* options.h (class General_options): Define
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "python/python.h"
44
45 #include "gdb_assert.h"
46
47 #include <ctype.h>
48
49 /* This is defined in valops.c */
50 extern int overload_resolution;
51
52 /* Prototypes for local functions. */
53
54 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
55
56 static struct value *evaluate_subexp_for_address (struct expression *,
57 int *, enum noside);
58
59 static char *get_label (struct expression *, int *);
60
61 static struct value *evaluate_struct_tuple (struct value *,
62 struct expression *, int *,
63 enum noside, int);
64
65 static LONGEST init_array_element (struct value *, struct value *,
66 struct expression *, int *, enum noside,
67 LONGEST, LONGEST);
68
69 struct value *
70 evaluate_subexp (struct type *expect_type, struct expression *exp,
71 int *pos, enum noside noside)
72 {
73 return (*exp->language_defn->la_exp_desc->evaluate_exp)
74 (expect_type, exp, pos, noside);
75 }
76 \f
77 /* Parse the string EXP as a C expression, evaluate it,
78 and return the result as a number. */
79
80 CORE_ADDR
81 parse_and_eval_address (char *exp)
82 {
83 struct expression *expr = parse_expression (exp);
84 CORE_ADDR addr;
85 struct cleanup *old_chain =
86 make_cleanup (free_current_contents, &expr);
87
88 addr = value_as_address (evaluate_expression (expr));
89 do_cleanups (old_chain);
90 return addr;
91 }
92
93 /* Like parse_and_eval_address but takes a pointer to a char * variable
94 and advanced that variable across the characters parsed. */
95
96 CORE_ADDR
97 parse_and_eval_address_1 (char **expptr)
98 {
99 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
100 CORE_ADDR addr;
101 struct cleanup *old_chain =
102 make_cleanup (free_current_contents, &expr);
103
104 addr = value_as_address (evaluate_expression (expr));
105 do_cleanups (old_chain);
106 return addr;
107 }
108
109 /* Like parse_and_eval_address, but treats the value of the expression
110 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
111 LONGEST
112 parse_and_eval_long (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 LONGEST retval;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 retval = value_as_long (evaluate_expression (expr));
120 do_cleanups (old_chain);
121 return (retval);
122 }
123
124 struct value *
125 parse_and_eval (char *exp)
126 {
127 struct expression *expr = parse_expression (exp);
128 struct value *val;
129 struct cleanup *old_chain =
130 make_cleanup (free_current_contents, &expr);
131
132 val = evaluate_expression (expr);
133 do_cleanups (old_chain);
134 return val;
135 }
136
137 /* Parse up to a comma (or to a closeparen)
138 in the string EXPP as an expression, evaluate it, and return the value.
139 EXPP is advanced to point to the comma. */
140
141 struct value *
142 parse_to_comma_and_eval (char **expp)
143 {
144 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
145 struct value *val;
146 struct cleanup *old_chain =
147 make_cleanup (free_current_contents, &expr);
148
149 val = evaluate_expression (expr);
150 do_cleanups (old_chain);
151 return val;
152 }
153 \f
154 /* Evaluate an expression in internal prefix form
155 such as is constructed by parse.y.
156
157 See expression.h for info on the format of an expression. */
158
159 struct value *
160 evaluate_expression (struct expression *exp)
161 {
162 int pc = 0;
163 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
164 }
165
166 /* Evaluate an expression, avoiding all memory references
167 and getting a value whose type alone is correct. */
168
169 struct value *
170 evaluate_type (struct expression *exp)
171 {
172 int pc = 0;
173 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
174 }
175
176 /* Evaluate a subexpression, avoiding all memory references and
177 getting a value whose type alone is correct. */
178
179 struct value *
180 evaluate_subexpression_type (struct expression *exp, int subexp)
181 {
182 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
183 }
184
185 /* Extract a field operation from an expression. If the subexpression
186 of EXP starting at *SUBEXP is not a structure dereference
187 operation, return NULL. Otherwise, return the name of the
188 dereferenced field, and advance *SUBEXP to point to the
189 subexpression of the left-hand-side of the dereference. This is
190 used when completing field names. */
191
192 char *
193 extract_field_op (struct expression *exp, int *subexp)
194 {
195 int tem;
196 char *result;
197 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
198 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
199 return NULL;
200 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
201 result = &exp->elts[*subexp + 2].string;
202 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
203 return result;
204 }
205
206 /* If the next expression is an OP_LABELED, skips past it,
207 returning the label. Otherwise, does nothing and returns NULL. */
208
209 static char *
210 get_label (struct expression *exp, int *pos)
211 {
212 if (exp->elts[*pos].opcode == OP_LABELED)
213 {
214 int pc = (*pos)++;
215 char *name = &exp->elts[pc + 2].string;
216 int tem = longest_to_int (exp->elts[pc + 1].longconst);
217 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
218 return name;
219 }
220 else
221 return NULL;
222 }
223
224 /* This function evaluates tuples (in (the deleted) Chill) or
225 brace-initializers (in C/C++) for structure types. */
226
227 static struct value *
228 evaluate_struct_tuple (struct value *struct_val,
229 struct expression *exp,
230 int *pos, enum noside noside, int nargs)
231 {
232 struct type *struct_type = check_typedef (value_type (struct_val));
233 struct type *substruct_type = struct_type;
234 struct type *field_type;
235 int fieldno = -1;
236 int variantno = -1;
237 int subfieldno = -1;
238 while (--nargs >= 0)
239 {
240 int pc = *pos;
241 struct value *val = NULL;
242 int nlabels = 0;
243 int bitpos, bitsize;
244 bfd_byte *addr;
245
246 /* Skip past the labels, and count them. */
247 while (get_label (exp, pos) != NULL)
248 nlabels++;
249
250 do
251 {
252 char *label = get_label (exp, &pc);
253 if (label)
254 {
255 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
256 fieldno++)
257 {
258 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
259 if (field_name != NULL && strcmp (field_name, label) == 0)
260 {
261 variantno = -1;
262 subfieldno = fieldno;
263 substruct_type = struct_type;
264 goto found;
265 }
266 }
267 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
268 fieldno++)
269 {
270 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
271 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
272 if ((field_name == 0 || *field_name == '\0')
273 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
274 {
275 variantno = 0;
276 for (; variantno < TYPE_NFIELDS (field_type);
277 variantno++)
278 {
279 substruct_type
280 = TYPE_FIELD_TYPE (field_type, variantno);
281 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
282 {
283 for (subfieldno = 0;
284 subfieldno < TYPE_NFIELDS (substruct_type);
285 subfieldno++)
286 {
287 if (strcmp(TYPE_FIELD_NAME (substruct_type,
288 subfieldno),
289 label) == 0)
290 {
291 goto found;
292 }
293 }
294 }
295 }
296 }
297 }
298 error (_("there is no field named %s"), label);
299 found:
300 ;
301 }
302 else
303 {
304 /* Unlabelled tuple element - go to next field. */
305 if (variantno >= 0)
306 {
307 subfieldno++;
308 if (subfieldno >= TYPE_NFIELDS (substruct_type))
309 {
310 variantno = -1;
311 substruct_type = struct_type;
312 }
313 }
314 if (variantno < 0)
315 {
316 fieldno++;
317 /* Skip static fields. */
318 while (fieldno < TYPE_NFIELDS (struct_type)
319 && field_is_static (&TYPE_FIELD (struct_type,
320 fieldno)))
321 fieldno++;
322 subfieldno = fieldno;
323 if (fieldno >= TYPE_NFIELDS (struct_type))
324 error (_("too many initializers"));
325 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
326 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
327 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
328 error (_("don't know which variant you want to set"));
329 }
330 }
331
332 /* Here, struct_type is the type of the inner struct,
333 while substruct_type is the type of the inner struct.
334 These are the same for normal structures, but a variant struct
335 contains anonymous union fields that contain substruct fields.
336 The value fieldno is the index of the top-level (normal or
337 anonymous union) field in struct_field, while the value
338 subfieldno is the index of the actual real (named inner) field
339 in substruct_type. */
340
341 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
342 if (val == 0)
343 val = evaluate_subexp (field_type, exp, pos, noside);
344
345 /* Now actually set the field in struct_val. */
346
347 /* Assign val to field fieldno. */
348 if (value_type (val) != field_type)
349 val = value_cast (field_type, val);
350
351 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
352 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
353 if (variantno >= 0)
354 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
355 addr = value_contents_writeable (struct_val) + bitpos / 8;
356 if (bitsize)
357 modify_field (struct_type, addr,
358 value_as_long (val), bitpos % 8, bitsize);
359 else
360 memcpy (addr, value_contents (val),
361 TYPE_LENGTH (value_type (val)));
362 }
363 while (--nlabels > 0);
364 }
365 return struct_val;
366 }
367
368 /* Recursive helper function for setting elements of array tuples for
369 (the deleted) Chill. The target is ARRAY (which has bounds
370 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
371 and NOSIDE are as usual. Evaluates index expresions and sets the
372 specified element(s) of ARRAY to ELEMENT. Returns last index
373 value. */
374
375 static LONGEST
376 init_array_element (struct value *array, struct value *element,
377 struct expression *exp, int *pos,
378 enum noside noside, LONGEST low_bound, LONGEST high_bound)
379 {
380 LONGEST index;
381 int element_size = TYPE_LENGTH (value_type (element));
382 if (exp->elts[*pos].opcode == BINOP_COMMA)
383 {
384 (*pos)++;
385 init_array_element (array, element, exp, pos, noside,
386 low_bound, high_bound);
387 return init_array_element (array, element,
388 exp, pos, noside, low_bound, high_bound);
389 }
390 else if (exp->elts[*pos].opcode == BINOP_RANGE)
391 {
392 LONGEST low, high;
393 (*pos)++;
394 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
395 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
396 if (low < low_bound || high > high_bound)
397 error (_("tuple range index out of range"));
398 for (index = low; index <= high; index++)
399 {
400 memcpy (value_contents_raw (array)
401 + (index - low_bound) * element_size,
402 value_contents (element), element_size);
403 }
404 }
405 else
406 {
407 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
408 if (index < low_bound || index > high_bound)
409 error (_("tuple index out of range"));
410 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
411 value_contents (element), element_size);
412 }
413 return index;
414 }
415
416 static struct value *
417 value_f90_subarray (struct value *array,
418 struct expression *exp, int *pos, enum noside noside)
419 {
420 int pc = (*pos) + 1;
421 LONGEST low_bound, high_bound;
422 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
423 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
424
425 *pos += 3;
426
427 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
428 low_bound = TYPE_LOW_BOUND (range);
429 else
430 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
431
432 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
433 high_bound = TYPE_HIGH_BOUND (range);
434 else
435 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
436
437 return value_slice (array, low_bound, high_bound - low_bound + 1);
438 }
439
440
441 /* Promote value ARG1 as appropriate before performing a unary operation
442 on this argument.
