Implement function call operations
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "cp-abi.h"
30 #include "infcall.h"
31 #include "objc-lang.h"
32 #include "block.h"
33 #include "parser-defs.h"
34 #include "cp-support.h"
35 #include "ui-out.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "valprint.h"
39 #include "gdb_obstack.h"
40 #include "objfiles.h"
41 #include "typeprint.h"
42 #include <ctype.h>
43 #include "expop.h"
44 #include "c-exp.h"
45
46 /* Prototypes for local functions. */
47
48 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
49 enum noside);
50
51 static struct value *evaluate_subexp_for_address (struct expression *,
52 int *, enum noside);
53
54 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
55 enum noside noside,
56 struct type *type);
57
58 static struct value *evaluate_struct_tuple (struct value *,
59 struct expression *, int *,
60 enum noside, int);
61
62 struct value *
63 evaluate_subexp (struct type *expect_type, struct expression *exp,
64 int *pos, enum noside noside)
65 {
66 return ((*exp->language_defn->expression_ops ()->evaluate_exp)
67 (expect_type, exp, pos, noside));
68 }
69 \f
70 /* Parse the string EXP as a C expression, evaluate it,
71 and return the result as a number. */
72
73 CORE_ADDR
74 parse_and_eval_address (const char *exp)
75 {
76 expression_up expr = parse_expression (exp);
77
78 return value_as_address (evaluate_expression (expr.get ()));
79 }
80
81 /* Like parse_and_eval_address, but treats the value of the expression
82 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
83 LONGEST
84 parse_and_eval_long (const char *exp)
85 {
86 expression_up expr = parse_expression (exp);
87
88 return value_as_long (evaluate_expression (expr.get ()));
89 }
90
91 struct value *
92 parse_and_eval (const char *exp)
93 {
94 expression_up expr = parse_expression (exp);
95
96 return evaluate_expression (expr.get ());
97 }
98
99 /* Parse up to a comma (or to a closeparen)
100 in the string EXPP as an expression, evaluate it, and return the value.
101 EXPP is advanced to point to the comma. */
102
103 struct value *
104 parse_to_comma_and_eval (const char **expp)
105 {
106 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
107
108 return evaluate_expression (expr.get ());
109 }
110 \f
111
112 /* See expression.h. */
113
114 struct value *
115 expression::evaluate (struct type *expect_type, enum noside noside)
116 {
117 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
118 if (target_has_execution ()
119 && language_defn->la_language == language_cplus
120 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
121 stack_temporaries.emplace (inferior_thread ());
122
123 int pos = 0;
124 struct value *retval = evaluate_subexp (expect_type, this, &pos, noside);
125
126 if (stack_temporaries.has_value ()
127 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
128 retval = value_non_lval (retval);
129
130 return retval;
131 }
132
133 /* See value.h. */
134
135 struct value *
136 evaluate_expression (struct expression *exp, struct type *expect_type)
137 {
138 return exp->evaluate (expect_type, EVAL_NORMAL);
139 }
140
141 /* Evaluate an expression, avoiding all memory references
142 and getting a value whose type alone is correct. */
143
144 struct value *
145 evaluate_type (struct expression *exp)
146 {
147 return exp->evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS);
148 }
149
150 /* Evaluate a subexpression, avoiding all memory references and
151 getting a value whose type alone is correct. */
152
153 struct value *
154 evaluate_subexpression_type (struct expression *exp, int subexp)
155 {
156 return evaluate_subexp (nullptr, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
157 }
158
159 /* Find the current value of a watchpoint on EXP. Return the value in
160 *VALP and *RESULTP and the chain of intermediate and final values
161 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
162 not need them.
163
164 If PRESERVE_ERRORS is true, then exceptions are passed through.
165 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
166 occurs while evaluating the expression, *RESULTP will be set to
167 NULL. *RESULTP may be a lazy value, if the result could not be
168 read from memory. It is used to determine whether a value is
169 user-specified (we should watch the whole value) or intermediate
170 (we should watch only the bit used to locate the final value).
171
172 If the final value, or any intermediate value, could not be read
173 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
174 set to any referenced values. *VALP will never be a lazy value.
