Split out eval_op_predec
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43
44 /* Prototypes for local functions. */
45
46 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
47 enum noside);
48
49 static struct value *evaluate_subexp_for_address (struct expression *,
50 int *, enum noside);
51
52 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
53 enum noside noside,
54 struct type *type);
55
56 static struct value *evaluate_struct_tuple (struct value *,
57 struct expression *, int *,
58 enum noside, int);
59
60 struct value *
61 evaluate_subexp (struct type *expect_type, struct expression *exp,
62 int *pos, enum noside noside)
63 {
64 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
65 (expect_type, exp, pos, noside));
66 }
67 \f
68 /* Parse the string EXP as a C expression, evaluate it,
69 and return the result as a number. */
70
71 CORE_ADDR
72 parse_and_eval_address (const char *exp)
73 {
74 expression_up expr = parse_expression (exp);
75
76 return value_as_address (evaluate_expression (expr.get ()));
77 }
78
79 /* Like parse_and_eval_address, but treats the value of the expression
80 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
81 LONGEST
82 parse_and_eval_long (const char *exp)
83 {
84 expression_up expr = parse_expression (exp);
85
86 return value_as_long (evaluate_expression (expr.get ()));
87 }
88
89 struct value *
90 parse_and_eval (const char *exp)
91 {
92 expression_up expr = parse_expression (exp);
93
94 return evaluate_expression (expr.get ());
95 }
96
97 /* Parse up to a comma (or to a closeparen)
98 in the string EXPP as an expression, evaluate it, and return the value.
99 EXPP is advanced to point to the comma. */
100
101 struct value *
102 parse_to_comma_and_eval (const char **expp)
103 {
104 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
105
106 return evaluate_expression (expr.get ());
107 }
108 \f
109
110 /* See expression.h. */
111
112 struct value *
113 expression::evaluate (struct type *expect_type, enum noside noside)
114 {
115 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
116 if (target_has_execution ()
117 && language_defn->la_language == language_cplus
118 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
119 stack_temporaries.emplace (inferior_thread ());
120
121 int pos = 0;
122 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
123
124 if (stack_temporaries.has_value ()
125 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
126 retval = value_non_lval (retval);
127
128 return retval;
129 }
130
131 /* See value.h. */
132
133 struct value *
134 evaluate_expression (struct expression *exp, struct type *expect_type)
135 {
136 return exp->evaluate (expect_type, EVAL_NORMAL);
137 }
138
139 /* Evaluate an expression, avoiding all memory references
140 and getting a value whose type alone is correct. */
141
142 struct value *
143 evaluate_type (struct expression *exp)
144 {
145 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
146 }
147
148 /* Evaluate a subexpression, avoiding all memory references and
149 getting a value whose type alone is correct. */
150
151 struct value *
152 evaluate_subexpression_type (struct expression *exp, int subexp)
153 {
154 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
155 }
156
157 /* Find the current value of a watchpoint on EXP. Return the value in
158 *VALP and *RESULTP and the chain of intermediate and final values
159 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
160 not need them.
161
162 If PRESERVE_ERRORS is true, then exceptions are passed through.
163 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
164 occurs while evaluating the expression, *RESULTP will be set to
165 NULL. *RESULTP may be a lazy value, if the result could not be
166 read from memory. It is used to determine whether a value is
167 user-specified (we should watch the whole value) or intermediate
168 (we should watch only the bit used to locate the final value).
169
170 If the final value, or any intermediate value, could not be read
171 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
172 set to any referenced values. *VALP will never be a lazy value.
173 This is the value which we store in struct breakpoint.
174
175 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
176 released from the value chain. If VAL_CHAIN is NULL, all generated
177 values will be left on the value chain. */
178
179 void
180 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
181 struct value **resultp,
182 std::vector<value_ref_ptr> *val_chain,
183 bool preserve_errors)
184 {
185 struct value *mark, *new_mark, *result;
186
187 *valp = NULL;
188 if (resultp)
189 *resultp = NULL;
190 if (val_chain)
191 val_chain->clear ();
192
193 /* Evaluate the expression. */
194 mark = value_mark ();
195 result = NULL;
196
197 try
198 {
199 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
200 }
201 catch (const gdb_exception &ex)
202 {
203 /* Ignore memory errors if we want watchpoints pointing at
204 inaccessible memory to still be created; otherwise, throw the
205 error to some higher catcher. */
206 switch (ex.error)
207 {
208 case MEMORY_ERROR:
209 if (!preserve_errors)
210 break;
211 /* Fall through. */
212 default:
213 throw;
214 break;
215 }
216 }
217
218 new_mark = value_mark ();
219 if (mark == new_mark)
220 return;
221 if (resultp)
222 *resultp = result;
223
224 /* Make sure it's not lazy, so that after the target stops again we
225 have a non-lazy previous value to compare with. */
226 if (result != NULL)
227 {
228 if (!value_lazy (result))
229 *valp = result;
230 else
231 {
232
233 try
234 {
235 value_fetch_lazy (result);
236 *valp = result;
237 }
238 catch (const gdb_exception_error &except)
239 {
240 }
241 }
242 }
243
244 if (val_chain)
245 {
246 /* Return the chain of intermediate values. We use this to
247 decide which addresses to watch. */
248 *val_chain = value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 const char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* This function evaluates brace-initializers (in C/C++) for
275 structure types. */
276
277 static struct value *
278 evaluate_struct_tuple (struct value *struct_val,
279 struct expression *exp,
280 int *pos, enum noside noside, int nargs)
281 {
282 struct type *struct_type = check_typedef (value_type (struct_val));
283 struct type *field_type;
284 int fieldno = -1;
285
286 while (--nargs >= 0)
287 {
288 struct value *val = NULL;
289 int bitpos, bitsize;
290 bfd_byte *addr;
291
292 fieldno++;
293 /* Skip static fields. */
294 while (fieldno < struct_type->num_fields ()
295 && field_is_static (&struct_type->field (fieldno)))
296 fieldno++;
297 if (fieldno >= struct_type->num_fields ())
298 error (_("too many initializers"));
299 field_type = struct_type->field (fieldno).type ();
300 if (field_type->code () == TYPE_CODE_UNION
301 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
302 error (_("don't know which variant you want to set"));
303
304 /* Here, struct_type is the type of the inner struct,
305 while substruct_type is the type of the inner struct.
306 These are the same for normal structures, but a variant struct
307 contains anonymous union fields that contain substruct fields.
308 The value fieldno is the index of the top-level (normal or
309 anonymous union) field in struct_field, while the value
310 subfieldno is the index of the actual real (named inner) field
311 in substruct_type. */
312
313 field_type = struct_type->field (fieldno).type ();
314 if (val == 0)
315 val = evaluate_subexp (field_type, exp, pos, noside);
316
317 /* Now actually set the field in struct_val. */
318
319 /* Assign val to field fieldno. */
320 if (value_type (val) != field_type)
321 val = value_cast (field_type, val);
322
323 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
324 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
325 addr = value_contents_writeable (struct_val) + bitpos / 8;
326 if (bitsize)
327 modify_field (struct_type, addr,
328 value_as_long (val), bitpos % 8, bitsize);
329 else
330 memcpy (addr, value_contents (val),
331 TYPE_LENGTH (value_type (val)));
332
333 }
334 return struct_val;
335 }
336
337 /* Promote value ARG1 as appropriate before performing a unary operation
338 on this argument.
339 If the result is not appropriate for any particular language then it
340 needs to patch this function. */
341
342 void
343 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
344 struct value **arg1)
345 {
346 struct type *type1;
347
348 *arg1 = coerce_ref (*arg1);
349 type1 = check_typedef (value_type (*arg1));
350
351 if (is_integral_type (type1))
352 {
353 switch (language->la_language)
354 {
355 default:
356 /* Perform integral promotion for ANSI C/C++.
357 If not appropriate for any particular language
358 it needs to modify this function. */
359 {
360 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
361
362 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
363 *arg1 = value_cast (builtin_int, *arg1);
364 }
365 break;
366 }
367 }
368 }
369
370 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
371 operation on those two operands.
372 If the result is not appropriate for any particular language then it
373 needs to patch this function. */
374
375 void
376 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
377 struct value **arg1, struct value **arg2)
378 {
379 struct type *promoted_type = NULL;
380 struct type *type1;
381 struct type *type2;
382
383 *arg1 = coerce_ref (*arg1);
384 *arg2 = coerce_ref (*arg2);
385
386 type1 = check_typedef (value_type (*arg1));
387 type2 = check_typedef (value_type (*arg2));
388
389 if ((type1->code () != TYPE_CODE_FLT
390 && type1->code () != TYPE_CODE_DECFLOAT
391 && !is_integral_type (type1))
392 || (type2->code () != TYPE_CODE_FLT
393 && type2->code () != TYPE_CODE_DECFLOAT
394 && !is_integral_type (type2)))
395 return;
396
397 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
398 return;
399
400 if (type1->code () == TYPE_CODE_DECFLOAT
401 || type2->code () == TYPE_CODE_DECFLOAT)
402 {
403 /* No promotion required. */
404 }
405 else if (type1->code () == TYPE_CODE_FLT
406 || type2->code () == TYPE_CODE_FLT)
407 {
408 switch (language->la_language)
409 {
410 case language_c:
411 case language_cplus:
412 case language_asm:
413 case language_objc:
414 case language_opencl:
415 /* No promotion required. */
416 break;
417
418 default:
419 /* For other languages the result type is unchanged from gdb
420 version 6.7 for backward compatibility.
421 If either arg was long double, make sure that value is also long
422 double. Otherwise use double. */
423 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
424 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
425 promoted_type = builtin_type (gdbarch)->builtin_long_double;
426 else
427 promoted_type = builtin_type (gdbarch)->builtin_double;
428 break;
429 }
430 }
431 else if (type1->code () == TYPE_CODE_BOOL
432 && type2->code () == TYPE_CODE_BOOL)
433 {
434 /* No promotion required. */
435 }
436 else
437 /* Integral operations here. */
438 /* FIXME: Also mixed integral/booleans, with result an integer. */
439 {
440 const struct builtin_type *builtin = builtin_type (gdbarch);
441 unsigned int promoted_len1 = TYPE_LENGTH (type1);
442 unsigned int promoted_len2 = TYPE_LENGTH (type2);
443 int is_unsigned1 = type1->is_unsigned ();
444 int is_unsigned2 = type2->is_unsigned ();
445 unsigned int result_len;
446 int unsigned_operation;
447
448 /* Determine type length and signedness after promotion for
449 both operands. */
450 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
451 {
452 is_unsigned1 = 0;
453 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
454 }
455 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
456 {
457 is_unsigned2 = 0;
458 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
459 }
460
461 if (promoted_len1 > promoted_len2)
462 {
463 unsigned_operation = is_unsigned1;
464 result_len = promoted_len1;
465 }
466 else if (promoted_len2 > promoted_len1)
467 {
468 unsigned_operation = is_unsigned2;
469 result_len = promoted_len2;
470 }
471 else
472 {
473 unsigned_operation = is_unsigned1 || is_unsigned2;
474 result_len = promoted_len1;
475 }
476
477 switch (language->la_language)
478 {
479 case language_c:
480 case language_cplus:
481 case language_asm:
482 case language_objc:
483 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
484 {
485 promoted_type = (unsigned_operation
486 ? builtin->builtin_unsigned_int
487 : builtin->builtin_int);
488 }
489 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
490 {
491 promoted_type = (unsigned_operation
492 ? builtin->builtin_unsigned_long
493 : builtin->builtin_long);
494 }
495 else
496 {
497 promoted_type = (unsigned_operation
498 ? builtin->builtin_unsigned_long_long
499 : builtin->builtin_long_long);
500 }
501 break;
502 case language_opencl:
503 if (result_len <= TYPE_LENGTH (lookup_signed_typename
504 (language, "int")))
505 {
506 promoted_type =
507 (unsigned_operation
508 ? lookup_unsigned_typename (language, "int")
509 : lookup_signed_typename (language, "int"));
510 }
511 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
512 (language, "long")))
513 {
514 promoted_type =
515 (unsigned_operation
516 ? lookup_unsigned_typename (language, "long")
517 : lookup_signed_typename (language,"long"));
518 }
519 break;
520 default:
521 /* For other languages the result type is unchanged from gdb
522 version 6.7 for backward compatibility.