443 If the result is not appropriate for any particular language then it
444 needs to patch this function. */
445
446 void
447 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
448 struct value **arg1)
449 {
450 struct type *type1;
451
452 *arg1 = coerce_ref (*arg1);
453 type1 = check_typedef (value_type (*arg1));
454
455 if (is_integral_type (type1))
456 {
457 switch (language->la_language)
458 {
459 default:
460 /* Perform integral promotion for ANSI C/C++.
461 If not appropropriate for any particular language
462 it needs to modify this function. */
463 {
464 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
465 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
466 *arg1 = value_cast (builtin_int, *arg1);
467 }
468 break;
469 }
470 }
471 }
472
473 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
474 operation on those two operands.
475 If the result is not appropriate for any particular language then it
476 needs to patch this function. */
477
478 void
479 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
480 struct value **arg1, struct value **arg2)
481 {
482 struct type *promoted_type = NULL;
483 struct type *type1;
484 struct type *type2;
485
486 *arg1 = coerce_ref (*arg1);
487 *arg2 = coerce_ref (*arg2);
488
489 type1 = check_typedef (value_type (*arg1));
490 type2 = check_typedef (value_type (*arg2));
491
492 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
493 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
494 && !is_integral_type (type1))
495 || (TYPE_CODE (type2) != TYPE_CODE_FLT
496 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
497 && !is_integral_type (type2)))
498 return;
499
500 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
501 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
502 {
503 /* No promotion required. */
504 }
505 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
506 || TYPE_CODE (type2) == TYPE_CODE_FLT)
507 {
508 switch (language->la_language)
509 {
510 case language_c:
511 case language_cplus:
512 case language_asm:
513 case language_objc:
514 /* No promotion required. */
515 break;
516
517 default:
518 /* For other languages the result type is unchanged from gdb
519 version 6.7 for backward compatibility.
520 If either arg was long double, make sure that value is also long
521 double. Otherwise use double. */
522 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
523 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
524 promoted_type = builtin_type (gdbarch)->builtin_long_double;
525 else
526 promoted_type = builtin_type (gdbarch)->builtin_double;
527 break;
528 }
529 }
530 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
531 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
532 {
533 /* No promotion required. */
534 }
535 else
536 /* Integral operations here. */
537 /* FIXME: Also mixed integral/booleans, with result an integer. */
538 {
539 const struct builtin_type *builtin = builtin_type (gdbarch);
540 unsigned int promoted_len1 = TYPE_LENGTH (type1);
541 unsigned int promoted_len2 = TYPE_LENGTH (type2);
542 int is_unsigned1 = TYPE_UNSIGNED (type1);
543 int is_unsigned2 = TYPE_UNSIGNED (type2);
544 unsigned int result_len;
545 int unsigned_operation;
546
547 /* Determine type length and signedness after promotion for
548 both operands. */
549 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
550 {
551 is_unsigned1 = 0;
552 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
553 }
554 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
555 {
556 is_unsigned2 = 0;
557 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
558 }
559
560 if (promoted_len1 > promoted_len2)
561 {
562 unsigned_operation = is_unsigned1;
563 result_len = promoted_len1;
564 }
565 else if (promoted_len2 > promoted_len1)
566 {
567 unsigned_operation = is_unsigned2;
568 result_len = promoted_len2;
569 }
570 else
571 {
572 unsigned_operation = is_unsigned1 || is_unsigned2;
573 result_len = promoted_len1;
574 }
575
576 switch (language->la_language)
577 {
578 case language_c:
579 case language_cplus:
580 case language_asm:
581 case language_objc:
582 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
583 {
584 promoted_type = (unsigned_operation
585 ? builtin->builtin_unsigned_int
586 : builtin->builtin_int);
587 }
588 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
589 {
590 promoted_type = (unsigned_operation
591 ? builtin->builtin_unsigned_long
592 : builtin->builtin_long);
593 }
594 else
595 {
596 promoted_type = (unsigned_operation
597 ? builtin->builtin_unsigned_long_long
598 : builtin->builtin_long_long);
599 }
600 break;
601
602 default:
603 /* For other languages the result type is unchanged from gdb
604 version 6.7 for backward compatibility.
605 If either arg was long long, make sure that value is also long
606 long. Otherwise use long. */
607 if (unsigned_operation)
608 {
609 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
610 promoted_type = builtin->builtin_unsigned_long_long;
611 else
612 promoted_type = builtin->builtin_unsigned_long;
613 }
614 else
615 {
616 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
617 promoted_type = builtin->builtin_long_long;
618 else
619 promoted_type = builtin->builtin_long;
620 }
621 break;
622 }
623 }
624
625 if (promoted_type)
626 {
627 /* Promote both operands to common type. */
628 *arg1 = value_cast (promoted_type, *arg1);
629 *arg2 = value_cast (promoted_type, *arg2);
630 }
631 }
632
633 static int
634 ptrmath_type_p (struct type *type)
635 {
636 type = check_typedef (type);
637 if (TYPE_CODE (type) == TYPE_CODE_REF)
638 type = TYPE_TARGET_TYPE (type);
639
640 switch (TYPE_CODE (type))
641 {
642 case TYPE_CODE_PTR:
643 case TYPE_CODE_FUNC:
644 return 1;
645
646 case TYPE_CODE_ARRAY:
647 return current_language->c_style_arrays;
648
649 default:
650 return 0;
651 }
652 }
653
654 struct value *
655 evaluate_subexp_standard (struct type *expect_type,
656 struct expression *exp, int *pos,
657 enum noside noside)
658 {
659 enum exp_opcode op;
660 int tem, tem2, tem3;
661 int pc, pc2 = 0, oldpos;
662 struct value *arg1 = NULL;
663 struct value *arg2 = NULL;
664 struct value *arg3;
665 struct type *type;
666 int nargs;
667 struct value **argvec;
668 int upper, lower, retcode;
669 int code;
670 int ix;
671 long mem_offset;
672 struct type **arg_types;
673 int save_pos1;
674
675 pc = (*pos)++;
676 op = exp->elts[pc].opcode;
677
678 switch (op)
679 {
680 case OP_SCOPE:
681 tem = longest_to_int (exp->elts[pc + 2].longconst);
682 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
683 if (noside == EVAL_SKIP)
684 goto nosideret;
685 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
686 &exp->elts[pc + 3].string,
687 0, noside);
688 if (arg1 == NULL)
689 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
690 return arg1;
691
692 case OP_LONG:
693 (*pos) += 3;
694 return value_from_longest (exp->elts[pc + 1].type,
695 exp->elts[pc + 2].longconst);
696
697 case OP_DOUBLE:
698 (*pos) += 3;
699 return value_from_double (exp->elts[pc + 1].type,
700 exp->elts[pc + 2].doubleconst);
701
702 case OP_DECFLOAT:
703 (*pos) += 3;
704 return value_from_decfloat (exp->elts[pc + 1].type,
705 exp->elts[pc + 2].decfloatconst);
706
707 case OP_VAR_VALUE:
708 (*pos) += 3;
709 if (noside == EVAL_SKIP)
710 goto nosideret;
711
712 /* JYG: We used to just return value_zero of the symbol type
713 if we're asked to avoid side effects. Otherwise we return
714 value_of_variable (...). However I'm not sure if
715 value_of_variable () has any side effect.
716 We need a full value object returned here for whatis_exp ()
717 to call evaluate_type () and then pass the full value to
718 value_rtti_target_type () if we are dealing with a pointer
719 or reference to a base class and print object is on. */
720
721 {
722 volatile struct gdb_exception except;
723 struct value *ret = NULL;
724
725 TRY_CATCH (except, RETURN_MASK_ERROR)
726 {
727 ret = value_of_variable (exp->elts[pc + 2].symbol,
728 exp->elts[pc + 1].block);
729 }
730
731 if (except.reason < 0)
732 {
733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
734 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
735 else
736 throw_exception (except);
737 }
738
739 return ret;
740 }
741
742 case OP_LAST:
743 (*pos) += 2;
744 return
745 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
746
747 case OP_REGISTER:
748 {
749 const char *name = &exp->elts[pc + 2].string;
750 int regno;
751 struct value *val;
752
753 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
754 regno = user_reg_map_name_to_regnum (exp->gdbarch,
755 name, strlen (name));
756 if (regno == -1)
757 error (_("Register $%s not available."), name);
758
759 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
760 a value with the appropriate register type. Unfortunately,
761 we don't have easy access to the type of user registers.