175 This is the value which we store in struct breakpoint.
176
177 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
178 released from the value chain. If VAL_CHAIN is NULL, all generated
179 values will be left on the value chain. */
180
181 void
182 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
183 struct value **resultp,
184 std::vector<value_ref_ptr> *val_chain,
185 bool preserve_errors)
186 {
187 struct value *mark, *new_mark, *result;
188
189 *valp = NULL;
190 if (resultp)
191 *resultp = NULL;
192 if (val_chain)
193 val_chain->clear ();
194
195 /* Evaluate the expression. */
196 mark = value_mark ();
197 result = NULL;
198
199 try
200 {
201 result = evaluate_subexp (nullptr, exp, pc, EVAL_NORMAL);
202 }
203 catch (const gdb_exception &ex)
204 {
205 /* Ignore memory errors if we want watchpoints pointing at
206 inaccessible memory to still be created; otherwise, throw the
207 error to some higher catcher. */
208 switch (ex.error)
209 {
210 case MEMORY_ERROR:
211 if (!preserve_errors)
212 break;
213 /* Fall through. */
214 default:
215 throw;
216 break;
217 }
218 }
219
220 new_mark = value_mark ();
221 if (mark == new_mark)
222 return;
223 if (resultp)
224 *resultp = result;
225
226 /* Make sure it's not lazy, so that after the target stops again we
227 have a non-lazy previous value to compare with. */
228 if (result != NULL)
229 {
230 if (!value_lazy (result))
231 *valp = result;
232 else
233 {
234
235 try
236 {
237 value_fetch_lazy (result);
238 *valp = result;
239 }
240 catch (const gdb_exception_error &except)
241 {
242 }
243 }
244 }
245
246 if (val_chain)
247 {
248 /* Return the chain of intermediate values. We use this to
249 decide which addresses to watch. */
250 *val_chain = value_release_to_mark (mark);
251 }
252 }
253
254 /* Extract a field operation from an expression. If the subexpression
255 of EXP starting at *SUBEXP is not a structure dereference
256 operation, return NULL. Otherwise, return the name of the
257 dereferenced field, and advance *SUBEXP to point to the
258 subexpression of the left-hand-side of the dereference. This is
259 used when completing field names. */
260
261 const char *
262 extract_field_op (struct expression *exp, int *subexp)
263 {
264 int tem;
265 char *result;
266
267 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
268 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
269 return NULL;
270 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
271 result = &exp->elts[*subexp + 2].string;
272 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
273 return result;
274 }
275
276 /* This function evaluates brace-initializers (in C/C++) for
277 structure types. */
278
279 static struct value *
280 evaluate_struct_tuple (struct value *struct_val,
281 struct expression *exp,
282 int *pos, enum noside noside, int nargs)
283 {
284 struct type *struct_type = check_typedef (value_type (struct_val));
285 struct type *field_type;
286 int fieldno = -1;
287
288 while (--nargs >= 0)
289 {
290 struct value *val = NULL;
291 int bitpos, bitsize;
292 bfd_byte *addr;
293
294 fieldno++;
295 /* Skip static fields. */
296 while (fieldno < struct_type->num_fields ()
297 && field_is_static (&struct_type->field (fieldno)))
298 fieldno++;
299 if (fieldno >= struct_type->num_fields ())
300 error (_("too many initializers"));
301 field_type = struct_type->field (fieldno).type ();
302 if (field_type->code () == TYPE_CODE_UNION
303 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
304 error (_("don't know which variant you want to set"));
305
306 /* Here, struct_type is the type of the inner struct,
307 while substruct_type is the type of the inner struct.
308 These are the same for normal structures, but a variant struct
309 contains anonymous union fields that contain substruct fields.
310 The value fieldno is the index of the top-level (normal or
311 anonymous union) field in struct_field, while the value
312 subfieldno is the index of the actual real (named inner) field
313 in substruct_type. */
314
315 field_type = struct_type->field (fieldno).type ();
316 if (val == 0)
317 val = evaluate_subexp (field_type, exp, pos, noside);
318
319 /* Now actually set the field in struct_val. */
320
321 /* Assign val to field fieldno. */
322 if (value_type (val) != field_type)
323 val = value_cast (field_type, val);
324
325 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
326 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
327 addr = value_contents_writeable (struct_val) + bitpos / 8;
328 if (bitsize)
329 modify_field (struct_type, addr,
330 value_as_long (val), bitpos % 8, bitsize);
331 else
332 memcpy (addr, value_contents (val),
333 TYPE_LENGTH (value_type (val)));
334
335 }
336 return struct_val;
337 }
338
339 /* Promote value ARG1 as appropriate before performing a unary operation
340 on this argument.
341 If the result is not appropriate for any particular language then it
342 needs to patch this function. */
343
344 void
345 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
346 struct value **arg1)
347 {
348 struct type *type1;
349
350 *arg1 = coerce_ref (*arg1);
351 type1 = check_typedef (value_type (*arg1));
352
353 if (is_integral_type (type1))
354 {
355 switch (language->la_language)
356 {
357 default:
358 /* Perform integral promotion for ANSI C/C++.
359 If not appropriate for any particular language
360 it needs to modify this function. */
361 {
362 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
363
364 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
365 *arg1 = value_cast (builtin_int, *arg1);
366 }
367 break;
368 }
369 }
370 }
371
372 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
373 operation on those two operands.
