1].type;
1595 name = &exp->elts[pc2 + 3].string;
1596
1597 function = NULL;
1598 function_name = NULL;
1599 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1600 {
1601 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1602 name,
1603 get_selected_block (0),
1604 VAR_DOMAIN);
1605 if (function == NULL)
1606 error (_("No symbol \"%s\" in namespace \"%s\"."),
1607 name, TYPE_TAG_NAME (type));
1608
1609 tem = 1;
1610 }
1611 else
1612 {
1613 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1614 || TYPE_CODE (type) == TYPE_CODE_UNION);
1615 function_name = name;
1616
1617 arg2 = value_zero (type, lval_memory);
1618 ++nargs;
1619 tem = 2;
1620 }
1621 }
1622 else if (op == OP_ADL_FUNC)
1623 {
1624 /* Save the function position and move pos so that the arguments
1625 can be evaluated. */
1626 int func_name_len;
1627
1628 save_pos1 = *pos;
1629 tem = 1;
1630
1631 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1632 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1633 }
1634 else
1635 {
1636 /* Non-method function call. */
1637 save_pos1 = *pos;
1638 tem = 1;
1639
1640 /* If this is a C++ function wait until overload resolution. */
1641 if (op == OP_VAR_VALUE
1642 && overload_resolution
1643 && (exp->language_defn->la_language == language_cplus))
1644 {
1645 (*pos) += 4; /* Skip the evaluation of the symbol. */
1646 argvec[0] = NULL;
1647 }
1648 else
1649 {
1650 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1651 type = value_type (argvec[0]);
1652 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1653 type = TYPE_TARGET_TYPE (type);
1654 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1655 {
1656 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1657 {
1658 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1659 tem - 1),
1660 exp, pos, noside);
1661 }
1662 }
1663 }
1664 }
1665
1666 /* Evaluate arguments. */
1667 for (; tem <= nargs; tem++)
1668 {
1669 /* Ensure that array expressions are coerced into pointer
1670 objects. */
1671 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1672 }
1673
1674 /* Signal end of arglist. */
1675 argvec[tem] = 0;
1676 if (op == OP_ADL_FUNC)
1677 {
1678 struct symbol *symp;
1679 char *func_name;
1680 int name_len;
1681 int string_pc = save_pos1 + 3;
1682
1683 /* Extract the function name. */
1684 name_len = longest_to_int (exp->elts[string_pc].longconst);
1685 func_name = (char *) alloca (name_len + 1);
1686 strcpy (func_name, &exp->elts[string_pc + 1].string);
1687
1688 find_overload_match (&argvec[1], nargs, func_name,
1689 NON_METHOD, /* not method */
1690 0, /* strict match */
1691 NULL, NULL, /* pass NULL symbol since
1692 symbol is unknown */
1693 NULL, &symp, NULL, 0);
1694
1695 /* Now fix the expression being evaluated. */
1696 exp->elts[save_pos1 + 2].symbol = symp;
1697 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1698 }
1699
1700 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1701 || (op == OP_SCOPE && function_name != NULL))
1702 {
1703 int static_memfuncp;
1704 char *tstr;
1705
1706 /* Method invocation : stuff "this" as first parameter. */
1707 argvec[1] = arg2;
1708
1709 if (op != OP_SCOPE)
1710 {
1711 /* Name of method from expression. */
1712 tstr = &exp->elts[pc2 + 2].string;
1713 }
1714 else
1715 tstr = function_name;
1716
1717 if (overload_resolution && (exp->language_defn->la_language
1718 == language_cplus))
1719 {
1720 /* Language is C++, do some overload resolution before
1721 evaluation. */
1722 struct value *valp = NULL;
1723
1724 (void) find_overload_match (&argvec[1], nargs, tstr,
1725 METHOD, /* method */
1726 0, /* strict match */
1727 &arg2, /* the object */
1728 NULL, &valp, NULL,
1729 &static_memfuncp, 0);
1730
1731 if (op == OP_SCOPE && !static_memfuncp)
1732 {
1733 /* For the time being, we don't handle this. */
1734 error (_("Call to overloaded function %s requires "
1735 "`this' pointer"),
1736 function_name);
1737 }
1738 argvec[1] = arg2; /* the ``this'' pointer */
1739 argvec[0] = valp; /* Use the method found after overload
1740 resolution. */
1741 }
1742 else
1743 /* Non-C++ case -- or no overload resolution. */
1744 {
1745 struct value *temp = arg2;
1746
1747 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1748 &static_memfuncp,
1749 op == STRUCTOP_STRUCT
1750 ? "structure" : "structure pointer");
1751 /* value_struct_elt updates temp with the correct value
1752 of the ``this'' pointer if necessary, so modify argvec[1] to
1753 reflect any ``this'' changes. */
1754 arg2
1755 = value_from_longest (lookup_pointer_type(value_type (temp)),
1756 value_address (temp)
1757 + value_embedded_offset (temp));
1758 argvec[1] = arg2; /* the ``this'' pointer */
1759 }
1760
1761 if (static_memfuncp)
1762 {
1763 argvec[1] = argvec[0];
1764 nargs--;
1765 argvec++;
1766 }
1767 }
1768 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1769 {
1770 argvec[1] = arg2;
1771 argvec[0] = arg1;
1772 }
1773 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1774 {
1775 /* Non-member function being called. */
1776 /* fn: This can only be done for C++ functions. A C-style function
1777 in a C++ program, for instance, does not have the fields that
1778 are expected here. */
1779
1780 if (overload_resolution && (exp->language_defn->la_language
1781 == language_cplus))
1782 {
1783 /* Language is C++, do some overload resolution before
1784 evaluation. */
1785 struct symbol *symp;
1786 int no_adl = 0;
1787
1788 /* If a scope has been specified disable ADL. */
1789 if (op == OP_SCOPE)
1790 no_adl = 1;
1791
1792 if (op == OP_VAR_VALUE)
1793 function = exp->elts[save_pos1+2].symbol;
1794
1795 (void) find_overload_match (&argvec[1], nargs,
1796 NULL, /* no need for name */
1797 NON_METHOD, /* not method */
1798 0, /* strict match */
1799 NULL, function, /* the function */
1800 NULL, &symp, NULL, no_adl);
1801
1802 if (op == OP_VAR_VALUE)
1803 {
1804 /* Now fix the expression being evaluated. */
1805 exp->elts[save_pos1+2].symbol = symp;
1806 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1807 noside);
1808 }
1809 else
1810 argvec[0] = value_of_variable (symp, get_selected_block (0));
1811 }
1812 else
1813 {
1814 /* Not C++, or no overload resolution allowed. */
1815 /* Nothing to be done; argvec already correctly set up. */
1816 }
1817 }
1818 else
1819 {
1820 /* It is probably a C-style function. */
1821 /* Nothing to be done; argvec already correctly set up. */