762 So for these registers, we fetch the register value regardless
763 of the evaluation mode. */
764 if (noside == EVAL_AVOID_SIDE_EFFECTS
765 && regno < gdbarch_num_regs (exp->gdbarch)
766 + gdbarch_num_pseudo_regs (exp->gdbarch))
767 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
768 else
769 val = value_of_register (regno, get_selected_frame (NULL));
770 if (val == NULL)
771 error (_("Value of register %s not available."), name);
772 else
773 return val;
774 }
775 case OP_BOOL:
776 (*pos) += 2;
777 type = language_bool_type (exp->language_defn, exp->gdbarch);
778 return value_from_longest (type, exp->elts[pc + 1].longconst);
779
780 case OP_INTERNALVAR:
781 (*pos) += 2;
782 return value_of_internalvar (exp->gdbarch,
783 exp->elts[pc + 1].internalvar);
784
785 case OP_STRING:
786 tem = longest_to_int (exp->elts[pc + 1].longconst);
787 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
788 if (noside == EVAL_SKIP)
789 goto nosideret;
790 type = language_string_char_type (exp->language_defn, exp->gdbarch);
791 return value_string (&exp->elts[pc + 2].string, tem, type);
792
793 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
794 tem = longest_to_int (exp->elts[pc + 1].longconst);
795 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
796 if (noside == EVAL_SKIP)
797 {
798 goto nosideret;
799 }
800 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
801
802 case OP_BITSTRING:
803 tem = longest_to_int (exp->elts[pc + 1].longconst);
804 (*pos)
805 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
806 if (noside == EVAL_SKIP)
807 goto nosideret;
808 return value_bitstring (&exp->elts[pc + 2].string, tem,
809 builtin_type (exp->gdbarch)->builtin_int);
810 break;
811
812 case OP_ARRAY:
813 (*pos) += 3;
814 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
815 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
816 nargs = tem3 - tem2 + 1;
817 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
818
819 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
820 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
821 {
822 struct value *rec = allocate_value (expect_type);
823 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
824 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
825 }
826
827 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
828 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
829 {
830 struct type *range_type = TYPE_INDEX_TYPE (type);
831 struct type *element_type = TYPE_TARGET_TYPE (type);
832 struct value *array = allocate_value (expect_type);
833 int element_size = TYPE_LENGTH (check_typedef (element_type));
834 LONGEST low_bound, high_bound, index;
835 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
836 {
837 low_bound = 0;
838 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
839 }
840 index = low_bound;
841 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
842 for (tem = nargs; --nargs >= 0;)
843 {
844 struct value *element;
845 int index_pc = 0;
846 if (exp->elts[*pos].opcode == BINOP_RANGE)
847 {
848 index_pc = ++(*pos);
849 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
850 }
851 element = evaluate_subexp (element_type, exp, pos, noside);
852 if (value_type (element) != element_type)
853 element = value_cast (element_type, element);
854 if (index_pc)
855 {
856 int continue_pc = *pos;
857 *pos = index_pc;
858 index = init_array_element (array, element, exp, pos, noside,
859 low_bound, high_bound);
860 *pos = continue_pc;
861 }
862 else
863 {
864 if (index > high_bound)
865 /* to avoid memory corruption */
866 error (_("Too many array elements"));
867 memcpy (value_contents_raw (array)
868 + (index - low_bound) * element_size,
869 value_contents (element),
870 element_size);
871 }
872 index++;
873 }
874 return array;
875 }
876
877 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
878 && TYPE_CODE (type) == TYPE_CODE_SET)
879 {
880 struct value *set = allocate_value (expect_type);
881 gdb_byte *valaddr = value_contents_raw (set);
882 struct type *element_type = TYPE_INDEX_TYPE (type);
883 struct type *check_type = element_type;
884 LONGEST low_bound, high_bound;
885
886 /* get targettype of elementtype */
887 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE ||
888 TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
889 check_type = TYPE_TARGET_TYPE (check_type);
890
891 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
892 error (_("(power)set type with unknown size"));
893 memset (valaddr, '\0', TYPE_LENGTH (type));
894 for (tem = 0; tem < nargs; tem++)
895 {
896 LONGEST range_low, range_high;
897 struct type *range_low_type, *range_high_type;
898 struct value *elem_val;
899 if (exp->elts[*pos].opcode == BINOP_RANGE)
900 {
901 (*pos)++;
902 elem_val = evaluate_subexp (element_type, exp, pos, noside);
903 range_low_type = value_type (elem_val);
904 range_low = value_as_long (elem_val);
905 elem_val = evaluate_subexp (element_type, exp, pos, noside);
906 range_high_type = value_type (elem_val);
907 range_high = value_as_long (elem_val);
908 }
909 else
910 {
911 elem_val = evaluate_subexp (element_type, exp, pos, noside);
912 range_low_type = range_high_type = value_type (elem_val);
913 range_low = range_high = value_as_long (elem_val);
914 }
915 /* check types of elements to avoid mixture of elements from
916 different types. Also check if type of element is "compatible"
917 with element type of powerset */
918 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
919 range_low_type = TYPE_TARGET_TYPE (range_low_type);
920 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
921 range_high_type = TYPE_TARGET_TYPE (range_high_type);
922 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type)) ||
923 (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM &&
924 (range_low_type != range_high_type)))
925 /* different element modes */
926 error (_("POWERSET tuple elements of different mode"));
927 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type)) ||
928 (TYPE_CODE (check_type) == TYPE_CODE_ENUM &&
929 range_low_type != check_type))
930 error (_("incompatible POWERSET tuple elements"));
931 if (range_low > range_high)
932 {
933 warning (_("empty POWERSET tuple range"));
934 continue;
935 }
936 if (range_low < low_bound || range_high > high_bound)
937 error (_("POWERSET tuple element out of range"));
938 range_low -= low_bound;
939 range_high -= low_bound;
940 for (; range_low <= range_high; range_low++)
941 {
942 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
943 if (gdbarch_bits_big_endian (exp->gdbarch))
944 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
945 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
946 |= 1 << bit_index;
947 }
948 }
949 return set;
950 }
951
952 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
953 for (tem = 0; tem < nargs; tem++)
954 {
955 /* Ensure that array expressions are coerced into pointer objects. */
956 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
957 }
958 if (noside == EVAL_SKIP)
959 goto nosideret;
960 return value_array (tem2, tem3, argvec);
961
962 case TERNOP_SLICE:
963 {
964 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
965 int lowbound
966 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
967 int upper
968 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
969 if (noside == EVAL_SKIP)
970 goto nosideret;
971 return value_slice (array, lowbound, upper - lowbound + 1);
972 }
973
974 case TERNOP_SLICE_COUNT:
975 {
976 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
977 int lowbound
978 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
979 int length
980 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
981 return value_slice (array, lowbound, length);
982 }
983
984 case TERNOP_COND:
985 /* Skip third and second args to evaluate the first one. */
986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
987 if (value_logical_not (arg1))
988 {
989 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
990 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
991 }
992 else
993 {
994 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
995 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
996 return arg2;
997 }
998
999 case OP_OBJC_SELECTOR:
1000 { /* Objective C @selector operator. */
1001 char *sel = &exp->elts[pc + 2].string;
1002 int len = longest_to_int (exp->elts[pc + 1].longconst);
1003 struct type *selector_type;
1004
1005 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1006 if (noside == EVAL_SKIP)
1007 goto nosideret;
1008
1009 if (sel[len] != 0)
1010 sel[len] = 0; /* Make sure it's terminated. */
1011
1012 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1013 return value_from_longest (selector_type,
1014 lookup_child_selector (exp->gdbarch, sel));
1015 }
1016
1017 case OP_OBJC_MSGCALL:
1018 { /* Objective C message (method) call. */
1019
1020 CORE_ADDR responds_selector = 0;
1021 CORE_ADDR method_selector = 0;
1022
1023 CORE_ADDR selector = 0;
1024
1025 int struct_return = 0;
1026 int sub_no_side = 0;
1027
1028 struct value *msg_send = NULL;
1029 struct value *msg_send_stret = NULL;
1030 int gnu_runtime = 0;
1031
1032 struct value *target = NULL;
1033 struct value *method = NULL;
1034 struct value *called_method = NULL;
1035
1036 struct type *selector_type = NULL;
1037 struct type *long_type;
1038
1039 struct value *ret = NULL;
1040 CORE_ADDR addr = 0;
1041
1042 selector = exp->elts[pc + 1].longconst;
1043 nargs = exp->elts[pc + 2].longconst;
1044 argvec = (struct value **) alloca (sizeof (struct value *)
1045 * (nargs + 5));
1046
1047 (*pos) += 3;
1048
1049 long_type = builtin_type (exp->gdbarch)->builtin_long;
1050 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1051
1052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1053 sub_no_side = EVAL_NORMAL;
1054 else
1055 sub_no_side = noside;
1056
1057 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1058
1059 if (value_as_long (target) == 0)
1060 return value_from_longest (long_type, 0);
1061
1062 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1063 gnu_runtime = 1;
1064
1065 /* Find the method dispatch (Apple runtime) or method lookup
1066 (GNU runtime) function for Objective-C. These will be used