523 If either arg was long long, make sure that value is also long
524 long. Otherwise use long. */
525 if (unsigned_operation)
526 {
527 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
528 promoted_type = builtin->builtin_unsigned_long_long;
529 else
530 promoted_type = builtin->builtin_unsigned_long;
531 }
532 else
533 {
534 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
535 promoted_type = builtin->builtin_long_long;
536 else
537 promoted_type = builtin->builtin_long;
538 }
539 break;
540 }
541 }
542
543 if (promoted_type)
544 {
545 /* Promote both operands to common type. */
546 *arg1 = value_cast (promoted_type, *arg1);
547 *arg2 = value_cast (promoted_type, *arg2);
548 }
549 }
550
551 static int
552 ptrmath_type_p (const struct language_defn *lang, struct type *type)
553 {
554 type = check_typedef (type);
555 if (TYPE_IS_REFERENCE (type))
556 type = TYPE_TARGET_TYPE (type);
557
558 switch (type->code ())
559 {
560 case TYPE_CODE_PTR:
561 case TYPE_CODE_FUNC:
562 return 1;
563
564 case TYPE_CODE_ARRAY:
565 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
566
567 default:
568 return 0;
569 }
570 }
571
572 /* Represents a fake method with the given parameter types. This is
573 used by the parser to construct a temporary "expected" type for
574 method overload resolution. FLAGS is used as instance flags of the
575 new type, in order to be able to make the new type represent a
576 const/volatile overload. */
577
578 class fake_method
579 {
580 public:
581 fake_method (type_instance_flags flags,
582 int num_types, struct type **param_types);
583 ~fake_method ();
584
585 /* The constructed type. */
586 struct type *type () { return &m_type; }
587
588 private:
589 struct type m_type {};
590 main_type m_main_type {};
591 };
592
593 fake_method::fake_method (type_instance_flags flags,
594 int num_types, struct type **param_types)
595 {
596 struct type *type = &m_type;
597
598 TYPE_MAIN_TYPE (type) = &m_main_type;
599 TYPE_LENGTH (type) = 1;
600 type->set_code (TYPE_CODE_METHOD);
601 TYPE_CHAIN (type) = type;
602 type->set_instance_flags (flags);
603 if (num_types > 0)
604 {
605 if (param_types[num_types - 1] == NULL)
606 {
607 --num_types;
608 type->set_has_varargs (true);
609 }
610 else if (check_typedef (param_types[num_types - 1])->code ()
611 == TYPE_CODE_VOID)
612 {
613 --num_types;
614 /* Caller should have ensured this. */
615 gdb_assert (num_types == 0);
616 type->set_is_prototyped (true);
617 }
618 }
619
620 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
621 neither an objfile nor a gdbarch. As a result we must manually
622 allocate memory for auxiliary fields, and free the memory ourselves
623 when we are done with it. */
624 type->set_num_fields (num_types);
625 type->set_fields
626 ((struct field *) xzalloc (sizeof (struct field) * num_types));
627
628 while (num_types-- > 0)
629 type->field (num_types).set_type (param_types[num_types]);
630 }
631
632 fake_method::~fake_method ()
633 {
634 xfree (m_type.fields ());
635 }
636
637 /* Helper for evaluating an OP_VAR_VALUE. */
638
639 value *
640 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
641 {
642 /* JYG: We used to just return value_zero of the symbol type if
643 we're asked to avoid side effects. Otherwise we return
644 value_of_variable (...). However I'm not sure if
645 value_of_variable () has any side effect. We need a full value
646 object returned here for whatis_exp () to call evaluate_type ()
647 and then pass the full value to value_rtti_target_type () if we
648 are dealing with a pointer or reference to a base class and print
649 object is on. */
650
651 struct value *ret = NULL;
652
653 try
654 {
655 ret = value_of_variable (var, blk);
656 }
657
658 catch (const gdb_exception_error &except)
659 {
660 if (noside != EVAL_AVOID_SIDE_EFFECTS)
661 throw;
662
663 ret = value_zero (SYMBOL_TYPE (var), not_lval);
664 }
665
666 return ret;
667 }
668
669 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
670
671 value *
672 evaluate_var_msym_value (enum noside noside,
673 struct objfile *objfile, minimal_symbol *msymbol)
674 {
675 CORE_ADDR address;
676 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
677
678 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
679 return value_zero (the_type, not_lval);
680 else
681 return value_at_lazy (the_type, address);
682 }
683
684 /* Helper for returning a value when handling EVAL_SKIP. */
685
686 value *
687 eval_skip_value (expression *exp)
688 {
689 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
690 }
691
692 /* See expression.h. */
693
694 value *
695 evaluate_subexp_do_call (expression *exp, enum noside noside,
696 value *callee,
697 gdb::array_view<value *> argvec,
698 const char *function_name,
699 type *default_return_type)
700 {
701 if (callee == NULL)
702 error (_("Cannot evaluate function -- may be inlined"));
703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
704 {
705 /* If the return type doesn't look like a function type,
706 call an error. This can happen if somebody tries to turn
707 a variable into a function call. */
708
709 type *ftype = value_type (callee);
710
711 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
712 {
713 /* We don't know anything about what the internal
714 function might return, but we have to return
715 something. */
716 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
717 not_lval);
718 }
719 else if (ftype->code () == TYPE_CODE_XMETHOD)
720 {
721 type *return_type = result_type_of_xmethod (callee, argvec);
722
723 if (return_type == NULL)
724 error (_("Xmethod is missing return type."));
725 return value_zero (return_type, not_lval);
726 }
727 else if (ftype->code () == TYPE_CODE_FUNC
728 || ftype->code () == TYPE_CODE_METHOD)
729 {
730 if (ftype->is_gnu_ifunc ())
731 {
732 CORE_ADDR address = value_address (callee);
733 type *resolved_type = find_gnu_ifunc_target_type (address);
734
735 if (resolved_type != NULL)
736 ftype = resolved_type;
737 }
738
739 type *return_type = TYPE_TARGET_TYPE (ftype);
740
741 if (return_type == NULL)
742 return_type = default_return_type;
743
744 if (return_type == NULL)
745 error_call_unknown_return_type (function_name);
746
747 return allocate_value (return_type);
748 }
749 else
750 error (_("Expression of type other than "
751 "\"Function returning ...\" used as function"));
752 }
753 switch (value_type (callee)->code ())
754 {
755 case TYPE_CODE_INTERNAL_FUNCTION:
756 return call_internal_function (exp->gdbarch, exp->language_defn,
757 callee, argvec.size (), argvec.data ());
758 case TYPE_CODE_XMETHOD:
759 return call_xmethod (callee, argvec);
760 default:
761 return call_function_by_hand (callee, default_return_type, argvec);
762 }
763 }
764
765 /* Helper for evaluating an OP_FUNCALL. */
766
767 static value *
768 evaluate_funcall (type *expect_type, expression *exp, int *pos,
769 enum noside noside)
770 {
771 int tem;
772 int pc2 = 0;
773 value *arg1 = NULL;
774 value *arg2 = NULL;
775 int save_pos1;
776 symbol *function = NULL;
777 char *function_name = NULL;
778 const char *var_func_name = NULL;
779
780 int pc = (*pos);
781 (*pos) += 2;
782
783 exp_opcode op = exp->elts[*pos].opcode;
784 int nargs = longest_to_int (exp->elts[pc].longconst);
785 /* Allocate arg vector, including space for the function to be
786 called in argvec[0], a potential `this', and a terminating
787 NULL. */
788 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
789 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
790 {
791 /* First, evaluate the structure into arg2. */
792 pc2 = (*pos)++;
793
794 if (op == STRUCTOP_MEMBER)
795 {
796 arg2 = evaluate_subexp_for_address (exp, pos, noside);
797 }
798 else
799 {
800 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
801 }
802
803 /* If the function is a virtual function, then the aggregate
804 value (providing the structure) plays its part by providing
805 the vtable. Otherwise, it is just along for the ride: call
806 the function directly. */
807
808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
809
810 type *a1_type = check_typedef (value_type (arg1));
811 if (noside == EVAL_SKIP)
812 tem = 1; /* Set it to the right arg index so that all
813 arguments can also be skipped. */
814 else if (a1_type->code () == TYPE_CODE_METHODPTR)
815 {
816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
817 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
818 else
819 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
820
821 /* Now, say which argument to start evaluating from. */
822 nargs++;
823 tem = 2;
824 argvec[1] = arg2;
825 }
826 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
827 {
828 struct type *type_ptr
829 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
830 struct type *target_type_ptr
831 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
832
833 /* Now, convert these values to an address. */
834 arg2 = value_cast (type_ptr, arg2);
835
836 long mem_offset = value_as_long (arg1);
837
838 arg1 = value_from_pointer (target_type_ptr,
839 value_as_long (arg2) + mem_offset);
840 arg1 = value_ind (arg1);
841 tem = 1;
842 }
843 else
844 error (_("Non-pointer-to-member value used in pointer-to-member "
845 "construct"));
846 }
847 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
848 {
849 /* Hair for method invocations. */
850 int tem2;
851
852 nargs++;
853 /* First, evaluate the structure into arg2. */
854 pc2 = (*pos)++;
855 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
856 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
857
858 if (op == STRUCTOP_STRUCT)
859 {
860 /* If v is a variable in a register, and the user types
861 v.method (), this will produce an error, because v has no
862 address.
863
864 A possible way around this would be to allocate a copy of
865 the variable on the stack, copy in the contents, call the
866 function, and copy out the contents. I.e. convert this
867 from call by reference to call by copy-return (or
868 whatever it's called). However, this does not work
869 because it is not the same: the method being called could
870 stash a copy of the address, and then future uses through
871 that address (after the method returns) would be expected
872 to use the variable itself, not some copy of it. */
873 arg2 = evaluate_subexp_for_address (exp, pos, noside);
874 }
875 else
876 {
877 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
878
879 /* Check to see if the operator '->' has been overloaded.
