* breakpoint.c (parse_breakpoint_sals): Remove unused variable
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "expression.h"
26 #include "target.h"
27 #include "frame.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "exceptions.h"
38 #include "regcache.h"
39 #include "user-regs.h"
40 #include "valprint.h"
41 #include "gdb_obstack.h"
42 #include "objfiles.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address, but treats the value of the expression
94 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
95 LONGEST
96 parse_and_eval_long (char *exp)
97 {
98 struct expression *expr = parse_expression (exp);
99 LONGEST retval;
100 struct cleanup *old_chain =
101 make_cleanup (free_current_contents, &expr);
102
103 retval = value_as_long (evaluate_expression (expr));
104 do_cleanups (old_chain);
105 return (retval);
106 }
107
108 struct value *
109 parse_and_eval (char *exp)
110 {
111 struct expression *expr = parse_expression (exp);
112 struct value *val;
113 struct cleanup *old_chain =
114 make_cleanup (free_current_contents, &expr);
115
116 val = evaluate_expression (expr);
117 do_cleanups (old_chain);
118 return val;
119 }
120
121 /* Parse up to a comma (or to a closeparen)
122 in the string EXPP as an expression, evaluate it, and return the value.
123 EXPP is advanced to point to the comma. */
124
125 struct value *
126 parse_to_comma_and_eval (char **expp)
127 {
128 struct expression *expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
129 struct value *val;
130 struct cleanup *old_chain =
131 make_cleanup (free_current_contents, &expr);
132
133 val = evaluate_expression (expr);
134 do_cleanups (old_chain);
135 return val;
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If a memory error occurs while evaluating the expression, *RESULTP will
177 be set to NULL. *RESULTP may be a lazy value, if the result could
178 not be read from memory. It is used to determine whether a value
179 is user-specified (we should watch the whole value) or intermediate
180 (we should watch only the bit used to locate the final value).
181
182 If the final value, or any intermediate value, could not be read
183 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
184 set to any referenced values. *VALP will never be a lazy value.
185 This is the value which we store in struct breakpoint.
186
187 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
188 value chain. The caller must free the values individually. If
189 VAL_CHAIN is NULL, all generated values will be left on the value
190 chain. */
191
192 void
193 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
194 struct value **resultp, struct value **val_chain)
195 {
196 struct value *mark, *new_mark, *result;
197 volatile struct gdb_exception ex;
198
199 *valp = NULL;
200 if (resultp)
201 *resultp = NULL;
202 if (val_chain)
203 *val_chain = NULL;
204
205 /* Evaluate the expression. */
206 mark = value_mark ();
207 result = NULL;
208
209 TRY_CATCH (ex, RETURN_MASK_ALL)
210 {
211 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
212 }
213 if (ex.reason < 0)
214 {
215 /* Ignore memory errors, we want watchpoints pointing at
216 inaccessible memory to still be created; otherwise, throw the
217 error to some higher catcher. */
218 switch (ex.error)
219 {
220 case MEMORY_ERROR:
221 break;
222 default:
223 throw_exception (ex);
224 break;
225 }
226 }
227
228 new_mark = value_mark ();
229 if (mark == new_mark)
230 return;
231 if (resultp)
232 *resultp = result;
233
234 /* Make sure it's not lazy, so that after the target stops again we
235 have a non-lazy previous value to compare with. */
236 if (result != NULL)
237 {
238 if (!value_lazy (result))
239 *valp = result;
240 else
241 {
242 volatile struct gdb_exception except;
243
244 TRY_CATCH (except, RETURN_MASK_ERROR)
245 {
246 value_fetch_lazy (result);
247 *valp = result;
248 }
249 }
250 }
251
252 if (val_chain)
253 {
254 /* Return the chain of intermediate values. We use this to
255 decide which addresses to watch. */
256 *val_chain = new_mark;
257 value_release_to_mark (mark);
258 }
259 }
260
261 /* Extract a field operation from an expression. If the subexpression
262 of EXP starting at *SUBEXP is not a structure dereference
263 operation, return NULL. Otherwise, return the name of the
264 dereferenced field, and advance *SUBEXP to point to the
265 subexpression of the left-hand-side of the dereference. This is
266 used when completing field names. */
267
268 char *
269 extract_field_op (struct expression *exp, int *subexp)
270 {
271 int tem;
272 char *result;
273
274 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
275 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
276 return NULL;
277 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
278 result = &exp->elts[*subexp + 2].string;
279 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
280 return result;
281 }
282
283 /* If the next expression is an OP_LABELED, skips past it,
284 returning the label. Otherwise, does nothing and returns NULL. */
285
286 static char *
287 get_label (struct expression *exp, int *pos)
288 {
289 if (exp->elts[*pos].opcode == OP_LABELED)
290 {
291 int pc = (*pos)++;
292 char *name = &exp->elts[pc + 2].string;
293 int tem = longest_to_int (exp->elts[pc + 1].longconst);
294
295 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
296 return name;
297 }
298 else
299 return NULL;
300 }
301
302 /* This function evaluates tuples (in (the deleted) Chill) or
303 brace-initializers (in C/C++) for structure types. */
304
305 static struct value *
306 evaluate_struct_tuple (struct value *struct_val,
307 struct expression *exp,
308 int *pos, enum noside noside, int nargs)
309 {
310 struct type *struct_type = check_typedef (value_type (struct_val));
311 struct type *substruct_type = struct_type;
312 struct type *field_type;
313 int fieldno = -1;
314 int variantno = -1;
315 int subfieldno = -1;
316
317 while (--nargs >= 0)
318 {
319 int pc = *pos;
320 struct value *val = NULL;
321 int nlabels = 0;
322 int bitpos, bitsize;
323 bfd_byte *addr;
324
325 /* Skip past the labels, and count them. */
326 while (get_label (exp, pos) != NULL)
327 nlabels++;
328
329 do
330 {
331 char *label = get_label (exp, &pc);
332
333 if (label)
334 {
335 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
336 fieldno++)
337 {
338 const char *field_name =
339 TYPE_FIELD_NAME (struct_type, fieldno);
340
341 if (field_name != NULL && strcmp (field_name, label) == 0)
342 {
343 variantno = -1;
344 subfieldno = fieldno;
345 substruct_type = struct_type;
346 goto found;
347 }
348 }
349 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
350 fieldno++)
351 {
352 const char *field_name =
353 TYPE_FIELD_NAME (struct_type, fieldno);
354
355 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
356 if ((field_name == 0 || *field_name == '\0')
357 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
358 {
359 variantno = 0;
360 for (; variantno < TYPE_NFIELDS (field_type);
361 variantno++)
362 {
363 substruct_type
364 = TYPE_FIELD_TYPE (field_type, variantno);
365 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
366 {
367 for (subfieldno = 0;
368 subfieldno < TYPE_NFIELDS (substruct_type);
369 subfieldno++)
370 {
371 if (strcmp(TYPE_FIELD_NAME (substruct_type,
372 subfieldno),
373 label) == 0)
374 {
375 goto found;
376 }
377 }
378 }
379 }
380 }
381 }
382 error (_("there is no field named %s"), label);
383 found:
384 ;
385 }
386 else
387 {
388 /* Unlabelled tuple element - go to next field. */
389 if (variantno >= 0)
390 {
391 subfieldno++;
392 if (subfieldno >= TYPE_NFIELDS (substruct_type))
393 {
394 variantno = -1;
395 substruct_type = struct_type;
396 }
397 }
398 if (variantno < 0)
399 {
400 fieldno++;
401 /* Skip static fields. */
402 while (fieldno < TYPE_NFIELDS (struct_type)
403 && field_is_static (&TYPE_FIELD (struct_type,
404 fieldno)))
405 fieldno++;
406 subfieldno = fieldno;
407 if (fieldno >= TYPE_NFIELDS (struct_type))
408 error (_("too many initializers"));
409 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
410 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
411 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
412 error (_("don't know which variant you want to set"));
413 }
414 }
415
416 /* Here, struct_type is the type of the inner struct,
417 while substruct_type is the type of the inner struct.
418 These are the same for normal structures, but a variant struct
419 contains anonymous union fields that contain substruct fields.
420 The value fieldno is the index of the top-level (normal or
421 anonymous union) field in struct_field, while the value
422 subfieldno is the index of the actual real (named inner) field
423 in substruct_type. */
424
425 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
426 if (val == 0)
427 val = evaluate_subexp (field_type, exp, pos, noside);
428
429 /* Now actually set the field in struct_val. */
430
431 /* Assign val to field fieldno. */
432 if (value_type (val) != field_type)
433 val = value_cast (field_type, val);
434
435 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
436 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
437 if (variantno >= 0)
438 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
439 addr = value_contents_writeable (struct_val) + bitpos / 8;
440 if (bitsize)
441 modify_field (struct_type, addr,
442 value_as_long (val), bitpos % 8, bitsize);
443 else
444 memcpy (addr, value_contents (val),
445 TYPE_LENGTH (value_type (val)));
446 }
447 while (--nlabels > 0);
448 }
449 return struct_val;
450 }
451
452 /* Recursive helper function for setting elements of array tuples for
453 (the deleted) Chill. The target is ARRAY (which has bounds
454 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
455 and NOSIDE are as usual. Evaluates index expresions and sets the
456 specified element(s) of ARRAY to ELEMENT. Returns last index
457 value. */
458
459 static LONGEST
460 init_array_element (struct value *array, struct value *element,
461 struct expression *exp, int *pos,
462 enum noside noside, LONGEST low_bound, LONGEST high_bound)
463 {
464 LONGEST index;
465 int element_size = TYPE_LENGTH (value_type (element));
466
467 if (exp->elts[*pos].opcode == BINOP_COMMA)
468 {
469 (*pos)++;
470 init_array_element (array, element, exp, pos, noside,
471 low_bound, high_bound);
472 return init_array_element (array, element,
473 exp, pos, noside, low_bound, high_bound);
474 }
475 else if (exp->elts[*pos].opcode == BINOP_RANGE)
476 {
477 LONGEST low, high;
478
479 (*pos)++;
480 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
481 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
482 if (low < low_bound || high > high_bound)
483 error (_("tuple range index out of range"));
484 for (index = low; index <= high; index++)
485 {
486 memcpy (value_contents_raw (array)
487 + (index - low_bound) * element_size,
488 value_contents (element), element_size);
489 }
490 }
491 else
492 {
493 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
494 if (index < low_bound || index > high_bound)
495 error (_("tuple index out of range"));
496 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
497 value_contents (element), element_size);
498 }
499 return index;
500 }
501
502 static struct value *
503 value_f90_subarray (struct value *array,
504 struct expression *exp, int *pos, enum noside noside)
505 {
506 int pc = (*pos) + 1;
507 LONGEST low_bound, high_bound;
508 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
509 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
510
511 *pos += 3;
512
513 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
514 low_bound = TYPE_LOW_BOUND (range);
515 else
516 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
517
518 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
519 high_bound = TYPE_HIGH_BOUND (range);
520 else
521 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
522
523 return value_slice (array, low_bound, high_bound - low_bound + 1);
524 }
525
526
527 /* Promote value ARG1 as appropriate before performing a unary operation
528 on this argument.
