e2ceea74875eab1f897289196a9c0e064262b706
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* This is defined in valops.c */
52 extern int overload_resolution;
53
54 /* Prototypes for local functions. */
55
56 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
57
58 static struct value *evaluate_subexp_for_address (struct expression *,
59 int *, enum noside);
60
61 static char *get_label (struct expression *, int *);
62
63 static struct value *evaluate_struct_tuple (struct value *,
64 struct expression *, int *,
65 enum noside, int);
66
67 static LONGEST init_array_element (struct value *, struct value *,
68 struct expression *, int *, enum noside,
69 LONGEST, LONGEST);
70
71 struct value *
72 evaluate_subexp (struct type *expect_type, struct expression *exp,
73 int *pos, enum noside noside)
74 {
75 return (*exp->language_defn->la_exp_desc->evaluate_exp)
76 (expect_type, exp, pos, noside);
77 }
78 \f
79 /* Parse the string EXP as a C expression, evaluate it,
80 and return the result as a number. */
81
82 CORE_ADDR
83 parse_and_eval_address (char *exp)
84 {
85 struct expression *expr = parse_expression (exp);
86 CORE_ADDR addr;
87 struct cleanup *old_chain =
88 make_cleanup (free_current_contents, &expr);
89
90 addr = value_as_address (evaluate_expression (expr));
91 do_cleanups (old_chain);
92 return addr;
93 }
94
95 /* Like parse_and_eval_address but takes a pointer to a char * variable
96 and advanced that variable across the characters parsed. */
97
98 CORE_ADDR
99 parse_and_eval_address_1 (char **expptr)
100 {
101 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
102 CORE_ADDR addr;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 addr = value_as_address (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return addr;
109 }
110
111 /* Like parse_and_eval_address, but treats the value of the expression
112 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
113 LONGEST
114 parse_and_eval_long (char *exp)
115 {
116 struct expression *expr = parse_expression (exp);
117 LONGEST retval;
118 struct cleanup *old_chain =
119 make_cleanup (free_current_contents, &expr);
120
121 retval = value_as_long (evaluate_expression (expr));
122 do_cleanups (old_chain);
123 return (retval);
124 }
125
126 struct value *
127 parse_and_eval (char *exp)
128 {
129 struct expression *expr = parse_expression (exp);
130 struct value *val;
131 struct cleanup *old_chain =
132 make_cleanup (free_current_contents, &expr);
133
134 val = evaluate_expression (expr);
135 do_cleanups (old_chain);
136 return val;
137 }
138
139 /* Parse up to a comma (or to a closeparen)
140 in the string EXPP as an expression, evaluate it, and return the value.
141 EXPP is advanced to point to the comma. */
142
143 struct value *
144 parse_to_comma_and_eval (char **expp)
145 {
146 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
147 struct value *val;
148 struct cleanup *old_chain =
149 make_cleanup (free_current_contents, &expr);
150
151 val = evaluate_expression (expr);
152 do_cleanups (old_chain);
153 return val;
154 }
155 \f
156 /* Evaluate an expression in internal prefix form
157 such as is constructed by parse.y.
158
159 See expression.h for info on the format of an expression. */
160
161 struct value *
162 evaluate_expression (struct expression *exp)
163 {
164 int pc = 0;
165 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
166 }
167
168 /* Evaluate an expression, avoiding all memory references
169 and getting a value whose type alone is correct. */
170
171 struct value *
172 evaluate_type (struct expression *exp)
173 {
174 int pc = 0;
175 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
176 }
177
178 /* Evaluate a subexpression, avoiding all memory references and
179 getting a value whose type alone is correct. */
180
181 struct value *
182 evaluate_subexpression_type (struct expression *exp, int subexp)
183 {
184 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
185 }
186
187 /* Extract a field operation from an expression. If the subexpression
188 of EXP starting at *SUBEXP is not a structure dereference
189 operation, return NULL. Otherwise, return the name of the
190 dereferenced field, and advance *SUBEXP to point to the
191 subexpression of the left-hand-side of the dereference. This is
192 used when completing field names. */
193
194 char *
195 extract_field_op (struct expression *exp, int *subexp)
196 {
197 int tem;
198 char *result;
199 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
200 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
201 return NULL;
202 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
203 result = &exp->elts[*subexp + 2].string;
204 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
205 return result;
206 }
207
208 /* If the next expression is an OP_LABELED, skips past it,
209 returning the label. Otherwise, does nothing and returns NULL. */
210
211 static char *
212 get_label (struct expression *exp, int *pos)
213 {
214 if (exp->elts[*pos].opcode == OP_LABELED)
215 {
216 int pc = (*pos)++;
217 char *name = &exp->elts[pc + 2].string;
218 int tem = longest_to_int (exp->elts[pc + 1].longconst);
219 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
220 return name;
221 }
222 else
223 return NULL;
224 }
225
226 /* This function evaluates tuples (in (the deleted) Chill) or
227 brace-initializers (in C/C++) for structure types. */
228
229 static struct value *
230 evaluate_struct_tuple (struct value *struct_val,
231 struct expression *exp,
232 int *pos, enum noside noside, int nargs)
233 {
234 struct type *struct_type = check_typedef (value_type (struct_val));
235 struct type *substruct_type = struct_type;
236 struct type *field_type;
237 int fieldno = -1;
238 int variantno = -1;
239 int subfieldno = -1;
240 while (--nargs >= 0)
241 {
242 int pc = *pos;
243 struct value *val = NULL;
244 int nlabels = 0;
245 int bitpos, bitsize;
246 bfd_byte *addr;
247
248 /* Skip past the labels, and count them. */
249 while (get_label (exp, pos) != NULL)
250 nlabels++;
251
252 do
253 {
254 char *label = get_label (exp, &pc);
255 if (label)
256 {
257 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
258 fieldno++)
259 {
260 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
261 if (field_name != NULL && strcmp (field_name, label) == 0)
262 {
263 variantno = -1;
264 subfieldno = fieldno;
265 substruct_type = struct_type;
266 goto found;
267 }
268 }
269 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
270 fieldno++)
271 {
272 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
273 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
274 if ((field_name == 0 || *field_name == '\0')
275 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
276 {
277 variantno = 0;
278 for (; variantno < TYPE_NFIELDS (field_type);
279 variantno++)
280 {
281 substruct_type
282 = TYPE_FIELD_TYPE (field_type, variantno);
283 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
284 {
285 for (subfieldno = 0;
286 subfieldno < TYPE_NFIELDS (substruct_type);
287 subfieldno++)
288 {
289 if (strcmp(TYPE_FIELD_NAME (substruct_type,
290 subfieldno),
291 label) == 0)
292 {
293 goto found;
294 }
295 }
296 }
297 }
298 }
299 }
300 error (_("there is no field named %s"), label);
301 found:
302 ;
303 }
304 else
305 {
306 /* Unlabelled tuple element - go to next field. */
307 if (variantno >= 0)
308 {
309 subfieldno++;
310 if (subfieldno >= TYPE_NFIELDS (substruct_type))
311 {
312 variantno = -1;
313 substruct_type = struct_type;
314 }
315 }
316 if (variantno < 0)
317 {
318 fieldno++;
319 /* Skip static fields. */
320 while (fieldno < TYPE_NFIELDS (struct_type)
321 && field_is_static (&TYPE_FIELD (struct_type,
322 fieldno)))
323 fieldno++;
324 subfieldno = fieldno;
325 if (fieldno >= TYPE_NFIELDS (struct_type))
326 error (_("too many initializers"));
327 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
328 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
329 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
330 error (_("don't know which variant you want to set"));
331 }
332 }
333
334 /* Here, struct_type is the type of the inner struct,
335 while substruct_type is the type of the inner struct.
336 These are the same for normal structures, but a variant struct
337 contains anonymous union fields that contain substruct fields.
338 The value fieldno is the index of the top-level (normal or
339 anonymous union) field in struct_field, while the value
340 subfieldno is the index of the actual real (named inner) field
341 in substruct_type. */
342
343 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
344 if (val == 0)
345 val = evaluate_subexp (field_type, exp, pos, noside);
346
347 /* Now actually set the field in struct_val. */
348
349 /* Assign val to field fieldno. */
350 if (value_type (val) != field_type)
351 val = value_cast (field_type, val);
352
353 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
354 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
355 if (variantno >= 0)
356 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (struct_type, addr,
360 value_as_long (val), bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364 }
365 while (--nlabels > 0);
366 }
367 return struct_val;
368 }
369
370 /* Recursive helper function for setting elements of array tuples for
371 (the deleted) Chill. The target is ARRAY (which has bounds
372 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
373 and NOSIDE are as usual. Evaluates index expresions and sets the
374 specified element(s) of ARRAY to ELEMENT. Returns last index
375 value. */
376
377 static LONGEST
378 init_array_element (struct value *array, struct value *element,
379 struct expression *exp, int *pos,
380 enum noside noside, LONGEST low_bound, LONGEST high_bound)
381 {
382 LONGEST index;
383 int element_size = TYPE_LENGTH (value_type (element));
384 if (exp->elts[*pos].opcode == BINOP_COMMA)
385 {
386 (*pos)++;
387 init_array_element (array, element, exp, pos, noside,
388 low_bound, high_bound);
389 return init_array_element (array, element,
390 exp, pos, noside, low_bound, high_bound);
391 }
392 else if (exp->elts[*pos].opcode == BINOP_RANGE)
393 {
394 LONGEST low, high;
395 (*pos)++;
396 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 if (low < low_bound || high > high_bound)
399 error (_("tuple range index out of range"));
400 for (index = low; index <= high; index++)
401 {
402 memcpy (value_contents_raw (array)
403 + (index - low_bound) * element_size,
404 value_contents (element), element_size);
405 }
406 }
407 else
408 {
409 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410 if (index < low_bound || index > high_bound)
411 error (_("tuple index out of range"));
412 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
413 value_contents (element), element_size);
414 }
415 return index;
416 }
417
418 static struct value *
419 value_f90_subarray (struct value *array,
420 struct expression *exp, int *pos, enum noside noside)
421 {
422 int pc = (*pos) + 1;
423 LONGEST low_bound, high_bound;
424 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
425 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
426
427 *pos += 3;
428
429 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
430 low_bound = TYPE_LOW_BOUND (range);
431 else
432 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
433
434 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
435 high_bound = TYPE_HIGH_BOUND (range);
436 else
437 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
438
439 return value_slice (array, low_bound, high_bound - low_bound + 1);
440 }
441
442
443 /* Promote value ARG1 as appropriate before performing a unary operation
444 on this argument.