880 If the operator has been overloaded replace arg2 with the
881 value returned by the custom operator and continue
882 evaluation. */
883 while (unop_user_defined_p (op, arg2))
884 {
885 struct value *value = NULL;
886 try
887 {
888 value = value_x_unop (arg2, op, noside);
889 }
890
891 catch (const gdb_exception_error &except)
892 {
893 if (except.error == NOT_FOUND_ERROR)
894 break;
895 else
896 throw;
897 }
898
899 arg2 = value;
900 }
901 }
902 /* Now, say which argument to start evaluating from. */
903 tem = 2;
904 }
905 else if (op == OP_SCOPE
906 && overload_resolution
907 && (exp->language_defn->la_language == language_cplus))
908 {
909 /* Unpack it locally so we can properly handle overload
910 resolution. */
911 char *name;
912 int local_tem;
913
914 pc2 = (*pos)++;
915 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
916 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
917 struct type *type = exp->elts[pc2 + 1].type;
918 name = &exp->elts[pc2 + 3].string;
919
920 function = NULL;
921 function_name = NULL;
922 if (type->code () == TYPE_CODE_NAMESPACE)
923 {
924 function = cp_lookup_symbol_namespace (type->name (),
925 name,
926 get_selected_block (0),
927 VAR_DOMAIN).symbol;
928 if (function == NULL)
929 error (_("No symbol \"%s\" in namespace \"%s\"."),
930 name, type->name ());
931
932 tem = 1;
933 /* arg2 is left as NULL on purpose. */
934 }
935 else
936 {
937 gdb_assert (type->code () == TYPE_CODE_STRUCT
938 || type->code () == TYPE_CODE_UNION);
939 function_name = name;
940
941 /* We need a properly typed value for method lookup. For
942 static methods arg2 is otherwise unused. */
943 arg2 = value_zero (type, lval_memory);
944 ++nargs;
945 tem = 2;
946 }
947 }
948 else if (op == OP_ADL_FUNC)
949 {
950 /* Save the function position and move pos so that the arguments
951 can be evaluated. */
952 int func_name_len;
953
954 save_pos1 = *pos;
955 tem = 1;
956
957 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
958 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
959 }
960 else
961 {
962 /* Non-method function call. */
963 save_pos1 = *pos;
964 tem = 1;
965
966 /* If this is a C++ function wait until overload resolution. */
967 if (op == OP_VAR_VALUE
968 && overload_resolution
969 && (exp->language_defn->la_language == language_cplus))
970 {
971 (*pos) += 4; /* Skip the evaluation of the symbol. */
972 argvec[0] = NULL;
973 }
974 else
975 {
976 if (op == OP_VAR_MSYM_VALUE)
977 {
978 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
979 var_func_name = msym->print_name ();
980 }
981 else if (op == OP_VAR_VALUE)
982 {
983 symbol *sym = exp->elts[*pos + 2].symbol;
984 var_func_name = sym->print_name ();
985 }
986
987 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
988 type *type = value_type (argvec[0]);
989 if (type && type->code () == TYPE_CODE_PTR)
990 type = TYPE_TARGET_TYPE (type);
991 if (type && type->code () == TYPE_CODE_FUNC)
992 {
993 for (; tem <= nargs && tem <= type->num_fields (); tem++)
994 {
995 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
996 exp, pos, noside);
997 }
998 }
999 }
1000 }
1001
1002 /* Evaluate arguments (if not already done, e.g., namespace::func()
1003 and overload-resolution is off). */
1004 for (; tem <= nargs; tem++)
1005 {
1006 /* Ensure that array expressions are coerced into pointer
1007 objects. */
1008 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1009 }
1010
1011 /* Signal end of arglist. */
1012 argvec[tem] = 0;
1013
1014 if (noside == EVAL_SKIP)
1015 return eval_skip_value (exp);
1016
1017 if (op == OP_ADL_FUNC)
1018 {
1019 struct symbol *symp;
1020 char *func_name;
1021 int name_len;
1022 int string_pc = save_pos1 + 3;
1023
1024 /* Extract the function name. */
1025 name_len = longest_to_int (exp->elts[string_pc].longconst);
1026 func_name = (char *) alloca (name_len + 1);
1027 strcpy (func_name, &exp->elts[string_pc + 1].string);
1028
1029 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1030 func_name,
1031 NON_METHOD, /* not method */
1032 NULL, NULL, /* pass NULL symbol since
1033 symbol is unknown */
1034 NULL, &symp, NULL, 0, noside);
1035
1036 /* Now fix the expression being evaluated. */
1037 exp->elts[save_pos1 + 2].symbol = symp;
1038 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1039 }
1040
1041 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1042 || (op == OP_SCOPE && function_name != NULL))
1043 {
1044 int static_memfuncp;
1045 char *tstr;
1046
1047 /* Method invocation: stuff "this" as first parameter. If the
1048 method turns out to be static we undo this below. */
1049 argvec[1] = arg2;
1050
1051 if (op != OP_SCOPE)
1052 {
1053 /* Name of method from expression. */
1054 tstr = &exp->elts[pc2 + 2].string;
1055 }
1056 else
1057 tstr = function_name;
1058
1059 if (overload_resolution && (exp->language_defn->la_language
1060 == language_cplus))
1061 {
1062 /* Language is C++, do some overload resolution before
1063 evaluation. */
1064 struct value *valp = NULL;
1065
1066 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 tstr,
1068 METHOD, /* method */
1069 &arg2, /* the object */
1070 NULL, &valp, NULL,
1071 &static_memfuncp, 0, noside);
1072
1073 if (op == OP_SCOPE && !static_memfuncp)
1074 {
1075 /* For the time being, we don't handle this. */
1076 error (_("Call to overloaded function %s requires "
1077 "`this' pointer"),
1078 function_name);
1079 }
1080 argvec[1] = arg2; /* the ``this'' pointer */
1081 argvec[0] = valp; /* Use the method found after overload
1082 resolution. */
1083 }
1084 else
1085 /* Non-C++ case -- or no overload resolution. */
1086 {
1087 struct value *temp = arg2;
1088
1089 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1090 &static_memfuncp,
1091 op == STRUCTOP_STRUCT
1092 ? "structure" : "structure pointer");
1093 /* value_struct_elt updates temp with the correct value of
1094 the ``this'' pointer if necessary, so modify argvec[1] to
1095 reflect any ``this'' changes. */
1096 arg2
1097 = value_from_longest (lookup_pointer_type(value_type (temp)),
1098 value_address (temp)
1099 + value_embedded_offset (temp));
1100 argvec[1] = arg2; /* the ``this'' pointer */
1101 }
1102
1103 /* Take out `this' if needed. */
1104 if (static_memfuncp)
1105 {
1106 argvec[1] = argvec[0];
1107 nargs--;
1108 argvec++;
1109 }
1110 }
1111 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1112 {
1113 /* Pointer to member. argvec[1] is already set up. */
1114 argvec[0] = arg1;
1115 }
1116 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1117 {
1118 /* Non-member function being called. */
1119 /* fn: This can only be done for C++ functions. A C-style
1120 function in a C++ program, for instance, does not have the
1121 fields that are expected here. */
1122
1123 if (overload_resolution && (exp->language_defn->la_language
1124 == language_cplus))
1125 {
1126 /* Language is C++, do some overload resolution before
1127 evaluation. */
1128 struct symbol *symp;
1129 int no_adl = 0;
1130
1131 /* If a scope has been specified disable ADL. */
1132 if (op == OP_SCOPE)
1133 no_adl = 1;
1134
1135 if (op == OP_VAR_VALUE)
1136 function = exp->elts[save_pos1+2].symbol;
1137
1138 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1139 NULL, /* no need for name */
1140 NON_METHOD, /* not method */
1141 NULL, function, /* the function */
1142 NULL, &symp, NULL, no_adl, noside);
1143
1144 if (op == OP_VAR_VALUE)
1145 {
1146 /* Now fix the expression being evaluated. */
1147 exp->elts[save_pos1+2].symbol = symp;
1148 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1149 noside);
1150 }
1151 else
1152 argvec[0] = value_of_variable (symp, get_selected_block (0));
1153 }
1154 else
1155 {
1156 /* Not C++, or no overload resolution allowed. */
1157 /* Nothing to be done; argvec already correctly set up. */
1158 }
1159 }
1160 else
1161 {
1162 /* It is probably a C-style function. */
1163 /* Nothing to be done; argvec already correctly set up. */
1164 }
1165
1166 return evaluate_subexp_do_call (exp, noside, argvec[0],
1167 gdb::make_array_view (argvec + 1, nargs),
1168 var_func_name, expect_type);
1169 }
1170
1171 /* Return true if type is integral or reference to integral */
1172
1173 static bool
1174 is_integral_or_integral_reference (struct type *type)
1175 {
1176 if (is_integral_type (type))
1177 return true;
1178
1179 type = check_typedef (type);
1180 return (type != nullptr
1181 && TYPE_IS_REFERENCE (type)
1182 && is_integral_type (TYPE_TARGET_TYPE (type)));
1183 }
1184
1185 /* Helper function that implements the body of OP_SCOPE. */
1186
1187 static struct value *
1188 eval_op_scope (struct type *expect_type, struct expression *exp,
1189 enum noside noside,
1190 struct type *type, const char *string)
1191 {
1192 if (noside == EVAL_SKIP)
1193 return eval_skip_value (exp);
1194 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1195 0, noside);
1196 if (arg1 == NULL)
1197 error (_("There is no field named %s"), string);
1198 return arg1;
1199 }
1200
1201 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1202
1203 static struct value *
1204 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1205 enum noside noside, symbol *sym)
1206 {
1207 if (noside == EVAL_SKIP)
1208 return eval_skip_value (exp);
1209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1210 return value_zero (SYMBOL_TYPE (sym), not_lval);
1211
1212 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1213 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1214 error (_("Symbol \"%s\" does not have any specific entry value"),
1215 sym->print_name ());
1216
1217 struct frame_info *frame = get_selected_frame (NULL);
1218 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1219 }
1220
1221 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1222
1223 static struct value *
1224 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1225 enum noside noside, bool outermost_p,
1226 minimal_symbol *msymbol, struct objfile *objfile)
1227 {
1228 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1229
1230 struct type *type = value_type (val);
1231 if (type->code () == TYPE_CODE_ERROR
1232 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1233 error_unknown_type (msymbol->print_name ());
1234 return val;
1235 }
1236
1237 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1238
1239 static struct value *
1240 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1241 enum noside noside,
1242 value *func, const char *var)
1243 {
1244 if (noside == EVAL_SKIP)
1245 return eval_skip_value (exp);
1246 CORE_ADDR addr = value_address (func);
1247 const block *blk = block_for_pc (addr);
1248 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1249 if (sym.symbol == NULL)
1250 error (_("No symbol \"%s\" in specified context."), var);
1251 return evaluate_var_value (noside, sym.block, sym.symbol);
1252 }
1253
1254 /* Helper function that implements the body of OP_REGISTER. */
1255
1256 static struct value *
1257 eval_op_register (struct type *expect_type, struct expression *exp,
1258 enum noside noside, const char *name)
1259 {
1260 int regno;
1261 struct value *val;
1262
1263 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1264 name, strlen (name));
1265 if (regno == -1)
1266 error (_("Register $%s not available."), name);
1267
1268 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1269 a value with the appropriate register type. Unfortunately,
1270 we don't have easy access to the type of user registers.