529 If the result is not appropriate for any particular language then it
530 needs to patch this function. */
531
532 void
533 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
534 struct value **arg1)
535 {
536 struct type *type1;
537
538 *arg1 = coerce_ref (*arg1);
539 type1 = check_typedef (value_type (*arg1));
540
541 if (is_integral_type (type1))
542 {
543 switch (language->la_language)
544 {
545 default:
546 /* Perform integral promotion for ANSI C/C++.
547 If not appropropriate for any particular language
548 it needs to modify this function. */
549 {
550 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
551
552 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
553 *arg1 = value_cast (builtin_int, *arg1);
554 }
555 break;
556 }
557 }
558 }
559
560 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
561 operation on those two operands.
562 If the result is not appropriate for any particular language then it
563 needs to patch this function. */
564
565 void
566 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
567 struct value **arg1, struct value **arg2)
568 {
569 struct type *promoted_type = NULL;
570 struct type *type1;
571 struct type *type2;
572
573 *arg1 = coerce_ref (*arg1);
574 *arg2 = coerce_ref (*arg2);
575
576 type1 = check_typedef (value_type (*arg1));
577 type2 = check_typedef (value_type (*arg2));
578
579 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
580 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
581 && !is_integral_type (type1))
582 || (TYPE_CODE (type2) != TYPE_CODE_FLT
583 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
584 && !is_integral_type (type2)))
585 return;
586
587 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
588 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
589 {
590 /* No promotion required. */
591 }
592 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
593 || TYPE_CODE (type2) == TYPE_CODE_FLT)
594 {
595 switch (language->la_language)
596 {
597 case language_c:
598 case language_cplus:
599 case language_asm:
600 case language_objc:
601 case language_opencl:
602 /* No promotion required. */
603 break;
604
605 default:
606 /* For other languages the result type is unchanged from gdb
607 version 6.7 for backward compatibility.
608 If either arg was long double, make sure that value is also long
609 double. Otherwise use double. */
610 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
611 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
612 promoted_type = builtin_type (gdbarch)->builtin_long_double;
613 else
614 promoted_type = builtin_type (gdbarch)->builtin_double;
615 break;
616 }
617 }
618 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
619 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
620 {
621 /* No promotion required. */
622 }
623 else
624 /* Integral operations here. */
625 /* FIXME: Also mixed integral/booleans, with result an integer. */
626 {
627 const struct builtin_type *builtin = builtin_type (gdbarch);
628 unsigned int promoted_len1 = TYPE_LENGTH (type1);
629 unsigned int promoted_len2 = TYPE_LENGTH (type2);
630 int is_unsigned1 = TYPE_UNSIGNED (type1);
631 int is_unsigned2 = TYPE_UNSIGNED (type2);
632 unsigned int result_len;
633 int unsigned_operation;
634
635 /* Determine type length and signedness after promotion for
636 both operands. */
637 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
638 {
639 is_unsigned1 = 0;
640 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
641 }
642 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
643 {
644 is_unsigned2 = 0;
645 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
646 }
647
648 if (promoted_len1 > promoted_len2)
649 {
650 unsigned_operation = is_unsigned1;
651 result_len = promoted_len1;
652 }
653 else if (promoted_len2 > promoted_len1)
654 {
655 unsigned_operation = is_unsigned2;
656 result_len = promoted_len2;
657 }
658 else
659 {
660 unsigned_operation = is_unsigned1 || is_unsigned2;
661 result_len = promoted_len1;
662 }
663
664 switch (language->la_language)
665 {
666 case language_c:
667 case language_cplus:
668 case language_asm:
669 case language_objc:
670 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
671 {
672 promoted_type = (unsigned_operation
673 ? builtin->builtin_unsigned_int
674 : builtin->builtin_int);
675 }
676 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
677 {
678 promoted_type = (unsigned_operation
679 ? builtin->builtin_unsigned_long
680 : builtin->builtin_long);
681 }
682 else
683 {
684 promoted_type = (unsigned_operation
685 ? builtin->builtin_unsigned_long_long
686 : builtin->builtin_long_long);
687 }
688 break;
689 case language_opencl:
690 if (result_len <= TYPE_LENGTH (lookup_signed_typename
691 (language, gdbarch, "int")))
692 {
693 promoted_type =
694 (unsigned_operation
695 ? lookup_unsigned_typename (language, gdbarch, "int")
696 : lookup_signed_typename (language, gdbarch, "int"));
697 }
698 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
699 (language, gdbarch, "long")))
700 {
701 promoted_type =
702 (unsigned_operation
703 ? lookup_unsigned_typename (language, gdbarch, "long")
704 : lookup_signed_typename (language, gdbarch,"long"));
705 }
706 break;
707 default:
708 /* For other languages the result type is unchanged from gdb
709 version 6.7 for backward compatibility.
710 If either arg was long long, make sure that value is also long
711 long. Otherwise use long. */
712 if (unsigned_operation)
713 {
714 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
715 promoted_type = builtin->builtin_unsigned_long_long;
716 else
717 promoted_type = builtin->builtin_unsigned_long;
718 }
719 else
720 {
721 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
722 promoted_type = builtin->builtin_long_long;
723 else
724 promoted_type = builtin->builtin_long;
725 }
726 break;
727 }
728 }
729
730 if (promoted_type)
731 {
732 /* Promote both operands to common type. */
733 *arg1 = value_cast (promoted_type, *arg1);
734 *arg2 = value_cast (promoted_type, *arg2);
735 }
736 }
737
738 static int
739 ptrmath_type_p (const struct language_defn *lang, struct type *type)
740 {
741 type = check_typedef (type);
742 if (TYPE_CODE (type) == TYPE_CODE_REF)
743 type = TYPE_TARGET_TYPE (type);
744
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_PTR:
748 case TYPE_CODE_FUNC:
749 return 1;
750
751 case TYPE_CODE_ARRAY:
752 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
753
754 default:
755 return 0;
756 }
757 }
758
759 /* Constructs a fake method with the given parameter types.
760 This function is used by the parser to construct an "expected"
761 type for method overload resolution. */
762
763 static struct type *
764 make_params (int num_types, struct type **param_types)
765 {
766 struct type *type = XZALLOC (struct type);
767 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
768 TYPE_LENGTH (type) = 1;
769 TYPE_CODE (type) = TYPE_CODE_METHOD;
770 TYPE_VPTR_FIELDNO (type) = -1;
771 TYPE_CHAIN (type) = type;
772 if (num_types > 0)
773 {
774 if (param_types[num_types - 1] == NULL)
775 {
776 --num_types;
777 TYPE_VARARGS (type) = 1;
778 }
779 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
780 == TYPE_CODE_VOID)
781 {
782 --num_types;
783 /* Caller should have ensured this. */
784 gdb_assert (num_types == 0);
785 TYPE_PROTOTYPED (type) = 1;
786 }
787 }
788
789 TYPE_NFIELDS (type) = num_types;
790 TYPE_FIELDS (type) = (struct field *)
791 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
792
793 while (num_types-- > 0)
794 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
795
796 return type;
797 }
798
799 struct value *
800 evaluate_subexp_standard (struct type *expect_type,
801 struct expression *exp, int *pos,
802 enum noside noside)
803 {
804 enum exp_opcode op;
805 int tem, tem2, tem3;
806 int pc, pc2 = 0, oldpos;
807 struct value *arg1 = NULL;
808 struct value *arg2 = NULL;
809 struct value *arg3;
810 struct type *type;
811 int nargs;
812 struct value **argvec;
813 int lower;
814 int code;
815 int ix;
816 long mem_offset;
817 struct type **arg_types;
818 int save_pos1;
819 struct symbol *function = NULL;
820 char *function_name = NULL;
821
822 pc = (*pos)++;
823 op = exp->elts[pc].opcode;
824
825 switch (op)
826 {
827 case OP_SCOPE:
828 tem = longest_to_int (exp->elts[pc + 2].longconst);
829 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
830 if (noside == EVAL_SKIP)
831 goto nosideret;
832 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
833 &exp->elts[pc + 3].string,
834 expect_type, 0, noside);
835 if (arg1 == NULL)
836 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
837 return arg1;
838
839 case OP_LONG:
840 (*pos) += 3;
841 return value_from_longest (exp->elts[pc + 1].type,
842 exp->elts[pc + 2].longconst);
843
844 case OP_DOUBLE:
845 (*pos) += 3;
846 return value_from_double (exp->elts[pc + 1].type,
847 exp->elts[pc + 2].doubleconst);
848
849 case OP_DECFLOAT:
850 (*pos) += 3;
851 return value_from_decfloat (exp->elts[pc + 1].type,
852 exp->elts[pc + 2].decfloatconst);
853
854 case OP_ADL_FUNC:
855 case OP_VAR_VALUE:
856 (*pos) += 3;
857 if (noside == EVAL_SKIP)
858 goto nosideret;
859
860 /* JYG: We used to just return value_zero of the symbol type
861 if we're asked to avoid side effects. Otherwise we return
862 value_of_variable (...). However I'm not sure if
863 value_of_variable () has any side effect.
864 We need a full value object returned here for whatis_exp ()
865 to call evaluate_type () and then pass the full value to
866 value_rtti_target_type () if we are dealing with a pointer
867 or reference to a base class and print object is on. */
868
869 {
870 volatile struct gdb_exception except;
871 struct value *ret = NULL;
872
873 TRY_CATCH (except, RETURN_MASK_ERROR)
874 {
875 ret = value_of_variable (exp->elts[pc + 2].symbol,
876 exp->elts[pc + 1].block);
877 }
878
879 if (except.reason < 0)
880 {
881 if (noside == EVAL_AVOID_SIDE_EFFECTS)
882 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
883 not_lval);
884 else
885 throw_exception (except);
886 }
887
888 return ret;
889 }
890
891 case OP_VAR_ENTRY_VALUE:
892 (*pos) += 2;
893 if (noside == EVAL_SKIP)
894 goto nosideret;
895
896 {
897 struct symbol *sym = exp->elts[pc + 1].symbol;
898 struct frame_info *frame;
899
900 if (noside == EVAL_AVOID_SIDE_EFFECTS)
901 return value_zero (SYMBOL_TYPE (sym), not_lval);
902
903 if (SYMBOL_CLASS (sym) != LOC_COMPUTED
904 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
905 error (_("Symbol \"%s\" does not have any specific entry value"),
906 SYMBOL_PRINT_NAME (sym));
907
908 frame = get_selected_frame (NULL);
909 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
910 }
911
912 case OP_LAST:
913 (*pos) += 2;
914 return
915 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
916
917 case OP_REGISTER:
918 {
919 const char *name = &exp->elts[pc + 2].string;
920 int regno;
921 struct value *val;
922
923 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
924 regno = user_reg_map_name_to_regnum (exp->gdbarch,
925 name, strlen (name));
926 if (regno == -1)
927 error (_("Register $%s not available."), name);
928
929 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
930 a value with the appropriate register type. Unfortunately,
931 we don't have easy access to the type of user registers.