445 If the result is not appropriate for any particular language then it
446 needs to patch this function. */
447
448 void
449 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
450 struct value **arg1)
451 {
452 struct type *type1;
453
454 *arg1 = coerce_ref (*arg1);
455 type1 = check_typedef (value_type (*arg1));
456
457 if (is_integral_type (type1))
458 {
459 switch (language->la_language)
460 {
461 default:
462 /* Perform integral promotion for ANSI C/C++.
463 If not appropropriate for any particular language
464 it needs to modify this function. */
465 {
466 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
467 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
468 *arg1 = value_cast (builtin_int, *arg1);
469 }
470 break;
471 }
472 }
473 }
474
475 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
476 operation on those two operands.
477 If the result is not appropriate for any particular language then it
478 needs to patch this function. */
479
480 void
481 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
482 struct value **arg1, struct value **arg2)
483 {
484 struct type *promoted_type = NULL;
485 struct type *type1;
486 struct type *type2;
487
488 *arg1 = coerce_ref (*arg1);
489 *arg2 = coerce_ref (*arg2);
490
491 type1 = check_typedef (value_type (*arg1));
492 type2 = check_typedef (value_type (*arg2));
493
494 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
495 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
496 && !is_integral_type (type1))
497 || (TYPE_CODE (type2) != TYPE_CODE_FLT
498 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
499 && !is_integral_type (type2)))
500 return;
501
502 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
503 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
504 {
505 /* No promotion required. */
506 }
507 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
508 || TYPE_CODE (type2) == TYPE_CODE_FLT)
509 {
510 switch (language->la_language)
511 {
512 case language_c:
513 case language_cplus:
514 case language_asm:
515 case language_objc:
516 /* No promotion required. */
517 break;
518
519 default:
520 /* For other languages the result type is unchanged from gdb
521 version 6.7 for backward compatibility.
522 If either arg was long double, make sure that value is also long
523 double. Otherwise use double. */
524 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
525 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
526 promoted_type = builtin_type (gdbarch)->builtin_long_double;
527 else
528 promoted_type = builtin_type (gdbarch)->builtin_double;
529 break;
530 }
531 }
532 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
533 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
534 {
535 /* No promotion required. */
536 }
537 else
538 /* Integral operations here. */
539 /* FIXME: Also mixed integral/booleans, with result an integer. */
540 {
541 const struct builtin_type *builtin = builtin_type (gdbarch);
542 unsigned int promoted_len1 = TYPE_LENGTH (type1);
543 unsigned int promoted_len2 = TYPE_LENGTH (type2);
544 int is_unsigned1 = TYPE_UNSIGNED (type1);
545 int is_unsigned2 = TYPE_UNSIGNED (type2);
546 unsigned int result_len;
547 int unsigned_operation;
548
549 /* Determine type length and signedness after promotion for
550 both operands. */
551 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
552 {
553 is_unsigned1 = 0;
554 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
555 }
556 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
557 {
558 is_unsigned2 = 0;
559 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
560 }
561
562 if (promoted_len1 > promoted_len2)
563 {
564 unsigned_operation = is_unsigned1;
565 result_len = promoted_len1;
566 }
567 else if (promoted_len2 > promoted_len1)
568 {
569 unsigned_operation = is_unsigned2;
570 result_len = promoted_len2;
571 }
572 else
573 {
574 unsigned_operation = is_unsigned1 || is_unsigned2;
575 result_len = promoted_len1;
576 }
577
578 switch (language->la_language)
579 {
580 case language_c:
581 case language_cplus:
582 case language_asm:
583 case language_objc:
584 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
585 {
586 promoted_type = (unsigned_operation
587 ? builtin->builtin_unsigned_int
588 : builtin->builtin_int);
589 }
590 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
591 {
592 promoted_type = (unsigned_operation
593 ? builtin->builtin_unsigned_long
594 : builtin->builtin_long);
595 }
596 else
597 {
598 promoted_type = (unsigned_operation
599 ? builtin->builtin_unsigned_long_long
600 : builtin->builtin_long_long);
601 }
602 break;
603
604 default:
605 /* For other languages the result type is unchanged from gdb
606 version 6.7 for backward compatibility.
607 If either arg was long long, make sure that value is also long
608 long. Otherwise use long. */
609 if (unsigned_operation)
610 {
611 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
612 promoted_type = builtin->builtin_unsigned_long_long;
613 else
614 promoted_type = builtin->builtin_unsigned_long;
615 }
616 else
617 {
618 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
619 promoted_type = builtin->builtin_long_long;
620 else
621 promoted_type = builtin->builtin_long;
622 }
623 break;
624 }
625 }
626
627 if (promoted_type)
628 {
629 /* Promote both operands to common type. */
630 *arg1 = value_cast (promoted_type, *arg1);
631 *arg2 = value_cast (promoted_type, *arg2);
632 }
633 }
634
635 static int
636 ptrmath_type_p (struct type *type)
637 {
638 type = check_typedef (type);
639 if (TYPE_CODE (type) == TYPE_CODE_REF)
640 type = TYPE_TARGET_TYPE (type);
641
642 switch (TYPE_CODE (type))
643 {
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_FUNC:
646 return 1;
647
648 case TYPE_CODE_ARRAY:
649 return current_language->c_style_arrays;
650
651 default:
652 return 0;
653 }
654 }
655
656 /* Constructs a fake method with the given parameter types.
657 This function is used by the parser to construct an "expected"
658 type for method overload resolution. */
659
660 static struct type *
661 make_params (int num_types, struct type **param_types)
662 {
663 struct type *type = XZALLOC (struct type);
664 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
665 TYPE_LENGTH (type) = 1;
666 TYPE_CODE (type) = TYPE_CODE_METHOD;
667 TYPE_VPTR_FIELDNO (type) = -1;
668 TYPE_CHAIN (type) = type;
669 TYPE_NFIELDS (type) = num_types;
670 TYPE_FIELDS (type) = (struct field *)
671 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
672
673 while (num_types-- > 0)
674 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
675
676 return type;
677 }
678
679 struct value *
680 evaluate_subexp_standard (struct type *expect_type,
681 struct expression *exp, int *pos,
682 enum noside noside)
683 {
684 enum exp_opcode op;
685 int tem, tem2, tem3;
686 int pc, pc2 = 0, oldpos;
687 struct value *arg1 = NULL;
688 struct value *arg2 = NULL;
689 struct value *arg3;
690 struct type *type;
691 int nargs;
692 struct value **argvec;
693 int upper, lower, retcode;
694 int code;
695 int ix;
696 long mem_offset;
697 struct type **arg_types;
698 int save_pos1;
699 struct symbol *function = NULL;
700 char *function_name = NULL;
701
702 pc = (*pos)++;
703 op = exp->elts[pc].opcode;
704
705 switch (op)
706 {
707 case OP_SCOPE:
708 tem = longest_to_int (exp->elts[pc + 2].longconst);
709 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
710 if (noside == EVAL_SKIP)
711 goto nosideret;
712 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
713 &exp->elts[pc + 3].string,
714 expect_type, 0, noside);
715 if (arg1 == NULL)
716 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
717 return arg1;
718
719 case OP_LONG:
720 (*pos) += 3;
721 return value_from_longest (exp->elts[pc + 1].type,
722 exp->elts[pc + 2].longconst);
723
724 case OP_DOUBLE:
725 (*pos) += 3;
726 return value_from_double (exp->elts[pc + 1].type,
727 exp->elts[pc + 2].doubleconst);
728
729 case OP_DECFLOAT:
730 (*pos) += 3;
731 return value_from_decfloat (exp->elts[pc + 1].type,
732 exp->elts[pc + 2].decfloatconst);
733
734 case OP_VAR_VALUE:
735 (*pos) += 3;
736 if (noside == EVAL_SKIP)
737 goto nosideret;
738
739 /* JYG: We used to just return value_zero of the symbol type
740 if we're asked to avoid side effects. Otherwise we return
741 value_of_variable (...). However I'm not sure if
742 value_of_variable () has any side effect.
743 We need a full value object returned here for whatis_exp ()
744 to call evaluate_type () and then pass the full value to
745 value_rtti_target_type () if we are dealing with a pointer
746 or reference to a base class and print object is on. */
747
748 {
749 volatile struct gdb_exception except;
750 struct value *ret = NULL;
751
752 TRY_CATCH (except, RETURN_MASK_ERROR)
753 {
754 ret = value_of_variable (exp->elts[pc + 2].symbol,
755 exp->elts[pc + 1].block);
756 }
757
758 if (except.reason < 0)
759 {
760 if (noside == EVAL_AVOID_SIDE_EFFECTS)
761 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
762 else
763 throw_exception (except);
764 }
765
766 return ret;
767 }
768
769 case OP_LAST:
770 (*pos) += 2;
771 return
772 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
773
774 case OP_REGISTER:
775 {
776 const char *name = &exp->elts[pc + 2].string;
777 int regno;
778 struct value *val;
779
780 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
781 regno = user_reg_map_name_to_regnum (exp->gdbarch,
782 name, strlen (name));
783 if (regno == -1)
784 error (_("Register $%s not available."), name);
785
786 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
787 a value with the appropriate register type. Unfortunately,
788 we don't have easy access to the type of user registers.