1067 to lookup the symbol information for the method. If we
1068 can't find any symbol information, then we'll use these to
1069 call the method, otherwise we can call the method
1070 directly. The msg_send_stret function is used in the special
1071 case of a method that returns a structure (Apple runtime
1072 only). */
1073 if (gnu_runtime)
1074 {
1075 struct type *type = selector_type;
1076 type = lookup_function_type (type);
1077 type = lookup_pointer_type (type);
1078 type = lookup_function_type (type);
1079 type = lookup_pointer_type (type);
1080
1081 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1082 msg_send_stret
1083 = find_function_in_inferior ("objc_msg_lookup", NULL);
1084
1085 msg_send = value_from_pointer (type, value_as_address (msg_send));
1086 msg_send_stret = value_from_pointer (type,
1087 value_as_address (msg_send_stret));
1088 }
1089 else
1090 {
1091 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1092 /* Special dispatcher for methods returning structs */
1093 msg_send_stret
1094 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1095 }
1096
1097 /* Verify the target object responds to this method. The
1098 standard top-level 'Object' class uses a different name for
1099 the verification method than the non-standard, but more
1100 often used, 'NSObject' class. Make sure we check for both. */
1101
1102 responds_selector
1103 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1104 if (responds_selector == 0)
1105 responds_selector
1106 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1107
1108 if (responds_selector == 0)
1109 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1110
1111 method_selector
1112 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1113 if (method_selector == 0)
1114 method_selector
1115 = lookup_child_selector (exp->gdbarch, "methodFor:");
1116
1117 if (method_selector == 0)
1118 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1119
1120 /* Call the verification method, to make sure that the target
1121 class implements the desired method. */
1122
1123 argvec[0] = msg_send;
1124 argvec[1] = target;
1125 argvec[2] = value_from_longest (long_type, responds_selector);
1126 argvec[3] = value_from_longest (long_type, selector);
1127 argvec[4] = 0;
1128
1129 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1130 if (gnu_runtime)
1131 {
1132 /* Function objc_msg_lookup returns a pointer. */
1133 argvec[0] = ret;
1134 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1135 }
1136 if (value_as_long (ret) == 0)
1137 error (_("Target does not respond to this message selector."));
1138
1139 /* Call "methodForSelector:" method, to get the address of a
1140 function method that implements this selector for this
1141 class. If we can find a symbol at that address, then we
1142 know the return type, parameter types etc. (that's a good
1143 thing). */
1144
1145 argvec[0] = msg_send;
1146 argvec[1] = target;
1147 argvec[2] = value_from_longest (long_type, method_selector);
1148 argvec[3] = value_from_longest (long_type, selector);
1149 argvec[4] = 0;
1150
1151 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1152 if (gnu_runtime)
1153 {
1154 argvec[0] = ret;
1155 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1156 }
1157
1158 /* ret should now be the selector. */
1159
1160 addr = value_as_long (ret);
1161 if (addr)
1162 {
1163 struct symbol *sym = NULL;
1164
1165 /* The address might point to a function descriptor;
1166 resolve it to the actual code address instead. */
1167 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1168 &current_target);
1169
1170 /* Is it a high_level symbol? */
1171 sym = find_pc_function (addr);
1172 if (sym != NULL)
1173 method = value_of_variable (sym, 0);
1174 }
1175
1176 /* If we found a method with symbol information, check to see
1177 if it returns a struct. Otherwise assume it doesn't. */
1178
1179 if (method)
1180 {
1181 struct block *b;
1182 CORE_ADDR funaddr;
1183 struct type *val_type;
1184
1185 funaddr = find_function_addr (method, &val_type);
1186
1187 b = block_for_pc (funaddr);
1188
1189 CHECK_TYPEDEF (val_type);
1190
1191 if ((val_type == NULL)
1192 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1193 {
1194 if (expect_type != NULL)
1195 val_type = expect_type;
1196 }
1197
1198 struct_return = using_struct_return (exp->gdbarch,
1199 value_type (method), val_type);
1200 }
1201 else if (expect_type != NULL)
1202 {
1203 struct_return = using_struct_return (exp->gdbarch, NULL,
1204 check_typedef (expect_type));
1205 }
1206
1207 /* Found a function symbol. Now we will substitute its
1208 value in place of the message dispatcher (obj_msgSend),
1209 so that we call the method directly instead of thru
1210 the dispatcher. The main reason for doing this is that
1211 we can now evaluate the return value and parameter values
1212 according to their known data types, in case we need to
1213 do things like promotion, dereferencing, special handling
1214 of structs and doubles, etc.
1215
1216 We want to use the type signature of 'method', but still
1217 jump to objc_msgSend() or objc_msgSend_stret() to better
1218 mimic the behavior of the runtime. */
1219
1220 if (method)
1221 {
1222 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1223 error (_("method address has symbol information with non-function type; skipping"));
1224
1225 /* Create a function pointer of the appropriate type, and replace
1226 its value with the value of msg_send or msg_send_stret. We must
1227 use a pointer here, as msg_send and msg_send_stret are of pointer
1228 type, and the representation may be different on systems that use
1229 function descriptors. */
1230 if (struct_return)
1231 called_method
1232 = value_from_pointer (lookup_pointer_type (value_type (method)),
1233 value_as_address (msg_send_stret));
1234 else
1235 called_method
1236 = value_from_pointer (lookup_pointer_type (value_type (method)),
1237 value_as_address (msg_send));
1238 }
1239 else
1240 {
1241 if (struct_return)
1242 called_method = msg_send_stret;
1243 else
1244 called_method = msg_send;
1245 }
1246
1247 if (noside == EVAL_SKIP)
1248 goto nosideret;
1249
1250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1251 {
1252 /* If the return type doesn't look like a function type,
1253 call an error. This can happen if somebody tries to
1254 turn a variable into a function call. This is here
1255 because people often want to call, eg, strcmp, which
1256 gdb doesn't know is a function. If gdb isn't asked for
1257 it's opinion (ie. through "whatis"), it won't offer
1258 it. */
1259
1260 struct type *type = value_type (called_method);
1261 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1262 type = TYPE_TARGET_TYPE (type);
1263 type = TYPE_TARGET_TYPE (type);
1264
1265 if (type)
1266 {
1267 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1268 return allocate_value (expect_type);
1269 else
1270 return allocate_value (type);
1271 }
1272 else
1273 error (_("Expression of type other than \"method returning ...\" used as a method"));
1274 }
1275
1276 /* Now depending on whether we found a symbol for the method,
1277 we will either call the runtime dispatcher or the method
1278 directly. */
1279
1280 argvec[0] = called_method;
1281 argvec[1] = target;
1282 argvec[2] = value_from_longest (long_type, selector);
1283 /* User-supplied arguments. */
1284 for (tem = 0; tem < nargs; tem++)
1285 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1286 argvec[tem + 3] = 0;
1287
1288 if (gnu_runtime && (method != NULL))
1289 {
1290 /* Function objc_msg_lookup returns a pointer. */
1291 deprecated_set_value_type (argvec[0],
1292 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1293 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1294 }
1295
1296 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1297 return ret;
1298 }
1299 break;
1300
1301 case OP_FUNCALL:
1302 (*pos) += 2;
1303 op = exp->elts[*pos].opcode;
1304 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1305 /* Allocate arg vector, including space for the function to be
1306 called in argvec[0] and a terminating NULL */
1307 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1308 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1309 {
1310 nargs++;
1311 /* First, evaluate the structure into arg2 */
1312 pc2 = (*pos)++;
1313
1314 if (noside == EVAL_SKIP)
1315 goto nosideret;
1316
1317 if (op == STRUCTOP_MEMBER)
1318 {
1319 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1320 }
1321 else
1322 {
1323 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1324 }
1325
1326 /* If the function is a virtual function, then the
1327 aggregate value (providing the structure) plays
1328 its part by providing the vtable. Otherwise,
1329 it is just along for the ride: call the function
1330 directly. */
1331
1332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1333
1334 if (TYPE_CODE (check_typedef (value_type (arg1)))
1335 != TYPE_CODE_METHODPTR)
1336 error (_("Non-pointer-to-member value used in pointer-to-member "
1337 "construct"));
1338
1339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1340 {
1341 struct type *method_type = check_typedef (value_type (arg1));
1342 arg1 = value_zero (method_type, not_lval);
1343 }
1344 else
1345 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1346
1347 /* Now, say which argument to start evaluating from */
1348 tem = 2;
1349 }
1350 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1351 {
1352 /* Hair for method invocations */
1353 int tem2;
1354
1355 nargs++;
1356 /* First, evaluate the structure into arg2 */
1357 pc2 = (*pos)++;
1358 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1359 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1360 if (noside == EVAL_SKIP)
1361 goto nosideret;
1362
1363 if (op == STRUCTOP_STRUCT)
1364 {
1365 /* If v is a variable in a register, and the user types
1366 v.method (), this will produce an error, because v has
1367 no address.
1368
1369 A possible way around this would be to allocate a
1370 copy of the variable on the stack, copy in the
1371 contents, call the function, and copy out the
1372 contents. I.e. convert this from call by reference
1373 to call by copy-return (or whatever it's called).