932 So for these registers, we fetch the register value regardless
933 of the evaluation mode. */
934 if (noside == EVAL_AVOID_SIDE_EFFECTS
935 && regno < gdbarch_num_regs (exp->gdbarch)
936 + gdbarch_num_pseudo_regs (exp->gdbarch))
937 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
938 else
939 val = value_of_register (regno, get_selected_frame (NULL));
940 if (val == NULL)
941 error (_("Value of register %s not available."), name);
942 else
943 return val;
944 }
945 case OP_BOOL:
946 (*pos) += 2;
947 type = language_bool_type (exp->language_defn, exp->gdbarch);
948 return value_from_longest (type, exp->elts[pc + 1].longconst);
949
950 case OP_INTERNALVAR:
951 (*pos) += 2;
952 return value_of_internalvar (exp->gdbarch,
953 exp->elts[pc + 1].internalvar);
954
955 case OP_STRING:
956 tem = longest_to_int (exp->elts[pc + 1].longconst);
957 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 type = language_string_char_type (exp->language_defn, exp->gdbarch);
961 return value_string (&exp->elts[pc + 2].string, tem, type);
962
963 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
964 NSString constant. */
965 tem = longest_to_int (exp->elts[pc + 1].longconst);
966 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
967 if (noside == EVAL_SKIP)
968 {
969 goto nosideret;
970 }
971 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
972
973 case OP_BITSTRING:
974 tem = longest_to_int (exp->elts[pc + 1].longconst);
975 (*pos)
976 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
977 if (noside == EVAL_SKIP)
978 goto nosideret;
979 return value_bitstring (&exp->elts[pc + 2].string, tem,
980 builtin_type (exp->gdbarch)->builtin_int);
981 break;
982
983 case OP_ARRAY:
984 (*pos) += 3;
985 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
986 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
987 nargs = tem3 - tem2 + 1;
988 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
989
990 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
991 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
992 {
993 struct value *rec = allocate_value (expect_type);
994
995 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
996 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
997 }
998
999 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1000 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1001 {
1002 struct type *range_type = TYPE_INDEX_TYPE (type);
1003 struct type *element_type = TYPE_TARGET_TYPE (type);
1004 struct value *array = allocate_value (expect_type);
1005 int element_size = TYPE_LENGTH (check_typedef (element_type));
1006 LONGEST low_bound, high_bound, index;
1007
1008 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1009 {
1010 low_bound = 0;
1011 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1012 }
1013 index = low_bound;
1014 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1015 for (tem = nargs; --nargs >= 0;)
1016 {
1017 struct value *element;
1018 int index_pc = 0;
1019
1020 if (exp->elts[*pos].opcode == BINOP_RANGE)
1021 {
1022 index_pc = ++(*pos);
1023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1024 }
1025 element = evaluate_subexp (element_type, exp, pos, noside);
1026 if (value_type (element) != element_type)
1027 element = value_cast (element_type, element);
1028 if (index_pc)
1029 {
1030 int continue_pc = *pos;
1031
1032 *pos = index_pc;
1033 index = init_array_element (array, element, exp, pos, noside,
1034 low_bound, high_bound);
1035 *pos = continue_pc;
1036 }
1037 else
1038 {
1039 if (index > high_bound)
1040 /* To avoid memory corruption. */
1041 error (_("Too many array elements"));
1042 memcpy (value_contents_raw (array)
1043 + (index - low_bound) * element_size,
1044 value_contents (element),
1045 element_size);
1046 }
1047 index++;
1048 }
1049 return array;
1050 }
1051
1052 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1053 && TYPE_CODE (type) == TYPE_CODE_SET)
1054 {
1055 struct value *set = allocate_value (expect_type);
1056 gdb_byte *valaddr = value_contents_raw (set);
1057 struct type *element_type = TYPE_INDEX_TYPE (type);
1058 struct type *check_type = element_type;
1059 LONGEST low_bound, high_bound;
1060
1061 /* Get targettype of elementtype. */
1062 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1063 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1064 check_type = TYPE_TARGET_TYPE (check_type);
1065
1066 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1067 error (_("(power)set type with unknown size"));
1068 memset (valaddr, '\0', TYPE_LENGTH (type));
1069 for (tem = 0; tem < nargs; tem++)
1070 {
1071 LONGEST range_low, range_high;
1072 struct type *range_low_type, *range_high_type;
1073 struct value *elem_val;
1074
1075 if (exp->elts[*pos].opcode == BINOP_RANGE)
1076 {
1077 (*pos)++;
1078 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1079 range_low_type = value_type (elem_val);
1080 range_low = value_as_long (elem_val);
1081 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1082 range_high_type = value_type (elem_val);
1083 range_high = value_as_long (elem_val);
1084 }
1085 else
1086 {
1087 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1088 range_low_type = range_high_type = value_type (elem_val);
1089 range_low = range_high = value_as_long (elem_val);
1090 }
1091 /* Check types of elements to avoid mixture of elements from
1092 different types. Also check if type of element is "compatible"
1093 with element type of powerset. */
1094 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1095 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1096 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1097 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1098 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1099 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1100 && (range_low_type != range_high_type)))
1101 /* different element modes. */
1102 error (_("POWERSET tuple elements of different mode"));
1103 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1104 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1105 && range_low_type != check_type))
1106 error (_("incompatible POWERSET tuple elements"));
1107 if (range_low > range_high)
1108 {
1109 warning (_("empty POWERSET tuple range"));
1110 continue;
1111 }
1112 if (range_low < low_bound || range_high > high_bound)
1113 error (_("POWERSET tuple element out of range"));
1114 range_low -= low_bound;
1115 range_high -= low_bound;
1116 for (; range_low <= range_high; range_low++)
1117 {
1118 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1119
1120 if (gdbarch_bits_big_endian (exp->gdbarch))
1121 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1122 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1123 |= 1 << bit_index;
1124 }
1125 }
1126 return set;
1127 }
1128
1129 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1130 for (tem = 0; tem < nargs; tem++)
1131 {
1132 /* Ensure that array expressions are coerced into pointer
1133 objects. */
1134 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1135 }
1136 if (noside == EVAL_SKIP)
1137 goto nosideret;
1138 return value_array (tem2, tem3, argvec);
1139
1140 case TERNOP_SLICE:
1141 {
1142 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1143 int lowbound
1144 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1145 int upper
1146 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1147
1148 if (noside == EVAL_SKIP)
1149 goto nosideret;
1150 return value_slice (array, lowbound, upper - lowbound + 1);
1151 }
1152
1153 case TERNOP_SLICE_COUNT:
1154 {
1155 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1156 int lowbound
1157 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1158 int length
1159 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1160
1161 return value_slice (array, lowbound, length);
1162 }
1163
1164 case TERNOP_COND:
1165 /* Skip third and second args to evaluate the first one. */
1166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1167 if (value_logical_not (arg1))
1168 {
1169 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1170 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1171 }
1172 else
1173 {
1174 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1176 return arg2;
1177 }
1178
1179 case OP_OBJC_SELECTOR:
1180 { /* Objective C @selector operator. */
1181 char *sel = &exp->elts[pc + 2].string;
1182 int len = longest_to_int (exp->elts[pc + 1].longconst);
1183 struct type *selector_type;
1184
1185 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1186 if (noside == EVAL_SKIP)
1187 goto nosideret;
1188
1189 if (sel[len] != 0)
1190 sel[len] = 0; /* Make sure it's terminated. */
1191
1192 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1193 return value_from_longest (selector_type,
1194 lookup_child_selector (exp->gdbarch, sel));
1195 }
1196
1197 case OP_OBJC_MSGCALL:
1198 { /* Objective C message (method) call. */
1199
1200 CORE_ADDR responds_selector = 0;
1201 CORE_ADDR method_selector = 0;
1202
1203 CORE_ADDR selector = 0;
1204
1205 int struct_return = 0;
1206 int sub_no_side = 0;
1207
1208 struct value *msg_send = NULL;
1209 struct value *msg_send_stret = NULL;
1210 int gnu_runtime = 0;
1211
1212 struct value *target = NULL;
1213 struct value *method = NULL;
1214 struct value *called_method = NULL;
1215
1216 struct type *selector_type = NULL;
1217 struct type *long_type;
1218
1219 struct value *ret = NULL;
1220 CORE_ADDR addr = 0;
1221
1222 selector = exp->elts[pc + 1].longconst;
1223 nargs = exp->elts[pc + 2].longconst;
1224 argvec = (struct value **) alloca (sizeof (struct value *)
1225 * (nargs + 5));
1226
1227 (*pos) += 3;
1228
1229 long_type = builtin_type (exp->gdbarch)->builtin_long;
1230 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1231
1232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1233 sub_no_side = EVAL_NORMAL;
1234 else
1235 sub_no_side = noside;
1236
1237 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1238
1239 if (value_as_long (target) == 0)
1240 return value_from_longest (long_type, 0);
1241
1242 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1243 gnu_runtime = 1;
1244
1245 /* Find the method dispatch (Apple runtime) or method lookup
1246 (GNU runtime) function for Objective-C. These will be used
1247 to lookup the symbol information for the method. If we
1248 can't find any symbol information, then we'll use these to
1249 call the method, otherwise we can call the method
1250 directly. The msg_send_stret function is used in the special
1251 case of a method that returns a structure (Apple runtime
1252 only). */
1253 if (gnu_runtime)
1254 {
1255 struct type *type = selector_type;
1256
1257 type = lookup_function_type (type);
1258 type = lookup_pointer_type (type);
1259 type = lookup_function_type (type);
1260 type = lookup_pointer_type (type);
1261
1262 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1263 msg_send_stret
1264 = find_function_in_inferior ("objc_msg_lookup", NULL);
1265
1266 msg_send = value_from_pointer (type, value_as_address (msg_send));
1267 msg_send_stret = value_from_pointer (type,
1268 value_as_address (msg_send_stret));
1269 }
1270 else
1271 {
1272 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1273 /* Special dispatcher for methods returning structs. */
1274 msg_send_stret
1275 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1276 }
1277
1278 /* Verify the target object responds to this method. The
1279 standard top-level 'Object' class uses a different name for
1280 the verification method than the non-standard, but more
1281 often used, 'NSObject' class. Make sure we check for both. */
1282
1283 responds_selector
1284 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1285 if (responds_selector == 0)
1286 responds_selector
1287 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1288
1289 if (responds_selector == 0)
1290 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1291
1292 method_selector
1293 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1294 if (method_selector == 0)
1295 method_selector
1296 = lookup_child_selector (exp->gdbarch, "methodFor:");
1297
1298 if (method_selector == 0)
1299 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1300
1301 /* Call the verification method, to make sure that the target
1302 class implements the desired method. */
1303
1304 argvec[0] = msg_send;
1305 argvec[1] = target;
1306 argvec[2] = value_from_longest (long_type, responds_selector);
1307 argvec[3] = value_from_longest (long_type, selector);
1308 argvec[4] = 0;
1309
1310 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1311 if (gnu_runtime)
1312 {
1313 /* Function objc_msg_lookup returns a pointer. */
1314 argvec[0] = ret;
1315 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1316 }
1317 if (value_as_long (ret) == 0)
1318 error (_("Target does not respond to this message selector."));
1319
1320 /* Call "methodForSelector:" method, to get the address of a
1321 function method that implements this selector for this
1322 class. If we can find a symbol at that address, then we
1323 know the return type, parameter types etc. (that's a good
1324 thing). */
1325
1326 argvec[0] = msg_send;
1327 argvec[1] = target;
1328 argvec[2] = value_from_longest (long_type, method_selector);
1329 argvec[3] = value_from_longest (long_type, selector);
1330 argvec[4] = 0;
1331
1332 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1333 if (gnu_runtime)
1334 {
1335 argvec[0] = ret;
1336 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1337 }
1338
1339 /* ret should now be the selector. */
1340
1341 addr = value_as_long (ret);
1342 if (addr)
1343 {
1344 struct symbol *sym = NULL;
1345
1346 /* The address might point to a function descriptor;
1347 resolve it to the actual code address instead. */
1348 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1349 &current_target);
1350
1351 /* Is it a high_level symbol? */
1352 sym = find_pc_function (addr);
1353 if (sym != NULL)
1354 method = value_of_variable (sym, 0);
1355 }
1356
1357 /* If we found a method with symbol information, check to see
1358 if it returns a struct. Otherwise assume it doesn't. */
1359
1360 if (method)
1361 {
1362 CORE_ADDR funaddr;
1363 struct type *val_type;
1364
1365 funaddr = find_function_addr (method, &val_type);
1366
1367 block_for_pc (funaddr);
1368
1369 CHECK_TYPEDEF (val_type);
1370
1371 if ((val_type == NULL)
1372 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1373 {
1374 if (expect_type != NULL)
1375 val_type = expect_type;
1376 }
1377
1378 struct_return = using_struct_return (exp->gdbarch, method,
1379 val_type);
1380 }
1381 else if (expect_type != NULL)
1382 {
1383 struct_return = using_struct_return (exp->gdbarch, NULL,
1384 check_typedef (expect_type));
1385 }
1386
1387 /* Found a function symbol. Now we will substitute its
1388 value in place of the message dispatcher (obj_msgSend),
1389 so that we call the method directly instead of thru
1390 the dispatcher. The main reason for doing this is that
1391 we can now evaluate the return value and parameter values
1392 according to their known data types, in case we need to
1393 do things like promotion, dereferencing, special handling
1394 of structs and doubles, etc.