789 So for these registers, we fetch the register value regardless
790 of the evaluation mode. */
791 if (noside == EVAL_AVOID_SIDE_EFFECTS
792 && regno < gdbarch_num_regs (exp->gdbarch)
793 + gdbarch_num_pseudo_regs (exp->gdbarch))
794 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
795 else
796 val = value_of_register (regno, get_selected_frame (NULL));
797 if (val == NULL)
798 error (_("Value of register %s not available."), name);
799 else
800 return val;
801 }
802 case OP_BOOL:
803 (*pos) += 2;
804 type = language_bool_type (exp->language_defn, exp->gdbarch);
805 return value_from_longest (type, exp->elts[pc + 1].longconst);
806
807 case OP_INTERNALVAR:
808 (*pos) += 2;
809 return value_of_internalvar (exp->gdbarch,
810 exp->elts[pc + 1].internalvar);
811
812 case OP_STRING:
813 tem = longest_to_int (exp->elts[pc + 1].longconst);
814 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
815 if (noside == EVAL_SKIP)
816 goto nosideret;
817 type = language_string_char_type (exp->language_defn, exp->gdbarch);
818 return value_string (&exp->elts[pc + 2].string, tem, type);
819
820 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
821 tem = longest_to_int (exp->elts[pc + 1].longconst);
822 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
823 if (noside == EVAL_SKIP)
824 {
825 goto nosideret;
826 }
827 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
828
829 case OP_BITSTRING:
830 tem = longest_to_int (exp->elts[pc + 1].longconst);
831 (*pos)
832 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
833 if (noside == EVAL_SKIP)
834 goto nosideret;
835 return value_bitstring (&exp->elts[pc + 2].string, tem,
836 builtin_type (exp->gdbarch)->builtin_int);
837 break;
838
839 case OP_ARRAY:
840 (*pos) += 3;
841 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
842 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
843 nargs = tem3 - tem2 + 1;
844 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
845
846 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
847 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
848 {
849 struct value *rec = allocate_value (expect_type);
850 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
851 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
852 }
853
854 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
855 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
856 {
857 struct type *range_type = TYPE_INDEX_TYPE (type);
858 struct type *element_type = TYPE_TARGET_TYPE (type);
859 struct value *array = allocate_value (expect_type);
860 int element_size = TYPE_LENGTH (check_typedef (element_type));
861 LONGEST low_bound, high_bound, index;
862 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
863 {
864 low_bound = 0;
865 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
866 }
867 index = low_bound;
868 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
869 for (tem = nargs; --nargs >= 0;)
870 {
871 struct value *element;
872 int index_pc = 0;
873 if (exp->elts[*pos].opcode == BINOP_RANGE)
874 {
875 index_pc = ++(*pos);
876 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
877 }
878 element = evaluate_subexp (element_type, exp, pos, noside);
879 if (value_type (element) != element_type)
880 element = value_cast (element_type, element);
881 if (index_pc)
882 {
883 int continue_pc = *pos;
884 *pos = index_pc;
885 index = init_array_element (array, element, exp, pos, noside,
886 low_bound, high_bound);
887 *pos = continue_pc;
888 }
889 else
890 {
891 if (index > high_bound)
892 /* to avoid memory corruption */
893 error (_("Too many array elements"));
894 memcpy (value_contents_raw (array)
895 + (index - low_bound) * element_size,
896 value_contents (element),
897 element_size);
898 }
899 index++;
900 }
901 return array;
902 }
903
904 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
905 && TYPE_CODE (type) == TYPE_CODE_SET)
906 {
907 struct value *set = allocate_value (expect_type);
908 gdb_byte *valaddr = value_contents_raw (set);
909 struct type *element_type = TYPE_INDEX_TYPE (type);
910 struct type *check_type = element_type;
911 LONGEST low_bound, high_bound;
912
913 /* get targettype of elementtype */
914 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
915 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
916 check_type = TYPE_TARGET_TYPE (check_type);
917
918 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
919 error (_("(power)set type with unknown size"));
920 memset (valaddr, '\0', TYPE_LENGTH (type));
921 for (tem = 0; tem < nargs; tem++)
922 {
923 LONGEST range_low, range_high;
924 struct type *range_low_type, *range_high_type;
925 struct value *elem_val;
926 if (exp->elts[*pos].opcode == BINOP_RANGE)
927 {
928 (*pos)++;
929 elem_val = evaluate_subexp (element_type, exp, pos, noside);
930 range_low_type = value_type (elem_val);
931 range_low = value_as_long (elem_val);
932 elem_val = evaluate_subexp (element_type, exp, pos, noside);
933 range_high_type = value_type (elem_val);
934 range_high = value_as_long (elem_val);
935 }
936 else
937 {
938 elem_val = evaluate_subexp (element_type, exp, pos, noside);
939 range_low_type = range_high_type = value_type (elem_val);
940 range_low = range_high = value_as_long (elem_val);
941 }
942 /* check types of elements to avoid mixture of elements from
943 different types. Also check if type of element is "compatible"
944 with element type of powerset */
945 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
946 range_low_type = TYPE_TARGET_TYPE (range_low_type);
947 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
948 range_high_type = TYPE_TARGET_TYPE (range_high_type);
949 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
950 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
951 && (range_low_type != range_high_type)))
952 /* different element modes */
953 error (_("POWERSET tuple elements of different mode"));
954 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
955 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
956 && range_low_type != check_type))
957 error (_("incompatible POWERSET tuple elements"));
958 if (range_low > range_high)
959 {
960 warning (_("empty POWERSET tuple range"));
961 continue;
962 }
963 if (range_low < low_bound || range_high > high_bound)
964 error (_("POWERSET tuple element out of range"));
965 range_low -= low_bound;
966 range_high -= low_bound;
967 for (; range_low <= range_high; range_low++)
968 {
969 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
970 if (gdbarch_bits_big_endian (exp->gdbarch))
971 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
972 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
973 |= 1 << bit_index;
974 }
975 }
976 return set;
977 }
978
979 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
980 for (tem = 0; tem < nargs; tem++)
981 {
982 /* Ensure that array expressions are coerced into pointer objects. */
983 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
984 }
985 if (noside == EVAL_SKIP)
986 goto nosideret;
987 return value_array (tem2, tem3, argvec);
988
989 case TERNOP_SLICE:
990 {
991 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
992 int lowbound
993 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
994 int upper
995 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
996 if (noside == EVAL_SKIP)
997 goto nosideret;
998 return value_slice (array, lowbound, upper - lowbound + 1);
999 }
1000
1001 case TERNOP_SLICE_COUNT:
1002 {
1003 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1004 int lowbound
1005 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1006 int length
1007 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1008 return value_slice (array, lowbound, length);
1009 }
1010
1011 case TERNOP_COND:
1012 /* Skip third and second args to evaluate the first one. */
1013 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1014 if (value_logical_not (arg1))
1015 {
1016 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1017 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1018 }
1019 else
1020 {
1021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1022 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1023 return arg2;
1024 }
1025
1026 case OP_OBJC_SELECTOR:
1027 { /* Objective C @selector operator. */
1028 char *sel = &exp->elts[pc + 2].string;
1029 int len = longest_to_int (exp->elts[pc + 1].longconst);
1030 struct type *selector_type;
1031
1032 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1033 if (noside == EVAL_SKIP)
1034 goto nosideret;
1035
1036 if (sel[len] != 0)
1037 sel[len] = 0; /* Make sure it's terminated. */
1038
1039 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1040 return value_from_longest (selector_type,
1041 lookup_child_selector (exp->gdbarch, sel));
1042 }
1043
1044 case OP_OBJC_MSGCALL:
1045 { /* Objective C message (method) call. */
1046
1047 CORE_ADDR responds_selector = 0;
1048 CORE_ADDR method_selector = 0;
1049
1050 CORE_ADDR selector = 0;
1051
1052 int struct_return = 0;
1053 int sub_no_side = 0;
1054
1055 struct value *msg_send = NULL;
1056 struct value *msg_send_stret = NULL;
1057 int gnu_runtime = 0;
1058
1059 struct value *target = NULL;
1060 struct value *method = NULL;
1061 struct value *called_method = NULL;
1062
1063 struct type *selector_type = NULL;
1064 struct type *long_type;
1065
1066 struct value *ret = NULL;
1067 CORE_ADDR addr = 0;
1068
1069 selector = exp->elts[pc + 1].longconst;
1070 nargs = exp->elts[pc + 2].longconst;
1071 argvec = (struct value **) alloca (sizeof (struct value *)
1072 * (nargs + 5));
1073
1074 (*pos) += 3;
1075
1076 long_type = builtin_type (exp->gdbarch)->builtin_long;
1077 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1078
1079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1080 sub_no_side = EVAL_NORMAL;
1081 else
1082 sub_no_side = noside;
1083
1084 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1085
1086 if (value_as_long (target) == 0)
1087 return value_from_longest (long_type, 0);
1088
1089 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1090 gnu_runtime = 1;
1091
1092 /* Find the method dispatch (Apple runtime) or method lookup
1093 (GNU runtime) function for Objective-C. These will be used
1094 to lookup the symbol information for the method. If we
1095 can't find any symbol information, then we'll use these to
1096 call the method, otherwise we can call the method
1097 directly. The msg_send_stret function is used in the special
1098 case of a method that returns a structure (Apple runtime
1099 only). */
1100 if (gnu_runtime)
1101 {
1102 struct type *type = selector_type;
1103 type = lookup_function_type (type);
1104 type = lookup_pointer_type (type);
1105 type = lookup_function_type (type);
1106 type = lookup_pointer_type (type);
1107
1108 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1109 msg_send_stret
1110 = find_function_in_inferior ("objc_msg_lookup", NULL);
1111
1112 msg_send = value_from_pointer (type, value_as_address (msg_send));
1113 msg_send_stret = value_from_pointer (type,
1114 value_as_address (msg_send_stret));
1115 }
1116 else
1117 {
1118 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1119 /* Special dispatcher for methods returning structs */
1120 msg_send_stret
1121 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1122 }
1123
1124 /* Verify the target object responds to this method. The
1125 standard top-level 'Object' class uses a different name for
1126 the verification method than the non-standard, but more
1127 often used, 'NSObject' class. Make sure we check for both. */
1128
1129 responds_selector
1130 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1131 if (responds_selector == 0)
1132 responds_selector
1133 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1134
1135 if (responds_selector == 0)
1136 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1137
1138 method_selector
1139 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1140 if (method_selector == 0)
1141 method_selector
1142 = lookup_child_selector (exp->gdbarch, "methodFor:");
1143
1144 if (method_selector == 0)
1145 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1146
1147 /* Call the verification method, to make sure that the target
1148 class implements the desired method. */
1149
1150 argvec[0] = msg_send;
1151 argvec[1] = target;
1152 argvec[2] = value_from_longest (long_type, responds_selector);
1153 argvec[3] = value_from_longest (long_type, selector);
1154 argvec[4] = 0;
1155
1156 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1157 if (gnu_runtime)
1158 {
1159 /* Function objc_msg_lookup returns a pointer. */
1160 argvec[0] = ret;
1161 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1162 }
1163 if (value_as_long (ret) == 0)
1164 error (_("Target does not respond to this message selector."));
1165
1166 /* Call "methodForSelector:" method, to get the address of a
1167 function method that implements this selector for this
1168 class. If we can find a symbol at that address, then we
1169 know the return type, parameter types etc. (that's a good
1170 thing). */
1171
1172 argvec[0] = msg_send;
1173 argvec[1] = target;
1174 argvec[2] = value_from_longest (long_type, method_selector);
1175 argvec[3] = value_from_longest (long_type, selector);
1176 argvec[4] = 0;
1177
1178 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1179 if (gnu_runtime)
1180 {
1181 argvec[0] = ret;
1182 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1183 }
1184
1185 /* ret should now be the selector. */
1186
1187 addr = value_as_long (ret);
1188 if (addr)
1189 {
1190 struct symbol *sym = NULL;
1191
1192 /* The address might point to a function descriptor;
1193 resolve it to the actual code address instead. */
1194 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1195 &current_target);
1196
1197 /* Is it a high_level symbol? */
1198 sym = find_pc_function (addr);
1199 if (sym != NULL)
1200 method = value_of_variable (sym, 0);
1201 }
1202
1203 /* If we found a method with symbol information, check to see
1204 if it returns a struct. Otherwise assume it doesn't. */
1205
1206 if (method)
1207 {
1208 struct block *b;
1209 CORE_ADDR funaddr;
1210 struct type *val_type;
1211
1212 funaddr = find_function_addr (method, &val_type);
1213
1214 b = block_for_pc (funaddr);
1215
1216 CHECK_TYPEDEF (val_type);
1217
1218 if ((val_type == NULL)
1219 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1220 {
1221 if (expect_type != NULL)
1222 val_type = expect_type;
1223 }
1224
1225 struct_return = using_struct_return (exp->gdbarch,
1226 value_type (method), val_type);
1227 }
1228 else if (expect_type != NULL)
1229 {
1230 struct_return = using_struct_return (exp->gdbarch, NULL,
1231 check_typedef (expect_type));
1232 }
1233
1234 /* Found a function symbol. Now we will substitute its
1235 value in place of the message dispatcher (obj_msgSend),
1236 so that we call the method directly instead of thru
1237 the dispatcher. The main reason for doing this is that
1238 we can now evaluate the return value and parameter values
1239 according to their known data types, in case we need to
1240 do things like promotion, dereferencing, special handling
1241 of structs and doubles, etc.