1822 }
1823
1824 do_call_it:
1825
1826 if (noside == EVAL_SKIP)
1827 goto nosideret;
1828 if (argvec[0] == NULL)
1829 error (_("Cannot evaluate function -- may be inlined"));
1830 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1831 {
1832 /* If the return type doesn't look like a function type, call an
1833 error. This can happen if somebody tries to turn a variable into
1834 a function call. This is here because people often want to
1835 call, eg, strcmp, which gdb doesn't know is a function. If
1836 gdb isn't asked for it's opinion (ie. through "whatis"),
1837 it won't offer it. */
1838
1839 struct type *ftype = value_type (argvec[0]);
1840
1841 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1842 {
1843 /* We don't know anything about what the internal
1844 function might return, but we have to return
1845 something. */
1846 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1847 not_lval);
1848 }
1849 else if (TYPE_GNU_IFUNC (ftype))
1850 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1851 else if (TYPE_TARGET_TYPE (ftype))
1852 return allocate_value (TYPE_TARGET_TYPE (ftype));
1853 else
1854 error (_("Expression of type other than "
1855 "\"Function returning ...\" used as function"));
1856 }
1857 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1858 return call_internal_function (exp->gdbarch, exp->language_defn,
1859 argvec[0], nargs, argvec + 1);
1860
1861 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1862 /* pai: FIXME save value from call_function_by_hand, then adjust
1863 pc by adjust_fn_pc if +ve. */
1864
1865 case OP_F77_UNDETERMINED_ARGLIST:
1866
1867 /* Remember that in F77, functions, substring ops and
1868 array subscript operations cannot be disambiguated
1869 at parse time. We have made all array subscript operations,
1870 substring operations as well as function calls come here
1871 and we now have to discover what the heck this thing actually was.
1872 If it is a function, we process just as if we got an OP_FUNCALL. */
1873
1874 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1875 (*pos) += 2;
1876
1877 /* First determine the type code we are dealing with. */
1878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1879 type = check_typedef (value_type (arg1));
1880 code = TYPE_CODE (type);
1881
1882 if (code == TYPE_CODE_PTR)
1883 {
1884 /* Fortran always passes variable to subroutines as pointer.
1885 So we need to look into its target type to see if it is
1886 array, string or function. If it is, we need to switch
1887 to the target value the original one points to. */
1888 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1889
1890 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1891 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1892 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1893 {
1894 arg1 = value_ind (arg1);
1895 type = check_typedef (value_type (arg1));
1896 code = TYPE_CODE (type);
1897 }
1898 }
1899
1900 switch (code)
1901 {
1902 case TYPE_CODE_ARRAY:
1903 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1904 return value_f90_subarray (arg1, exp, pos, noside);
1905 else
1906 goto multi_f77_subscript;
1907
1908 case TYPE_CODE_STRING:
1909 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1910 return value_f90_subarray (arg1, exp, pos, noside);
1911 else
1912 {
1913 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1914 return value_subscript (arg1, value_as_long (arg2));
1915 }
1916
1917 case TYPE_CODE_PTR:
1918 case TYPE_CODE_FUNC:
1919 /* It's a function call. */
1920 /* Allocate arg vector, including space for the function to be
1921 called in argvec[0] and a terminating NULL. */
1922 argvec = (struct value **)
1923 alloca (sizeof (struct value *) * (nargs + 2));
1924 argvec[0] = arg1;
1925 tem = 1;
1926 for (; tem <= nargs; tem++)
1927 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1928 argvec[tem] = 0; /* signal end of arglist */
1929 goto do_call_it;
1930
1931 default:
1932 error (_("Cannot perform substring on this type"));
1933 }
1934
1935 case OP_COMPLEX:
1936 /* We have a complex number, There should be 2 floating
1937 point numbers that compose it. */
1938 (*pos) += 2;
1939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1940 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1941
1942 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1943
1944 case STRUCTOP_STRUCT:
1945 tem = longest_to_int (exp->elts[pc + 1].longconst);
1946 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1948 if (noside == EVAL_SKIP)
1949 goto nosideret;
1950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1951 return value_zero (lookup_struct_elt_type (value_type (arg1),
1952 &exp->elts[pc + 2].string,
1953 0),
1954 lval_memory);
1955 else
1956 {
1957 struct value *temp = arg1;
1958
1959 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1960 NULL, "structure");
1961 }
1962
1963 case STRUCTOP_PTR:
1964 tem = longest_to_int (exp->elts[pc + 1].longconst);
1965 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1967 if (noside == EVAL_SKIP)
1968 goto nosideret;
1969
1970 /* Check to see if operator '->' has been overloaded. If so replace
1971 arg1 with the value returned by evaluating operator->(). */
1972 while (unop_user_defined_p (op, arg1))
1973 {
1974 volatile struct gdb_exception except;
1975 struct value *value = NULL;
1976 TRY_CATCH (except, RETURN_MASK_ERROR)
1977 {
1978 value = value_x_unop (arg1, op, noside);
1979 }
1980
1981 if (except.reason < 0)
1982 {
1983 if (except.error == NOT_FOUND_ERROR)
1984 break;
1985 else
1986 throw_exception (except);
1987 }
1988 arg1 = value;
1989 }
1990
1991 /* JYG: if print object is on we need to replace the base type
1992 with rtti type in order to continue on with successful
1993 lookup of member / method only available in the rtti type. */
1994 {
1995 struct type *type = value_type (arg1);
1996 struct type *real_type;
1997 int full, top, using_enc;
1998 struct value_print_options opts;
1999
2000 get_user_print_options (&opts);
2001 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2002 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2003 {
2004 real_type = value_rtti_indirect_type (arg1, &full, &top,
2005 &using_enc);
2006 if (real_type)
2007 arg1 = value_cast (real_type, arg1);
2008 }
2009 }
2010
2011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2012 return value_zero (lookup_struct_elt_type (value_type (arg1),