1374 However, this does not work because it is not the
1375 same: the method being called could stash a copy of
1376 the address, and then future uses through that address
1377 (after the method returns) would be expected to
1378 use the variable itself, not some copy of it. */
1379 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1380 }
1381 else
1382 {
1383 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1384 }
1385 /* Now, say which argument to start evaluating from */
1386 tem = 2;
1387 }
1388 else
1389 {
1390 /* Non-method function call */
1391 save_pos1 = *pos;
1392 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1393 tem = 1;
1394 type = value_type (argvec[0]);
1395 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1396 type = TYPE_TARGET_TYPE (type);
1397 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1398 {
1399 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1400 {
1401 /* pai: FIXME This seems to be coercing arguments before
1402 * overload resolution has been done! */
1403 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1404 exp, pos, noside);
1405 }
1406 }
1407 }
1408
1409 /* Evaluate arguments */
1410 for (; tem <= nargs; tem++)
1411 {
1412 /* Ensure that array expressions are coerced into pointer objects. */
1413 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1414 }
1415
1416 /* signal end of arglist */
1417 argvec[tem] = 0;
1418
1419 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1420 {
1421 int static_memfuncp;
1422 char tstr[256];
1423
1424 /* Method invocation : stuff "this" as first parameter */
1425 argvec[1] = arg2;
1426 /* Name of method from expression */
1427 strcpy (tstr, &exp->elts[pc2 + 2].string);
1428
1429 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1430 {
1431 /* Language is C++, do some overload resolution before evaluation */
1432 struct value *valp = NULL;
1433
1434 /* Prepare list of argument types for overload resolution */
1435 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1436 for (ix = 1; ix <= nargs; ix++)
1437 arg_types[ix - 1] = value_type (argvec[ix]);
1438
1439 (void) find_overload_match (arg_types, nargs, tstr,
1440 1 /* method */ , 0 /* strict match */ ,
1441 &arg2 /* the object */ , NULL,
1442 &valp, NULL, &static_memfuncp);
1443
1444
1445 argvec[1] = arg2; /* the ``this'' pointer */
1446 argvec[0] = valp; /* use the method found after overload resolution */
1447 }
1448 else
1449 /* Non-C++ case -- or no overload resolution */
1450 {
1451 struct value *temp = arg2;
1452 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1453 &static_memfuncp,
1454 op == STRUCTOP_STRUCT
1455 ? "structure" : "structure pointer");
1456 /* value_struct_elt updates temp with the correct value
1457 of the ``this'' pointer if necessary, so modify argvec[1] to
1458 reflect any ``this'' changes. */
1459 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1460 value_address (temp)
1461 + value_embedded_offset (temp));
1462 argvec[1] = arg2; /* the ``this'' pointer */
1463 }
1464
1465 if (static_memfuncp)
1466 {
1467 argvec[1] = argvec[0];
1468 nargs--;
1469 argvec++;
1470 }
1471 }
1472 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1473 {
1474 argvec[1] = arg2;
1475 argvec[0] = arg1;
1476 }
1477 else if (op == OP_VAR_VALUE)
1478 {
1479 /* Non-member function being called */
1480 /* fn: This can only be done for C++ functions. A C-style function
1481 in a C++ program, for instance, does not have the fields that
1482 are expected here */
1483
1484 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1485 {
1486 /* Language is C++, do some overload resolution before evaluation */
1487 struct symbol *symp;
1488
1489 /* Prepare list of argument types for overload resolution */
1490 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1491 for (ix = 1; ix <= nargs; ix++)
1492 arg_types[ix - 1] = value_type (argvec[ix]);
1493
1494 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1495 0 /* not method */ , 0 /* strict match */ ,
1496 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1497 NULL, &symp, NULL);
1498
1499 /* Now fix the expression being evaluated */
1500 exp->elts[save_pos1+2].symbol = symp;
1501 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1502 }
1503 else
1504 {
1505 /* Not C++, or no overload resolution allowed */
1506 /* nothing to be done; argvec already correctly set up */
1507 }
1508 }
1509 else
1510 {
1511 /* It is probably a C-style function */
1512 /* nothing to be done; argvec already correctly set up */
1513 }
1514
1515 do_call_it:
1516
1517 if (noside == EVAL_SKIP)
1518 goto nosideret;
1519 if (argvec[0] == NULL)
1520 error (_("Cannot evaluate function -- may be inlined"));
1521 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1522 {
1523 /* If the return type doesn't look like a function type, call an
1524 error. This can happen if somebody tries to turn a variable into
1525 a function call. This is here because people often want to
1526 call, eg, strcmp, which gdb doesn't know is a function. If
1527 gdb isn't asked for it's opinion (ie. through "whatis"),
1528 it won't offer it. */
1529
1530 struct type *ftype = value_type (argvec[0]);
1531
1532 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1533 {
1534 /* We don't know anything about what the internal
1535 function might return, but we have to return
1536 something. */
1537 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1538 not_lval);
1539 }
1540 else if (TYPE_TARGET_TYPE (ftype))
1541 return allocate_value (TYPE_TARGET_TYPE (ftype));
1542 else
1543 error (_("Expression of type other than \"Function returning ...\" used as function"));
1544 }
1545 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1546 return call_internal_function (exp->gdbarch, exp->language_defn,
1547 argvec[0], nargs, argvec + 1);
1548
1549 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1550 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1551
1552 case OP_F77_UNDETERMINED_ARGLIST:
1553
1554 /* Remember that in F77, functions, substring ops and
1555 array subscript operations cannot be disambiguated
1556 at parse time. We have made all array subscript operations,
1557 substring operations as well as function calls come here
1558 and we now have to discover what the heck this thing actually was.
1559 If it is a function, we process just as if we got an OP_FUNCALL. */
1560
1561 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1562 (*pos) += 2;
1563
1564 /* First determine the type code we are dealing with. */
1565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1566 type = check_typedef (value_type (arg1));
1567 code = TYPE_CODE (type);
1568
1569 if (code == TYPE_CODE_PTR)
1570 {
1571 /* Fortran always passes variable to subroutines as pointer.
1572 So we need to look into its target type to see if it is
1573 array, string or function. If it is, we need to switch
1574 to the target value the original one points to. */
1575 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1576
1577 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1578 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1579 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1580 {
1581 arg1 = value_ind (arg1);
1582 type = check_typedef (value_type (arg1));
1583 code = TYPE_CODE (type);
1584 }
1585 }
1586
1587 switch (code)
1588 {
1589 case TYPE_CODE_ARRAY:
1590 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1591 return value_f90_subarray (arg1, exp, pos, noside);
1592 else
1593 goto multi_f77_subscript;
1594
1595 case TYPE_CODE_STRING:
1596 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1597 return value_f90_subarray (arg1, exp, pos, noside);
1598 else
1599 {
1600 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1601 return value_subscript (arg1, value_as_long (arg2));
1602 }
1603
1604 case TYPE_CODE_PTR:
1605 case TYPE_CODE_FUNC:
1606 /* It's a function call. */
1607 /* Allocate arg vector, including space for the function to be
1608 called in argvec[0] and a terminating NULL */
1609 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1610 argvec[0] = arg1;
1611 tem = 1;
1612 for (; tem <= nargs; tem++)
1613 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1614 argvec[tem] = 0; /* signal end of arglist */
1615 goto do_call_it;
1616
1617 default:
1618 error (_("Cannot perform substring on this type"));
1619 }
1620
1621 case OP_COMPLEX:
1622 /* We have a complex number, There should be 2 floating
1623 point numbers that compose it */
1624 (*pos) += 2;
1625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1626 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1627
1628 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1629
1630 case STRUCTOP_STRUCT:
1631 tem = longest_to_int (exp->elts[pc + 1].longconst);
1632 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1634 if (noside == EVAL_SKIP)
1635 goto nosideret;
1636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1637 return value_zero (lookup_struct_elt_type (value_type (arg1),
1638 &exp->elts[pc + 2].string,
1639 0),
1640 lval_memory);
1641 else
1642 {
1643 struct value *temp = arg1;
1644 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1645 NULL, "structure");
1646 }
1647
1648 case STRUCTOP_PTR:
1649 tem = longest_to_int (exp->elts[pc + 1].longconst);
1650 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1651 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1652 if (noside == EVAL_SKIP)
1653 goto nosideret;
1654
1655 /* JYG: if print object is on we need to replace the base type
1656 with rtti type in order to continue on with successful
1657 lookup of member / method only available in the rtti type. */
1658 {
1659 struct type *type = value_type (arg1);
1660 struct type *real_type;
1661 int full, top, using_enc;
1662 struct value_print_options opts;
1663
1664 get_user_print_options (&opts);
1665 if (opts.objectprint && TYPE_TARGET_TYPE(type) &&
1666 (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1667 {
1668 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1669 if (real_type)
1670 {
1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1672 real_type = lookup_pointer_type (real_type);
1673 else
1674 real_type = lookup_reference_type (real_type);
1675
1676 arg1 = value_cast (real_type, arg1);
1677 }
1678 }
1679 }
1680
1681 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1682 return value_zero (lookup_struct_elt_type (value_type (arg1),
1683 &exp->elts[pc + 2].string,
1684 0),
1685 lval_memory);
1686 else
1687 {
1688 struct value *temp = arg1;
1689 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1690 NULL, "structure pointer");
1691 }
1692
1693 case STRUCTOP_MEMBER:
1694 case STRUCTOP_MPTR:
1695 if (op == STRUCTOP_MEMBER)
1696 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1697 else
1698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1699
1700 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1701
1702 if (noside == EVAL_SKIP)
1703 goto nosideret;
1704
1705 type = check_typedef (value_type (arg2));
1706 switch (TYPE_CODE (type))
1707 {
1708 case TYPE_CODE_METHODPTR:
1709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1710 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1711 else
1712 {
1713 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1714 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1715 return value_ind (arg2);
1716 }
1717
1718 case TYPE_CODE_MEMBERPTR:
1719 /* Now, convert these values to an address. */
1720 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1721 arg1);
1722
1723 mem_offset = value_as_long (arg2);
1724
1725 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1726 value_as_long (arg1) + mem_offset);
1727 return value_ind (arg3);
1728
1729 default:
1730 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1731 }
1732
1733 case BINOP_CONCAT:
1734 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1735 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1736 if (noside == EVAL_SKIP)
1737 goto nosideret;
1738 if (binop_user_defined_p (op, arg1, arg2))
1739 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1740 else
1741 return value_concat (arg1, arg2);
1742
1743 case BINOP_ASSIGN:
1744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1745 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1746
1747 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1748 return arg1;
1749 if (binop_user_defined_p (op, arg1, arg2))
1750 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1751 else
1752 return value_assign (arg1, arg2);
1753
1754 case BINOP_ASSIGN_MODIFY:
1755 (*pos) += 2;
1756 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1757 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1758 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1759 return arg1;
1760 op = exp->elts[pc + 1].opcode;
1761 if (binop_user_defined_p (op, arg1, arg2))
1762 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1763 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1764 && is_integral_type (value_type (arg2)))
1765 arg2 = value_ptradd (arg1, value_as_long (arg2));
1766 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1767 && is_integral_type (value_type (arg2)))
1768 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1769 else
1770 {
1771 struct value *tmp = arg1;
1772
1773 /* For shift and integer exponentiation operations,
1774 only promote the first argument. */
1775 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1776 && is_integral_type (value_type (arg2)))
1777 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1778 else
1779 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1780
1781 arg2 = value_binop (tmp, arg2, op);
1782 }
1783 return value_assign (arg1, arg2);
1784
1785 case BINOP_ADD:
1786 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1787 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1788 if (noside == EVAL_SKIP)
1789 goto nosideret;
1790 if (binop_user_defined_p (op, arg1, arg2))
1791 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1792 else if (ptrmath_type_p (value_type (arg1))
1793 && is_integral_type (value_type (arg2)))
1794 return value_ptradd (arg1, value_as_long (arg2));
1795 else if (ptrmath_type_p (value_type (arg2))
1796 && is_integral_type (value_type (arg1)))
1797 return value_ptradd (arg2, value_as_long (arg1));
1798 else
1799 {
1800 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1801 return value_binop (arg1, arg2, BINOP_ADD);
1802 }
1803
1804 case BINOP_SUB:
1805 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1806 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1807 if (noside == EVAL_SKIP)
1808 goto nosideret;
1809 if (binop_user_defined_p (op, arg1, arg2))
1810 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1811 else if (ptrmath_type_p (value_type (arg1))
1812 && ptrmath_type_p (value_type (arg2)))
1813 {
1814 /* FIXME -- should be ptrdiff_t */
1815 type = builtin_type (exp->gdbarch)->builtin_long;
1816 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1817 }
1818 else if (ptrmath_type_p (value_type (arg1))
1819 && is_integral_type (value_type (arg2)))
1820 return value_ptradd (arg1, - value_as_long (arg2));
1821 else
1822 {
1823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1824 return value_binop (arg1, arg2, BINOP_SUB);
1825 }
1826
1827 case BINOP_EXP:
1828 case BINOP_MUL:
1829 case BINOP_DIV:
1830 case BINOP_INTDIV:
1831 case BINOP_REM:
1832 case BINOP_MOD:
1833 case BINOP_LSH:
1834 case BINOP_RSH:
1835 case BINOP_BITWISE_AND:
1836 case BINOP_BITWISE_IOR:
1837 case BINOP_BITWISE_XOR:
1838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1839 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1840 if (noside == EVAL_SKIP)
1841 goto nosideret;
1842 if (binop_user_defined_p (op, arg1, arg2))
1843 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1844 else
1845 {
1846 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1847 fudge arg2 to avoid division-by-zero, the caller is
1848 (theoretically) only looking for the type of the result. */
1849 if (noside == EVAL_AVOID_SIDE_EFFECTS
1850 /* ??? Do we really want to test for BINOP_MOD here?