1395
1396 We want to use the type signature of 'method', but still
1397 jump to objc_msgSend() or objc_msgSend_stret() to better
1398 mimic the behavior of the runtime. */
1399
1400 if (method)
1401 {
1402 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1403 error (_("method address has symbol information "
1404 "with non-function type; skipping"));
1405
1406 /* Create a function pointer of the appropriate type, and
1407 replace its value with the value of msg_send or
1408 msg_send_stret. We must use a pointer here, as
1409 msg_send and msg_send_stret are of pointer type, and
1410 the representation may be different on systems that use
1411 function descriptors. */
1412 if (struct_return)
1413 called_method
1414 = value_from_pointer (lookup_pointer_type (value_type (method)),
1415 value_as_address (msg_send_stret));
1416 else
1417 called_method
1418 = value_from_pointer (lookup_pointer_type (value_type (method)),
1419 value_as_address (msg_send));
1420 }
1421 else
1422 {
1423 if (struct_return)
1424 called_method = msg_send_stret;
1425 else
1426 called_method = msg_send;
1427 }
1428
1429 if (noside == EVAL_SKIP)
1430 goto nosideret;
1431
1432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1433 {
1434 /* If the return type doesn't look like a function type,
1435 call an error. This can happen if somebody tries to
1436 turn a variable into a function call. This is here
1437 because people often want to call, eg, strcmp, which
1438 gdb doesn't know is a function. If gdb isn't asked for
1439 it's opinion (ie. through "whatis"), it won't offer
1440 it. */
1441
1442 struct type *type = value_type (called_method);
1443
1444 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1445 type = TYPE_TARGET_TYPE (type);
1446 type = TYPE_TARGET_TYPE (type);
1447
1448 if (type)
1449 {
1450 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1451 return allocate_value (expect_type);
1452 else
1453 return allocate_value (type);
1454 }
1455 else
1456 error (_("Expression of type other than "
1457 "\"method returning ...\" used as a method"));
1458 }
1459
1460 /* Now depending on whether we found a symbol for the method,
1461 we will either call the runtime dispatcher or the method
1462 directly. */
1463
1464 argvec[0] = called_method;
1465 argvec[1] = target;
1466 argvec[2] = value_from_longest (long_type, selector);
1467 /* User-supplied arguments. */
1468 for (tem = 0; tem < nargs; tem++)
1469 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1470 argvec[tem + 3] = 0;
1471
1472 if (gnu_runtime && (method != NULL))
1473 {
1474 /* Function objc_msg_lookup returns a pointer. */
1475 deprecated_set_value_type (argvec[0],
1476 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1477 argvec[0]
1478 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1479 }
1480
1481 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1482 return ret;
1483 }
1484 break;
1485
1486 case OP_FUNCALL:
1487 (*pos) += 2;
1488 op = exp->elts[*pos].opcode;
1489 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1490 /* Allocate arg vector, including space for the function to be
1491 called in argvec[0] and a terminating NULL. */
1492 argvec = (struct value **)
1493 alloca (sizeof (struct value *) * (nargs + 3));
1494 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1495 {
1496 nargs++;
1497 /* First, evaluate the structure into arg2. */
1498 pc2 = (*pos)++;
1499
1500 if (noside == EVAL_SKIP)
1501 goto nosideret;
1502
1503 if (op == STRUCTOP_MEMBER)
1504 {
1505 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1506 }
1507 else
1508 {
1509 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1510 }
1511
1512 /* If the function is a virtual function, then the
1513 aggregate value (providing the structure) plays
1514 its part by providing the vtable. Otherwise,
1515 it is just along for the ride: call the function
1516 directly. */
1517
1518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1519
1520 if (TYPE_CODE (check_typedef (value_type (arg1)))
1521 != TYPE_CODE_METHODPTR)
1522 error (_("Non-pointer-to-member value used in pointer-to-member "
1523 "construct"));
1524
1525 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1526 {
1527 struct type *method_type = check_typedef (value_type (arg1));
1528
1529 arg1 = value_zero (method_type, not_lval);
1530 }
1531 else
1532 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1533
1534 /* Now, say which argument to start evaluating from. */
1535 tem = 2;
1536 }
1537 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1538 {
1539 /* Hair for method invocations. */
1540 int tem2;
1541
1542 nargs++;
1543 /* First, evaluate the structure into arg2. */
1544 pc2 = (*pos)++;
1545 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1546 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1547 if (noside == EVAL_SKIP)
1548 goto nosideret;
1549
1550 if (op == STRUCTOP_STRUCT)
1551 {
1552 /* If v is a variable in a register, and the user types
1553 v.method (), this will produce an error, because v has
1554 no address.
1555
1556 A possible way around this would be to allocate a
1557 copy of the variable on the stack, copy in the
1558 contents, call the function, and copy out the
1559 contents. I.e. convert this from call by reference
1560 to call by copy-return (or whatever it's called).
1561 However, this does not work because it is not the
1562 same: the method being called could stash a copy of
1563 the address, and then future uses through that address
1564 (after the method returns) would be expected to
1565 use the variable itself, not some copy of it. */
1566 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1567 }
1568 else
1569 {
1570 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1571
1572 /* Check to see if the operator '->' has been
1573 overloaded. If the operator has been overloaded
1574 replace arg2 with the value returned by the custom
1575 operator and continue evaluation. */
1576 while (unop_user_defined_p (op, arg2))
1577 {
1578 volatile struct gdb_exception except;
1579 struct value *value = NULL;
1580 TRY_CATCH (except, RETURN_MASK_ERROR)
1581 {
1582 value = value_x_unop (arg2, op, noside);
1583 }
1584
1585 if (except.reason < 0)
1586 {
1587 if (except.error == NOT_FOUND_ERROR)
1588 break;
1589 else
1590 throw_exception (except);
1591 }
1592 arg2 = value;
1593 }
1594 }
1595 /* Now, say which argument to start evaluating from. */
1596 tem = 2;
1597 }
1598 else if (op == OP_SCOPE
1599 && overload_resolution
1600 && (exp->language_defn->la_language == language_cplus))
1601 {
1602 /* Unpack it locally so we can properly handle overload
1603 resolution. */
1604 char *name;
1605 int local_tem;
1606
1607 pc2 = (*pos)++;
1608 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1609 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1610 type = exp->elts[pc2 + 1].type;
1611 name = &exp->elts[pc2 + 3].string;
1612
1613 function = NULL;
1614 function_name = NULL;
1615 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1616 {
1617 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1618 name,
1619 get_selected_block (0),
1620 VAR_DOMAIN);
1621 if (function == NULL)
1622 error (_("No symbol \"%s\" in namespace \"%s\"."),
1623 name, TYPE_TAG_NAME (type));
1624
1625 tem = 1;
1626 }
1627 else
1628 {
1629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1630 || TYPE_CODE (type) == TYPE_CODE_UNION);
1631 function_name = name;
1632
1633 arg2 = value_zero (type, lval_memory);
1634 ++nargs;
1635 tem = 2;
1636 }
1637 }
1638 else if (op == OP_ADL_FUNC)
1639 {
1640 /* Save the function position and move pos so that the arguments
1641 can be evaluated. */
1642 int func_name_len;
1643
1644 save_pos1 = *pos;
1645 tem = 1;
1646
1647 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1648 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1649 }
1650 else
1651 {
1652 /* Non-method function call. */
1653 save_pos1 = *pos;
1654 tem = 1;
1655
1656 /* If this is a C++ function wait until overload resolution. */
1657 if (op == OP_VAR_VALUE
1658 && overload_resolution
1659 && (exp->language_defn->la_language == language_cplus))
1660 {
1661 (*pos) += 4; /* Skip the evaluation of the symbol. */
1662 argvec[0] = NULL;
1663 }
1664 else
1665 {
1666 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1667 type = value_type (argvec[0]);
1668 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1669 type = TYPE_TARGET_TYPE (type);
1670 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1671 {
1672 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1673 {
1674 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1675 tem - 1),
1676 exp, pos, noside);
1677 }
1678 }
1679 }
1680 }
1681
1682 /* Evaluate arguments. */
1683 for (; tem <= nargs; tem++)
1684 {
1685 /* Ensure that array expressions are coerced into pointer
1686 objects. */
1687 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1688 }
1689
1690 /* Signal end of arglist. */
1691 argvec[tem] = 0;
1692 if (op == OP_ADL_FUNC)
1693 {
1694 struct symbol *symp;
1695 char *func_name;
1696 int name_len;
1697 int string_pc = save_pos1 + 3;
1698
1699 /* Extract the function name. */
1700 name_len = longest_to_int (exp->elts[string_pc].longconst);
1701 func_name = (char *) alloca (name_len + 1);
1702 strcpy (func_name, &exp->elts[string_pc + 1].string);
1703
1704 find_overload_match (&argvec[1], nargs, func_name,
1705 NON_METHOD, /* not method */
1706 0, /* strict match */
1707 NULL, NULL, /* pass NULL symbol since
1708 symbol is unknown */
1709 NULL, &symp, NULL, 0);
1710
1711 /* Now fix the expression being evaluated. */
1712 exp->elts[save_pos1 + 2].symbol = symp;
1713 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1714 }
1715
1716 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1717 || (op == OP_SCOPE && function_name != NULL))
1718 {
1719 int static_memfuncp;
1720 char *tstr;
1721
1722 /* Method invocation : stuff "this" as first parameter. */
1723 argvec[1] = arg2;
1724
1725 if (op != OP_SCOPE)
1726 {
1727 /* Name of method from expression. */
1728 tstr = &exp->elts[pc2 + 2].string;
1729 }
1730 else
1731 tstr = function_name;
1732
1733 if (overload_resolution && (exp->language_defn->la_language
1734 == language_cplus))
1735 {
1736 /* Language is C++, do some overload resolution before
1737 evaluation. */
1738 struct value *valp = NULL;
1739
1740 (void) find_overload_match (&argvec[1], nargs, tstr,
1741 METHOD, /* method */
1742 0, /* strict match */
1743 &arg2, /* the object */
1744 NULL, &valp, NULL,
1745 &static_memfuncp, 0);
1746
1747 if (op == OP_SCOPE && !static_memfuncp)
1748 {
1749 /* For the time being, we don't handle this. */
1750 error (_("Call to overloaded function %s requires "
1751 "`this' pointer"),
1752 function_name);
1753 }
1754 argvec[1] = arg2; /* the ``this'' pointer */
1755 argvec[0] = valp; /* Use the method found after overload
1756 resolution. */
1757 }
1758 else
1759 /* Non-C++ case -- or no overload resolution. */
1760 {
1761 struct value *temp = arg2;
1762
1763 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1764 &static_memfuncp,
1765 op == STRUCTOP_STRUCT
1766 ? "structure" : "structure pointer");
1767 /* value_struct_elt updates temp with the correct value
1768 of the ``this'' pointer if necessary, so modify argvec[1] to