2013 &exp->elts[pc + 2].string,
2014 0),
2015 lval_memory);
2016 else
2017 {
2018 struct value *temp = arg1;
2019
2020 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2021 NULL, "structure pointer");
2022 }
2023
2024 case STRUCTOP_MEMBER:
2025 case STRUCTOP_MPTR:
2026 if (op == STRUCTOP_MEMBER)
2027 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2028 else
2029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2030
2031 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2032
2033 if (noside == EVAL_SKIP)
2034 goto nosideret;
2035
2036 type = check_typedef (value_type (arg2));
2037 switch (TYPE_CODE (type))
2038 {
2039 case TYPE_CODE_METHODPTR:
2040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2041 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2042 else
2043 {
2044 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2045 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2046 return value_ind (arg2);
2047 }
2048
2049 case TYPE_CODE_MEMBERPTR:
2050 /* Now, convert these values to an address. */
2051 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2052 arg1);
2053
2054 mem_offset = value_as_long (arg2);
2055
2056 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2057 value_as_long (arg1) + mem_offset);
2058 return value_ind (arg3);
2059
2060 default:
2061 error (_("non-pointer-to-member value used "
2062 "in pointer-to-member construct"));
2063 }
2064
2065 case TYPE_INSTANCE:
2066 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2067 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2068 for (ix = 0; ix < nargs; ++ix)
2069 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2070
2071 expect_type = make_params (nargs, arg_types);
2072 *(pos) += 3 + nargs;
2073 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2074 xfree (TYPE_FIELDS (expect_type));
2075 xfree (TYPE_MAIN_TYPE (expect_type));
2076 xfree (expect_type);
2077 return arg1;
2078
2079 case BINOP_CONCAT:
2080 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2081 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2082 if (noside == EVAL_SKIP)
2083 goto nosideret;
2084 if (binop_user_defined_p (op, arg1, arg2))
2085 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2086 else
2087 return value_concat (arg1, arg2);
2088
2089 case BINOP_ASSIGN:
2090 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2091 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2092
2093 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2094 return arg1;
2095 if (binop_user_defined_p (op, arg1, arg2))
2096 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2097 else
2098 return value_assign (arg1, arg2);
2099
2100 case BINOP_ASSIGN_MODIFY:
2101 (*pos) += 2;
2102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2103 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2104 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2105 return arg1;
2106 op = exp->elts[pc + 1].opcode;
2107 if (binop_user_defined_p (op, arg1, arg2))
2108 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2109 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2110 value_type (arg1))
2111 && is_integral_type (value_type (arg2)))
2112 arg2 = value_ptradd (arg1, value_as_long (arg2));
2113 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2114 value_type (arg1))
2115 && is_integral_type (value_type (arg2)))
2116 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2117 else
2118 {
2119 struct value *tmp = arg1;
2120
2121 /* For shift and integer exponentiation operations,
2122 only promote the first argument. */
2123 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2124 && is_integral_type (value_type (arg2)))
2125 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2126 else
2127 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2128
2129 arg2 = value_binop (tmp, arg2, op);
2130 }
2131 return value_assign (arg1, arg2);
2132
2133 case BINOP_ADD:
2134 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2135 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2136 if (noside == EVAL_SKIP)
2137 goto nosideret;
2138 if (binop_user_defined_p (op, arg1, arg2))
2139 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2140 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2141 && is_integral_type (value_type (arg2)))
2142 return value_ptradd (arg1, value_as_long (arg2));
2143 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2144 && is_integral_type (value_type (arg1)))
2145 return value_ptradd (arg2, value_as_long (arg1));
2146 else
2147 {
2148 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2149 return value_binop (arg1, arg2, BINOP_ADD);
2150 }
2151
2152 case BINOP_SUB:
2153 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2154 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2155 if (noside == EVAL_SKIP)
2156 goto nosideret;
2157 if (binop_user_defined_p (op, arg1, arg2))
2158 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2159 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2160 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2161 {
2162 /* FIXME -- should be ptrdiff_t */
2163 type = builtin_type (exp->gdbarch)->builtin_long;
2164 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2165 }
2166 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2167 && is_integral_type (value_type (arg2)))
2168 return value_ptradd (arg1, - value_as_long (arg2));
2169 else
2170 {
2171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2172 return value_binop (arg1, arg2, BINOP_SUB);
2173 }
2174
2175 case BINOP_EXP:
2176 case BINOP_MUL:
2177 case BINOP_DIV:
2178 case BINOP_INTDIV:
2179 case BINOP_REM:
2180 case BINOP_MOD:
2181 case BINOP_LSH:
2182 case BINOP_RSH:
2183 case BINOP_BITWISE_AND:
2184 case BINOP_BITWISE_IOR:
2185 case BINOP_BITWISE_XOR:
2186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2187 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2188 if (noside == EVAL_SKIP)
2189 goto nosideret;
2190 if (binop_user_defined_p (op, arg1, arg2))
2191 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2192 else
2193 {
2194 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2195 fudge arg2 to avoid division-by-zero, the caller is
2196 (theoretically) only looking for the type of the result. */
2197 if (noside == EVAL_AVOID_SIDE_EFFECTS
2198 /* ??? Do we really want to test for BINOP_MOD here?