1271 So for these registers, we fetch the register value regardless
1272 of the evaluation mode. */
1273 if (noside == EVAL_AVOID_SIDE_EFFECTS
1274 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1275 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1276 else
1277 val = value_of_register (regno, get_selected_frame (NULL));
1278 if (val == NULL)
1279 error (_("Value of register %s not available."), name);
1280 else
1281 return val;
1282 }
1283
1284 /* Helper function that implements the body of OP_STRING. */
1285
1286 static struct value *
1287 eval_op_string (struct type *expect_type, struct expression *exp,
1288 enum noside noside, int len, const char *string)
1289 {
1290 if (noside == EVAL_SKIP)
1291 return eval_skip_value (exp);
1292 struct type *type = language_string_char_type (exp->language_defn,
1293 exp->gdbarch);
1294 return value_string (string, len, type);
1295 }
1296
1297 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1298
1299 static struct value *
1300 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1301 enum noside noside,
1302 const char *sel)
1303 {
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1308 return value_from_longest (selector_type,
1309 lookup_child_selector (exp->gdbarch, sel));
1310 }
1311
1312 /* Helper function that implements the body of BINOP_CONCAT. */
1313
1314 static struct value *
1315 eval_op_concat (struct type *expect_type, struct expression *exp,
1316 enum noside noside,
1317 enum exp_opcode op, struct value *arg1, struct value *arg2)
1318 {
1319 if (noside == EVAL_SKIP)
1320 return eval_skip_value (exp);
1321 if (binop_user_defined_p (op, arg1, arg2))
1322 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1323 else
1324 return value_concat (arg1, arg2);
1325 }
1326
1327 /* A helper function for TERNOP_SLICE. */
1328
1329 static struct value *
1330 eval_op_ternop (struct type *expect_type, struct expression *exp,
1331 enum noside noside,
1332 struct value *array, struct value *low, struct value *upper)
1333 {
1334 if (noside == EVAL_SKIP)
1335 return eval_skip_value (exp);
1336 int lowbound = value_as_long (low);
1337 int upperbound = value_as_long (upper);
1338 return value_slice (array, lowbound, upperbound - lowbound + 1);
1339 }
1340
1341 /* A helper function for STRUCTOP_STRUCT. */
1342
1343 static struct value *
1344 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1345 enum noside noside,
1346 struct value *arg1, const char *string)
1347 {
1348 if (noside == EVAL_SKIP)
1349 return eval_skip_value (exp);
1350 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1351 NULL, "structure");
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1354 return arg3;
1355 }
1356
1357 /* A helper function for STRUCTOP_PTR. */
1358
1359 static struct value *
1360 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1361 enum noside noside, enum exp_opcode op,
1362 struct value *arg1, const char *string)
1363 {
1364 if (noside == EVAL_SKIP)
1365 return eval_skip_value (exp);
1366
1367 /* Check to see if operator '->' has been overloaded. If so replace
1368 arg1 with the value returned by evaluating operator->(). */
1369 while (unop_user_defined_p (op, arg1))
1370 {
1371 struct value *value = NULL;
1372 try
1373 {
1374 value = value_x_unop (arg1, op, noside);
1375 }
1376
1377 catch (const gdb_exception_error &except)
1378 {
1379 if (except.error == NOT_FOUND_ERROR)
1380 break;
1381 else
1382 throw;
1383 }
1384
1385 arg1 = value;
1386 }
1387
1388 /* JYG: if print object is on we need to replace the base type
1389 with rtti type in order to continue on with successful
1390 lookup of member / method only available in the rtti type. */
1391 {
1392 struct type *arg_type = value_type (arg1);
1393 struct type *real_type;
1394 int full, using_enc;
1395 LONGEST top;
1396 struct value_print_options opts;
1397
1398 get_user_print_options (&opts);
1399 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1400 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1401 {
1402 real_type = value_rtti_indirect_type (arg1, &full, &top,
1403 &using_enc);
1404 if (real_type)
1405 arg1 = value_cast (real_type, arg1);
1406 }
1407 }
1408
1409 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1410 NULL, "structure pointer");
1411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1412 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1413 return arg3;
1414 }
1415
1416 /* A helper function for STRUCTOP_MEMBER. */
1417
1418 static struct value *
1419 eval_op_member (struct type *expect_type, struct expression *exp,
1420 enum noside noside,
1421 struct value *arg1, struct value *arg2)
1422 {
1423 long mem_offset;
1424
1425 if (noside == EVAL_SKIP)
1426 return eval_skip_value (exp);
1427
1428 struct value *arg3;
1429 struct type *type = check_typedef (value_type (arg2));
1430 switch (type->code ())
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1434 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1435 else
1436 {
1437 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1438 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1439 return value_ind (arg2);
1440 }
1441
1442 case TYPE_CODE_MEMBERPTR:
1443 /* Now, convert these values to an address. */
1444 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1445 arg1, 1);
1446
1447 mem_offset = value_as_long (arg2);
1448
1449 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1450 value_as_long (arg1) + mem_offset);
1451 return value_ind (arg3);
1452
1453 default:
1454 error (_("non-pointer-to-member value used "
1455 "in pointer-to-member construct"));
1456 }
1457 }
1458
1459 /* A helper function for BINOP_ADD. */
1460
1461 static struct value *
1462 eval_op_add (struct type *expect_type, struct expression *exp,
1463 enum noside noside, enum exp_opcode op,
1464 struct value *arg1, struct value *arg2)
1465 {
1466 if (noside == EVAL_SKIP)
1467 return eval_skip_value (exp);
1468 if (binop_user_defined_p (op, arg1, arg2))
1469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1470 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1471 && is_integral_or_integral_reference (value_type (arg2)))
1472 return value_ptradd (arg1, value_as_long (arg2));
1473 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1474 && is_integral_or_integral_reference (value_type (arg1)))
1475 return value_ptradd (arg2, value_as_long (arg1));
1476 else
1477 {
1478 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1479 return value_binop (arg1, arg2, BINOP_ADD);
1480 }
1481 }
1482
1483 /* A helper function for BINOP_SUB. */
1484
1485 static struct value *
1486 eval_op_sub (struct type *expect_type, struct expression *exp,
1487 enum noside noside, enum exp_opcode op,
1488 struct value *arg1, struct value *arg2)
1489 {
1490 if (noside == EVAL_SKIP)
1491 return eval_skip_value (exp);
1492 if (binop_user_defined_p (op, arg1, arg2))
1493 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1494 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1495 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1496 {
1497 /* FIXME -- should be ptrdiff_t */
1498 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1499 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1500 }
1501 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1502 && is_integral_or_integral_reference (value_type (arg2)))
1503 return value_ptradd (arg1, - value_as_long (arg2));
1504 else
1505 {
1506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1507 return value_binop (arg1, arg2, BINOP_SUB);
1508 }
1509 }
1510
1511 /* Helper function for several different binary operations. */
1512
1513 static struct value *
1514 eval_op_binary (struct type *expect_type, struct expression *exp,
1515 enum noside noside, enum exp_opcode op,
1516 struct value *arg1, struct value *arg2)
1517 {
1518 if (noside == EVAL_SKIP)
1519 return eval_skip_value (exp);
1520 if (binop_user_defined_p (op, arg1, arg2))
1521 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1522 else
1523 {
1524 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1525 fudge arg2 to avoid division-by-zero, the caller is
1526 (theoretically) only looking for the type of the result. */
1527 if (noside == EVAL_AVOID_SIDE_EFFECTS
1528 /* ??? Do we really want to test for BINOP_MOD here?
1529 The implementation of value_binop gives it a well-defined
1530 value. */
1531 && (op == BINOP_DIV
1532 || op == BINOP_INTDIV
1533 || op == BINOP_REM
1534 || op == BINOP_MOD)
1535 && value_logical_not (arg2))
1536 {
1537 struct value *v_one;
1538
1539 v_one = value_one (value_type (arg2));
1540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1541 return value_binop (arg1, v_one, op);
1542 }
1543 else
1544 {
1545 /* For shift and integer exponentiation operations,
1546 only promote the first argument. */
1547 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1548 && is_integral_type (value_type (arg2)))
1549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1550 else
1551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1552
1553 return value_binop (arg1, arg2, op);
1554 }
1555 }
1556 }
1557
1558 /* A helper function for BINOP_SUBSCRIPT. */
1559
1560 static struct value *
1561 eval_op_subscript (struct type *expect_type, struct expression *exp,
1562 enum noside noside, enum exp_opcode op,
1563 struct value *arg1, struct value *arg2)
1564 {
1565 if (noside == EVAL_SKIP)
1566 return eval_skip_value (exp);
1567 if (binop_user_defined_p (op, arg1, arg2))
1568 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1569 else
1570 {
1571 /* If the user attempts to subscript something that is not an
1572 array or pointer type (like a plain int variable for example),
1573 then report this as an error. */
1574
1575 arg1 = coerce_ref (arg1);
1576 struct type *type = check_typedef (value_type (arg1));
1577 if (type->code () != TYPE_CODE_ARRAY
1578 && type->code () != TYPE_CODE_PTR)
1579 {
1580 if (type->name ())
1581 error (_("cannot subscript something of type `%s'"),
1582 type->name ());
1583 else
1584 error (_("cannot subscript requested type"));
1585 }
1586
1587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1588 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1589 else
1590 return value_subscript (arg1, value_as_long (arg2));
1591 }
1592 }
1593
1594 /* A helper function for BINOP_EQUAL. */
1595
1596 static struct value *
1597 eval_op_equal (struct type *expect_type, struct expression *exp,
1598 enum noside noside, enum exp_opcode op,
1599 struct value *arg1, struct value *arg2)
1600 {
1601 if (noside == EVAL_SKIP)
1602 return eval_skip_value (exp);
1603 if (binop_user_defined_p (op, arg1, arg2))
1604 {
1605 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1606 }
1607 else
1608 {
1609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1610 int tem = value_equal (arg1, arg2);
1611 struct type *type = language_bool_type (exp->language_defn,
1612 exp->gdbarch);
1613 return value_from_longest (type, (LONGEST) tem);
1614 }
1615 }
1616
1617 /* A helper function for BINOP_NOTEQUAL. */
1618
1619 static struct value *
1620 eval_op_notequal (struct type *expect_type, struct expression *exp,
1621 enum noside noside, enum exp_opcode op,
1622 struct value *arg1, struct value *arg2)
1623 {
1624 if (noside == EVAL_SKIP)
1625 return eval_skip_value (exp);
1626 if (binop_user_defined_p (op, arg1, arg2))
1627 {
1628 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1629 }
1630 else
1631 {
1632 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1633 int tem = value_equal (arg1, arg2);
1634 struct type *type = language_bool_type (exp->language_defn,
1635 exp->gdbarch);
1636 return value_from_longest (type, (LONGEST) ! tem);
1637 }
1638 }
1639
1640 /* A helper function for BINOP_LESS. */
1641
1642 static struct value *
1643 eval_op_less (struct type *expect_type, struct expression *exp,
1644 enum noside noside, enum exp_opcode op,
1645 struct value *arg1, struct value *arg2)
1646 {
1647 if (noside == EVAL_SKIP)
1648 return eval_skip_value (exp);
1649 if (binop_user_defined_p (op, arg1, arg2))
1650 {
1651 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1652 }
1653 else
1654 {
1655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1656 int tem = value_less (arg1, arg2);
1657 struct type *type = language_bool_type (exp->language_defn,
1658 exp->gdbarch);
1659 return value_from_longest (type, (LONGEST) tem);
1660 }
1661 }
1662
1663 /* A helper function for BINOP_GTR. */
1664
1665 static struct value *
1666 eval_op_gtr (struct type *expect_type, struct expression *exp,
1667 enum noside noside, enum exp_opcode op,
1668 struct value *arg1, struct value *arg2)
1669 {
1670 if (noside == EVAL_SKIP)
1671 return eval_skip_value (exp);
1672 if (binop_user_defined_p (op, arg1, arg2))
1673 {
1674 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1675 }
1676 else
1677 {
1678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1679 int tem = value_less (arg2, arg1);
1680 struct type *type = language_bool_type (exp->language_defn,
1681 exp->gdbarch);
1682 return value_from_longest (type, (LONGEST) tem);
1683 }
1684 }
1685
1686 /* A helper function for BINOP_GEQ. */
1687
1688 static struct value *
1689 eval_op_geq (struct type *expect_type, struct expression *exp,
1690 enum noside noside, enum exp_opcode op,
1691 struct value *arg1, struct value *arg2)
1692 {
1693 if (noside == EVAL_SKIP)
1694 return eval_skip_value (exp);
1695 if (binop_user_defined_p (op, arg1, arg2))
1696 {
1697 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1698 }
1699 else
1700 {
1701 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1702 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
1703 struct type *type = language_bool_type (exp->language_defn,
1704 exp->gdbarch);
1705 return value_from_longest (type, (LONGEST) tem);
1706 }
1707 }
1708
1709 /* A helper function for BINOP_LEQ. */
1710
1711 static struct value *
1712 eval_op_leq (struct type *expect_type, struct expression *exp,
1713 enum noside noside, enum exp_opcode op,
1714 struct value *arg1, struct value *arg2)
1715 {
1716 if (noside == EVAL_SKIP)
1717 return eval_skip_value (exp);
1718 if (binop_user_defined_p (op, arg1, arg2))
1719 {
1720 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1721 }
1722 else
1723 {
1724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1725 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
1726 struct type *type = language_bool_type (exp->language_defn,
1727 exp->gdbarch);
1728 return value_from_longest (type, (LONGEST) tem);
1729 }
1730 }
1731
1732 /* A helper function for BINOP_REPEAT. */
1733
1734 static struct value *
1735 eval_op_repeat (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 if (noside == EVAL_SKIP)
1740 return eval_skip_value (exp);
1741 struct type *type = check_typedef (value_type (arg2));
1742 if (type->code () != TYPE_CODE_INT
1743 && type->code () != TYPE_CODE_ENUM)
1744 error (_("Non-integral right operand for \"@\" operator."));
1745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1746 {
1747 return allocate_repeat_value (value_type (arg1),
1748 longest_to_int (value_as_long (arg2)));
1749 }
1750 else
1751 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
1752 }
1753
1754 /* A helper function for UNOP_PLUS. */
1755
1756 static struct value *
1757 eval_op_plus (struct type *expect_type, struct expression *exp,
1758 enum noside noside, enum exp_opcode op,
1759 struct value *arg1)
1760 {
1761 if (noside == EVAL_SKIP)
1762 return eval_skip_value (exp);
1763 if (unop_user_defined_p (op, arg1))
1764 return value_x_unop (arg1, op, noside);
1765 else
1766 {
1767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1768 return value_pos (arg1);
1769 }
1770 }
1771
1772 /* A helper function for UNOP_NEG. */
1773
1774 static struct value *
1775 eval_op_neg (struct type *expect_type, struct expression *exp,
1776 enum noside noside, enum exp_opcode op,
1777 struct value *arg1)
1778 {
1779 if (noside == EVAL_SKIP)
1780 return eval_skip_value (exp);
1781 if (unop_user_defined_p (op, arg1))
1782 return value_x_unop (arg1, op, noside);
1783 else
1784 {
1785 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1786 return value_neg (arg1);
1787 }
1788 }
1789
1790 /* A helper function for UNOP_COMPLEMENT. */
1791
1792 static struct value *
1793 eval_op_complement (struct type *expect_type, struct expression *exp,
1794 enum noside noside, enum exp_opcode op,
1795 struct value *arg1)
1796 {
1797 if (noside == EVAL_SKIP)
1798 return eval_skip_value (exp);
1799 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
1800 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
1801 else
1802 {
1803 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1804 return value_complement (arg1);
1805 }
1806 }
1807
1808 /* A helper function for UNOP_LOGICAL_NOT. */
1809
1810 static struct value *
1811 eval_op_lognot (struct type *expect_type, struct expression *exp,
1812 enum noside noside, enum exp_opcode op,
1813 struct value *arg1)
1814 {
1815 if (noside == EVAL_SKIP)
1816 return eval_skip_value (exp);
1817 if (unop_user_defined_p (op, arg1))
1818 return value_x_unop (arg1, op, noside);
1819 else
1820 {
1821 struct type *type = language_bool_type (exp->language_defn,
1822 exp->gdbarch);
1823 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
1824 }
1825 }
1826
1827 /* A helper function for UNOP_IND. */
1828
1829 static struct value *
1830 eval_op_ind (struct type *expect_type, struct expression *exp,
1831 enum noside noside, enum exp_opcode op,
1832 struct value *arg1)
1833 {
1834 struct type *type = check_typedef (value_type (arg1));
1835 if (type->code () == TYPE_CODE_METHODPTR
1836 || type->code () == TYPE_CODE_MEMBERPTR)
1837 error (_("Attempt to dereference pointer "
1838 "to member without an object"));
1839 if (noside == EVAL_SKIP)
1840 return eval_skip_value (exp);
1841 if (unop_user_defined_p (op, arg1))
1842 return value_x_unop (arg1, op, noside);
1843 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
1844 {
1845 type = check_typedef (value_type (arg1));
1846
1847 /* If the type pointed to is dynamic then in order to resolve the
1848 dynamic properties we must actually dereference the pointer.