1769 reflect any ``this'' changes. */
1770 arg2
1771 = value_from_longest (lookup_pointer_type(value_type (temp)),
1772 value_address (temp)
1773 + value_embedded_offset (temp));
1774 argvec[1] = arg2; /* the ``this'' pointer */
1775 }
1776
1777 if (static_memfuncp)
1778 {
1779 argvec[1] = argvec[0];
1780 nargs--;
1781 argvec++;
1782 }
1783 }
1784 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1785 {
1786 argvec[1] = arg2;
1787 argvec[0] = arg1;
1788 }
1789 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1790 {
1791 /* Non-member function being called. */
1792 /* fn: This can only be done for C++ functions. A C-style function
1793 in a C++ program, for instance, does not have the fields that
1794 are expected here. */
1795
1796 if (overload_resolution && (exp->language_defn->la_language
1797 == language_cplus))
1798 {
1799 /* Language is C++, do some overload resolution before
1800 evaluation. */
1801 struct symbol *symp;
1802 int no_adl = 0;
1803
1804 /* If a scope has been specified disable ADL. */
1805 if (op == OP_SCOPE)
1806 no_adl = 1;
1807
1808 if (op == OP_VAR_VALUE)
1809 function = exp->elts[save_pos1+2].symbol;
1810
1811 (void) find_overload_match (&argvec[1], nargs,
1812 NULL, /* no need for name */
1813 NON_METHOD, /* not method */
1814 0, /* strict match */
1815 NULL, function, /* the function */
1816 NULL, &symp, NULL, no_adl);
1817
1818 if (op == OP_VAR_VALUE)
1819 {
1820 /* Now fix the expression being evaluated. */
1821 exp->elts[save_pos1+2].symbol = symp;
1822 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1823 noside);
1824 }
1825 else
1826 argvec[0] = value_of_variable (symp, get_selected_block (0));
1827 }
1828 else
1829 {
1830 /* Not C++, or no overload resolution allowed. */
1831 /* Nothing to be done; argvec already correctly set up. */
1832 }
1833 }
1834 else
1835 {
1836 /* It is probably a C-style function. */
1837 /* Nothing to be done; argvec already correctly set up. */
1838 }
1839
1840 do_call_it:
1841
1842 if (noside == EVAL_SKIP)
1843 goto nosideret;
1844 if (argvec[0] == NULL)
1845 error (_("Cannot evaluate function -- may be inlined"));
1846 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1847 {
1848 /* If the return type doesn't look like a function type, call an
1849 error. This can happen if somebody tries to turn a variable into
1850 a function call. This is here because people often want to
1851 call, eg, strcmp, which gdb doesn't know is a function. If
1852 gdb isn't asked for it's opinion (ie. through "whatis"),
1853 it won't offer it. */
1854
1855 struct type *ftype = value_type (argvec[0]);
1856
1857 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1858 {
1859 /* We don't know anything about what the internal
1860 function might return, but we have to return
1861 something. */
1862 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1863 not_lval);
1864 }
1865 else if (TYPE_GNU_IFUNC (ftype))
1866 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1867 else if (TYPE_TARGET_TYPE (ftype))
1868 return allocate_value (TYPE_TARGET_TYPE (ftype));
1869 else
1870 error (_("Expression of type other than "
1871 "\"Function returning ...\" used as function"));
1872 }
1873 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1874 return call_internal_function (exp->gdbarch, exp->language_defn,
1875 argvec[0], nargs, argvec + 1);
1876
1877 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1878 /* pai: FIXME save value from call_function_by_hand, then adjust
1879 pc by adjust_fn_pc if +ve. */
1880
1881 case OP_F77_UNDETERMINED_ARGLIST:
1882
1883 /* Remember that in F77, functions, substring ops and
1884 array subscript operations cannot be disambiguated
1885 at parse time. We have made all array subscript operations,
1886 substring operations as well as function calls come here
1887 and we now have to discover what the heck this thing actually was.
1888 If it is a function, we process just as if we got an OP_FUNCALL. */
1889
1890 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1891 (*pos) += 2;
1892
1893 /* First determine the type code we are dealing with. */
1894 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1895 type = check_typedef (value_type (arg1));
1896 code = TYPE_CODE (type);
1897
1898 if (code == TYPE_CODE_PTR)
1899 {
1900 /* Fortran always passes variable to subroutines as pointer.
1901 So we need to look into its target type to see if it is
1902 array, string or function. If it is, we need to switch
1903 to the target value the original one points to. */
1904 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1905
1906 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1907 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1908 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1909 {
1910 arg1 = value_ind (arg1);
1911 type = check_typedef (value_type (arg1));
1912 code = TYPE_CODE (type);
1913 }
1914 }
1915
1916 switch (code)
1917 {
1918 case TYPE_CODE_ARRAY:
1919 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1920 return value_f90_subarray (arg1, exp, pos, noside);
1921 else
1922 goto multi_f77_subscript;
1923
1924 case TYPE_CODE_STRING:
1925 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1926 return value_f90_subarray (arg1, exp, pos, noside);
1927 else
1928 {
1929 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1930 return value_subscript (arg1, value_as_long (arg2));
1931 }
1932
1933 case TYPE_CODE_PTR:
1934 case TYPE_CODE_FUNC:
1935 /* It's a function call. */
1936 /* Allocate arg vector, including space for the function to be
1937 called in argvec[0] and a terminating NULL. */
1938 argvec = (struct value **)
1939 alloca (sizeof (struct value *) * (nargs + 2));
1940 argvec[0] = arg1;
1941 tem = 1;
1942 for (; tem <= nargs; tem++)
1943 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1944 argvec[tem] = 0; /* signal end of arglist */
1945 goto do_call_it;
1946
1947 default:
1948 error (_("Cannot perform substring on this type"));
1949 }
1950
1951 case OP_COMPLEX:
1952 /* We have a complex number, There should be 2 floating
1953 point numbers that compose it. */
1954 (*pos) += 2;
1955 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1956 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1957
1958 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1959
1960 case STRUCTOP_STRUCT:
1961 tem = longest_to_int (exp->elts[pc + 1].longconst);
1962 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1963 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1964 if (noside == EVAL_SKIP)
1965 goto nosideret;
1966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1967 return value_zero (lookup_struct_elt_type (value_type (arg1),
1968 &exp->elts[pc + 2].string,
1969 0),
1970 lval_memory);
1971 else
1972 {
1973 struct value *temp = arg1;
1974
1975 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1976 NULL, "structure");
1977 }
1978
1979 case STRUCTOP_PTR:
1980 tem = longest_to_int (exp->elts[pc + 1].longconst);
1981 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1983 if (noside == EVAL_SKIP)
1984 goto nosideret;
1985
1986 /* Check to see if operator '->' has been overloaded. If so replace
1987 arg1 with the value returned by evaluating operator->(). */
1988 while (unop_user_defined_p (op, arg1))
1989 {
1990 volatile struct gdb_exception except;
1991 struct value *value = NULL;
1992 TRY_CATCH (except, RETURN_MASK_ERROR)
1993 {
1994 value = value_x_unop (arg1, op, noside);
1995 }
1996
1997 if (except.reason < 0)
1998 {
1999 if (except.error == NOT_FOUND_ERROR)
2000 break;
2001 else
2002 throw_exception (except);
2003 }
2004 arg1 = value;
2005 }
2006
2007 /* JYG: if print object is on we need to replace the base type
2008 with rtti type in order to continue on with successful
2009 lookup of member / method only available in the rtti type. */
2010 {
2011 struct type *type = value_type (arg1);
2012 struct type *real_type;
2013 int full, top, using_enc;
2014 struct value_print_options opts;
2015
2016 get_user_print_options (&opts);
2017 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2018 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
2019 {
2020 real_type = value_rtti_indirect_type (arg1, &full, &top,
2021 &using_enc);
2022 if (real_type)
2023 arg1 = value_cast (real_type, arg1);
2024 }
2025 }
2026
2027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2028 return value_zero (lookup_struct_elt_type (value_type (arg1),
2029 &exp->elts[pc + 2].string,
2030 0),
2031 lval_memory);
2032 else
2033 {
2034 struct value *temp = arg1;
2035
2036 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2037 NULL, "structure pointer");
2038 }
2039
2040 case STRUCTOP_MEMBER:
2041 case STRUCTOP_MPTR:
2042 if (op == STRUCTOP_MEMBER)
2043 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2044 else
2045 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2046
2047 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2048
2049 if (noside == EVAL_SKIP)
2050 goto nosideret;
2051
2052 type = check_typedef (value_type (arg2));
2053 switch (TYPE_CODE (type))
2054 {
2055 case TYPE_CODE_METHODPTR:
2056 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2057 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2058 else
2059 {
2060 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2061 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2062 return value_ind (arg2);
2063 }
2064
2065 case TYPE_CODE_MEMBERPTR:
2066 /* Now, convert these values to an address. */
2067 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2068 arg1, 1);
2069
2070 mem_offset = value_as_long (arg2);
2071
2072 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2073 value_as_long (arg1) + mem_offset);
2074 return value_ind (arg3);
2075
2076 default:
2077 error (_("non-pointer-to-member value used "
2078 "in pointer-to-member construct"));
2079 }
2080
2081 case TYPE_INSTANCE:
2082 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2083 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2084 for (ix = 0; ix < nargs; ++ix)
2085 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2086
2087 expect_type = make_params (nargs, arg_types);
2088 *(pos) += 3 + nargs;
2089 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2090 xfree (TYPE_FIELDS (expect_type));
2091 xfree (TYPE_MAIN_TYPE (expect_type));
2092 xfree (expect_type);
2093 return arg1;
2094
2095 case BINOP_CONCAT:
2096 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2097 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2098 if (noside == EVAL_SKIP)
2099 goto nosideret;
2100 if (binop_user_defined_p (op, arg1, arg2))
2101 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2102 else
2103 return value_concat (arg1, arg2);
2104
2105 case BINOP_ASSIGN:
2106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2107 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2108
2109 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2110 return arg1;
2111 if (binop_user_defined_p (op, arg1, arg2))
2112 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2113 else
2114 return value_assign (arg1, arg2);
2115
2116 case BINOP_ASSIGN_MODIFY:
2117 (*pos) += 2;
2118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2119 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2120 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2121 return arg1;