1242
1243 We want to use the type signature of 'method', but still
1244 jump to objc_msgSend() or objc_msgSend_stret() to better
1245 mimic the behavior of the runtime. */
1246
1247 if (method)
1248 {
1249 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1250 error (_("method address has symbol information with non-function type; skipping"));
1251
1252 /* Create a function pointer of the appropriate type, and replace
1253 its value with the value of msg_send or msg_send_stret. We must
1254 use a pointer here, as msg_send and msg_send_stret are of pointer
1255 type, and the representation may be different on systems that use
1256 function descriptors. */
1257 if (struct_return)
1258 called_method
1259 = value_from_pointer (lookup_pointer_type (value_type (method)),
1260 value_as_address (msg_send_stret));
1261 else
1262 called_method
1263 = value_from_pointer (lookup_pointer_type (value_type (method)),
1264 value_as_address (msg_send));
1265 }
1266 else
1267 {
1268 if (struct_return)
1269 called_method = msg_send_stret;
1270 else
1271 called_method = msg_send;
1272 }
1273
1274 if (noside == EVAL_SKIP)
1275 goto nosideret;
1276
1277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1278 {
1279 /* If the return type doesn't look like a function type,
1280 call an error. This can happen if somebody tries to
1281 turn a variable into a function call. This is here
1282 because people often want to call, eg, strcmp, which
1283 gdb doesn't know is a function. If gdb isn't asked for
1284 it's opinion (ie. through "whatis"), it won't offer
1285 it. */
1286
1287 struct type *type = value_type (called_method);
1288 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1289 type = TYPE_TARGET_TYPE (type);
1290 type = TYPE_TARGET_TYPE (type);
1291
1292 if (type)
1293 {
1294 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1295 return allocate_value (expect_type);
1296 else
1297 return allocate_value (type);
1298 }
1299 else
1300 error (_("Expression of type other than \"method returning ...\" used as a method"));
1301 }
1302
1303 /* Now depending on whether we found a symbol for the method,
1304 we will either call the runtime dispatcher or the method
1305 directly. */
1306
1307 argvec[0] = called_method;
1308 argvec[1] = target;
1309 argvec[2] = value_from_longest (long_type, selector);
1310 /* User-supplied arguments. */
1311 for (tem = 0; tem < nargs; tem++)
1312 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1313 argvec[tem + 3] = 0;
1314
1315 if (gnu_runtime && (method != NULL))
1316 {
1317 /* Function objc_msg_lookup returns a pointer. */
1318 deprecated_set_value_type (argvec[0],
1319 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1320 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1321 }
1322
1323 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1324 return ret;
1325 }
1326 break;
1327
1328 case OP_FUNCALL:
1329 (*pos) += 2;
1330 op = exp->elts[*pos].opcode;
1331 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1332 /* Allocate arg vector, including space for the function to be
1333 called in argvec[0] and a terminating NULL */
1334 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1335 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1336 {
1337 nargs++;
1338 /* First, evaluate the structure into arg2 */
1339 pc2 = (*pos)++;
1340
1341 if (noside == EVAL_SKIP)
1342 goto nosideret;
1343
1344 if (op == STRUCTOP_MEMBER)
1345 {
1346 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1347 }
1348 else
1349 {
1350 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1351 }
1352
1353 /* If the function is a virtual function, then the
1354 aggregate value (providing the structure) plays
1355 its part by providing the vtable. Otherwise,
1356 it is just along for the ride: call the function
1357 directly. */
1358
1359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1360
1361 if (TYPE_CODE (check_typedef (value_type (arg1)))
1362 != TYPE_CODE_METHODPTR)
1363 error (_("Non-pointer-to-member value used in pointer-to-member "
1364 "construct"));
1365
1366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1367 {
1368 struct type *method_type = check_typedef (value_type (arg1));
1369 arg1 = value_zero (method_type, not_lval);
1370 }
1371 else
1372 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1373
1374 /* Now, say which argument to start evaluating from */
1375 tem = 2;
1376 }
1377 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1378 {
1379 /* Hair for method invocations */
1380 int tem2;
1381
1382 nargs++;
1383 /* First, evaluate the structure into arg2 */
1384 pc2 = (*pos)++;
1385 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1386 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1387 if (noside == EVAL_SKIP)
1388 goto nosideret;
1389
1390 if (op == STRUCTOP_STRUCT)
1391 {
1392 /* If v is a variable in a register, and the user types
1393 v.method (), this will produce an error, because v has
1394 no address.
1395
1396 A possible way around this would be to allocate a
1397 copy of the variable on the stack, copy in the
1398 contents, call the function, and copy out the
1399 contents. I.e. convert this from call by reference
1400 to call by copy-return (or whatever it's called).