1849 There is a risk that this dereference will have side-effects
1850 in the inferior, but being able to print accurate type
1851 information seems worth the risk. */
1852 if ((type->code () != TYPE_CODE_PTR
1853 && !TYPE_IS_REFERENCE (type))
1854 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
1855 {
1856 if (type->code () == TYPE_CODE_PTR
1857 || TYPE_IS_REFERENCE (type)
1858 /* In C you can dereference an array to get the 1st elt. */
1859 || type->code () == TYPE_CODE_ARRAY)
1860 return value_zero (TYPE_TARGET_TYPE (type),
1861 lval_memory);
1862 else if (type->code () == TYPE_CODE_INT)
1863 /* GDB allows dereferencing an int. */
1864 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1865 lval_memory);
1866 else
1867 error (_("Attempt to take contents of a non-pointer value."));
1868 }
1869 }
1870
1871 /* Allow * on an integer so we can cast it to whatever we want.
1872 This returns an int, which seems like the most C-like thing to
1873 do. "long long" variables are rare enough that
1874 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
1875 if (type->code () == TYPE_CODE_INT)
1876 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
1877 (CORE_ADDR) value_as_address (arg1));
1878 return value_ind (arg1);
1879 }
1880
1881 /* A helper function for UNOP_ALIGNOF. */
1882
1883 static struct value *
1884 eval_op_alignof (struct type *expect_type, struct expression *exp,
1885 enum noside noside,
1886 struct value *arg1)
1887 {
1888 struct type *type = value_type (arg1);
1889 /* FIXME: This should be size_t. */
1890 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
1891 ULONGEST align = type_align (type);
1892 if (align == 0)
1893 error (_("could not determine alignment of type"));
1894 return value_from_longest (size_type, align);
1895 }
1896
1897 /* A helper function for UNOP_MEMVAL. */
1898
1899 static struct value *
1900 eval_op_memval (struct type *expect_type, struct expression *exp,
1901 enum noside noside,
1902 struct value *arg1, struct type *type)
1903 {
1904 if (noside == EVAL_SKIP)
1905 return eval_skip_value (exp);
1906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1907 return value_zero (type, lval_memory);
1908 else
1909 return value_at_lazy (type, value_as_address (arg1));
1910 }
1911
1912 /* A helper function for UNOP_PREINCREMENT. */
1913
1914 static struct value *
1915 eval_op_preinc (struct type *expect_type, struct expression *exp,
1916 enum noside noside, enum exp_opcode op,
1917 struct value *arg1)
1918 {
1919 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1920 return arg1;
1921 else if (unop_user_defined_p (op, arg1))
1922 {
1923 return value_x_unop (arg1, op, noside);
1924 }
1925 else
1926 {
1927 struct value *arg2;
1928 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1929 arg2 = value_ptradd (arg1, 1);
1930 else
1931 {
1932 struct value *tmp = arg1;
1933
1934 arg2 = value_one (value_type (arg1));
1935 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1936 arg2 = value_binop (tmp, arg2, BINOP_ADD);
1937 }
1938
1939 return value_assign (arg1, arg2);
1940 }
1941 }
1942
1943 /* A helper function for UNOP_PREDECREMENT. */
1944
1945 static struct value *
1946 eval_op_predec (struct type *expect_type, struct expression *exp,
1947 enum noside noside, enum exp_opcode op,
1948 struct value *arg1)
1949 {
1950 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1951 return arg1;
1952 else if (unop_user_defined_p (op, arg1))
1953 {
1954 return value_x_unop (arg1, op, noside);
1955 }
1956 else
1957 {
1958 struct value *arg2;
1959 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
1960 arg2 = value_ptradd (arg1, -1);
1961 else
1962 {
1963 struct value *tmp = arg1;
1964
1965 arg2 = value_one (value_type (arg1));
1966 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1967 arg2 = value_binop (tmp, arg2, BINOP_SUB);
1968 }
1969
1970 return value_assign (arg1, arg2);
1971 }
1972 }
1973
1974 struct value *
1975 evaluate_subexp_standard (struct type *expect_type,
1976 struct expression *exp, int *pos,
1977 enum noside noside)
1978 {
1979 enum exp_opcode op;
1980 int tem, tem2, tem3;
1981 int pc, oldpos;
1982 struct value *arg1 = NULL;
1983 struct value *arg2 = NULL;
1984 struct value *arg3;
1985 struct type *type;
1986 int nargs;
1987 struct value **argvec;
1988 int ix;
1989 struct type **arg_types;
1990
1991 pc = (*pos)++;
1992 op = exp->elts[pc].opcode;
1993
1994 switch (op)
1995 {
1996 case OP_SCOPE:
1997 tem = longest_to_int (exp->elts[pc + 2].longconst);
1998 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1999 return eval_op_scope (expect_type, exp, noside,
2000 exp->elts[pc + 1].type,
2001 &exp->elts[pc + 3].string);
2002
2003 case OP_LONG:
2004 (*pos) += 3;
2005 return value_from_longest (exp->elts[pc + 1].type,
2006 exp->elts[pc + 2].longconst);
2007
2008 case OP_FLOAT:
2009 (*pos) += 3;
2010 return value_from_contents (exp->elts[pc + 1].type,
2011 exp->elts[pc + 2].floatconst);
2012
2013 case OP_ADL_FUNC:
2014 case OP_VAR_VALUE:
2015 {
2016 (*pos) += 3;
2017 symbol *var = exp->elts[pc + 2].symbol;
2018 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
2019 error_unknown_type (var->print_name ());
2020 if (noside != EVAL_SKIP)
2021 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
2022 else
2023 {
2024 /* Return a dummy value of the correct type when skipping, so
2025 that parent functions know what is to be skipped. */
2026 return allocate_value (SYMBOL_TYPE (var));
2027 }
2028 }
2029
2030 case OP_VAR_MSYM_VALUE:
2031 {
2032 (*pos) += 3;
2033
2034 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
2035 return eval_op_var_msym_value (expect_type, exp, noside,
2036 pc == 0, msymbol,
2037 exp->elts[pc + 1].objfile);
2038 }
2039
2040 case OP_VAR_ENTRY_VALUE:
2041 (*pos) += 2;
2042
2043 {
2044 struct symbol *sym = exp->elts[pc + 1].symbol;
2045
2046 return eval_op_var_entry_value (expect_type, exp, noside, sym);
2047 }
2048
2049 case OP_FUNC_STATIC_VAR:
2050 tem = longest_to_int (exp->elts[pc + 1].longconst);
2051 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2052 if (noside == EVAL_SKIP)
2053 return eval_skip_value (exp);
2054
2055 {
2056 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
2057
2058 return eval_op_func_static_var (expect_type, exp, noside, func,
2059 &exp->elts[pc + 2].string);
2060 }
2061
2062 case OP_LAST:
2063 (*pos) += 2;
2064 return
2065 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
2066
2067 case OP_REGISTER:
2068 {
2069 const char *name = &exp->elts[pc + 2].string;
2070
2071 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2072 return eval_op_register (expect_type, exp, noside, name);
2073 }
2074 case OP_BOOL:
2075 (*pos) += 2;
2076 type = language_bool_type (exp->language_defn, exp->gdbarch);
2077 return value_from_longest (type, exp->elts[pc + 1].longconst);
2078
2079 case OP_INTERNALVAR:
2080 (*pos) += 2;
2081 return value_of_internalvar (exp->gdbarch,
2082 exp->elts[pc + 1].internalvar);
2083
2084 case OP_STRING:
2085 tem = longest_to_int (exp->elts[pc + 1].longconst);
2086 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2087 return eval_op_string (expect_type, exp, noside, tem,
2088 &exp->elts[pc + 2].string);
2089
2090 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
2091 NSString constant. */
2092 tem = longest_to_int (exp->elts[pc + 1].longconst);
2093 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2094 if (noside == EVAL_SKIP)
2095 return eval_skip_value (exp);
2096 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
2097
2098 case OP_ARRAY:
2099 (*pos) += 3;
2100 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
2101 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
2102 nargs = tem3 - tem2 + 1;
2103 type = expect_type ? check_typedef (expect_type) : nullptr;
2104
2105 if (expect_type != nullptr && noside != EVAL_SKIP
2106 && type->code () == TYPE_CODE_STRUCT)
2107 {
2108 struct value *rec = allocate_value (expect_type);
2109
2110 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2111 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
2112 }
2113
2114 if (expect_type != nullptr && noside != EVAL_SKIP
2115 && type->code () == TYPE_CODE_ARRAY)
2116 {
2117 struct type *range_type = type->index_type ();
2118 struct type *element_type = TYPE_TARGET_TYPE (type);
2119 struct value *array = allocate_value (expect_type);
2120 int element_size = TYPE_LENGTH (check_typedef (element_type));
2121 LONGEST low_bound, high_bound, index;
2122
2123 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2124 {
2125 low_bound = 0;
2126 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2127 }
2128 index = low_bound;
2129 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2130 for (tem = nargs; --nargs >= 0;)
2131 {
2132 struct value *element;
2133
2134 element = evaluate_subexp (element_type, exp, pos, noside);
2135 if (value_type (element) != element_type)
2136 element = value_cast (element_type, element);
2137 if (index > high_bound)
2138 /* To avoid memory corruption. */
2139 error (_("Too many array elements"));
2140 memcpy (value_contents_raw (array)
2141 + (index - low_bound) * element_size,
2142 value_contents (element),
2143 element_size);
2144 index++;
2145 }
2146 return array;
2147 }
2148
2149 if (expect_type != nullptr && noside != EVAL_SKIP
2150 && type->code () == TYPE_CODE_SET)
2151 {
2152 struct value *set = allocate_value (expect_type);
2153 gdb_byte *valaddr = value_contents_raw (set);
2154 struct type *element_type = type->index_type ();
2155 struct type *check_type = element_type;
2156 LONGEST low_bound, high_bound;
2157
2158 /* Get targettype of elementtype. */
2159 while (check_type->code () == TYPE_CODE_RANGE
2160 || check_type->code () == TYPE_CODE_TYPEDEF)
2161 check_type = TYPE_TARGET_TYPE (check_type);
2162
2163 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2164 error (_("(power)set type with unknown size"));
2165 memset (valaddr, '\0', TYPE_LENGTH (type));
2166 for (tem = 0; tem < nargs; tem++)
2167 {
2168 LONGEST range_low, range_high;
2169 struct type *range_low_type, *range_high_type;
2170 struct value *elem_val;
2171
2172 elem_val = evaluate_subexp (element_type, exp, pos, noside);
2173 range_low_type = range_high_type = value_type (elem_val);
2174 range_low = range_high = value_as_long (elem_val);
2175
2176 /* Check types of elements to avoid mixture of elements from
2177 different types. Also check if type of element is "compatible"
2178 with element type of powerset. */
2179 if (range_low_type->code () == TYPE_CODE_RANGE)
2180 range_low_type = TYPE_TARGET_TYPE (range_low_type);
2181 if (range_high_type->code () == TYPE_CODE_RANGE)
2182 range_high_type = TYPE_TARGET_TYPE (range_high_type);
2183 if ((range_low_type->code () != range_high_type->code ())
2184 || (range_low_type->code () == TYPE_CODE_ENUM
2185 && (range_low_type != range_high_type)))
2186 /* different element modes. */
2187 error (_("POWERSET tuple elements of different mode"));
2188 if ((check_type->code () != range_low_type->code ())
2189 || (check_type->code () == TYPE_CODE_ENUM
2190 && range_low_type != check_type))
2191 error (_("incompatible POWERSET tuple elements"));
2192 if (range_low > range_high)
2193 {
2194 warning (_("empty POWERSET tuple range"));
2195 continue;
2196 }
2197 if (range_low < low_bound || range_high > high_bound)
2198 error (_("POWERSET tuple element out of range"));
2199 range_low -= low_bound;
2200 range_high -= low_bound;
2201 for (; range_low <= range_high; range_low++)
2202 {
2203 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
2204
2205 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
2206 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
2207 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
2208 |= 1 << bit_index;
2209 }
2210 }
2211 return set;
2212 }
2213
2214 argvec = XALLOCAVEC (struct value *, nargs);
2215 for (tem = 0; tem < nargs; tem++)
2216 {
2217 /* Ensure that array expressions are coerced into pointer
2218 objects. */
2219 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
2220 }
2221 if (noside == EVAL_SKIP)
2222 return eval_skip_value (exp);
2223 return value_array (tem2, tem3, argvec);
2224
2225 case TERNOP_SLICE:
2226 {
2227 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
2228 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
2229 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
2230 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
2231 }
2232
2233 case TERNOP_COND:
2234 /* Skip third and second args to evaluate the first one. */
2235 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2236 if (value_logical_not (arg1))
2237 {
2238 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2239 return evaluate_subexp (nullptr, exp, pos, noside);
2240 }
2241 else
2242 {
2243 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2244 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2245 return arg2;
2246 }
2247
2248 case OP_OBJC_SELECTOR:
2249 { /* Objective C @selector operator. */