1851 The implementation of value_binop gives it a well-defined
1852 value. */
1853 && (op == BINOP_DIV
1854 || op == BINOP_INTDIV
1855 || op == BINOP_REM
1856 || op == BINOP_MOD)
1857 && value_logical_not (arg2))
1858 {
1859 struct value *v_one, *retval;
1860
1861 v_one = value_one (value_type (arg2), not_lval);
1862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1863 retval = value_binop (arg1, v_one, op);
1864 return retval;
1865 }
1866 else
1867 {
1868 /* For shift and integer exponentiation operations,
1869 only promote the first argument. */
1870 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1871 && is_integral_type (value_type (arg2)))
1872 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1873 else
1874 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1875
1876 return value_binop (arg1, arg2, op);
1877 }
1878 }
1879
1880 case BINOP_RANGE:
1881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1883 if (noside == EVAL_SKIP)
1884 goto nosideret;
1885 error (_("':' operator used in invalid context"));
1886
1887 case BINOP_SUBSCRIPT:
1888 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1889 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1890 if (noside == EVAL_SKIP)
1891 goto nosideret;
1892 if (binop_user_defined_p (op, arg1, arg2))
1893 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1894 else
1895 {
1896 /* If the user attempts to subscript something that is not an
1897 array or pointer type (like a plain int variable for example),
1898 then report this as an error. */
1899
1900 arg1 = coerce_ref (arg1);
1901 type = check_typedef (value_type (arg1));
1902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1903 && TYPE_CODE (type) != TYPE_CODE_PTR)
1904 {
1905 if (TYPE_NAME (type))
1906 error (_("cannot subscript something of type `%s'"),
1907 TYPE_NAME (type));
1908 else
1909 error (_("cannot subscript requested type"));
1910 }
1911
1912 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1913 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1914 else
1915 return value_subscript (arg1, value_as_long (arg2));
1916 }
1917
1918 case BINOP_IN:
1919 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1920 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1921 if (noside == EVAL_SKIP)
1922 goto nosideret;
1923 type = language_bool_type (exp->language_defn, exp->gdbarch);
1924 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1925
1926 case MULTI_SUBSCRIPT:
1927 (*pos) += 2;
1928 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1929 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1930 while (nargs-- > 0)
1931 {
1932 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1933 /* FIXME: EVAL_SKIP handling may not be correct. */
1934 if (noside == EVAL_SKIP)
1935 {
1936 if (nargs > 0)
1937 {
1938 continue;
1939 }
1940 else
1941 {
1942 goto nosideret;
1943 }
1944 }
1945 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1947 {
1948 /* If the user attempts to subscript something that has no target
1949 type (like a plain int variable for example), then report this
1950 as an error. */
1951
1952 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1953 if (type != NULL)
1954 {
1955 arg1 = value_zero (type, VALUE_LVAL (arg1));
1956 noside = EVAL_SKIP;
1957 continue;
1958 }
1959 else
1960 {
1961 error (_("cannot subscript something of type `%s'"),
1962 TYPE_NAME (value_type (arg1)));
1963 }
1964 }
1965
1966 if (binop_user_defined_p (op, arg1, arg2))
1967 {
1968 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
1969 }
1970 else
1971 {
1972 arg1 = coerce_ref (arg1);
1973 type = check_typedef (value_type (arg1));
1974
1975 switch (TYPE_CODE (type))
1976 {
1977 case TYPE_CODE_PTR:
1978 case TYPE_CODE_ARRAY:
1979 case TYPE_CODE_STRING:
1980 arg1 = value_subscript (arg1, value_as_long (arg2));
1981 break;
1982
1983 case TYPE_CODE_BITSTRING:
1984 type = language_bool_type (exp->language_defn, exp->gdbarch);
1985 arg1 = value_bitstring_subscript (type, arg1,
1986 value_as_long (arg2));
1987 break;
1988
1989 default:
1990 if (TYPE_NAME (type))
1991 error (_("cannot subscript something of type `%s'"),
1992 TYPE_NAME (type));
1993 else
1994 error (_("cannot subscript requested type"));
1995 }
1996 }
1997 }
1998 return (arg1);
1999
2000 multi_f77_subscript:
2001 {
2002 int subscript_array[MAX_FORTRAN_DIMS];
2003 int array_size_array[MAX_FORTRAN_DIMS];
2004 int ndimensions = 1, i;
2005 struct type *tmp_type;
2006 int offset_item; /* The array offset where the item lives */
2007
2008 if (nargs > MAX_FORTRAN_DIMS)
2009 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2010
2011 tmp_type = check_typedef (value_type (arg1));
2012 ndimensions = calc_f77_array_dims (type);
2013
2014 if (nargs != ndimensions)
2015 error (_("Wrong number of subscripts"));
2016
2017 gdb_assert (nargs > 0);
2018
2019 /* Now that we know we have a legal array subscript expression
2020 let us actually find out where this element exists in the array. */
2021
2022 offset_item = 0;
2023 /* Take array indices left to right */
2024 for (i = 0; i < nargs; i++)
2025 {
2026 /* Evaluate each subscript, It must be a legal integer in F77 */
2027 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2028
2029 /* Fill in the subscript and array size arrays */
2030
2031 subscript_array[i] = value_as_long (arg2);
2032 }
2033
2034 /* Internal type of array is arranged right to left */
2035 for (i = 0; i < nargs; i++)
2036 {
2037 upper = f77_get_upperbound (tmp_type);
2038 lower = f77_get_lowerbound (tmp_type);
2039
2040 array_size_array[nargs - i - 1] = upper - lower + 1;
2041
2042 /* Zero-normalize subscripts so that offsetting will work. */
2043
2044 subscript_array[nargs - i - 1] -= lower;
2045
2046 /* If we are at the bottom of a multidimensional
2047 array type then keep a ptr to the last ARRAY
2048 type around for use when calling value_subscript()
2049 below. This is done because we pretend to value_subscript
2050 that we actually have a one-dimensional array
2051 of base element type that we apply a simple
2052 offset to. */
2053
2054 if (i < nargs - 1)
2055 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2056 }
2057
2058 /* Now let us calculate the offset for this item */
2059
2060 offset_item = subscript_array[ndimensions - 1];
2061
2062 for (i = ndimensions - 1; i > 0; --i)
2063 offset_item =
2064 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2065
2066 /* Let us now play a dirty trick: we will take arg1
2067 which is a value node pointing to the topmost level
2068 of the multidimensional array-set and pretend
2069 that it is actually a array of the final element
2070 type, this will ensure that value_subscript()
2071 returns the correct type value */
2072
2073 deprecated_set_value_type (arg1, tmp_type);
2074 return value_subscripted_rvalue (arg1, offset_item, 0);
2075 }
2076
2077 case BINOP_LOGICAL_AND:
2078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2079 if (noside == EVAL_SKIP)
2080 {
2081 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2082 goto nosideret;
2083 }
2084
2085 oldpos = *pos;
2086 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2087 *pos = oldpos;
2088
2089 if (binop_user_defined_p (op, arg1, arg2))
2090 {
2091 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2092 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2093 }
2094 else
2095 {
2096 tem = value_logical_not (arg1);
2097 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2098 (tem ? EVAL_SKIP : noside));
2099 type = language_bool_type (exp->language_defn, exp->gdbarch);
2100 return value_from_longest (type,
2101 (LONGEST) (!tem && !value_logical_not (arg2)));
2102 }
2103
2104 case BINOP_LOGICAL_OR:
2105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2106 if (noside == EVAL_SKIP)
2107 {
2108 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2109 goto nosideret;
2110 }
2111
2112 oldpos = *pos;
2113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2114 *pos = oldpos;
2115
2116 if (binop_user_defined_p (op, arg1, arg2))
2117 {
2118 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2119 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2120 }
2121 else
2122 {
2123 tem = value_logical_not (arg1);
2124 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2125 (!tem ? EVAL_SKIP : noside));
2126 type = language_bool_type (exp->language_defn, exp->gdbarch);
2127 return value_from_longest (type,
2128 (LONGEST) (!tem || !value_logical_not (arg2)));
2129 }
2130
2131 case BINOP_EQUAL:
2132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2133 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2134 if (noside == EVAL_SKIP)
2135 goto nosideret;
2136 if (binop_user_defined_p (op, arg1, arg2))
2137 {
2138 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2139 }
2140 else
2141 {
2142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2143 tem = value_equal (arg1, arg2);
2144 type = language_bool_type (exp->language_defn, exp->gdbarch);
2145 return value_from_longest (type, (LONGEST) tem);
2146 }
2147
2148 case BINOP_NOTEQUAL:
2149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2150 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2151 if (noside == EVAL_SKIP)
2152 goto nosideret;
2153 if (binop_user_defined_p (op, arg1, arg2))
2154 {
2155 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2156 }
2157 else
2158 {
2159 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2160 tem = value_equal (arg1, arg2);
2161 type = language_bool_type (exp->language_defn, exp->gdbarch);
2162 return value_from_longest (type, (LONGEST) ! tem);
2163 }
2164
2165 case BINOP_LESS:
2166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2167 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2168 if (noside == EVAL_SKIP)
2169 goto nosideret;
2170 if (binop_user_defined_p (op, arg1, arg2))
2171 {
2172 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2173 }
2174 else
2175 {
2176 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2177 tem = value_less (arg1, arg2);
2178 type = language_bool_type (exp->language_defn, exp->gdbarch);
2179 return value_from_longest (type, (LONGEST) tem);
2180 }
2181
2182 case BINOP_GTR:
2183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2184 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2185 if (noside == EVAL_SKIP)
2186 goto nosideret;
2187 if (binop_user_defined_p (op, arg1, arg2))
2188 {
2189 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2190 }
2191 else
2192 {
2193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2194 tem = value_less (arg2, arg1);
2195 type = language_bool_type (exp->language_defn, exp->gdbarch);