1401 However, this does not work because it is not the
1402 same: the method being called could stash a copy of
1403 the address, and then future uses through that address
1404 (after the method returns) would be expected to
1405 use the variable itself, not some copy of it. */
1406 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1407 }
1408 else
1409 {
1410 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1411 }
1412 /* Now, say which argument to start evaluating from */
1413 tem = 2;
1414 }
1415 else if (op == OP_SCOPE
1416 && overload_resolution
1417 && (exp->language_defn->la_language == language_cplus))
1418 {
1419 /* Unpack it locally so we can properly handle overload
1420 resolution. */
1421 struct type *qual_type;
1422 char *name;
1423 int local_tem;
1424
1425 pc2 = (*pos)++;
1426 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1427 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1428 type = exp->elts[pc2 + 1].type;
1429 name = &exp->elts[pc2 + 3].string;
1430
1431 function = NULL;
1432 function_name = NULL;
1433 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1434 {
1435 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1436 name, NULL,
1437 get_selected_block (0),
1438 VAR_DOMAIN, 1);
1439 if (function == NULL)
1440 error (_("No symbol \"%s\" in namespace \"%s\"."),
1441 name, TYPE_TAG_NAME (type));
1442
1443 tem = 1;
1444 }
1445 else
1446 {
1447 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1448 || TYPE_CODE (type) == TYPE_CODE_UNION);
1449 function_name = name;
1450
1451 arg2 = value_zero (type, lval_memory);
1452 ++nargs;
1453 tem = 2;
1454 }
1455 }
1456 else
1457 {
1458 /* Non-method function call */
1459 save_pos1 = *pos;
1460 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1461 tem = 1;
1462 type = value_type (argvec[0]);
1463 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1464 type = TYPE_TARGET_TYPE (type);
1465 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1466 {
1467 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1468 {
1469 /* pai: FIXME This seems to be coercing arguments before
1470 * overload resolution has been done! */
1471 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1472 exp, pos, noside);
1473 }
1474 }
1475 }
1476
1477 /* Evaluate arguments */
1478 for (; tem <= nargs; tem++)
1479 {
1480 /* Ensure that array expressions are coerced into pointer objects. */
1481 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1482 }
1483
1484 /* signal end of arglist */
1485 argvec[tem] = 0;
1486
1487 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1488 || (op == OP_SCOPE && function_name != NULL))
1489 {
1490 int static_memfuncp;
1491 char *tstr;
1492
1493 /* Method invocation : stuff "this" as first parameter */
1494 argvec[1] = arg2;
1495
1496 if (op != OP_SCOPE)
1497 {
1498 /* Name of method from expression */
1499 tstr = &exp->elts[pc2 + 2].string;
1500 }
1501 else
1502 tstr = function_name;
1503
1504 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1505 {
1506 /* Language is C++, do some overload resolution before evaluation */
1507 struct value *valp = NULL;
1508
1509 /* Prepare list of argument types for overload resolution */
1510 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1511 for (ix = 1; ix <= nargs; ix++)
1512 arg_types[ix - 1] = value_type (argvec[ix]);
1513
1514 (void) find_overload_match (arg_types, nargs, tstr,
1515 1 /* method */ , 0 /* strict match */ ,
1516 &arg2 /* the object */ , NULL,
1517 &valp, NULL, &static_memfuncp);
1518
1519 if (op == OP_SCOPE && !static_memfuncp)
1520 {
1521 /* For the time being, we don't handle this. */
1522 error (_("Call to overloaded function %s requires "
1523 "`this' pointer"),
1524 function_name);
1525 }
1526 argvec[1] = arg2; /* the ``this'' pointer */
1527 argvec[0] = valp; /* use the method found after overload resolution */
1528 }
1529 else
1530 /* Non-C++ case -- or no overload resolution */
1531 {
1532 struct value *temp = arg2;
1533 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1534 &static_memfuncp,
1535 op == STRUCTOP_STRUCT
1536 ? "structure" : "structure pointer");
1537 /* value_struct_elt updates temp with the correct value
1538 of the ``this'' pointer if necessary, so modify argvec[1] to
1539 reflect any ``this'' changes. */
1540 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1541 value_address (temp)
1542 + value_embedded_offset (temp));
1543 argvec[1] = arg2; /* the ``this'' pointer */
1544 }
1545
1546 if (static_memfuncp)
1547 {
1548 argvec[1] = argvec[0];
1549 nargs--;
1550 argvec++;
1551 }
1552 }
1553 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1554 {
1555 argvec[1] = arg2;
1556 argvec[0] = arg1;
1557 }
1558 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1559 {
1560 /* Non-member function being called */
1561 /* fn: This can only be done for C++ functions. A C-style function
1562 in a C++ program, for instance, does not have the fields that
1563 are expected here */
1564
1565 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1566 {
1567 /* Language is C++, do some overload resolution before evaluation */
1568 struct symbol *symp;
1569
1570 if (op == OP_VAR_VALUE)
1571 function = exp->elts[save_pos1+2].symbol;
1572
1573 /* Prepare list of argument types for overload resolution */
1574 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1575 for (ix = 1; ix <= nargs; ix++)
1576 arg_types[ix - 1] = value_type (argvec[ix]);
1577
1578 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1579 0 /* not method */ , 0 /* strict match */ ,
1580 NULL, function /* the function */ ,
1581 NULL, &symp, NULL);
1582
1583 if (op == OP_VAR_VALUE)
1584 {
1585 /* Now fix the expression being evaluated */
1586 exp->elts[save_pos1+2].symbol = symp;
1587 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1588 noside);
1589 }
1590 else
1591 argvec[0] = value_of_variable (symp, get_selected_block (0));
1592 }
1593 else
1594 {
1595 /* Not C++, or no overload resolution allowed */
1596 /* nothing to be done; argvec already correctly set up */
1597 }
1598 }
1599 else
1600 {
1601 /* It is probably a C-style function */
1602 /* nothing to be done; argvec already correctly set up */
1603 }
1604
1605 do_call_it:
1606
1607 if (noside == EVAL_SKIP)
1608 goto nosideret;
1609 if (argvec[0] == NULL)
1610 error (_("Cannot evaluate function -- may be inlined"));
1611 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1612 {
1613 /* If the return type doesn't look like a function type, call an
1614 error. This can happen if somebody tries to turn a variable into
1615 a function call. This is here because people often want to
1616 call, eg, strcmp, which gdb doesn't know is a function. If
1617 gdb isn't asked for it's opinion (ie. through "whatis"),
1618 it won't offer it. */
1619
1620 struct type *ftype = value_type (argvec[0]);
1621
1622 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1623 {
1624 /* We don't know anything about what the internal
1625 function might return, but we have to return
1626 something. */
1627 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1628 not_lval);
1629 }
1630 else if (TYPE_TARGET_TYPE (ftype))
1631 return allocate_value (TYPE_TARGET_TYPE (ftype));
1632 else
1633 error (_("Expression of type other than \"Function returning ...\" used as function"));
1634 }
1635 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1636 return call_internal_function (exp->gdbarch, exp->language_defn,
1637 argvec[0], nargs, argvec + 1);
1638
1639 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1640 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1641
1642 case OP_F77_UNDETERMINED_ARGLIST:
1643
1644 /* Remember that in F77, functions, substring ops and
1645 array subscript operations cannot be disambiguated
1646 at parse time. We have made all array subscript operations,
1647 substring operations as well as function calls come here
1648 and we now have to discover what the heck this thing actually was.
1649 If it is a function, we process just as if we got an OP_FUNCALL. */
1650
1651 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1652 (*pos) += 2;
1653
1654 /* First determine the type code we are dealing with. */
1655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1656 type = check_typedef (value_type (arg1));
1657 code = TYPE_CODE (type);
1658
1659 if (code == TYPE_CODE_PTR)
1660 {
1661 /* Fortran always passes variable to subroutines as pointer.
1662 So we need to look into its target type to see if it is
1663 array, string or function. If it is, we need to switch
1664 to the target value the original one points to. */
1665 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1666
1667 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1668 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1669 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1670 {
1671 arg1 = value_ind (arg1);
1672 type = check_typedef (value_type (arg1));
1673 code = TYPE_CODE (type);
1674 }
1675 }
1676
1677 switch (code)
1678 {
1679 case TYPE_CODE_ARRAY:
1680 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1681 return value_f90_subarray (arg1, exp, pos, noside);
1682 else
1683 goto multi_f77_subscript;
1684
1685 case TYPE_CODE_STRING:
1686 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1687 return value_f90_subarray (arg1, exp, pos, noside);
1688 else
1689 {
1690 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1691 return value_subscript (arg1, value_as_long (arg2));
1692 }
1693
1694 case TYPE_CODE_PTR:
1695 case TYPE_CODE_FUNC:
1696 /* It's a function call. */
1697 /* Allocate arg vector, including space for the function to be
1698 called in argvec[0] and a terminating NULL */
1699 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1700 argvec[0] = arg1;
1701 tem = 1;
1702 for (; tem <= nargs; tem++)
1703 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1704 argvec[tem] = 0; /* signal end of arglist */
1705 goto do_call_it;
1706
1707 default:
1708 error (_("Cannot perform substring on this type"));
1709 }
1710
1711 case OP_COMPLEX:
1712 /* We have a complex number, There should be 2 floating
1713 point numbers that compose it */
1714 (*pos) += 2;
1715 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1716 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1717
1718 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1719
1720 case STRUCTOP_STRUCT:
1721 tem = longest_to_int (exp->elts[pc + 1].longconst);
1722 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1724 if (noside == EVAL_SKIP)
1725 goto nosideret;
1726 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1727 return value_zero (lookup_struct_elt_type (value_type (arg1),
1728 &exp->elts[pc + 2].string,
1729 0),
1730 lval_memory);
1731 else
1732 {
1733 struct value *temp = arg1;
1734 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1735 NULL, "structure");
1736 }
1737
1738 case STRUCTOP_PTR:
1739 tem = longest_to_int (exp->elts[pc + 1].longconst);
1740 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1742 if (noside == EVAL_SKIP)
1743 goto nosideret;
1744
1745 /* JYG: if print object is on we need to replace the base type
1746 with rtti type in order to continue on with successful
1747 lookup of member / method only available in the rtti type. */
1748 {
1749 struct type *type = value_type (arg1);
1750 struct type *real_type;
1751 int full, top, using_enc;
1752 struct value_print_options opts;
1753
1754 get_user_print_options (&opts);
1755 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1756 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1757 {
1758 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1759 if (real_type)
1760 {
1761 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1762 real_type = lookup_pointer_type (real_type);
1763 else
1764 real_type = lookup_reference_type (real_type);
1765
1766 arg1 = value_cast (real_type, arg1);