2250 char *sel = &exp->elts[pc + 2].string;
2251 int len = longest_to_int (exp->elts[pc + 1].longconst);
2252
2253 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
2254 if (sel[len] != 0)
2255 sel[len] = 0; /* Make sure it's terminated. */
2256
2257 return eval_op_objc_selector (expect_type, exp, noside, sel);
2258 }
2259
2260 case OP_OBJC_MSGCALL:
2261 { /* Objective C message (method) call. */
2262
2263 CORE_ADDR responds_selector = 0;
2264 CORE_ADDR method_selector = 0;
2265
2266 CORE_ADDR selector = 0;
2267
2268 int struct_return = 0;
2269 enum noside sub_no_side = EVAL_NORMAL;
2270
2271 struct value *msg_send = NULL;
2272 struct value *msg_send_stret = NULL;
2273 int gnu_runtime = 0;
2274
2275 struct value *target = NULL;
2276 struct value *method = NULL;
2277 struct value *called_method = NULL;
2278
2279 struct type *selector_type = NULL;
2280 struct type *long_type;
2281
2282 struct value *ret = NULL;
2283 CORE_ADDR addr = 0;
2284
2285 selector = exp->elts[pc + 1].longconst;
2286 nargs = exp->elts[pc + 2].longconst;
2287 argvec = XALLOCAVEC (struct value *, nargs + 5);
2288
2289 (*pos) += 3;
2290
2291 long_type = builtin_type (exp->gdbarch)->builtin_long;
2292 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2293
2294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2295 sub_no_side = EVAL_NORMAL;
2296 else
2297 sub_no_side = noside;
2298
2299 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
2300
2301 if (value_as_long (target) == 0)
2302 return value_from_longest (long_type, 0);
2303
2304 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2305 gnu_runtime = 1;
2306
2307 /* Find the method dispatch (Apple runtime) or method lookup
2308 (GNU runtime) function for Objective-C. These will be used
2309 to lookup the symbol information for the method. If we
2310 can't find any symbol information, then we'll use these to
2311 call the method, otherwise we can call the method
2312 directly. The msg_send_stret function is used in the special
2313 case of a method that returns a structure (Apple runtime
2314 only). */
2315 if (gnu_runtime)
2316 {
2317 type = selector_type;
2318
2319 type = lookup_function_type (type);
2320 type = lookup_pointer_type (type);
2321 type = lookup_function_type (type);
2322 type = lookup_pointer_type (type);
2323
2324 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2325 msg_send_stret
2326 = find_function_in_inferior ("objc_msg_lookup", NULL);
2327
2328 msg_send = value_from_pointer (type, value_as_address (msg_send));
2329 msg_send_stret = value_from_pointer (type,
2330 value_as_address (msg_send_stret));
2331 }
2332 else
2333 {
2334 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2335 /* Special dispatcher for methods returning structs. */
2336 msg_send_stret
2337 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2338 }
2339
2340 /* Verify the target object responds to this method. The
2341 standard top-level 'Object' class uses a different name for
2342 the verification method than the non-standard, but more
2343 often used, 'NSObject' class. Make sure we check for both. */
2344
2345 responds_selector
2346 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2347 if (responds_selector == 0)
2348 responds_selector
2349 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2350
2351 if (responds_selector == 0)
2352 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2353
2354 method_selector
2355 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2356 if (method_selector == 0)
2357 method_selector
2358 = lookup_child_selector (exp->gdbarch, "methodFor:");
2359
2360 if (method_selector == 0)
2361 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2362
2363 /* Call the verification method, to make sure that the target
2364 class implements the desired method. */
2365
2366 argvec[0] = msg_send;
2367 argvec[1] = target;
2368 argvec[2] = value_from_longest (long_type, responds_selector);
2369 argvec[3] = value_from_longest (long_type, selector);
2370 argvec[4] = 0;
2371
2372 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2373 if (gnu_runtime)
2374 {
2375 /* Function objc_msg_lookup returns a pointer. */
2376 argvec[0] = ret;
2377 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2378 }
2379 if (value_as_long (ret) == 0)
2380 error (_("Target does not respond to this message selector."));
2381
2382 /* Call "methodForSelector:" method, to get the address of a
2383 function method that implements this selector for this
2384 class. If we can find a symbol at that address, then we
2385 know the return type, parameter types etc. (that's a good
2386 thing). */
2387
2388 argvec[0] = msg_send;
2389 argvec[1] = target;
2390 argvec[2] = value_from_longest (long_type, method_selector);
2391 argvec[3] = value_from_longest (long_type, selector);
2392 argvec[4] = 0;
2393
2394 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2395 if (gnu_runtime)
2396 {
2397 argvec[0] = ret;
2398 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2399 }
2400
2401 /* ret should now be the selector. */
2402
2403 addr = value_as_long (ret);
2404 if (addr)
2405 {
2406 struct symbol *sym = NULL;
2407
2408 /* The address might point to a function descriptor;
2409 resolve it to the actual code address instead. */
2410 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2411 current_top_target ());
2412
2413 /* Is it a high_level symbol? */
2414 sym = find_pc_function (addr);
2415 if (sym != NULL)
2416 method = value_of_variable (sym, 0);
2417 }
2418
2419 /* If we found a method with symbol information, check to see
2420 if it returns a struct. Otherwise assume it doesn't. */
2421
2422 if (method)
2423 {
2424 CORE_ADDR funaddr;
2425 struct type *val_type;
2426
2427 funaddr = find_function_addr (method, &val_type);
2428
2429 block_for_pc (funaddr);
2430
2431 val_type = check_typedef (val_type);
2432
2433 if ((val_type == NULL)
2434 || (val_type->code () == TYPE_CODE_ERROR))
2435 {
2436 if (expect_type != NULL)
2437 val_type = expect_type;
2438 }
2439
2440 struct_return = using_struct_return (exp->gdbarch, method,
2441 val_type);
2442 }
2443 else if (expect_type != NULL)
2444 {
2445 struct_return = using_struct_return (exp->gdbarch, NULL,
2446 check_typedef (expect_type));
2447 }
2448
2449 /* Found a function symbol. Now we will substitute its
2450 value in place of the message dispatcher (obj_msgSend),
2451 so that we call the method directly instead of thru
2452 the dispatcher. The main reason for doing this is that
2453 we can now evaluate the return value and parameter values
2454 according to their known data types, in case we need to
2455 do things like promotion, dereferencing, special handling
2456 of structs and doubles, etc.
2457
2458 We want to use the type signature of 'method', but still
2459 jump to objc_msgSend() or objc_msgSend_stret() to better
2460 mimic the behavior of the runtime. */
2461
2462 if (method)
2463 {
2464 if (value_type (method)->code () != TYPE_CODE_FUNC)
2465 error (_("method address has symbol information "
2466 "with non-function type; skipping"));
2467
2468 /* Create a function pointer of the appropriate type, and
2469 replace its value with the value of msg_send or
2470 msg_send_stret. We must use a pointer here, as
2471 msg_send and msg_send_stret are of pointer type, and
2472 the representation may be different on systems that use
2473 function descriptors. */
2474 if (struct_return)
2475 called_method
2476 = value_from_pointer (lookup_pointer_type (value_type (method)),
2477 value_as_address (msg_send_stret));
2478 else
2479 called_method
2480 = value_from_pointer (lookup_pointer_type (value_type (method)),
2481 value_as_address (msg_send));
2482 }
2483 else
2484 {
2485 if (struct_return)
2486 called_method = msg_send_stret;
2487 else
2488 called_method = msg_send;
2489 }
2490
2491 if (noside == EVAL_SKIP)
2492 return eval_skip_value (exp);
2493
2494 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2495 {
2496 /* If the return type doesn't look like a function type,
2497 call an error. This can happen if somebody tries to
2498 turn a variable into a function call. This is here
2499 because people often want to call, eg, strcmp, which
2500 gdb doesn't know is a function. If gdb isn't asked for
2501 it's opinion (ie. through "whatis"), it won't offer
2502 it. */
2503
2504 struct type *callee_type = value_type (called_method);
2505
2506 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2507 callee_type = TYPE_TARGET_TYPE (callee_type);
2508 callee_type = TYPE_TARGET_TYPE (callee_type);
2509
2510 if (callee_type)
2511 {
2512 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2513 return allocate_value (expect_type);
2514 else
2515 return allocate_value (callee_type);
2516 }
2517 else
2518 error (_("Expression of type other than "
2519 "\"method returning ...\" used as a method"));
2520 }
2521
2522 /* Now depending on whether we found a symbol for the method,
2523 we will either call the runtime dispatcher or the method
2524 directly. */
2525
2526 argvec[0] = called_method;
2527 argvec[1] = target;
2528 argvec[2] = value_from_longest (long_type, selector);
2529 /* User-supplied arguments. */
2530 for (tem = 0; tem < nargs; tem++)
2531 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
2532 argvec[tem + 3] = 0;
2533
2534 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
2535
2536 if (gnu_runtime && (method != NULL))
2537 {
2538 /* Function objc_msg_lookup returns a pointer. */
2539 deprecated_set_value_type (argvec[0],
2540 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
2541 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
2542 }
2543
2544 return call_function_by_hand (argvec[0], NULL, call_args);
2545 }
2546 break;
2547
2548 case OP_FUNCALL:
2549 return evaluate_funcall (expect_type, exp, pos, noside);
2550
2551 case OP_COMPLEX:
2552 /* We have a complex number, There should be 2 floating
2553 point numbers that compose it. */
2554 (*pos) += 2;
2555 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2556 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2557
2558 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2559
2560 case STRUCTOP_STRUCT:
2561 tem = longest_to_int (exp->elts[pc + 1].longconst);
2562 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2563 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2564 return eval_op_structop_struct (expect_type, exp, noside, arg1,
2565 &exp->elts[pc + 2].string);
2566
2567 case STRUCTOP_PTR:
2568 tem = longest_to_int (exp->elts[pc + 1].longconst);
2569 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2570 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2571 return eval_op_structop_ptr (expect_type, exp, noside, op, arg1,
2572 &exp->elts[pc + 2].string);
2573
2574 case STRUCTOP_MEMBER:
2575 case STRUCTOP_MPTR:
2576 if (op == STRUCTOP_MEMBER)
2577 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2578 else
2579 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2580
2581 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2582
2583 return eval_op_member (expect_type, exp, noside, arg1, arg2);
2584
2585 case TYPE_INSTANCE:
2586 {
2587 type_instance_flags flags
2588 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2589 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2590 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2591 for (ix = 0; ix < nargs; ++ix)
2592 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2593
2594 fake_method fake_expect_type (flags, nargs, arg_types);
2595 *(pos) += 4 + nargs;
2596 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2597 noside);
2598 }
2599
2600 case BINOP_CONCAT:
2601 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2602 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2603 return eval_op_concat (expect_type, exp, noside, op, arg1, arg2);
2604
2605 case BINOP_ASSIGN:
2606 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2607 /* Special-case assignments where the left-hand-side is a
2608 convenience variable -- in these, don't bother setting an
2609 expected type. This avoids a weird case where re-assigning a
2610 string or array to an internal variable could error with "Too
2611 many array elements". */
2612 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2613 ? nullptr
2614 : value_type (arg1),
2615 exp, pos, noside);
2616
2617 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2618 return arg1;
2619 if (binop_user_defined_p (op, arg1, arg2))
2620 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2621 else
2622 return value_assign (arg1, arg2);
2623
2624 case BINOP_ASSIGN_MODIFY:
2625 (*pos) += 2;
2626 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2627 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2628 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2629 return arg1;
2630 op = exp->elts[pc + 1].opcode;
2631 if (binop_user_defined_p (op, arg1, arg2))
2632 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2633 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2634 value_type (arg1))