2196 return value_from_longest (type, (LONGEST) tem);
2197 }
2198
2199 case BINOP_GEQ:
2200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2201 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2202 if (noside == EVAL_SKIP)
2203 goto nosideret;
2204 if (binop_user_defined_p (op, arg1, arg2))
2205 {
2206 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2207 }
2208 else
2209 {
2210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2211 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2212 type = language_bool_type (exp->language_defn, exp->gdbarch);
2213 return value_from_longest (type, (LONGEST) tem);
2214 }
2215
2216 case BINOP_LEQ:
2217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2218 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2219 if (noside == EVAL_SKIP)
2220 goto nosideret;
2221 if (binop_user_defined_p (op, arg1, arg2))
2222 {
2223 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2224 }
2225 else
2226 {
2227 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2228 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2229 type = language_bool_type (exp->language_defn, exp->gdbarch);
2230 return value_from_longest (type, (LONGEST) tem);
2231 }
2232
2233 case BINOP_REPEAT:
2234 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2235 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2236 if (noside == EVAL_SKIP)
2237 goto nosideret;
2238 type = check_typedef (value_type (arg2));
2239 if (TYPE_CODE (type) != TYPE_CODE_INT)
2240 error (_("Non-integral right operand for \"@\" operator."));
2241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2242 {
2243 return allocate_repeat_value (value_type (arg1),
2244 longest_to_int (value_as_long (arg2)));
2245 }
2246 else
2247 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2248
2249 case BINOP_COMMA:
2250 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2251 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2252
2253 case UNOP_PLUS:
2254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2255 if (noside == EVAL_SKIP)
2256 goto nosideret;
2257 if (unop_user_defined_p (op, arg1))
2258 return value_x_unop (arg1, op, noside);
2259 else
2260 {
2261 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2262 return value_pos (arg1);
2263 }
2264
2265 case UNOP_NEG:
2266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2267 if (noside == EVAL_SKIP)
2268 goto nosideret;
2269 if (unop_user_defined_p (op, arg1))
2270 return value_x_unop (arg1, op, noside);
2271 else
2272 {
2273 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2274 return value_neg (arg1);
2275 }
2276
2277 case UNOP_COMPLEMENT:
2278 /* C++: check for and handle destructor names. */
2279 op = exp->elts[*pos].opcode;
2280
2281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2282 if (noside == EVAL_SKIP)
2283 goto nosideret;
2284 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2285 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2286 else
2287 {
2288 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2289 return value_complement (arg1);
2290 }
2291
2292 case UNOP_LOGICAL_NOT:
2293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2294 if (noside == EVAL_SKIP)
2295 goto nosideret;
2296 if (unop_user_defined_p (op, arg1))
2297 return value_x_unop (arg1, op, noside);
2298 else
2299 {
2300 type = language_bool_type (exp->language_defn, exp->gdbarch);
2301 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2302 }
2303
2304 case UNOP_IND:
2305 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2306 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2307 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2308 type = check_typedef (value_type (arg1));
2309 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2310 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2311 error (_("Attempt to dereference pointer to member without an object"));
2312 if (noside == EVAL_SKIP)
2313 goto nosideret;
2314 if (unop_user_defined_p (op, arg1))
2315 return value_x_unop (arg1, op, noside);
2316 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2317 {
2318 type = check_typedef (value_type (arg1));
2319 if (TYPE_CODE (type) == TYPE_CODE_PTR
2320 || TYPE_CODE (type) == TYPE_CODE_REF
2321 /* In C you can dereference an array to get the 1st elt. */
2322 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2323 )
2324 return value_zero (TYPE_TARGET_TYPE (type),
2325 lval_memory);
2326 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2327 /* GDB allows dereferencing an int. */
2328 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2329 lval_memory);
2330 else
2331 error (_("Attempt to take contents of a non-pointer value."));
2332 }
2333
2334 /* Allow * on an integer so we can cast it to whatever we want.
2335 This returns an int, which seems like the most C-like thing to
2336 do. "long long" variables are rare enough that
2337 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2338 if (TYPE_CODE (type) == TYPE_CODE_INT)
2339 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2340 (CORE_ADDR) value_as_address (arg1));
2341 return value_ind (arg1);
2342
2343 case UNOP_ADDR:
2344 /* C++: check for and handle pointer to members. */
2345
2346 op = exp->elts[*pos].opcode;
2347
2348 if (noside == EVAL_SKIP)
2349 {
2350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2351 goto nosideret;
2352 }
2353 else
2354 {
2355 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2356 return retvalp;
2357 }
2358
2359 case UNOP_SIZEOF:
2360 if (noside == EVAL_SKIP)
2361 {
2362 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2363 goto nosideret;
2364 }
2365 return evaluate_subexp_for_sizeof (exp, pos);
2366
2367 case UNOP_CAST:
2368 (*pos) += 2;
2369 type = exp->elts[pc + 1].type;
2370 arg1 = evaluate_subexp (type, exp, pos, noside);
2371 if (noside == EVAL_SKIP)
2372 goto nosideret;
2373 if (type != value_type (arg1))
2374 arg1 = value_cast (type, arg1);
2375 return arg1;
2376
2377 case UNOP_MEMVAL:
2378 (*pos) += 2;
2379 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2380 if (noside == EVAL_SKIP)
2381 goto nosideret;
2382 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2383 return value_zero (exp->elts[pc + 1].type, lval_memory);
2384 else
2385 return value_at_lazy (exp->elts[pc + 1].type,
2386 value_as_address (arg1));
2387
2388 case UNOP_MEMVAL_TLS:
2389 (*pos) += 3;
2390 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2391 if (noside == EVAL_SKIP)
2392 goto nosideret;
2393 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2394 return value_zero (exp->elts[pc + 2].type, lval_memory);
2395 else
2396 {
2397 CORE_ADDR tls_addr;
2398 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2399 value_as_address (arg1));
2400 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2401 }
2402
2403 case UNOP_PREINCREMENT:
2404 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2405 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2406 return arg1;
2407 else if (unop_user_defined_p (op, arg1))
2408 {
2409 return value_x_unop (arg1, op, noside);
2410 }
2411 else
2412 {
2413 if (ptrmath_type_p (value_type (arg1)))
2414 arg2 = value_ptradd (arg1, 1);
2415 else
2416 {
2417 struct value *tmp = arg1;
2418 arg2 = value_one (value_type (arg1), not_lval);
2419 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2420 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2421 }
2422
2423 return value_assign (arg1, arg2);
2424 }
2425
2426 case UNOP_PREDECREMENT:
2427 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2428 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2429 return arg1;
2430 else if (unop_user_defined_p (op, arg1))
2431 {
2432 return value_x_unop (arg1, op, noside);
2433 }
2434 else
2435 {
2436 if (ptrmath_type_p (value_type (arg1)))
2437 arg2 = value_ptradd (arg1, -1);
2438 else
2439 {
2440 struct value *tmp = arg1;
2441 arg2 = value_one (value_type (arg1), not_lval);
2442 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2443 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2444 }
2445
2446 return value_assign (arg1, arg2);
2447 }
2448
2449 case UNOP_POSTINCREMENT:
2450 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2451 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2452 return arg1;
2453 else if (unop_user_defined_p (op, arg1))
2454 {
2455 return value_x_unop (arg1, op, noside);
2456 }
2457 else
2458 {
2459 if (ptrmath_type_p (value_type (arg1)))
2460 arg2 = value_ptradd (arg1, 1);
2461 else
2462 {
2463 struct value *tmp = arg1;
2464 arg2 = value_one (value_type (arg1), not_lval);
2465 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2466 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2467 }
2468
2469 value_assign (arg1, arg2);
2470 return arg1;
2471 }
2472
2473 case UNOP_POSTDECREMENT:
2474 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2476 return arg1;
2477 else if (unop_user_defined_p (op, arg1))
2478 {
2479 return value_x_unop (arg1, op, noside);
2480 }
2481 else
2482 {
2483 if (ptrmath_type_p (value_type (arg1)))
2484 arg2 = value_ptradd (arg1, -1);
2485 else
2486 {
2487 struct value *tmp = arg1;
2488 arg2 = value_one (value_type (arg1), not_lval);
2489 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2490 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2491 }
2492
2493 value_assign (arg1, arg2);
2494 return arg1;
2495 }
2496
2497 case OP_THIS:
2498 (*pos) += 1;
2499 return value_of_this (1);
2500
2501 case OP_OBJC_SELF:
2502 (*pos) += 1;
2503 return value_of_local ("self", 1);
2504
2505 case OP_TYPE:
2506 /* The value is not supposed to be used. This is here to make it
2507 easier to accommodate expressions that contain types. */
2508 (*pos) += 2;
2509 if (noside == EVAL_SKIP)
2510 goto nosideret;
2511 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2512 {
2513 struct type *type = exp->elts[pc + 1].type;
2514 /* If this is a typedef, then find its immediate target. We
2515 use check_typedef to resolve stubs, but we ignore its
2516 result because we do not want to dig past all
2517 typedefs. */
2518 check_typedef (type);
2519 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2520 type = TYPE_TARGET_TYPE (type);
2521 return allocate_value (type);
2522 }
2523 else
2524 error (_("Attempt to use a type name as an expression"));
2525
2526 default:
2527 /* Removing this case and compiling with gcc -Wall reveals that
2528 a lot of cases are hitting this case. Some of these should
2529 probably be removed from expression.h; others are legitimate
2530 expressions which are (apparently) not fully implemented.