1767 }
1768 }
1769 }
1770
1771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1772 return value_zero (lookup_struct_elt_type (value_type (arg1),
1773 &exp->elts[pc + 2].string,
1774 0),
1775 lval_memory);
1776 else
1777 {
1778 struct value *temp = arg1;
1779 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1780 NULL, "structure pointer");
1781 }
1782
1783 case STRUCTOP_MEMBER:
1784 case STRUCTOP_MPTR:
1785 if (op == STRUCTOP_MEMBER)
1786 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1787 else
1788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1789
1790 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1791
1792 if (noside == EVAL_SKIP)
1793 goto nosideret;
1794
1795 type = check_typedef (value_type (arg2));
1796 switch (TYPE_CODE (type))
1797 {
1798 case TYPE_CODE_METHODPTR:
1799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1800 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1801 else
1802 {
1803 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1804 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1805 return value_ind (arg2);
1806 }
1807
1808 case TYPE_CODE_MEMBERPTR:
1809 /* Now, convert these values to an address. */
1810 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1811 arg1);
1812
1813 mem_offset = value_as_long (arg2);
1814
1815 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1816 value_as_long (arg1) + mem_offset);
1817 return value_ind (arg3);
1818
1819 default:
1820 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1821 }
1822
1823 case TYPE_INSTANCE:
1824 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1825 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1826 for (ix = 0; ix < nargs; ++ix)
1827 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1828
1829 expect_type = make_params (nargs, arg_types);
1830 *(pos) += 3 + nargs;
1831 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1832 xfree (TYPE_FIELDS (expect_type));
1833 xfree (TYPE_MAIN_TYPE (expect_type));
1834 xfree (expect_type);
1835 return arg1;
1836
1837 case BINOP_CONCAT:
1838 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1839 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1840 if (noside == EVAL_SKIP)
1841 goto nosideret;
1842 if (binop_user_defined_p (op, arg1, arg2))
1843 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1844 else
1845 return value_concat (arg1, arg2);
1846
1847 case BINOP_ASSIGN:
1848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1849 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1850
1851 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1852 return arg1;
1853 if (binop_user_defined_p (op, arg1, arg2))
1854 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1855 else
1856 return value_assign (arg1, arg2);
1857
1858 case BINOP_ASSIGN_MODIFY:
1859 (*pos) += 2;
1860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1861 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1862 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1863 return arg1;
1864 op = exp->elts[pc + 1].opcode;
1865 if (binop_user_defined_p (op, arg1, arg2))
1866 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1867 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1868 && is_integral_type (value_type (arg2)))
1869 arg2 = value_ptradd (arg1, value_as_long (arg2));
1870 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1871 && is_integral_type (value_type (arg2)))
1872 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1873 else
1874 {
1875 struct value *tmp = arg1;
1876
1877 /* For shift and integer exponentiation operations,
1878 only promote the first argument. */
1879 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1880 && is_integral_type (value_type (arg2)))
1881 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1882 else
1883 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1884
1885 arg2 = value_binop (tmp, arg2, op);
1886 }
1887 return value_assign (arg1, arg2);
1888
1889 case BINOP_ADD:
1890 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1891 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1892 if (noside == EVAL_SKIP)
1893 goto nosideret;
1894 if (binop_user_defined_p (op, arg1, arg2))
1895 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1896 else if (ptrmath_type_p (value_type (arg1))
1897 && is_integral_type (value_type (arg2)))
1898 return value_ptradd (arg1, value_as_long (arg2));
1899 else if (ptrmath_type_p (value_type (arg2))
1900 && is_integral_type (value_type (arg1)))
1901 return value_ptradd (arg2, value_as_long (arg1));
1902 else
1903 {
1904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1905 return value_binop (arg1, arg2, BINOP_ADD);
1906 }
1907
1908 case BINOP_SUB:
1909 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1910 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1911 if (noside == EVAL_SKIP)
1912 goto nosideret;
1913 if (binop_user_defined_p (op, arg1, arg2))
1914 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1915 else if (ptrmath_type_p (value_type (arg1))
1916 && ptrmath_type_p (value_type (arg2)))
1917 {
1918 /* FIXME -- should be ptrdiff_t */
1919 type = builtin_type (exp->gdbarch)->builtin_long;
1920 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1921 }
1922 else if (ptrmath_type_p (value_type (arg1))
1923 && is_integral_type (value_type (arg2)))
1924 return value_ptradd (arg1, - value_as_long (arg2));
1925 else
1926 {
1927 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1928 return value_binop (arg1, arg2, BINOP_SUB);
1929 }
1930
1931 case BINOP_EXP:
1932 case BINOP_MUL:
1933 case BINOP_DIV:
1934 case BINOP_INTDIV:
1935 case BINOP_REM:
1936 case BINOP_MOD:
1937 case BINOP_LSH:
1938 case BINOP_RSH:
1939 case BINOP_BITWISE_AND:
1940 case BINOP_BITWISE_IOR:
1941 case BINOP_BITWISE_XOR:
1942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1943 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1944 if (noside == EVAL_SKIP)
1945 goto nosideret;
1946 if (binop_user_defined_p (op, arg1, arg2))
1947 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1948 else
1949 {
1950 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1951 fudge arg2 to avoid division-by-zero, the caller is
1952 (theoretically) only looking for the type of the result. */
1953 if (noside == EVAL_AVOID_SIDE_EFFECTS
1954 /* ??? Do we really want to test for BINOP_MOD here?
1955 The implementation of value_binop gives it a well-defined
1956 value. */
1957 && (op == BINOP_DIV
1958 || op == BINOP_INTDIV
1959 || op == BINOP_REM
1960 || op == BINOP_MOD)
1961 && value_logical_not (arg2))
1962 {
1963 struct value *v_one, *retval;
1964
1965 v_one = value_one (value_type (arg2), not_lval);
1966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1967 retval = value_binop (arg1, v_one, op);
1968 return retval;
1969 }
1970 else
1971 {
1972 /* For shift and integer exponentiation operations,
1973 only promote the first argument. */
1974 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1975 && is_integral_type (value_type (arg2)))
1976 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1977 else
1978 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1979
1980 return value_binop (arg1, arg2, op);
1981 }
1982 }
1983
1984 case BINOP_RANGE:
1985 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1986 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1987 if (noside == EVAL_SKIP)
1988 goto nosideret;
1989 error (_("':' operator used in invalid context"));
1990
1991 case BINOP_SUBSCRIPT:
1992 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1993 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1994 if (noside == EVAL_SKIP)
1995 goto nosideret;
1996 if (binop_user_defined_p (op, arg1, arg2))
1997 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1998 else
1999 {
2000 /* If the user attempts to subscript something that is not an
2001 array or pointer type (like a plain int variable for example),
2002 then report this as an error. */
2003
2004 arg1 = coerce_ref (arg1);
2005 type = check_typedef (value_type (arg1));
2006 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2007 && TYPE_CODE (type) != TYPE_CODE_PTR)
2008 {
2009 if (TYPE_NAME (type))
2010 error (_("cannot subscript something of type `%s'"),
2011 TYPE_NAME (type));
2012 else
2013 error (_("cannot subscript requested type"));
2014 }
2015
2016 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2017 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2018 else
2019 return value_subscript (arg1, value_as_long (arg2));
2020 }
2021
2022 case BINOP_IN:
2023 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2024 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2025 if (noside == EVAL_SKIP)
2026 goto nosideret;
2027 type = language_bool_type (exp->language_defn, exp->gdbarch);
2028 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2029
2030 case MULTI_SUBSCRIPT:
2031 (*pos) += 2;
2032 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2033 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2034 while (nargs-- > 0)
2035 {
2036 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2037 /* FIXME: EVAL_SKIP handling may not be correct. */
2038 if (noside == EVAL_SKIP)
2039 {
2040 if (nargs > 0)
2041 {
2042 continue;
2043 }
2044 else
2045 {
2046 goto nosideret;
2047 }
2048 }
2049 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2050 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2051 {
2052 /* If the user attempts to subscript something that has no target
2053 type (like a plain int variable for example), then report this
2054 as an error. */
2055
2056 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2057 if (type != NULL)
2058 {
2059 arg1 = value_zero (type, VALUE_LVAL (arg1));
2060 noside = EVAL_SKIP;
2061 continue;
2062 }
2063 else
2064 {
2065 error (_("cannot subscript something of type `%s'"),
2066 TYPE_NAME (value_type (arg1)));
2067 }
2068 }
2069
2070 if (binop_user_defined_p (op, arg1, arg2))
2071 {
2072 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2073 }
2074 else
2075 {
2076 arg1 = coerce_ref (arg1);
2077 type = check_typedef (value_type (arg1));
2078
2079 switch (TYPE_CODE (type))
2080 {
2081 case TYPE_CODE_PTR:
2082 case TYPE_CODE_ARRAY:
2083 case TYPE_CODE_STRING:
2084 arg1 = value_subscript (arg1, value_as_long (arg2));
2085 break;
2086
2087 case TYPE_CODE_BITSTRING:
2088 type = language_bool_type (exp->language_defn, exp->gdbarch);
2089 arg1 = value_bitstring_subscript (type, arg1,
2090 value_as_long (arg2));
2091 break;
2092
2093 default:
2094 if (TYPE_NAME (type))
2095 error (_("cannot subscript something of type `%s'"),
2096 TYPE_NAME (type));
2097 else
2098 error (_("cannot subscript requested type"));
2099 }
2100 }
2101 }
2102 return (arg1);
2103
2104 multi_f77_subscript:
2105 {
2106 int subscript_array[MAX_FORTRAN_DIMS];
2107 int array_size_array[MAX_FORTRAN_DIMS];
2108 int ndimensions = 1, i;
2109 struct type *tmp_type;
2110 int offset_item; /* The array offset where the item lives */
2111
2112 if (nargs > MAX_FORTRAN_DIMS)
2113 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2114
2115 tmp_type = check_typedef (value_type (arg1));
2116 ndimensions = calc_f77_array_dims (type);
2117
2118 if (nargs != ndimensions)
2119 error (_("Wrong number of subscripts"));
2120
2121 gdb_assert (nargs > 0);
2122
2123 /* Now that we know we have a legal array subscript expression
2124 let us actually find out where this element exists in the array. */
2125
2126 offset_item = 0;
2127 /* Take array indices left to right */
2128 for (i = 0; i < nargs; i++)
2129 {
2130 /* Evaluate each subscript, It must be a legal integer in F77 */
2131 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2132
2133 /* Fill in the subscript and array size arrays */
2134
2135 subscript_array[i] = value_as_long (arg2);
2136 }
2137
2138 /* Internal type of array is arranged right to left */