2199 The implementation of value_binop gives it a well-defined
2200 value. */
2201 && (op == BINOP_DIV
2202 || op == BINOP_INTDIV
2203 || op == BINOP_REM
2204 || op == BINOP_MOD)
2205 && value_logical_not (arg2))
2206 {
2207 struct value *v_one, *retval;
2208
2209 v_one = value_one (value_type (arg2));
2210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2211 retval = value_binop (arg1, v_one, op);
2212 return retval;
2213 }
2214 else
2215 {
2216 /* For shift and integer exponentiation operations,
2217 only promote the first argument. */
2218 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2219 && is_integral_type (value_type (arg2)))
2220 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2221 else
2222 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2223
2224 return value_binop (arg1, arg2, op);
2225 }
2226 }
2227
2228 case BINOP_RANGE:
2229 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2230 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2231 if (noside == EVAL_SKIP)
2232 goto nosideret;
2233 error (_("':' operator used in invalid context"));
2234
2235 case BINOP_SUBSCRIPT:
2236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2238 if (noside == EVAL_SKIP)
2239 goto nosideret;
2240 if (binop_user_defined_p (op, arg1, arg2))
2241 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2242 else
2243 {
2244 /* If the user attempts to subscript something that is not an
2245 array or pointer type (like a plain int variable for example),
2246 then report this as an error. */
2247
2248 arg1 = coerce_ref (arg1);
2249 type = check_typedef (value_type (arg1));
2250 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2251 && TYPE_CODE (type) != TYPE_CODE_PTR)
2252 {
2253 if (TYPE_NAME (type))
2254 error (_("cannot subscript something of type `%s'"),
2255 TYPE_NAME (type));
2256 else
2257 error (_("cannot subscript requested type"));
2258 }
2259
2260 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2261 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2262 else
2263 return value_subscript (arg1, value_as_long (arg2));
2264 }
2265
2266 case BINOP_IN:
2267 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2268 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2269 if (noside == EVAL_SKIP)
2270 goto nosideret;
2271 type = language_bool_type (exp->language_defn, exp->gdbarch);
2272 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2273
2274 case MULTI_SUBSCRIPT:
2275 (*pos) += 2;
2276 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2277 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2278 while (nargs-- > 0)
2279 {
2280 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2281 /* FIXME: EVAL_SKIP handling may not be correct. */
2282 if (noside == EVAL_SKIP)
2283 {
2284 if (nargs > 0)
2285 {
2286 continue;
2287 }
2288 else
2289 {
2290 goto nosideret;
2291 }
2292 }
2293 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2295 {
2296 /* If the user attempts to subscript something that has no target
2297 type (like a plain int variable for example), then report this
2298 as an error. */
2299
2300 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2301 if (type != NULL)
2302 {
2303 arg1 = value_zero (type, VALUE_LVAL (arg1));
2304 noside = EVAL_SKIP;
2305 continue;
2306 }
2307 else
2308 {
2309 error (_("cannot subscript something of type `%s'"),
2310 TYPE_NAME (value_type (arg1)));
2311 }
2312 }
2313
2314 if (binop_user_defined_p (op, arg1, arg2))
2315 {
2316 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2317 }
2318 else
2319 {
2320 arg1 = coerce_ref (arg1);
2321 type = check_typedef (value_type (arg1));
2322
2323 switch (TYPE_CODE (type))
2324 {
2325 case TYPE_CODE_PTR:
2326 case TYPE_CODE_ARRAY:
2327 case TYPE_CODE_STRING:
2328 arg1 = value_subscript (arg1, value_as_long (arg2));
2329 break;
2330
2331 case TYPE_CODE_BITSTRING:
2332 type = language_bool_type (exp->language_defn, exp->gdbarch);
2333 arg1 = value_bitstring_subscript (type, arg1,
2334 value_as_long (arg2));
2335 break;
2336
2337 default:
2338 if (TYPE_NAME (type))
2339 error (_("cannot subscript something of type `%s'"),
2340 TYPE_NAME (type));
2341 else
2342 error (_("cannot subscript requested type"));
2343 }
2344 }
2345 }
2346 return (arg1);
2347
2348 multi_f77_subscript:
2349 {
2350 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2351 int ndimensions = 1, i;
2352 struct value *array = arg1;
2353
2354 if (nargs > MAX_FORTRAN_DIMS)
2355 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2356
2357 ndimensions = calc_f77_array_dims (type);
2358
2359 if (nargs != ndimensions)
2360 error (_("Wrong number of subscripts"));
2361
2362 gdb_assert (nargs > 0);
2363
2364 /* Now that we know we have a legal array subscript expression
2365 let us actually find out where this element exists in the array. */
2366
2367 /* Take array indices left to right. */
2368 for (i = 0; i < nargs; i++)
2369 {
2370 /* Evaluate each subscript; it must be a legal integer in F77. */
2371 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2372
2373 /* Fill in the subscript array. */
2374
2375 subscript_array[i] = value_as_long (arg2);
2376 }
2377
2378 /* Internal type of array is arranged right to left. */