2635 && is_integral_type (value_type (arg2)))
2636 arg2 = value_ptradd (arg1, value_as_long (arg2));
2637 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2638 value_type (arg1))
2639 && is_integral_type (value_type (arg2)))
2640 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2641 else
2642 {
2643 struct value *tmp = arg1;
2644
2645 /* For shift and integer exponentiation operations,
2646 only promote the first argument. */
2647 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2648 && is_integral_type (value_type (arg2)))
2649 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2650 else
2651 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2652
2653 arg2 = value_binop (tmp, arg2, op);
2654 }
2655 return value_assign (arg1, arg2);
2656
2657 case BINOP_ADD:
2658 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2659 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2660 return eval_op_add (expect_type, exp, noside, op, arg1, arg2);
2661
2662 case BINOP_SUB:
2663 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2664 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2665 return eval_op_sub (expect_type, exp, noside, op, arg1, arg2);
2666
2667 case BINOP_EXP:
2668 case BINOP_MUL:
2669 case BINOP_DIV:
2670 case BINOP_INTDIV:
2671 case BINOP_REM:
2672 case BINOP_MOD:
2673 case BINOP_LSH:
2674 case BINOP_RSH:
2675 case BINOP_BITWISE_AND:
2676 case BINOP_BITWISE_IOR:
2677 case BINOP_BITWISE_XOR:
2678 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2679 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2680 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
2681
2682 case BINOP_SUBSCRIPT:
2683 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2684 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2685 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
2686
2687 case MULTI_SUBSCRIPT:
2688 (*pos) += 2;
2689 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2690 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2691 argvec = XALLOCAVEC (struct value *, nargs);
2692 for (ix = 0; ix < nargs; ++ix)
2693 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
2694 if (noside == EVAL_SKIP)
2695 return arg1;
2696 for (ix = 0; ix < nargs; ++ix)
2697 {
2698 arg2 = argvec[ix];
2699
2700 if (binop_user_defined_p (op, arg1, arg2))
2701 {
2702 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2703 }
2704 else
2705 {
2706 arg1 = coerce_ref (arg1);
2707 type = check_typedef (value_type (arg1));
2708
2709 switch (type->code ())
2710 {
2711 case TYPE_CODE_PTR:
2712 case TYPE_CODE_ARRAY:
2713 case TYPE_CODE_STRING:
2714 arg1 = value_subscript (arg1, value_as_long (arg2));
2715 break;
2716
2717 default:
2718 if (type->name ())
2719 error (_("cannot subscript something of type `%s'"),
2720 type->name ());
2721 else
2722 error (_("cannot subscript requested type"));
2723 }
2724 }
2725 }
2726 return (arg1);
2727
2728 case BINOP_LOGICAL_AND:
2729 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2730 if (noside == EVAL_SKIP)
2731 {
2732 evaluate_subexp (nullptr, exp, pos, noside);
2733 return eval_skip_value (exp);
2734 }
2735
2736 oldpos = *pos;
2737 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2738 *pos = oldpos;
2739
2740 if (binop_user_defined_p (op, arg1, arg2))
2741 {
2742 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2743 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2744 }
2745 else
2746 {
2747 tem = value_logical_not (arg1);
2748 arg2
2749 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
2750 type = language_bool_type (exp->language_defn, exp->gdbarch);
2751 return value_from_longest (type,
2752 (LONGEST) (!tem && !value_logical_not (arg2)));
2753 }
2754
2755 case BINOP_LOGICAL_OR:
2756 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2757 if (noside == EVAL_SKIP)
2758 {
2759 evaluate_subexp (nullptr, exp, pos, noside);
2760 return eval_skip_value (exp);
2761 }
2762
2763 oldpos = *pos;
2764 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2765 *pos = oldpos;
2766
2767 if (binop_user_defined_p (op, arg1, arg2))
2768 {
2769 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2770 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2771 }
2772 else
2773 {
2774 tem = value_logical_not (arg1);
2775 arg2
2776 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
2777 type = language_bool_type (exp->language_defn, exp->gdbarch);
2778 return value_from_longest (type,
2779 (LONGEST) (!tem || !value_logical_not (arg2)));
2780 }
2781
2782 case BINOP_EQUAL:
2783 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2784 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2785 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
2786
2787 case BINOP_NOTEQUAL:
2788 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2789 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2790 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
2791
2792 case BINOP_LESS:
2793 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2794 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2795 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
2796
2797 case BINOP_GTR:
2798 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2799 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2800 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
2801
2802 case BINOP_GEQ:
2803 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2804 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2805 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
2806
2807 case BINOP_LEQ:
2808 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2809 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2810 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
2811
2812 case BINOP_REPEAT:
2813 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2814 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
2815 return eval_op_repeat (expect_type, exp, noside, arg1, arg2);
2816
2817 case BINOP_COMMA:
2818 evaluate_subexp (nullptr, exp, pos, noside);
2819 return evaluate_subexp (nullptr, exp, pos, noside);
2820
2821 case UNOP_PLUS:
2822 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2823 return eval_op_plus (expect_type, exp, noside, op, arg1);
2824
2825 case UNOP_NEG:
2826 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2827 return eval_op_neg (expect_type, exp, noside, op, arg1);
2828
2829 case UNOP_COMPLEMENT:
2830 /* C++: check for and handle destructor names. */
2831
2832 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2833 return eval_op_complement (expect_type, exp, noside, op, arg1);
2834
2835 case UNOP_LOGICAL_NOT:
2836 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
2837 return eval_op_lognot (expect_type, exp, noside, op, arg1);
2838
2839 case UNOP_IND:
2840 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2841 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2842 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2843 return eval_op_ind (expect_type, exp, noside, op, arg1);
2844
2845 case UNOP_ADDR:
2846 /* C++: check for and handle pointer to members. */
2847
2848 if (noside == EVAL_SKIP)
2849 {
2850 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2851 return eval_skip_value (exp);
2852 }
2853 else
2854 return evaluate_subexp_for_address (exp, pos, noside);
2855
2856 case UNOP_SIZEOF:
2857 if (noside == EVAL_SKIP)
2858 {
2859 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2860 return eval_skip_value (exp);
2861 }
2862 return evaluate_subexp_for_sizeof (exp, pos, noside);
2863
2864 case UNOP_ALIGNOF:
2865 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2866 return eval_op_alignof (expect_type, exp, noside, arg1);
2867
2868 case UNOP_CAST:
2869 (*pos) += 2;
2870 type = exp->elts[pc + 1].type;
2871 return evaluate_subexp_for_cast (exp, pos, noside, type);
2872
2873 case UNOP_CAST_TYPE:
2874 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2875 type = value_type (arg1);
2876 return evaluate_subexp_for_cast (exp, pos, noside, type);
2877
2878 case UNOP_DYNAMIC_CAST:
2879 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2880 type = value_type (arg1);
2881 arg1 = evaluate_subexp (type, exp, pos, noside);
2882 if (noside == EVAL_SKIP)
2883 return eval_skip_value (exp);
2884 return value_dynamic_cast (type, arg1);
2885
2886 case UNOP_REINTERPRET_CAST:
2887 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2888 type = value_type (arg1);
2889 arg1 = evaluate_subexp (type, exp, pos, noside);
2890 if (noside == EVAL_SKIP)
2891 return eval_skip_value (exp);
2892 return value_reinterpret_cast (type, arg1);
2893
2894 case UNOP_MEMVAL:
2895 (*pos) += 2;
2896 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2897 return eval_op_memval (expect_type, exp, noside, arg1,
2898 exp->elts[pc + 1].type);
2899
2900 case UNOP_MEMVAL_TYPE:
2901 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2902 type = value_type (arg1);
2903 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2904 return eval_op_memval (expect_type, exp, noside, arg1, type);
2905
2906 case UNOP_PREINCREMENT:
2907 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2908 return eval_op_preinc (expect_type, exp, noside, op, arg1);
2909
2910 case UNOP_PREDECREMENT:
2911 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2912 return eval_op_predec (expect_type, exp, noside, op, arg1);
2913
2914 case UNOP_POSTINCREMENT:
2915 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2916 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2917 return arg1;
2918 else if (unop_user_defined_p (op, arg1))
2919 {
2920 return value_x_unop (arg1, op, noside);
2921 }
2922 else
2923 {
2924 arg3 = value_non_lval (arg1);
2925
2926 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2927 arg2 = value_ptradd (arg1, 1);
2928 else
2929 {
2930 struct value *tmp = arg1;
2931
2932 arg2 = value_one (value_type (arg1));
2933 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2934 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2935 }
2936
2937 value_assign (arg1, arg2);
2938 return arg3;
2939 }
2940
2941 case UNOP_POSTDECREMENT:
2942 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2943 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2944 return arg1;
2945 else if (unop_user_defined_p (op, arg1))
2946 {
2947 return value_x_unop (arg1, op, noside);
2948 }
2949 else
2950 {
2951 arg3 = value_non_lval (arg1);
2952
2953 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2954 arg2 = value_ptradd (arg1, -1);
2955 else
2956 {
2957 struct value *tmp = arg1;
2958
2959 arg2 = value_one (value_type (arg1));
2960 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2961 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2962 }
2963
2964 value_assign (arg1, arg2);
2965 return arg3;
2966 }
2967
2968 case OP_THIS:
2969 (*pos) += 1;
2970 return value_of_this (exp->language_defn);
2971
2972 case OP_TYPE:
2973 /* The value is not supposed to be used. This is here to make it
2974 easier to accommodate expressions that contain types. */
2975 (*pos) += 2;
2976 if (noside == EVAL_SKIP)
2977 return eval_skip_value (exp);
2978 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2979 return allocate_value (exp->elts[pc + 1].type);
2980 else
2981 error (_("Attempt to use a type name as an expression"));
2982
2983 case OP_TYPEOF:
2984 case OP_DECLTYPE:
2985 if (noside == EVAL_SKIP)
2986 {
2987 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
2988 return eval_skip_value (exp);
2989 }
2990 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2991 {
2992 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2993 struct value *result;
2994
2995 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2996
2997 /* 'decltype' has special semantics for lvalues. */
2998 if (op == OP_DECLTYPE
2999 && (sub_op == BINOP_SUBSCRIPT
3000 || sub_op == STRUCTOP_MEMBER
3001 || sub_op == STRUCTOP_MPTR
3002 || sub_op == UNOP_IND
3003 || sub_op == STRUCTOP_STRUCT
3004 || sub_op == STRUCTOP_PTR
3005 || sub_op == OP_SCOPE))
3006 {
3007 type = value_type (result);
3008
3009 if (!TYPE_IS_REFERENCE (type))
3010 {
3011 type = lookup_lvalue_reference_type (type);
3012 result = allocate_value (type);
3013 }
3014 }
3015
3016 return result;
3017 }
3018 else
3019 error (_("Attempt to use a type as an expression"));
3020
3021 case OP_TYPEID:
3022 {
3023 struct value *result;
3024 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3025
3026 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
3027 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3028 else
3029 result = evaluate_subexp (nullptr, exp, pos, noside);
3030
3031 if (noside != EVAL_NORMAL)
3032 return allocate_value (cplus_typeid_type (exp->gdbarch));
3033
3034 return cplus_typeid (result);
3035 }
3036
3037 default:
3038 /* Removing this case and compiling with gcc -Wall reveals that
3039 a lot of cases are hitting this case. Some of these should
3040 probably be removed from expression.h; others are legitimate
3041 expressions which are (apparently) not fully implemented.