2139 for (i = 0; i < nargs; i++)
2140 {
2141 upper = f77_get_upperbound (tmp_type);
2142 lower = f77_get_lowerbound (tmp_type);
2143
2144 array_size_array[nargs - i - 1] = upper - lower + 1;
2145
2146 /* Zero-normalize subscripts so that offsetting will work. */
2147
2148 subscript_array[nargs - i - 1] -= lower;
2149
2150 /* If we are at the bottom of a multidimensional
2151 array type then keep a ptr to the last ARRAY
2152 type around for use when calling value_subscript()
2153 below. This is done because we pretend to value_subscript
2154 that we actually have a one-dimensional array
2155 of base element type that we apply a simple
2156 offset to. */
2157
2158 if (i < nargs - 1)
2159 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2160 }
2161
2162 /* Now let us calculate the offset for this item */
2163
2164 offset_item = subscript_array[ndimensions - 1];
2165
2166 for (i = ndimensions - 1; i > 0; --i)
2167 offset_item =
2168 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2169
2170 /* Let us now play a dirty trick: we will take arg1
2171 which is a value node pointing to the topmost level
2172 of the multidimensional array-set and pretend
2173 that it is actually a array of the final element
2174 type, this will ensure that value_subscript()
2175 returns the correct type value */
2176
2177 deprecated_set_value_type (arg1, tmp_type);
2178 return value_subscripted_rvalue (arg1, offset_item, 0);
2179 }
2180
2181 case BINOP_LOGICAL_AND:
2182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2183 if (noside == EVAL_SKIP)
2184 {
2185 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2186 goto nosideret;
2187 }
2188
2189 oldpos = *pos;
2190 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2191 *pos = oldpos;
2192
2193 if (binop_user_defined_p (op, arg1, arg2))
2194 {
2195 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2196 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2197 }
2198 else
2199 {
2200 tem = value_logical_not (arg1);
2201 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2202 (tem ? EVAL_SKIP : noside));
2203 type = language_bool_type (exp->language_defn, exp->gdbarch);
2204 return value_from_longest (type,
2205 (LONGEST) (!tem && !value_logical_not (arg2)));
2206 }
2207
2208 case BINOP_LOGICAL_OR:
2209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2210 if (noside == EVAL_SKIP)
2211 {
2212 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2213 goto nosideret;
2214 }
2215
2216 oldpos = *pos;
2217 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2218 *pos = oldpos;
2219
2220 if (binop_user_defined_p (op, arg1, arg2))
2221 {
2222 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2223 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2224 }
2225 else
2226 {
2227 tem = value_logical_not (arg1);
2228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2229 (!tem ? EVAL_SKIP : noside));
2230 type = language_bool_type (exp->language_defn, exp->gdbarch);
2231 return value_from_longest (type,
2232 (LONGEST) (!tem || !value_logical_not (arg2)));
2233 }
2234
2235 case BINOP_EQUAL:
2236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2237 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2238 if (noside == EVAL_SKIP)
2239 goto nosideret;
2240 if (binop_user_defined_p (op, arg1, arg2))
2241 {
2242 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2243 }
2244 else
2245 {
2246 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2247 tem = value_equal (arg1, arg2);
2248 type = language_bool_type (exp->language_defn, exp->gdbarch);
2249 return value_from_longest (type, (LONGEST) tem);
2250 }
2251
2252 case BINOP_NOTEQUAL:
2253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2254 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2255 if (noside == EVAL_SKIP)
2256 goto nosideret;
2257 if (binop_user_defined_p (op, arg1, arg2))
2258 {
2259 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2260 }
2261 else
2262 {
2263 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2264 tem = value_equal (arg1, arg2);
2265 type = language_bool_type (exp->language_defn, exp->gdbarch);
2266 return value_from_longest (type, (LONGEST) ! tem);
2267 }
2268
2269 case BINOP_LESS:
2270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2271 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2272 if (noside == EVAL_SKIP)
2273 goto nosideret;
2274 if (binop_user_defined_p (op, arg1, arg2))
2275 {
2276 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2277 }
2278 else
2279 {
2280 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2281 tem = value_less (arg1, arg2);
2282 type = language_bool_type (exp->language_defn, exp->gdbarch);
2283 return value_from_longest (type, (LONGEST) tem);
2284 }
2285
2286 case BINOP_GTR:
2287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2288 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2289 if (noside == EVAL_SKIP)
2290 goto nosideret;
2291 if (binop_user_defined_p (op, arg1, arg2))
2292 {
2293 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2294 }
2295 else
2296 {
2297 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2298 tem = value_less (arg2, arg1);
2299 type = language_bool_type (exp->language_defn, exp->gdbarch);
2300 return value_from_longest (type, (LONGEST) tem);
2301 }
2302
2303 case BINOP_GEQ:
2304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2305 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2306 if (noside == EVAL_SKIP)
2307 goto nosideret;
2308 if (binop_user_defined_p (op, arg1, arg2))
2309 {
2310 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2311 }
2312 else
2313 {
2314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2315 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2316 type = language_bool_type (exp->language_defn, exp->gdbarch);
2317 return value_from_longest (type, (LONGEST) tem);
2318 }
2319
2320 case BINOP_LEQ:
2321 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2322 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2323 if (noside == EVAL_SKIP)
2324 goto nosideret;
2325 if (binop_user_defined_p (op, arg1, arg2))
2326 {
2327 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2328 }
2329 else
2330 {
2331 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2332 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2333 type = language_bool_type (exp->language_defn, exp->gdbarch);
2334 return value_from_longest (type, (LONGEST) tem);
2335 }
2336
2337 case BINOP_REPEAT:
2338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2339 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2340 if (noside == EVAL_SKIP)
2341 goto nosideret;
2342 type = check_typedef (value_type (arg2));
2343 if (TYPE_CODE (type) != TYPE_CODE_INT)
2344 error (_("Non-integral right operand for \"@\" operator."));
2345 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2346 {
2347 return allocate_repeat_value (value_type (arg1),
2348 longest_to_int (value_as_long (arg2)));
2349 }
2350 else
2351 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2352
2353 case BINOP_COMMA:
2354 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2355 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2356
2357 case UNOP_PLUS:
2358 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2359 if (noside == EVAL_SKIP)
2360 goto nosideret;
2361 if (unop_user_defined_p (op, arg1))
2362 return value_x_unop (arg1, op, noside);
2363 else
2364 {
2365 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2366 return value_pos (arg1);
2367 }
2368
2369 case UNOP_NEG:
2370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2371 if (noside == EVAL_SKIP)
2372 goto nosideret;
2373 if (unop_user_defined_p (op, arg1))
2374 return value_x_unop (arg1, op, noside);
2375 else
2376 {
2377 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2378 return value_neg (arg1);
2379 }
2380
2381 case UNOP_COMPLEMENT:
2382 /* C++: check for and handle destructor names. */
2383 op = exp->elts[*pos].opcode;
2384
2385 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2386 if (noside == EVAL_SKIP)
2387 goto nosideret;
2388 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2389 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2390 else
2391 {
2392 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2393 return value_complement (arg1);
2394 }
2395
2396 case UNOP_LOGICAL_NOT:
2397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2398 if (noside == EVAL_SKIP)
2399 goto nosideret;
2400 if (unop_user_defined_p (op, arg1))
2401 return value_x_unop (arg1, op, noside);
2402 else
2403 {
2404 type = language_bool_type (exp->language_defn, exp->gdbarch);
2405 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2406 }
2407
2408 case UNOP_IND:
2409 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2410 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2411 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2412 type = check_typedef (value_type (arg1));
2413 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2414 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2415 error (_("Attempt to dereference pointer to member without an object"));
2416 if (noside == EVAL_SKIP)
2417 goto nosideret;
2418 if (unop_user_defined_p (op, arg1))
2419 return value_x_unop (arg1, op, noside);
2420 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2421 {
2422 type = check_typedef (value_type (arg1));
2423 if (TYPE_CODE (type) == TYPE_CODE_PTR
2424 || TYPE_CODE (type) == TYPE_CODE_REF
2425 /* In C you can dereference an array to get the 1st elt. */
2426 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2427 )
2428 return value_zero (TYPE_TARGET_TYPE (type),
2429 lval_memory);
2430 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2431 /* GDB allows dereferencing an int. */
2432 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2433 lval_memory);
2434 else
2435 error (_("Attempt to take contents of a non-pointer value."));
2436 }
2437
2438 /* Allow * on an integer so we can cast it to whatever we want.
2439 This returns an int, which seems like the most C-like thing to
2440 do. "long long" variables are rare enough that
2441 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2442 if (TYPE_CODE (type) == TYPE_CODE_INT)
2443 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2444 (CORE_ADDR) value_as_address (arg1));
2445 return value_ind (arg1);
2446
2447 case UNOP_ADDR:
2448 /* C++: check for and handle pointer to members. */
2449
2450 op = exp->elts[*pos].opcode;
2451
2452 if (noside == EVAL_SKIP)
2453 {
2454 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2455 goto nosideret;
2456 }
2457 else
2458 {
2459 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2460 return retvalp;
2461 }
2462
2463 case UNOP_SIZEOF:
2464 if (noside == EVAL_SKIP)
2465 {
2466 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2467 goto nosideret;
2468 }
2469 return evaluate_subexp_for_sizeof (exp, pos);
2470
2471 case UNOP_CAST:
2472 (*pos) += 2;
2473 type = exp->elts[pc + 1].type;
2474 arg1 = evaluate_subexp (type, exp, pos, noside);
2475 if (noside == EVAL_SKIP)
2476 goto nosideret;
2477 if (type != value_type (arg1))
2478 arg1 = value_cast (type, arg1);
2479 return arg1;
2480
2481 case UNOP_DYNAMIC_CAST:
2482 (*pos) += 2;
2483 type = exp->elts[pc + 1].type;
2484 arg1 = evaluate_subexp (type, exp, pos, noside);
2485 if (noside == EVAL_SKIP)
2486 goto nosideret;
2487 return value_dynamic_cast (type, arg1);
2488
2489 case UNOP_REINTERPRET_CAST:
2490 (*pos) += 2;
2491 type = exp->elts[pc + 1].type;
2492 arg1 = evaluate_subexp (type, exp, pos, noside);
2493 if (noside == EVAL_SKIP)
2494 goto nosideret;
2495 return value_reinterpret_cast (type, arg1);
2496
2497 case UNOP_MEMVAL:
2498 (*pos) += 2;
2499 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2500 if (noside == EVAL_SKIP)
2501 goto nosideret;