2122 op = exp->elts[pc + 1].opcode;
2123 if (binop_user_defined_p (op, arg1, arg2))
2124 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2125 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2126 value_type (arg1))
2127 && is_integral_type (value_type (arg2)))
2128 arg2 = value_ptradd (arg1, value_as_long (arg2));
2129 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2130 value_type (arg1))
2131 && is_integral_type (value_type (arg2)))
2132 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2133 else
2134 {
2135 struct value *tmp = arg1;
2136
2137 /* For shift and integer exponentiation operations,
2138 only promote the first argument. */
2139 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2140 && is_integral_type (value_type (arg2)))
2141 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2142 else
2143 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2144
2145 arg2 = value_binop (tmp, arg2, op);
2146 }
2147 return value_assign (arg1, arg2);
2148
2149 case BINOP_ADD:
2150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2152 if (noside == EVAL_SKIP)
2153 goto nosideret;
2154 if (binop_user_defined_p (op, arg1, arg2))
2155 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2156 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2157 && is_integral_type (value_type (arg2)))
2158 return value_ptradd (arg1, value_as_long (arg2));
2159 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2160 && is_integral_type (value_type (arg1)))
2161 return value_ptradd (arg2, value_as_long (arg1));
2162 else
2163 {
2164 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2165 return value_binop (arg1, arg2, BINOP_ADD);
2166 }
2167
2168 case BINOP_SUB:
2169 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2170 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2171 if (noside == EVAL_SKIP)
2172 goto nosideret;
2173 if (binop_user_defined_p (op, arg1, arg2))
2174 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2175 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2176 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2177 {
2178 /* FIXME -- should be ptrdiff_t */
2179 type = builtin_type (exp->gdbarch)->builtin_long;
2180 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2181 }
2182 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2183 && is_integral_type (value_type (arg2)))
2184 return value_ptradd (arg1, - value_as_long (arg2));
2185 else
2186 {
2187 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2188 return value_binop (arg1, arg2, BINOP_SUB);
2189 }
2190
2191 case BINOP_EXP:
2192 case BINOP_MUL:
2193 case BINOP_DIV:
2194 case BINOP_INTDIV:
2195 case BINOP_REM:
2196 case BINOP_MOD:
2197 case BINOP_LSH:
2198 case BINOP_RSH:
2199 case BINOP_BITWISE_AND:
2200 case BINOP_BITWISE_IOR:
2201 case BINOP_BITWISE_XOR:
2202 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2203 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2204 if (noside == EVAL_SKIP)
2205 goto nosideret;
2206 if (binop_user_defined_p (op, arg1, arg2))
2207 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2208 else
2209 {
2210 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2211 fudge arg2 to avoid division-by-zero, the caller is
2212 (theoretically) only looking for the type of the result. */
2213 if (noside == EVAL_AVOID_SIDE_EFFECTS
2214 /* ??? Do we really want to test for BINOP_MOD here?
2215 The implementation of value_binop gives it a well-defined
2216 value. */
2217 && (op == BINOP_DIV
2218 || op == BINOP_INTDIV
2219 || op == BINOP_REM
2220 || op == BINOP_MOD)
2221 && value_logical_not (arg2))
2222 {
2223 struct value *v_one, *retval;
2224
2225 v_one = value_one (value_type (arg2));
2226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2227 retval = value_binop (arg1, v_one, op);
2228 return retval;
2229 }
2230 else
2231 {
2232 /* For shift and integer exponentiation operations,
2233 only promote the first argument. */
2234 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2235 && is_integral_type (value_type (arg2)))
2236 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2237 else
2238 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2239
2240 return value_binop (arg1, arg2, op);
2241 }
2242 }
2243
2244 case BINOP_RANGE:
2245 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2246 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2247 if (noside == EVAL_SKIP)
2248 goto nosideret;
2249 error (_("':' operator used in invalid context"));
2250
2251 case BINOP_SUBSCRIPT:
2252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2253 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2254 if (noside == EVAL_SKIP)
2255 goto nosideret;
2256 if (binop_user_defined_p (op, arg1, arg2))
2257 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2258 else
2259 {
2260 /* If the user attempts to subscript something that is not an
2261 array or pointer type (like a plain int variable for example),
2262 then report this as an error. */
2263
2264 arg1 = coerce_ref (arg1);
2265 type = check_typedef (value_type (arg1));
2266 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2267 && TYPE_CODE (type) != TYPE_CODE_PTR)
2268 {
2269 if (TYPE_NAME (type))
2270 error (_("cannot subscript something of type `%s'"),
2271 TYPE_NAME (type));
2272 else
2273 error (_("cannot subscript requested type"));
2274 }
2275
2276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2277 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2278 else
2279 return value_subscript (arg1, value_as_long (arg2));
2280 }
2281
2282 case BINOP_IN:
2283 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2284 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2285 if (noside == EVAL_SKIP)
2286 goto nosideret;
2287 type = language_bool_type (exp->language_defn, exp->gdbarch);
2288 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2289
2290 case MULTI_SUBSCRIPT:
2291 (*pos) += 2;
2292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2293 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2294 while (nargs-- > 0)
2295 {
2296 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2297 /* FIXME: EVAL_SKIP handling may not be correct. */
2298 if (noside == EVAL_SKIP)
2299 {
2300 if (nargs > 0)
2301 {
2302 continue;
2303 }
2304 else
2305 {
2306 goto nosideret;
2307 }
2308 }
2309 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2310 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2311 {
2312 /* If the user attempts to subscript something that has no target
2313 type (like a plain int variable for example), then report this
2314 as an error. */
2315
2316 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2317 if (type != NULL)
2318 {
2319 arg1 = value_zero (type, VALUE_LVAL (arg1));
2320 noside = EVAL_SKIP;
2321 continue;
2322 }
2323 else
2324 {
2325 error (_("cannot subscript something of type `%s'"),
2326 TYPE_NAME (value_type (arg1)));
2327 }
2328 }
2329
2330 if (binop_user_defined_p (op, arg1, arg2))
2331 {
2332 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2333 }
2334 else
2335 {
2336 arg1 = coerce_ref (arg1);
2337 type = check_typedef (value_type (arg1));
2338
2339 switch (TYPE_CODE (type))
2340 {
2341 case TYPE_CODE_PTR:
2342 case TYPE_CODE_ARRAY:
2343 case TYPE_CODE_STRING:
2344 arg1 = value_subscript (arg1, value_as_long (arg2));
2345 break;
2346
2347 case TYPE_CODE_BITSTRING:
2348 type = language_bool_type (exp->language_defn, exp->gdbarch);
2349 arg1 = value_bitstring_subscript (type, arg1,
2350 value_as_long (arg2));
2351 break;
2352
2353 default:
2354 if (TYPE_NAME (type))
2355 error (_("cannot subscript something of type `%s'"),
2356 TYPE_NAME (type));
2357 else
2358 error (_("cannot subscript requested type"));
2359 }
2360 }
2361 }
2362 return (arg1);
2363
2364 multi_f77_subscript:
2365 {
2366 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2367 int ndimensions = 1, i;
2368 struct value *array = arg1;
2369
2370 if (nargs > MAX_FORTRAN_DIMS)
2371 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2372
2373 ndimensions = calc_f77_array_dims (type);
2374
2375 if (nargs != ndimensions)
2376 error (_("Wrong number of subscripts"));
2377
2378 gdb_assert (nargs > 0);
2379
2380 /* Now that we know we have a legal array subscript expression
2381 let us actually find out where this element exists in the array. */
2382
2383 /* Take array indices left to right. */
2384 for (i = 0; i < nargs; i++)
2385 {
2386 /* Evaluate each subscript; it must be a legal integer in F77. */
2387 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2388
2389 /* Fill in the subscript array. */
2390
2391 subscript_array[i] = value_as_long (arg2);
2392 }
2393
2394 /* Internal type of array is arranged right to left. */
2395 for (i = nargs; i > 0; i--)
2396 {
2397 struct type *array_type = check_typedef (value_type (array));
2398 LONGEST index = subscript_array[i - 1];
2399
2400 lower = f77_get_lowerbound (array_type);
2401 array = value_subscripted_rvalue (array, index, lower);
2402 }
2403
2404 return array;
2405 }
2406
2407 case BINOP_LOGICAL_AND:
2408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2409 if (noside == EVAL_SKIP)
2410 {
2411 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 goto nosideret;
2413 }
2414
2415 oldpos = *pos;
2416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2417 *pos = oldpos;
2418
2419 if (binop_user_defined_p (op, arg1, arg2))
2420 {
2421 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2422 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2423 }
2424 else
2425 {
2426 tem = value_logical_not (arg1);
2427 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2428 (tem ? EVAL_SKIP : noside));
2429 type = language_bool_type (exp->language_defn, exp->gdbarch);
2430 return value_from_longest (type,
2431 (LONGEST) (!tem && !value_logical_not (arg2)));
2432 }
2433
2434 case BINOP_LOGICAL_OR:
2435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2436 if (noside == EVAL_SKIP)
2437 {
2438 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2439 goto nosideret;
2440 }
2441
2442 oldpos = *pos;
2443 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2444 *pos = oldpos;
2445
2446 if (binop_user_defined_p (op, arg1, arg2))
2447 {
2448 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2449 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2450 }
2451 else
2452 {
2453 tem = value_logical_not (arg1);
2454 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2455 (!tem ? EVAL_SKIP : noside));
2456 type = language_bool_type (exp->language_defn, exp->gdbarch);
2457 return value_from_longest (type,
2458 (LONGEST) (!tem || !value_logical_not (arg2)));
2459 }
2460
2461 case BINOP_EQUAL:
2462 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2463 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2464 if (noside == EVAL_SKIP)
2465 goto nosideret;
2466 if (binop_user_defined_p (op, arg1, arg2))
2467 {
2468 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2469 }
2470 else
2471 {
2472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2473 tem = value_equal (arg1, arg2);
2474 type = language_bool_type (exp->language_defn, exp->gdbarch);
2475 return value_from_longest (type, (LONGEST) tem);
2476 }
2477
2478 case BINOP_NOTEQUAL:
2479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2480 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2481 if (noside == EVAL_SKIP)
2482 goto nosideret;
2483 if (binop_user_defined_p (op, arg1, arg2))
2484 {
2485 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2486 }
2487 else
2488 {
2489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2490 tem = value_equal (arg1, arg2);
2491 type = language_bool_type (exp->language_defn, exp->gdbarch);
2492 return value_from_longest (type, (LONGEST) ! tem);
2493 }
2494
2495 case BINOP_LESS:
2496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2497 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2498 if (noside == EVAL_SKIP)
2499 goto nosideret;
2500 if (binop_user_defined_p (op, arg1, arg2))
2501 {
2502 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2503 }
2504 else
2505 {
2506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2507 tem = value_less (arg1, arg2);
2508 type = language_bool_type (exp->language_defn, exp->gdbarch);
2509 return value_from_longest (type, (LONGEST) tem);
2510 }
2511
2512 case BINOP_GTR:
2513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2515 if (noside == EVAL_SKIP)
2516 goto nosideret;
2517 if (binop_user_defined_p (op, arg1, arg2))
2518 {
2519 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2520 }
2521 else
2522 {
2523 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2524 tem = value_less (arg2, arg1);
2525 type = language_bool_type (exp->language_defn, exp->gdbarch);
2526 return value_from_longest (type, (LONGEST) tem);
2527 }
2528
2529 case BINOP_GEQ:
2530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2531 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2532 if (noside == EVAL_SKIP)
2533 goto nosideret;
2534 if (binop_user_defined_p (op, arg1, arg2))
2535 {
2536 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2537 }
2538 else
2539 {
2540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2541 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2542 type = language_bool_type (exp->language_defn, exp->gdbarch);
2543 return value_from_longest (type, (LONGEST) tem);
2544 }
2545
2546 case BINOP_LEQ:
2547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2548 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2549 if (noside == EVAL_SKIP)
2550 goto nosideret;
2551 if (binop_user_defined_p (op, arg1, arg2))
2552 {
2553 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2554 }
2555 else
2556 {
2557 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2558 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2559 type = language_bool_type (exp->language_defn, exp->gdbarch);
2560 return value_from_longest (type, (LONGEST) tem);
2561 }
2562
2563 case BINOP_REPEAT:
2564 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2565 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2566 if (noside == EVAL_SKIP)
2567 goto nosideret;
2568 type = check_typedef (value_type (arg2));
2569 if (TYPE_CODE (type) != TYPE_CODE_INT)
2570 error (_("Non-integral right operand for \"@\" operator."));
2571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2572 {
2573 return allocate_repeat_value (value_type (arg1),
2574 longest_to_int (value_as_long (arg2)));
2575 }
2576 else
2577 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2578
2579 case BINOP_COMMA:
2580 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2581 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2582
2583 case UNOP_PLUS:
2584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2585 if (noside == EVAL_SKIP)
2586 goto nosideret;
2587 if (unop_user_defined_p (op, arg1))
2588 return value_x_unop (arg1, op, noside);
2589 else
2590 {
2591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2592 return value_pos (arg1);
2593 }
2594
2595 case UNOP_NEG:
2596 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2597 if (noside == EVAL_SKIP)
2598 goto nosideret;
2599 if (unop_user_defined_p (op, arg1))
2600 return value_x_unop (arg1, op, noside);
2601 else
2602 {
2603 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2604 return value_neg (arg1);
2605 }
2606
2607 case UNOP_COMPLEMENT:
2608 /* C++: check for and handle destructor names. */
2609 op = exp->elts[*pos].opcode;
2610
2611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2612 if (noside == EVAL_SKIP)
2613 goto nosideret;
2614 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2615 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2616 else
2617 {
2618 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2619 return value_complement (arg1);
2620 }
2621
2622 case UNOP_LOGICAL_NOT:
2623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2624 if (noside == EVAL_SKIP)
2625 goto nosideret;
2626 if (unop_user_defined_p (op, arg1))
2627 return value_x_unop (arg1, op, noside);
2628 else
2629 {
2630 type = language_bool_type (exp->language_defn, exp->gdbarch);
2631 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2632 }
2633
2634 case UNOP_IND:
2635 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2636 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2637 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2638 type = check_typedef (value_type (arg1));
2639 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2640 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2641 error (_("Attempt to dereference pointer "
2642 "to member without an object"));
2643 if (noside == EVAL_SKIP)
2644 goto nosideret;
2645 if (unop_user_defined_p (op, arg1))
2646 return value_x_unop (arg1, op, noside);
2647 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2648 {
2649 type = check_typedef (value_type (arg1));
2650 if (TYPE_CODE (type) == TYPE_CODE_PTR
2651 || TYPE_CODE (type) == TYPE_CODE_REF
2652 /* In C you can dereference an array to get the 1st elt. */
2653 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2654 )
2655 return value_zero (TYPE_TARGET_TYPE (type),
2656 lval_memory);
2657 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2658 /* GDB allows dereferencing an int. */
2659 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2660 lval_memory);
2661 else
2662 error (_("Attempt to take contents of a non-pointer value."));
2663 }
2664
2665 /* Allow * on an integer so we can cast it to whatever we want.
2666 This returns an int, which seems like the most C-like thing to
2667 do. "long long" variables are rare enough that
2668 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2669 if (TYPE_CODE (type) == TYPE_CODE_INT)
2670 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2671 (CORE_ADDR) value_as_address (arg1));
2672 return value_ind (arg1);
2673
2674 case UNOP_ADDR:
2675 /* C++: check for and handle pointer to members. */
2676
2677 op = exp->elts[*pos].opcode;
2678
2679 if (noside == EVAL_SKIP)
2680 {
2681 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2682 goto nosideret;
2683 }
2684 else
2685 {
2686 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2687 noside);
2688
2689 return retvalp;
2690 }
2691
2692 case UNOP_SIZEOF:
2693 if (noside == EVAL_SKIP)
2694 {
2695 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2696 goto nosideret;
2697 }
2698 return evaluate_subexp_for_sizeof (exp, pos);
2699
2700 case UNOP_CAST:
2701 (*pos) += 2;
2702 type = exp->elts[pc + 1].type;
2703 arg1 = evaluate_subexp (type, exp, pos, noside);
2704 if (noside == EVAL_SKIP)
2705 goto nosideret;
2706 if (type != value_type (arg1))
2707 arg1 = value_cast (type, arg1);
2708 return arg1;
2709
2710 case UNOP_CAST_TYPE:
2711 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2712 type = value_type (arg1);
2713 arg1 = evaluate_subexp (type, exp, pos, noside);
2714 if (noside == EVAL_SKIP)
2715 goto nosideret;
2716 if (type != value_type (arg1))
2717 arg1 = value_cast (type, arg1);
2718 return arg1;
2719
2720 case UNOP_DYNAMIC_CAST:
2721 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2722 type = value_type (arg1);
2723 arg1 = evaluate_subexp (type, exp, pos, noside);
2724 if (noside == EVAL_SKIP)
2725 goto nosideret;
2726 return value_dynamic_cast (type, arg1);
2727
2728 case UNOP_REINTERPRET_CAST:
2729 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2730 type = value_type (arg1);
2731 arg1 = evaluate_subexp (type, exp, pos, noside);
2732 if (noside == EVAL_SKIP)
2733 goto nosideret;
2734 return value_reinterpret_cast (type, arg1);
2735
2736 case UNOP_MEMVAL:
2737 (*pos) += 2;
2738 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2739 if (noside == EVAL_SKIP)
2740 goto nosideret;
2741 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2742 return value_zero (exp->elts[pc + 1].type, lval_memory);
2743 else
2744 return value_at_lazy (exp->elts[pc + 1].type,
2745 value_as_address (arg1));
2746
2747 case UNOP_MEMVAL_TYPE:
2748 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2749 type = value_type (arg1);
2750 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2751 if (noside == EVAL_SKIP)
2752 goto nosideret;
2753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2754 return value_zero (exp->elts[pc + 1].type, lval_memory);
2755 else
2756 return value_at_lazy (exp->elts[pc + 1].type,
2757 value_as_address (arg1));
2758
2759 case UNOP_MEMVAL_TLS:
2760 (*pos) += 3;
2761 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2762 if (noside == EVAL_SKIP)
2763 goto nosideret;
2764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2765 return value_zero (exp->elts[pc + 2].type, lval_memory);
2766 else
2767 {
2768 CORE_ADDR tls_addr;
2769
2770 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2771 value_as_address (arg1));
2772 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2773 }
2774
2775 case UNOP_PREINCREMENT:
2776 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2777 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2778 return arg1;
2779 else if (unop_user_defined_p (op, arg1))
2780 {
2781 return value_x_unop (arg1, op, noside);
2782 }
2783 else
2784 {
2785 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2786 arg2 = value_ptradd (arg1, 1);
2787 else
2788 {
2789 struct value *tmp = arg1;
2790
2791 arg2 = value_one (value_type (arg1));
2792 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2793 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2794 }
2795
2796 return value_assign (arg1, arg2);
2797 }
2798
2799 case UNOP_PREDECREMENT:
2800 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2801 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2802 return arg1;
2803 else if (unop_user_defined_p (op, arg1))
2804 {
2805 return value_x_unop (arg1, op, noside);
2806 }
2807 else
2808 {
2809 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2810 arg2 = value_ptradd (arg1, -1);
2811 else
2812 {
2813 struct value *tmp = arg1;
2814
2815 arg2 = value_one (value_type (arg1));
2816 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2817 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2818 }
2819
2820 return value_assign (arg1, arg2);
2821 }
2822
2823 case UNOP_POSTINCREMENT:
2824 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2825 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2826 return arg1;
2827 else if (unop_user_defined_p (op, arg1))
2828 {
2829 return value_x_unop (arg1, op, noside);
2830 }
2831 else
2832 {