2379 for (i = nargs; i > 0; i--)
2380 {
2381 struct type *array_type = check_typedef (value_type (array));
2382 LONGEST index = subscript_array[i - 1];
2383
2384 lower = f77_get_lowerbound (array_type);
2385 array = value_subscripted_rvalue (array, index, lower);
2386 }
2387
2388 return array;
2389 }
2390
2391 case BINOP_LOGICAL_AND:
2392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2393 if (noside == EVAL_SKIP)
2394 {
2395 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2396 goto nosideret;
2397 }
2398
2399 oldpos = *pos;
2400 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2401 *pos = oldpos;
2402
2403 if (binop_user_defined_p (op, arg1, arg2))
2404 {
2405 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2406 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2407 }
2408 else
2409 {
2410 tem = value_logical_not (arg1);
2411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2412 (tem ? EVAL_SKIP : noside));
2413 type = language_bool_type (exp->language_defn, exp->gdbarch);
2414 return value_from_longest (type,
2415 (LONGEST) (!tem && !value_logical_not (arg2)));
2416 }
2417
2418 case BINOP_LOGICAL_OR:
2419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2420 if (noside == EVAL_SKIP)
2421 {
2422 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2423 goto nosideret;
2424 }
2425
2426 oldpos = *pos;
2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2428 *pos = oldpos;
2429
2430 if (binop_user_defined_p (op, arg1, arg2))
2431 {
2432 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2433 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2434 }
2435 else
2436 {
2437 tem = value_logical_not (arg1);
2438 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2439 (!tem ? EVAL_SKIP : noside));
2440 type = language_bool_type (exp->language_defn, exp->gdbarch);
2441 return value_from_longest (type,
2442 (LONGEST) (!tem || !value_logical_not (arg2)));
2443 }
2444
2445 case BINOP_EQUAL:
2446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2447 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2448 if (noside == EVAL_SKIP)
2449 goto nosideret;
2450 if (binop_user_defined_p (op, arg1, arg2))
2451 {
2452 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2453 }
2454 else
2455 {
2456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2457 tem = value_equal (arg1, arg2);
2458 type = language_bool_type (exp->language_defn, exp->gdbarch);
2459 return value_from_longest (type, (LONGEST) tem);
2460 }
2461
2462 case BINOP_NOTEQUAL:
2463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2464 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2465 if (noside == EVAL_SKIP)
2466 goto nosideret;
2467 if (binop_user_defined_p (op, arg1, arg2))
2468 {
2469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2470 }
2471 else
2472 {
2473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2474 tem = value_equal (arg1, arg2);
2475 type = language_bool_type (exp->language_defn, exp->gdbarch);
2476 return value_from_longest (type, (LONGEST) ! tem);
2477 }
2478
2479 case BINOP_LESS:
2480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2481 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2482 if (noside == EVAL_SKIP)
2483 goto nosideret;
2484 if (binop_user_defined_p (op, arg1, arg2))
2485 {
2486 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2487 }
2488 else
2489 {
2490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2491 tem = value_less (arg1, arg2);
2492 type = language_bool_type (exp->language_defn, exp->gdbarch);
2493 return value_from_longest (type, (LONGEST) tem);
2494 }
2495
2496 case BINOP_GTR:
2497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2498 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2499 if (noside == EVAL_SKIP)
2500 goto nosideret;
2501 if (binop_user_defined_p (op, arg1, arg2))
2502 {
2503 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2504 }
2505 else
2506 {
2507 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2508 tem = value_less (arg2, arg1);
2509 type = language_bool_type (exp->language_defn, exp->gdbarch);
2510 return value_from_longest (type, (LONGEST) tem);
2511 }
2512
2513 case BINOP_GEQ:
2514 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2515 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2516 if (noside == EVAL_SKIP)
2517 goto nosideret;
2518 if (binop_user_defined_p (op, arg1, arg2))
2519 {
2520 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2521 }
2522 else
2523 {
2524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2525 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2526 type = language_bool_type (exp->language_defn, exp->gdbarch);
2527 return value_from_longest (type, (LONGEST) tem);
2528 }
2529
2530 case BINOP_LEQ:
2531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2532 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2533 if (noside == EVAL_SKIP)
2534 goto nosideret;
2535 if (binop_user_defined_p (op, arg1, arg2))
2536 {
2537 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2538 }
2539 else
2540 {
2541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2542 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2543 type = language_bool_type (exp->language_defn, exp->gdbarch);