2502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2503 return value_zero (exp->elts[pc + 1].type, lval_memory);
2504 else
2505 return value_at_lazy (exp->elts[pc + 1].type,
2506 value_as_address (arg1));
2507
2508 case UNOP_MEMVAL_TLS:
2509 (*pos) += 3;
2510 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2511 if (noside == EVAL_SKIP)
2512 goto nosideret;
2513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2514 return value_zero (exp->elts[pc + 2].type, lval_memory);
2515 else
2516 {
2517 CORE_ADDR tls_addr;
2518 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2519 value_as_address (arg1));
2520 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2521 }
2522
2523 case UNOP_PREINCREMENT:
2524 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2525 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2526 return arg1;
2527 else if (unop_user_defined_p (op, arg1))
2528 {
2529 return value_x_unop (arg1, op, noside);
2530 }
2531 else
2532 {
2533 if (ptrmath_type_p (value_type (arg1)))
2534 arg2 = value_ptradd (arg1, 1);
2535 else
2536 {
2537 struct value *tmp = arg1;
2538 arg2 = value_one (value_type (arg1), not_lval);
2539 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2540 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2541 }
2542
2543 return value_assign (arg1, arg2);
2544 }
2545
2546 case UNOP_PREDECREMENT:
2547 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2548 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2549 return arg1;
2550 else if (unop_user_defined_p (op, arg1))
2551 {
2552 return value_x_unop (arg1, op, noside);
2553 }
2554 else
2555 {
2556 if (ptrmath_type_p (value_type (arg1)))
2557 arg2 = value_ptradd (arg1, -1);
2558 else
2559 {
2560 struct value *tmp = arg1;
2561 arg2 = value_one (value_type (arg1), not_lval);
2562 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2563 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2564 }
2565
2566 return value_assign (arg1, arg2);
2567 }
2568
2569 case UNOP_POSTINCREMENT:
2570 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2571 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2572 return arg1;
2573 else if (unop_user_defined_p (op, arg1))
2574 {
2575 return value_x_unop (arg1, op, noside);
2576 }
2577 else
2578 {
2579 if (ptrmath_type_p (value_type (arg1)))
2580 arg2 = value_ptradd (arg1, 1);
2581 else
2582 {
2583 struct value *tmp = arg1;
2584 arg2 = value_one (value_type (arg1), not_lval);
2585 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2586 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2587 }
2588
2589 value_assign (arg1, arg2);
2590 return arg1;
2591 }
2592
2593 case UNOP_POSTDECREMENT:
2594 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2595 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2596 return arg1;
2597 else if (unop_user_defined_p (op, arg1))
2598 {
2599 return value_x_unop (arg1, op, noside);
2600 }
2601 else
2602 {
2603 if (ptrmath_type_p (value_type (arg1)))
2604 arg2 = value_ptradd (arg1, -1);
2605 else
2606 {
2607 struct value *tmp = arg1;
2608 arg2 = value_one (value_type (arg1), not_lval);
2609 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2610 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2611 }
2612
2613 value_assign (arg1, arg2);
2614 return arg1;
2615 }
2616
2617 case OP_THIS:
2618 (*pos) += 1;
2619 return value_of_this (1);
2620
2621 case OP_OBJC_SELF:
2622 (*pos) += 1;
2623 return value_of_local ("self", 1);
2624
2625 case OP_TYPE:
2626 /* The value is not supposed to be used. This is here to make it
2627 easier to accommodate expressions that contain types. */
2628 (*pos) += 2;
2629 if (noside == EVAL_SKIP)
2630 goto nosideret;
2631 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2632 {
2633 struct type *type = exp->elts[pc + 1].type;
2634 /* If this is a typedef, then find its immediate target. We
2635 use check_typedef to resolve stubs, but we ignore its
2636 result because we do not want to dig past all
2637 typedefs. */
2638 check_typedef (type);
2639 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2640 type = TYPE_TARGET_TYPE (type);
2641 return allocate_value (type);
2642 }
2643 else
2644 error (_("Attempt to use a type name as an expression"));
2645
2646 default:
2647 /* Removing this case and compiling with gcc -Wall reveals that
2648 a lot of cases are hitting this case. Some of these should
2649 probably be removed from expression.h; others are legitimate
2650 expressions which are (apparently) not fully implemented.
2651
2652 If there are any cases landing here which mean a user error,
2653 then they should be separate cases, with more descriptive
2654 error messages. */
2655
2656 error (_("\
2657 GDB does not (yet) know how to evaluate that kind of expression"));
2658 }
2659
2660 nosideret:
2661 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2662 }
2663 \f
2664 /* Evaluate a subexpression of EXP, at index *POS,
2665 and return the address of that subexpression.
2666 Advance *POS over the subexpression.
2667 If the subexpression isn't an lvalue, get an error.
2668 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2669 then only the type of the result need be correct. */
2670
2671 static struct value *
2672 evaluate_subexp_for_address (struct expression *exp, int *pos,
2673 enum noside noside)
2674 {
2675 enum exp_opcode op;
2676 int pc;
2677 struct symbol *var;
2678 struct value *x;
2679 int tem;
2680
2681 pc = (*pos);
2682 op = exp->elts[pc].opcode;
2683
2684 switch (op)
2685 {
2686 case UNOP_IND:
2687 (*pos)++;
2688 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2689
2690 /* We can't optimize out "&*" if there's a user-defined operator*. */
2691 if (unop_user_defined_p (op, x))
2692 {
2693 x = value_x_unop (x, op, noside);
2694 goto default_case_after_eval;
2695 }
2696
2697 return coerce_array (x);
2698
2699 case UNOP_MEMVAL:
2700 (*pos) += 3;
2701 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2702 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2703
2704 case OP_VAR_VALUE:
2705 var = exp->elts[pc + 2].symbol;
2706
2707 /* C++: The "address" of a reference should yield the address
2708 * of the object pointed to. Let value_addr() deal with it. */
2709 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2710 goto default_case;
2711
2712 (*pos) += 4;
2713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2714 {
2715 struct type *type =
2716 lookup_pointer_type (SYMBOL_TYPE (var));
2717 enum address_class sym_class = SYMBOL_CLASS (var);
2718
2719 if (sym_class == LOC_CONST
2720 || sym_class == LOC_CONST_BYTES
2721 || sym_class == LOC_REGISTER)
2722 error (_("Attempt to take address of register or constant."));
2723
2724 return
2725 value_zero (type, not_lval);
2726 }
2727 else
2728 return address_of_variable (var, exp->elts[pc + 1].block);
2729
2730 case OP_SCOPE:
2731 tem = longest_to_int (exp->elts[pc + 2].longconst);
2732 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2733 x = value_aggregate_elt (exp->elts[pc + 1].type,
2734 &exp->elts[pc + 3].string,
2735 NULL, 1, noside);
2736 if (x == NULL)
2737 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2738 return x;
2739
2740 default:
2741 default_case:
2742 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2743 default_case_after_eval:
2744 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2745 {
2746 struct type *type = check_typedef (value_type (x));
2747
2748 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2749 return value_zero (lookup_pointer_type (value_type (x)),
2750 not_lval);
2751 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2752 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2753 not_lval);
2754 else
2755 error (_("Attempt to take address of value not located in memory."));
2756 }
2757 return value_addr (x);
2758 }
2759 }
2760
2761 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2762 When used in contexts where arrays will be coerced anyway, this is
2763 equivalent to `evaluate_subexp' but much faster because it avoids
2764 actually fetching array contents (perhaps obsolete now that we have
2765 value_lazy()).
2766
2767 Note that we currently only do the coercion for C expressions, where
2768 arrays are zero based and the coercion is correct. For other languages,
2769 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2770 to decide if coercion is appropriate.
2771
2772 */
2773
2774 struct value *
2775 evaluate_subexp_with_coercion (struct expression *exp,
2776 int *pos, enum noside noside)
2777 {
2778 enum exp_opcode op;
2779 int pc;
2780 struct value *val;
2781 struct symbol *var;
2782 struct type *type;
2783
2784 pc = (*pos);
2785 op = exp->elts[pc].opcode;
2786
2787 switch (op)
2788 {
2789 case OP_VAR_VALUE:
2790 var = exp->elts[pc + 2].symbol;
2791 type = check_typedef (SYMBOL_TYPE (var));
2792 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2793 && CAST_IS_CONVERSION)
2794 {
2795 (*pos) += 4;
2796 val = address_of_variable (var, exp->elts[pc + 1].block);
2797 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2798 val);
2799 }
2800 /* FALLTHROUGH */
2801
2802 default:
2803 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2804 }
2805 }
2806
2807 /* Evaluate a subexpression of EXP, at index *POS,
2808 and return a value for the size of that subexpression.
2809 Advance *POS over the subexpression. */
2810
2811 static struct value *
2812 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2813 {
2814 /* FIXME: This should be size_t. */
2815 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2816 enum exp_opcode op;
2817 int pc;
2818 struct type *type;
2819 struct value *val;
2820
2821 pc = (*pos);
2822 op = exp->elts[pc].opcode;
2823
2824 switch (op)
2825 {
2826 /* This case is handled specially
2827 so that we avoid creating a value for the result type.
2828 If the result type is very big, it's desirable not to
2829 create a value unnecessarily. */
2830 case UNOP_IND:
2831 (*pos)++;
2832 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2833 type = check_typedef (value_type (val));
2834 if (TYPE_CODE (type) != TYPE_CODE_PTR
2835 && TYPE_CODE (type) != TYPE_CODE_REF
2836 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2837 error (_("Attempt to take contents of a non-pointer value."));
2838 type = check_typedef (TYPE_TARGET_TYPE (type));
2839 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2840
2841 case UNOP_MEMVAL:
2842 (*pos) += 3;
2843 type = check_typedef (exp->elts[pc + 1].type);
2844 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2845
2846 case OP_VAR_VALUE:
2847 (*pos) += 4;
2848 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2849 return
2850 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2851
2852 default:
2853 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2854 return value_from_longest (size_type,
2855 (LONGEST) TYPE_LENGTH (value_type (val)));
2856 }
2857 }
2858
2859 /* Parse a type expression in the string [P..P+LENGTH). */
2860
2861 struct type *
2862 parse_and_eval_type (char *p, int length)
2863 {
2864 char *tmp = (char *) alloca (length + 4);
2865 struct expression *expr;
2866 tmp[0] = '(';
2867 memcpy (tmp + 1, p, length);
2868 tmp[length + 1] = ')';
2869 tmp[length + 2] = '0';
2870 tmp[length + 3] = '\0';
2871 expr = parse_expression (tmp);
2872 if (expr->elts[0].opcode != UNOP_CAST)
2873 error (_("Internal error in eval_type."));
2874 return expr->elts[1].type;
2875 }
2876
2877 int
2878 calc_f77_array_dims (struct type *array_type)
2879 {
2880 int ndimen = 1;
2881 struct type *tmp_type;
2882
2883 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2884 error (_("Can't get dimensions for a non-array type"));
2885
2886 tmp_type = array_type;
2887
2888 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2889 {
2890 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2891 ++ndimen;
2892 }
2893 return ndimen;
2894 }
This page took 0.083458 seconds and 3 git commands to generate.