3042
3043 If there are any cases landing here which mean a user error,
3044 then they should be separate cases, with more descriptive
3045 error messages. */
3046
3047 error (_("GDB does not (yet) know how to "
3048 "evaluate that kind of expression"));
3049 }
3050
3051 gdb_assert_not_reached ("missed return?");
3052 }
3053 \f
3054 /* Evaluate a subexpression of EXP, at index *POS,
3055 and return the address of that subexpression.
3056 Advance *POS over the subexpression.
3057 If the subexpression isn't an lvalue, get an error.
3058 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3059 then only the type of the result need be correct. */
3060
3061 static struct value *
3062 evaluate_subexp_for_address (struct expression *exp, int *pos,
3063 enum noside noside)
3064 {
3065 enum exp_opcode op;
3066 int pc;
3067 struct symbol *var;
3068 struct value *x;
3069 int tem;
3070
3071 pc = (*pos);
3072 op = exp->elts[pc].opcode;
3073
3074 switch (op)
3075 {
3076 case UNOP_IND:
3077 (*pos)++;
3078 x = evaluate_subexp (nullptr, exp, pos, noside);
3079
3080 /* We can't optimize out "&*" if there's a user-defined operator*. */
3081 if (unop_user_defined_p (op, x))
3082 {
3083 x = value_x_unop (x, op, noside);
3084 goto default_case_after_eval;
3085 }
3086
3087 return coerce_array (x);
3088
3089 case UNOP_MEMVAL:
3090 (*pos) += 3;
3091 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3092 evaluate_subexp (nullptr, exp, pos, noside));
3093
3094 case UNOP_MEMVAL_TYPE:
3095 {
3096 struct type *type;
3097
3098 (*pos) += 1;
3099 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3100 type = value_type (x);
3101 return value_cast (lookup_pointer_type (type),
3102 evaluate_subexp (nullptr, exp, pos, noside));
3103 }
3104
3105 case OP_VAR_VALUE:
3106 var = exp->elts[pc + 2].symbol;
3107
3108 /* C++: The "address" of a reference should yield the address
3109 * of the object pointed to. Let value_addr() deal with it. */
3110 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3111 goto default_case;
3112
3113 (*pos) += 4;
3114 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3115 {
3116 struct type *type =
3117 lookup_pointer_type (SYMBOL_TYPE (var));
3118 enum address_class sym_class = SYMBOL_CLASS (var);
3119
3120 if (sym_class == LOC_CONST
3121 || sym_class == LOC_CONST_BYTES
3122 || sym_class == LOC_REGISTER)
3123 error (_("Attempt to take address of register or constant."));
3124
3125 return
3126 value_zero (type, not_lval);
3127 }
3128 else
3129 return address_of_variable (var, exp->elts[pc + 1].block);
3130
3131 case OP_VAR_MSYM_VALUE:
3132 {
3133 (*pos) += 4;
3134
3135 value *val = evaluate_var_msym_value (noside,
3136 exp->elts[pc + 1].objfile,
3137 exp->elts[pc + 2].msymbol);
3138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3139 {
3140 struct type *type = lookup_pointer_type (value_type (val));
3141 return value_zero (type, not_lval);
3142 }
3143 else
3144 return value_addr (val);
3145 }
3146
3147 case OP_SCOPE:
3148 tem = longest_to_int (exp->elts[pc + 2].longconst);
3149 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3150 x = value_aggregate_elt (exp->elts[pc + 1].type,
3151 &exp->elts[pc + 3].string,
3152 NULL, 1, noside);
3153 if (x == NULL)
3154 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3155 return x;
3156
3157 default:
3158 default_case:
3159 x = evaluate_subexp (nullptr, exp, pos, noside);
3160 default_case_after_eval:
3161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3162 {
3163 struct type *type = check_typedef (value_type (x));
3164
3165 if (TYPE_IS_REFERENCE (type))
3166 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3167 not_lval);
3168 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3169 return value_zero (lookup_pointer_type (value_type (x)),
3170 not_lval);
3171 else
3172 error (_("Attempt to take address of "
3173 "value not located in memory."));
3174 }
3175 return value_addr (x);
3176 }
3177 }
3178
3179 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3180 When used in contexts where arrays will be coerced anyway, this is
3181 equivalent to `evaluate_subexp' but much faster because it avoids
3182 actually fetching array contents (perhaps obsolete now that we have
3183 value_lazy()).
3184
3185 Note that we currently only do the coercion for C expressions, where
3186 arrays are zero based and the coercion is correct. For other languages,
3187 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3188 to decide if coercion is appropriate. */
3189
3190 struct value *
3191 evaluate_subexp_with_coercion (struct expression *exp,
3192 int *pos, enum noside noside)
3193 {
3194 enum exp_opcode op;
3195 int pc;
3196 struct value *val;
3197 struct symbol *var;
3198 struct type *type;
3199
3200 pc = (*pos);
3201 op = exp->elts[pc].opcode;
3202
3203 switch (op)
3204 {
3205 case OP_VAR_VALUE:
3206 var = exp->elts[pc + 2].symbol;
3207 type = check_typedef (SYMBOL_TYPE (var));
3208 if (type->code () == TYPE_CODE_ARRAY
3209 && !type->is_vector ()
3210 && CAST_IS_CONVERSION (exp->language_defn))
3211 {
3212 (*pos) += 4;
3213 val = address_of_variable (var, exp->elts[pc + 1].block);
3214 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3215 val);
3216 }
3217 /* FALLTHROUGH */
3218
3219 default:
3220 return evaluate_subexp (nullptr, exp, pos, noside);
3221 }
3222 }
3223
3224 /* Evaluate a subexpression of EXP, at index *POS,
3225 and return a value for the size of that subexpression.
3226 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3227 we allow side-effects on the operand if its type is a variable
3228 length array. */
3229
3230 static struct value *
3231 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3232 enum noside noside)
3233 {
3234 /* FIXME: This should be size_t. */
3235 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3236 enum exp_opcode op;
3237 int pc;
3238 struct type *type;
3239 struct value *val;
3240
3241 pc = (*pos);
3242 op = exp->elts[pc].opcode;
3243
3244 switch (op)
3245 {
3246 /* This case is handled specially
3247 so that we avoid creating a value for the result type.
3248 If the result type is very big, it's desirable not to
3249 create a value unnecessarily. */
3250 case UNOP_IND:
3251 (*pos)++;
3252 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3253 type = check_typedef (value_type (val));
3254 if (type->code () != TYPE_CODE_PTR
3255 && !TYPE_IS_REFERENCE (type)
3256 && type->code () != TYPE_CODE_ARRAY)
3257 error (_("Attempt to take contents of a non-pointer value."));
3258 type = TYPE_TARGET_TYPE (type);
3259 if (is_dynamic_type (type))
3260 type = value_type (value_ind (val));
3261 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3262
3263 case UNOP_MEMVAL:
3264 (*pos) += 3;
3265 type = exp->elts[pc + 1].type;
3266 break;
3267
3268 case UNOP_MEMVAL_TYPE:
3269 (*pos) += 1;
3270 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3271 type = value_type (val);
3272 break;
3273
3274 case OP_VAR_VALUE:
3275 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3276 if (is_dynamic_type (type))
3277 {
3278 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3279 type = value_type (val);
3280 if (type->code () == TYPE_CODE_ARRAY)
3281 {
3282 if (type_not_allocated (type) || type_not_associated (type))
3283 return value_zero (size_type, not_lval);
3284 else if (is_dynamic_type (type->index_type ())
3285 && type->bounds ()->high.kind () == PROP_UNDEFINED)
3286 return allocate_optimized_out_value (size_type);
3287 }
3288 }
3289 else
3290 (*pos) += 4;
3291 break;
3292
3293 case OP_VAR_MSYM_VALUE:
3294 {
3295 (*pos) += 4;
3296
3297 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3298 value *mval = evaluate_var_msym_value (noside,
3299 exp->elts[pc + 1].objfile,
3300 msymbol);
3301
3302 type = value_type (mval);
3303 if (type->code () == TYPE_CODE_ERROR)
3304 error_unknown_type (msymbol->print_name ());
3305
3306 return value_from_longest (size_type, TYPE_LENGTH (type));
3307 }
3308 break;
3309
3310 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3311 type of the subscript is a variable length array type. In this case we
3312 must re-evaluate the right hand side of the subscription to allow
3313 side-effects. */
3314 case BINOP_SUBSCRIPT:
3315 if (noside == EVAL_NORMAL)
3316 {
3317 int npc = (*pos) + 1;
3318
3319 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3320 type = check_typedef (value_type (val));
3321 if (type->code () == TYPE_CODE_ARRAY)
3322 {
3323 type = check_typedef (TYPE_TARGET_TYPE (type));
3324 if (type->code () == TYPE_CODE_ARRAY)
3325 {
3326 type = type->index_type ();
3327 /* Only re-evaluate the right hand side if the resulting type
3328 is a variable length type. */
3329 if (type->bounds ()->flag_bound_evaluated)
3330 {
3331 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
3332 return value_from_longest
3333 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3334 }
3335 }
3336 }
3337 }
3338
3339 /* Fall through. */
3340
3341 default:
3342 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3343 type = value_type (val);
3344 break;
3345 }
3346
3347 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3348 "When applied to a reference or a reference type, the result is
3349 the size of the referenced type." */
3350 type = check_typedef (type);
3351 if (exp->language_defn->la_language == language_cplus
3352 && (TYPE_IS_REFERENCE (type)))
3353 type = check_typedef (TYPE_TARGET_TYPE (type));
3354 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3355 }
3356
3357 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3358 for that subexpression cast to TO_TYPE. Advance *POS over the
3359 subexpression. */
3360
3361 static value *
3362 evaluate_subexp_for_cast (expression *exp, int *pos,
3363 enum noside noside,
3364 struct type *to_type)
3365 {
3366 int pc = *pos;
3367
3368 /* Don't let symbols be evaluated with evaluate_subexp because that
3369 throws an "unknown type" error for no-debug data symbols.
3370 Instead, we want the cast to reinterpret the symbol. */
3371 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3372 || exp->elts[pc].opcode == OP_VAR_VALUE)
3373 {
3374 (*pos) += 4;
3375
3376 value *val;
3377 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3378 {
3379 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3380 return value_zero (to_type, not_lval);
3381
3382 val = evaluate_var_msym_value (noside,
3383 exp->elts[pc + 1].objfile,
3384 exp->elts[pc + 2].msymbol);
3385 }
3386 else
3387 val = evaluate_var_value (noside,
3388 exp->elts[pc + 1].block,
3389 exp->elts[pc + 2].symbol);
3390
3391 if (noside == EVAL_SKIP)
3392 return eval_skip_value (exp);
3393
3394 val = value_cast (to_type, val);
3395
3396 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3397 if (VALUE_LVAL (val) == lval_memory)
3398 {
3399 if (value_lazy (val))
3400 value_fetch_lazy (val);
3401 VALUE_LVAL (val) = not_lval;
3402 }
3403 return val;
3404 }
3405
3406 value *val = evaluate_subexp (to_type, exp, pos, noside);
3407 if (noside == EVAL_SKIP)
3408 return eval_skip_value (exp);
3409 return value_cast (to_type, val);
3410 }
3411
3412 /* Parse a type expression in the string [P..P+LENGTH). */
3413
3414 struct type *
3415 parse_and_eval_type (const char *p, int length)
3416 {
3417 char *tmp = (char *) alloca (length + 4);
3418
3419 tmp[0] = '(';
3420 memcpy (tmp + 1, p, length);
3421 tmp[length + 1] = ')';
3422 tmp[length + 2] = '0';
3423 tmp[length + 3] = '\0';
3424 expression_up expr = parse_expression (tmp);
3425 if (expr->first_opcode () != UNOP_CAST)
3426 error (_("Internal error in eval_type."));
3427 return expr->elts[1].type;
3428 }
This page took 0.100588 seconds and 5 git commands to generate.