2544 return value_from_longest (type, (LONGEST) tem);
2545 }
2546
2547 case BINOP_REPEAT:
2548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2550 if (noside == EVAL_SKIP)
2551 goto nosideret;
2552 type = check_typedef (value_type (arg2));
2553 if (TYPE_CODE (type) != TYPE_CODE_INT)
2554 error (_("Non-integral right operand for \"@\" operator."));
2555 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2556 {
2557 return allocate_repeat_value (value_type (arg1),
2558 longest_to_int (value_as_long (arg2)));
2559 }
2560 else
2561 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2562
2563 case BINOP_COMMA:
2564 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2565 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2566
2567 case UNOP_PLUS:
2568 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2569 if (noside == EVAL_SKIP)
2570 goto nosideret;
2571 if (unop_user_defined_p (op, arg1))
2572 return value_x_unop (arg1, op, noside);
2573 else
2574 {
2575 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2576 return value_pos (arg1);
2577 }
2578
2579 case UNOP_NEG:
2580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2581 if (noside == EVAL_SKIP)
2582 goto nosideret;
2583 if (unop_user_defined_p (op, arg1))
2584 return value_x_unop (arg1, op, noside);
2585 else
2586 {
2587 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2588 return value_neg (arg1);
2589 }
2590
2591 case UNOP_COMPLEMENT:
2592 /* C++: check for and handle destructor names. */
2593 op = exp->elts[*pos].opcode;
2594
2595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2596 if (noside == EVAL_SKIP)
2597 goto nosideret;
2598 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2599 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2600 else
2601 {
2602 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2603 return value_complement (arg1);
2604 }
2605
2606 case UNOP_LOGICAL_NOT:
2607 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2608 if (noside == EVAL_SKIP)
2609 goto nosideret;
2610 if (unop_user_defined_p (op, arg1))
2611 return value_x_unop (arg1, op, noside);
2612 else
2613 {
2614 type = language_bool_type (exp->language_defn, exp->gdbarch);
2615 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2616 }
2617
2618 case UNOP_IND:
2619 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2620 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2621 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2622 type = check_typedef (value_type (arg1));
2623 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2624 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2625 error (_("Attempt to dereference pointer "
2626 "to member without an object"));
2627 if (noside == EVAL_SKIP)
2628 goto nosideret;
2629 if (unop_user_defined_p (op, arg1))
2630 return value_x_unop (arg1, op, noside);
2631 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2632 {
2633 type = check_typedef (value_type (arg1));
2634 if (TYPE_CODE (type) == TYPE_CODE_PTR
2635 || TYPE_CODE (type) == TYPE_CODE_REF
2636 /* In C you can dereference an array to get the 1st elt. */
2637 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2638 )
2639 return value_zero (TYPE_TARGET_TYPE (type),
2640 lval_memory);
2641 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2642 /* GDB allows dereferencing an int. */
2643 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2644 lval_memory);
2645 else
2646 error (_("Attempt to take contents of a non-pointer value."));
2647 }
2648
2649 /* Allow * on an integer so we can cast it to whatever we want.
2650 This returns an int, which seems like the most C-like thing to
2651 do. "long long" variables are rare enough that
2652 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2653 if (TYPE_CODE (type) == TYPE_CODE_INT)
2654 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2655 (CORE_ADDR) value_as_address (arg1));
2656 return value_ind (arg1);
2657
2658 case UNOP_ADDR:
2659 /* C++: check for and handle pointer to members. */
2660
2661 op = exp->elts[*pos].opcode;
2662
2663 if (noside == EVAL_SKIP)
2664 {
2665 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2666 goto nosideret;
2667 }
2668 else
2669 {
2670 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2671 noside);
2672
2673 return retvalp;
2674 }
2675
2676 case UNOP_SIZEOF:
2677 if (noside == EVAL_SKIP)
2678 {
2679 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2680 goto nosideret;
2681 }
2682 return evaluate_subexp_for_sizeof (exp, pos);
2683
2684 case UNOP_CAST:
2685 (*pos) += 2;
2686 type = exp->elts[pc + 1].type;
2687 arg1 = evaluate_subexp (type, exp, pos, noside);
2688 if (noside == EVAL_SKIP)
2689 goto nosideret;
2690 if (type != value_type (arg1))
2691 arg1 = value_cast (type, arg1);
2692 return arg1;
2693
2694 case UNOP_DYNAMIC_CAST:
2695 (*pos) += 2;
2696 type = exp->elts[pc + 1].type;
2697 arg1 = evaluate_subexp (type, exp, pos, noside);
2698 if (noside == EVAL_SKIP)
2699 goto nosideret;
2700 return value_dynamic_cast (type, arg1);
2701
2702 case UNOP_REINTERPRET_CAST:
2703 (*pos) += 2;
2704 type = exp->elts[pc + 1].type;
2705 arg1 = evaluate_subexp (type, exp, pos, noside);
2706 if (noside == EVAL_SKIP)
2707 goto nosideret;