2833 arg3 = value_non_lval (arg1);
2834
2835 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2836 arg2 = value_ptradd (arg1, 1);
2837 else
2838 {
2839 struct value *tmp = arg1;
2840
2841 arg2 = value_one (value_type (arg1));
2842 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2843 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2844 }
2845
2846 value_assign (arg1, arg2);
2847 return arg3;
2848 }
2849
2850 case UNOP_POSTDECREMENT:
2851 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2852 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2853 return arg1;
2854 else if (unop_user_defined_p (op, arg1))
2855 {
2856 return value_x_unop (arg1, op, noside);
2857 }
2858 else
2859 {
2860 arg3 = value_non_lval (arg1);
2861
2862 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2863 arg2 = value_ptradd (arg1, -1);
2864 else
2865 {
2866 struct value *tmp = arg1;
2867
2868 arg2 = value_one (value_type (arg1));
2869 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2870 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2871 }
2872
2873 value_assign (arg1, arg2);
2874 return arg3;
2875 }
2876
2877 case OP_THIS:
2878 (*pos) += 1;
2879 return value_of_this (exp->language_defn);
2880
2881 case OP_TYPE:
2882 /* The value is not supposed to be used. This is here to make it
2883 easier to accommodate expressions that contain types. */
2884 (*pos) += 2;
2885 if (noside == EVAL_SKIP)
2886 goto nosideret;
2887 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2888 {
2889 struct type *type = exp->elts[pc + 1].type;
2890
2891 /* If this is a typedef, then find its immediate target. We
2892 use check_typedef to resolve stubs, but we ignore its
2893 result because we do not want to dig past all
2894 typedefs. */
2895 check_typedef (type);
2896 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2897 type = TYPE_TARGET_TYPE (type);
2898 return allocate_value (type);
2899 }
2900 else
2901 error (_("Attempt to use a type name as an expression"));
2902
2903 case OP_TYPEOF:
2904 case OP_DECLTYPE:
2905 if (noside == EVAL_SKIP)
2906 {
2907 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2908 goto nosideret;
2909 }
2910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2911 {
2912 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2913 struct value *result;
2914
2915 result = evaluate_subexp (NULL_TYPE, exp, pos,
2916 EVAL_AVOID_SIDE_EFFECTS);
2917
2918 /* 'decltype' has special semantics for lvalues. */
2919 if (op == OP_DECLTYPE
2920 && (sub_op == BINOP_SUBSCRIPT
2921 || sub_op == STRUCTOP_MEMBER
2922 || sub_op == STRUCTOP_MPTR
2923 || sub_op == UNOP_IND
2924 || sub_op == STRUCTOP_STRUCT
2925 || sub_op == STRUCTOP_PTR
2926 || sub_op == OP_SCOPE))
2927 {
2928 struct type *type = value_type (result);
2929
2930 if (TYPE_CODE (check_typedef (type)) != TYPE_CODE_REF)
2931 {
2932 type = lookup_reference_type (type);
2933 result = allocate_value (type);
2934 }
2935 }
2936
2937 return result;
2938 }
2939 else
2940 error (_("Attempt to use a type as an expression"));
2941
2942 default:
2943 /* Removing this case and compiling with gcc -Wall reveals that
2944 a lot of cases are hitting this case. Some of these should
2945 probably be removed from expression.h; others are legitimate
2946 expressions which are (apparently) not fully implemented.
2947
2948 If there are any cases landing here which mean a user error,
2949 then they should be separate cases, with more descriptive
2950 error messages. */
2951
2952 error (_("GDB does not (yet) know how to "
2953 "evaluate that kind of expression"));
2954 }
2955
2956 nosideret:
2957 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2958 }
2959 \f
2960 /* Evaluate a subexpression of EXP, at index *POS,
2961 and return the address of that subexpression.
2962 Advance *POS over the subexpression.
2963 If the subexpression isn't an lvalue, get an error.
2964 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2965 then only the type of the result need be correct. */
2966
2967 static struct value *
2968 evaluate_subexp_for_address (struct expression *exp, int *pos,
2969 enum noside noside)
2970 {
2971 enum exp_opcode op;
2972 int pc;
2973 struct symbol *var;
2974 struct value *x;
2975 int tem;
2976
2977 pc = (*pos);
2978 op = exp->elts[pc].opcode;
2979
2980 switch (op)
2981 {
2982 case UNOP_IND:
2983 (*pos)++;
2984 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2985
2986 /* We can't optimize out "&*" if there's a user-defined operator*. */
2987 if (unop_user_defined_p (op, x))
2988 {
2989 x = value_x_unop (x, op, noside);
2990 goto default_case_after_eval;
2991 }
2992
2993 return coerce_array (x);
2994
2995 case UNOP_MEMVAL:
2996 (*pos) += 3;
2997 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2998 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2999
3000 case UNOP_MEMVAL_TYPE:
3001 {
3002 struct type *type;
3003
3004 (*pos) += 1;
3005 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3006 type = value_type (x);
3007 return value_cast (lookup_pointer_type (type),
3008 evaluate_subexp (NULL_TYPE, exp, pos, noside));
3009 }
3010
3011 case OP_VAR_VALUE:
3012 var = exp->elts[pc + 2].symbol;
3013
3014 /* C++: The "address" of a reference should yield the address
3015 * of the object pointed to. Let value_addr() deal with it. */
3016 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
3017 goto default_case;
3018
3019 (*pos) += 4;
3020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3021 {
3022 struct type *type =
3023 lookup_pointer_type (SYMBOL_TYPE (var));
3024 enum address_class sym_class = SYMBOL_CLASS (var);
3025
3026 if (sym_class == LOC_CONST
3027 || sym_class == LOC_CONST_BYTES
3028 || sym_class == LOC_REGISTER)
3029 error (_("Attempt to take address of register or constant."));
3030
3031 return
3032 value_zero (type, not_lval);
3033 }
3034 else
3035 return address_of_variable (var, exp->elts[pc + 1].block);
3036
3037 case OP_SCOPE:
3038 tem = longest_to_int (exp->elts[pc + 2].longconst);
3039 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3040 x = value_aggregate_elt (exp->elts[pc + 1].type,
3041 &exp->elts[pc + 3].string,
3042 NULL, 1, noside);
3043 if (x == NULL)
3044 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3045 return x;
3046
3047 default:
3048 default_case:
3049 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3050 default_case_after_eval:
3051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3052 {
3053 struct type *type = check_typedef (value_type (x));
3054
3055 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3056 return value_zero (lookup_pointer_type (value_type (x)),
3057 not_lval);
3058 else if (TYPE_CODE (type) == TYPE_CODE_REF)
3059 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3060 not_lval);
3061 else
3062 error (_("Attempt to take address of "
3063 "value not located in memory."));
3064 }
3065 return value_addr (x);
3066 }
3067 }
3068
3069 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3070 When used in contexts where arrays will be coerced anyway, this is
3071 equivalent to `evaluate_subexp' but much faster because it avoids
3072 actually fetching array contents (perhaps obsolete now that we have
3073 value_lazy()).
3074
3075 Note that we currently only do the coercion for C expressions, where
3076 arrays are zero based and the coercion is correct. For other languages,
3077 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3078 to decide if coercion is appropriate. */
3079
3080 struct value *
3081 evaluate_subexp_with_coercion (struct expression *exp,
3082 int *pos, enum noside noside)
3083 {
3084 enum exp_opcode op;
3085 int pc;
3086 struct value *val;
3087 struct symbol *var;
3088 struct type *type;
3089
3090 pc = (*pos);
3091 op = exp->elts[pc].opcode;
3092
3093 switch (op)
3094 {
3095 case OP_VAR_VALUE:
3096 var = exp->elts[pc + 2].symbol;
3097 type = check_typedef (SYMBOL_TYPE (var));
3098 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3099 && !TYPE_VECTOR (type)
3100 && CAST_IS_CONVERSION (exp->language_defn))
3101 {
3102 (*pos) += 4;
3103 val = address_of_variable (var, exp->elts[pc + 1].block);
3104 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3105 val);
3106 }
3107 /* FALLTHROUGH */
3108
3109 default:
3110 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3111 }
3112 }
3113
3114 /* Evaluate a subexpression of EXP, at index *POS,
3115 and return a value for the size of that subexpression.
3116 Advance *POS over the subexpression. */
3117
3118 static struct value *
3119 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3120 {
3121 /* FIXME: This should be size_t. */
3122 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3123 enum exp_opcode op;
3124 int pc;
3125 struct type *type;
3126 struct value *val;
3127
3128 pc = (*pos);
3129 op = exp->elts[pc].opcode;
3130
3131 switch (op)
3132 {
3133 /* This case is handled specially
3134 so that we avoid creating a value for the result type.
3135 If the result type is very big, it's desirable not to
3136 create a value unnecessarily. */
3137 case UNOP_IND:
3138 (*pos)++;
3139 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3140 type = check_typedef (value_type (val));
3141 if (TYPE_CODE (type) != TYPE_CODE_PTR
3142 && TYPE_CODE (type) != TYPE_CODE_REF
3143 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3144 error (_("Attempt to take contents of a non-pointer value."));
3145 type = check_typedef (TYPE_TARGET_TYPE (type));
3146 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3147
3148 case UNOP_MEMVAL:
3149 (*pos) += 3;
3150 type = check_typedef (exp->elts[pc + 1].type);
3151 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3152
3153 case UNOP_MEMVAL_TYPE:
3154 (*pos) += 1;
3155 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3156 type = check_typedef (value_type (val));
3157 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3158
3159 case OP_VAR_VALUE:
3160 (*pos) += 4;
3161 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3162 return
3163 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3164
3165 default:
3166 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3167 return value_from_longest (size_type,
3168 (LONGEST) TYPE_LENGTH (value_type (val)));
3169 }
3170 }
3171
3172 /* Parse a type expression in the string [P..P+LENGTH). */
3173
3174 struct type *
3175 parse_and_eval_type (char *p, int length)
3176 {
3177 char *tmp = (char *) alloca (length + 4);
3178 struct expression *expr;
3179
3180 tmp[0] = '(';
3181 memcpy (tmp + 1, p, length);
3182 tmp[length + 1] = ')';
3183 tmp[length + 2] = '0';
3184 tmp[length + 3] = '\0';
3185 expr = parse_expression (tmp);
3186 if (expr->elts[0].opcode != UNOP_CAST)
3187 error (_("Internal error in eval_type."));
3188 return expr->elts[1].type;
3189 }
3190
3191 int
3192 calc_f77_array_dims (struct type *array_type)
3193 {
3194 int ndimen = 1;
3195 struct type *tmp_type;
3196
3197 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3198 error (_("Can't get dimensions for a non-array type"));
3199
3200 tmp_type = array_type;
3201
3202 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3203 {
3204 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3205 ++ndimen;
3206 }
3207 return ndimen;
3208 }
This page took 0.09039 seconds and 5 git commands to generate.