2531
2532 If there are any cases landing here which mean a user error,
2533 then they should be separate cases, with more descriptive
2534 error messages. */
2535
2536 error (_("\
2537 GDB does not (yet) know how to evaluate that kind of expression"));
2538 }
2539
2540 nosideret:
2541 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2542 }
2543 \f
2544 /* Evaluate a subexpression of EXP, at index *POS,
2545 and return the address of that subexpression.
2546 Advance *POS over the subexpression.
2547 If the subexpression isn't an lvalue, get an error.
2548 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2549 then only the type of the result need be correct. */
2550
2551 static struct value *
2552 evaluate_subexp_for_address (struct expression *exp, int *pos,
2553 enum noside noside)
2554 {
2555 enum exp_opcode op;
2556 int pc;
2557 struct symbol *var;
2558 struct value *x;
2559 int tem;
2560
2561 pc = (*pos);
2562 op = exp->elts[pc].opcode;
2563
2564 switch (op)
2565 {
2566 case UNOP_IND:
2567 (*pos)++;
2568 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2569
2570 /* We can't optimize out "&*" if there's a user-defined operator*. */
2571 if (unop_user_defined_p (op, x))
2572 {
2573 x = value_x_unop (x, op, noside);
2574 goto default_case_after_eval;
2575 }
2576
2577 return x;
2578
2579 case UNOP_MEMVAL:
2580 (*pos) += 3;
2581 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2582 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2583
2584 case OP_VAR_VALUE:
2585 var = exp->elts[pc + 2].symbol;
2586
2587 /* C++: The "address" of a reference should yield the address
2588 * of the object pointed to. Let value_addr() deal with it. */
2589 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2590 goto default_case;
2591
2592 (*pos) += 4;
2593 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2594 {
2595 struct type *type =
2596 lookup_pointer_type (SYMBOL_TYPE (var));
2597 enum address_class sym_class = SYMBOL_CLASS (var);
2598
2599 if (sym_class == LOC_CONST
2600 || sym_class == LOC_CONST_BYTES
2601 || sym_class == LOC_REGISTER)
2602 error (_("Attempt to take address of register or constant."));
2603
2604 return
2605 value_zero (type, not_lval);
2606 }
2607 else
2608 return address_of_variable (var, exp->elts[pc + 1].block);
2609
2610 case OP_SCOPE:
2611 tem = longest_to_int (exp->elts[pc + 2].longconst);
2612 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2613 x = value_aggregate_elt (exp->elts[pc + 1].type,
2614 &exp->elts[pc + 3].string,
2615 1, noside);
2616 if (x == NULL)
2617 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2618 return x;
2619
2620 default:
2621 default_case:
2622 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2623 default_case_after_eval:
2624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2625 {
2626 struct type *type = check_typedef (value_type (x));
2627
2628 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2629 return value_zero (lookup_pointer_type (value_type (x)),
2630 not_lval);
2631 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2632 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2633 not_lval);
2634 else
2635 error (_("Attempt to take address of value not located in memory."));
2636 }
2637 return value_addr (x);
2638 }
2639 }
2640
2641 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2642 When used in contexts where arrays will be coerced anyway, this is
2643 equivalent to `evaluate_subexp' but much faster because it avoids
2644 actually fetching array contents (perhaps obsolete now that we have
2645 value_lazy()).
2646
2647 Note that we currently only do the coercion for C expressions, where
2648 arrays are zero based and the coercion is correct. For other languages,
2649 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2650 to decide if coercion is appropriate.
2651
2652 */
2653
2654 struct value *
2655 evaluate_subexp_with_coercion (struct expression *exp,
2656 int *pos, enum noside noside)
2657 {
2658 enum exp_opcode op;
2659 int pc;
2660 struct value *val;
2661 struct symbol *var;
2662 struct type *type;
2663
2664 pc = (*pos);
2665 op = exp->elts[pc].opcode;
2666
2667 switch (op)
2668 {
2669 case OP_VAR_VALUE:
2670 var = exp->elts[pc + 2].symbol;
2671 type = check_typedef (SYMBOL_TYPE (var));
2672 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2673 && CAST_IS_CONVERSION)
2674 {
2675 (*pos) += 4;
2676 val = address_of_variable (var, exp->elts[pc + 1].block);
2677 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2678 val);
2679 }
2680 /* FALLTHROUGH */
2681
2682 default:
2683 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2684 }
2685 }
2686
2687 /* Evaluate a subexpression of EXP, at index *POS,
2688 and return a value for the size of that subexpression.
2689 Advance *POS over the subexpression. */
2690
2691 static struct value *
2692 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2693 {
2694 /* FIXME: This should be size_t. */
2695 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2696 enum exp_opcode op;
2697 int pc;
2698 struct type *type;
2699 struct value *val;
2700
2701 pc = (*pos);
2702 op = exp->elts[pc].opcode;
2703
2704 switch (op)
2705 {
2706 /* This case is handled specially
2707 so that we avoid creating a value for the result type.
2708 If the result type is very big, it's desirable not to
2709 create a value unnecessarily. */
2710 case UNOP_IND:
2711 (*pos)++;
2712 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2713 type = check_typedef (value_type (val));
2714 if (TYPE_CODE (type) != TYPE_CODE_PTR
2715 && TYPE_CODE (type) != TYPE_CODE_REF
2716 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2717 error (_("Attempt to take contents of a non-pointer value."));
2718 type = check_typedef (TYPE_TARGET_TYPE (type));
2719 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2720
2721 case UNOP_MEMVAL:
2722 (*pos) += 3;
2723 type = check_typedef (exp->elts[pc + 1].type);
2724 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2725
2726 case OP_VAR_VALUE:
2727 (*pos) += 4;
2728 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2729 return
2730 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2731
2732 default:
2733 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2734 return value_from_longest (size_type,
2735 (LONGEST) TYPE_LENGTH (value_type (val)));
2736 }
2737 }
2738
2739 /* Parse a type expression in the string [P..P+LENGTH). */
2740
2741 struct type *
2742 parse_and_eval_type (char *p, int length)
2743 {
2744 char *tmp = (char *) alloca (length + 4);
2745 struct expression *expr;
2746 tmp[0] = '(';
2747 memcpy (tmp + 1, p, length);
2748 tmp[length + 1] = ')';
2749 tmp[length + 2] = '0';
2750 tmp[length + 3] = '\0';
2751 expr = parse_expression (tmp);
2752 if (expr->elts[0].opcode != UNOP_CAST)
2753 error (_("Internal error in eval_type."));
2754 return expr->elts[1].type;
2755 }
2756
2757 int
2758 calc_f77_array_dims (struct type *array_type)
2759 {
2760 int ndimen = 1;
2761 struct type *tmp_type;
2762
2763 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2764 error (_("Can't get dimensions for a non-array type"));
2765
2766 tmp_type = array_type;
2767
2768 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2769 {
2770 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2771 ++ndimen;
2772 }
2773 return ndimen;
2774 }
This page took 0.183803 seconds and 5 git commands to generate.