2708 return value_reinterpret_cast (type, arg1);
2709
2710 case UNOP_MEMVAL:
2711 (*pos) += 2;
2712 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2713 if (noside == EVAL_SKIP)
2714 goto nosideret;
2715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2716 return value_zero (exp->elts[pc + 1].type, lval_memory);
2717 else
2718 return value_at_lazy (exp->elts[pc + 1].type,
2719 value_as_address (arg1));
2720
2721 case UNOP_MEMVAL_TLS:
2722 (*pos) += 3;
2723 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2724 if (noside == EVAL_SKIP)
2725 goto nosideret;
2726 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2727 return value_zero (exp->elts[pc + 2].type, lval_memory);
2728 else
2729 {
2730 CORE_ADDR tls_addr;
2731
2732 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2733 value_as_address (arg1));
2734 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2735 }
2736
2737 case UNOP_PREINCREMENT:
2738 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2739 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2740 return arg1;
2741 else if (unop_user_defined_p (op, arg1))
2742 {
2743 return value_x_unop (arg1, op, noside);
2744 }
2745 else
2746 {
2747 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2748 arg2 = value_ptradd (arg1, 1);
2749 else
2750 {
2751 struct value *tmp = arg1;
2752
2753 arg2 = value_one (value_type (arg1));
2754 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2755 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2756 }
2757
2758 return value_assign (arg1, arg2);
2759 }
2760
2761 case UNOP_PREDECREMENT:
2762 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2763 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2764 return arg1;
2765 else if (unop_user_defined_p (op, arg1))
2766 {
2767 return value_x_unop (arg1, op, noside);
2768 }
2769 else
2770 {
2771 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2772 arg2 = value_ptradd (arg1, -1);
2773 else
2774 {
2775 struct value *tmp = arg1;
2776
2777 arg2 = value_one (value_type (arg1));
2778 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2779 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2780 }
2781
2782 return value_assign (arg1, arg2);
2783 }
2784
2785 case UNOP_POSTINCREMENT:
2786 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2787 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2788 return arg1;
2789 else if (unop_user_defined_p (op, arg1))
2790 {
2791 return value_x_unop (arg1, op, noside);
2792 }
2793 else
2794 {
2795 arg3 = value_non_lval (arg1);
2796
2797 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2798 arg2 = value_ptradd (arg1, 1);
2799 else
2800 {
2801 struct value *tmp = arg1;
2802
2803 arg2 = value_one (value_type (arg1));
2804 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2805 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2806 }
2807
2808 value_assign (arg1, arg2);
2809 return arg3;
2810 }
2811
2812 case UNOP_POSTDECREMENT:
2813 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2814 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2815 return arg1;
2816 else if (unop_user_defined_p (op, arg1))
2817 {
2818 return value_x_unop (arg1, op, noside);
2819 }
2820 else
2821 {
2822 arg3 = value_non_lval (arg1);
2823
2824 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2825 arg2 = value_ptradd (arg1, -1);
2826 else
2827 {
2828 struct value *tmp = arg1;
2829
2830 arg2 = value_one (value_type (arg1));
2831 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2832 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2833 }
2834
2835 value_assign (arg1, arg2);
2836 return arg3;
2837 }
2838
2839 case OP_THIS:
2840 (*pos) += 1;
2841 return value_of_this (exp->language_defn);
2842
2843 case OP_TYPE:
2844 /* The value is not supposed to be used. This is here to make it
2845 easier to accommodate expressions that contain types. */
2846 (*pos) += 2;
2847 if (noside == EVAL_SKIP)
2848 goto nosideret;
2849 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2850 {
2851 struct type *type = exp->elts[pc + 1].type;
2852
2853 /* If this is a typedef, then find its immediate target. We
2854 use check_typedef to resolve stubs, but we ignore its
2855 result because we do not want to dig past all
2856 typedefs. */
2857 check_typedef (type);
2858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2859 type = TYPE_TARGET_TYPE (type);
2860 return allocate_value (type);
2861 }
2862 else
2863 error (_("Attempt to use a type name as an expression"));
2864
2865 default:
2866 /* Removing this case and compiling with gcc -Wall reveals that
2867 a lot of cases are hitting this case. Some of these should
2868 probably be removed from expression.h; others are legitimate
2869 expressions which are (apparently) not fully implemented.
2870
2871 If there are any cases landing here which mean a user error,
2872 then they should be separate cases, with more descriptive
2873 error messages. */
2874
2875 error (_("GDB does not (yet) know how to "
2876 "evaluate that kind of expression"));
2877 }
2878
2879 nosideret:
2880 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2881 }
2882 \f
2883 /* Evaluate a subexpression of EXP, at index *POS,
2884 and return the address of that subexpression.
2885 Advance *POS over the subexpression.
2886 If the subexpression isn't an lvalue, get an error.
2887 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2888 then only the type of the result need be correct. */
2889
2890 static struct value *
2891 evaluate_subexp_for_address (struct expression *exp, int *pos,
2892 enum noside noside)
2893 {
2894 enum exp_opcode op;
2895 int pc;
2896 struct symbol *var;
2897 struct value *x;
2898 int tem;
2899
2900 pc = (*pos);
2901 op = exp->elts[pc].opcode;
2902
2903 switch (op)
2904 {
2905 case UNOP_IND:
2906 (*pos)++;
2907 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2908
2909 /* We can't optimize out "&*" if there's a user-defined operator*. */
2910 if (unop_user_defined_p (op, x))
2911 {
2912 x = value_x_unop (x, op, noside);
2913 goto default_case_after_eval;
2914 }
2915
2916 return coerce_array (x);
2917
2918 case UNOP_MEMVAL:
2919 (*pos) += 3;
2920 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2921 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2922
2923 case OP_VAR_VALUE:
2924 var = exp->elts[pc + 2].symbol;
2925
2926 /* C++: The "address" of a reference should yield the address
2927 * of the object pointed to. Let value_addr() deal with it. */
2928 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2929 goto default_case;
2930
2931 (*pos) += 4;
2932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2933 {
2934 struct type *type =
2935 lookup_pointer_type (SYMBOL_TYPE (var));
2936 enum address_class sym_class = SYMBOL_CLASS (var);
2937
2938 if (sym_class == LOC_CONST
2939 || sym_class == LOC_CONST_BYTES
2940 || sym_class == LOC_REGISTER)
2941 error (_("Attempt to take address of register or constant."));
2942
2943 return
2944 value_zero (type, not_lval);
2945 }
2946 else
2947 return address_of_variable (var, exp->elts[pc + 1].block);
2948
2949 case OP_SCOPE:
2950 tem = longest_to_int (exp->elts[pc + 2].longconst);
2951 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2952 x = value_aggregate_elt (exp->elts[pc + 1].type,
2953 &exp->elts[pc + 3].string,
2954 NULL, 1, noside);
2955 if (x == NULL)
2956 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2957 return x;
2958
2959 default:
2960 default_case:
2961 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2962 default_case_after_eval:
2963 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2964 {
2965 struct type *type = check_typedef (value_type (x));
2966
2967 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2968 return value_zero (lookup_pointer_type (value_type (x)),
2969 not_lval);
2970 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2971 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2972 not_lval);
2973 else
2974 error (_("Attempt to take address of "
2975 "value not located in memory."));
2976 }
2977 return value_addr (x);
2978 }
2979 }
2980
2981 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2982 When used in contexts where arrays will be coerced anyway, this is
2983 equivalent to `evaluate_subexp' but much faster because it avoids
2984 actually fetching array contents (perhaps obsolete now that we have
2985 value_lazy()).
2986
2987 Note that we currently only do the coercion for C expressions, where
2988 arrays are zero based and the coercion is correct. For other languages,
2989 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2990 to decide if coercion is appropriate. */
2991
2992 struct value *
2993 evaluate_subexp_with_coercion (struct expression *exp,
2994 int *pos, enum noside noside)
2995 {
2996 enum exp_opcode op;
2997 int pc;
2998 struct value *val;
2999 struct symbol *var;
3000 struct type *type;
3001
3002 pc = (*pos);
3003 op = exp->elts[pc].opcode;
3004
3005 switch (op)
3006 {
3007 case OP_VAR_VALUE:
3008 var = exp->elts[pc + 2].symbol;
3009 type = check_typedef (SYMBOL_TYPE (var));
3010 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3011 && !TYPE_VECTOR (type)
3012 && CAST_IS_CONVERSION (exp->language_defn))
3013 {
3014 (*pos) += 4;
3015 val = address_of_variable (var, exp->elts[pc + 1].block);
3016 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3017 val);
3018 }
3019 /* FALLTHROUGH */
3020
3021 default:
3022 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3023 }
3024 }
3025
3026 /* Evaluate a subexpression of EXP, at index *POS,
3027 and return a value for the size of that subexpression.
3028 Advance *POS over the subexpression. */
3029
3030 static struct value *
3031 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3032 {
3033 /* FIXME: This should be size_t. */
3034 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3035 enum exp_opcode op;
3036 int pc;
3037 struct type *type;
3038 struct value *val;
3039
3040 pc = (*pos);
3041 op = exp->elts[pc].opcode;
3042
3043 switch (op)
3044 {
3045 /* This case is handled specially
3046 so that we avoid creating a value for the result type.
3047 If the result type is very big, it's desirable not to
3048 create a value unnecessarily. */
3049 case UNOP_IND:
3050 (*pos)++;
3051 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3052 type = check_typedef (value_type (val));
3053 if (TYPE_CODE (type) != TYPE_CODE_PTR
3054 && TYPE_CODE (type) != TYPE_CODE_REF
3055 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3056 error (_("Attempt to take contents of a non-pointer value."));
3057 type = check_typedef (TYPE_TARGET_TYPE (type));
3058 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3059
3060 case UNOP_MEMVAL:
3061 (*pos) += 3;
3062 type = check_typedef (exp->elts[pc + 1].type);
3063 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3064
3065 case OP_VAR_VALUE:
3066 (*pos) += 4;
3067 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3068 return
3069 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3070
3071 default:
3072 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3073 return value_from_longest (size_type,
3074 (LONGEST) TYPE_LENGTH (value_type (val)));
3075 }
3076 }
3077
3078 /* Parse a type expression in the string [P..P+LENGTH). */
3079
3080 struct type *
3081 parse_and_eval_type (char *p, int length)
3082 {
3083 char *tmp = (char *) alloca (length + 4);
3084 struct expression *expr;
3085
3086 tmp[0] = '(';
3087 memcpy (tmp + 1, p, length);
3088 tmp[length + 1] = ')';
3089 tmp[length + 2] = '0';
3090 tmp[length + 3] = '\0';
3091 expr = parse_expression (tmp);
3092 if (expr->elts[0].opcode != UNOP_CAST)
3093 error (_("Internal error in eval_type."));
3094 return expr->elts[1].type;
3095 }
3096
3097 int
3098 calc_f77_array_dims (struct type *array_type)
3099 {
3100 int ndimen = 1;
3101 struct type *tmp_type;
3102
3103 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3104 error (_("Can't get dimensions for a non-array type"));
3105
3106 tmp_type = array_type;
3107
3108 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3109 {
3110 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3111 ++ndimen;
3112 }
3113 return ndimen;
3114 }
This page took 0.120975 seconds and 4 git commands to generate.