374 If the result is not appropriate for any particular language then it
375 needs to patch this function. */
376
377 void
378 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
379 struct value **arg1, struct value **arg2)
380 {
381 struct type *promoted_type = NULL;
382 struct type *type1;
383 struct type *type2;
384
385 *arg1 = coerce_ref (*arg1);
386 *arg2 = coerce_ref (*arg2);
387
388 type1 = check_typedef (value_type (*arg1));
389 type2 = check_typedef (value_type (*arg2));
390
391 if ((type1->code () != TYPE_CODE_FLT
392 && type1->code () != TYPE_CODE_DECFLOAT
393 && !is_integral_type (type1))
394 || (type2->code () != TYPE_CODE_FLT
395 && type2->code () != TYPE_CODE_DECFLOAT
396 && !is_integral_type (type2)))
397 return;
398
399 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
400 return;
401
402 if (type1->code () == TYPE_CODE_DECFLOAT
403 || type2->code () == TYPE_CODE_DECFLOAT)
404 {
405 /* No promotion required. */
406 }
407 else if (type1->code () == TYPE_CODE_FLT
408 || type2->code () == TYPE_CODE_FLT)
409 {
410 switch (language->la_language)
411 {
412 case language_c:
413 case language_cplus:
414 case language_asm:
415 case language_objc:
416 case language_opencl:
417 /* No promotion required. */
418 break;
419
420 default:
421 /* For other languages the result type is unchanged from gdb
422 version 6.7 for backward compatibility.
423 If either arg was long double, make sure that value is also long
424 double. Otherwise use double. */
425 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
426 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
427 promoted_type = builtin_type (gdbarch)->builtin_long_double;
428 else
429 promoted_type = builtin_type (gdbarch)->builtin_double;
430 break;
431 }
432 }
433 else if (type1->code () == TYPE_CODE_BOOL
434 && type2->code () == TYPE_CODE_BOOL)
435 {
436 /* No promotion required. */
437 }
438 else
439 /* Integral operations here. */
440 /* FIXME: Also mixed integral/booleans, with result an integer. */
441 {
442 const struct builtin_type *builtin = builtin_type (gdbarch);
443 unsigned int promoted_len1 = TYPE_LENGTH (type1);
444 unsigned int promoted_len2 = TYPE_LENGTH (type2);
445 int is_unsigned1 = type1->is_unsigned ();
446 int is_unsigned2 = type2->is_unsigned ();
447 unsigned int result_len;
448 int unsigned_operation;
449
450 /* Determine type length and signedness after promotion for
451 both operands. */
452 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
453 {
454 is_unsigned1 = 0;
455 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
456 }
457 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
458 {
459 is_unsigned2 = 0;
460 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
461 }
462
463 if (promoted_len1 > promoted_len2)
464 {
465 unsigned_operation = is_unsigned1;
466 result_len = promoted_len1;
467 }
468 else if (promoted_len2 > promoted_len1)
469 {
470 unsigned_operation = is_unsigned2;
471 result_len = promoted_len2;
472 }
473 else
474 {
475 unsigned_operation = is_unsigned1 || is_unsigned2;
476 result_len = promoted_len1;
477 }
478
479 switch (language->la_language)
480 {
481 case language_c:
482 case language_cplus:
483 case language_asm:
484 case language_objc:
485 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
486 {
487 promoted_type = (unsigned_operation
488 ? builtin->builtin_unsigned_int
489 : builtin->builtin_int);
490 }
491 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
492 {
493 promoted_type = (unsigned_operation
494 ? builtin->builtin_unsigned_long
495 : builtin->builtin_long);
496 }
497 else
498 {
499 promoted_type = (unsigned_operation
500 ? builtin->builtin_unsigned_long_long
501 : builtin->builtin_long_long);
502 }
503 break;
504 case language_opencl:
505 if (result_len <= TYPE_LENGTH (lookup_signed_typename
506 (language, "int")))
507 {
508 promoted_type =
509 (unsigned_operation
510 ? lookup_unsigned_typename (language, "int")
511 : lookup_signed_typename (language, "int"));
512 }
513 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
514 (language, "long")))
515 {
516 promoted_type =
517 (unsigned_operation
518 ? lookup_unsigned_typename (language, "long")
519 : lookup_signed_typename (language,"long"));
520 }
521 break;
522 default:
523 /* For other languages the result type is unchanged from gdb
524 version 6.7 for backward compatibility.
525 If either arg was long long, make sure that value is also long
526 long. Otherwise use long. */
527 if (unsigned_operation)
528 {
529 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
530 promoted_type = builtin->builtin_unsigned_long_long;
531 else
532 promoted_type = builtin->builtin_unsigned_long;
533 }
534 else
535 {
536 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
537 promoted_type = builtin->builtin_long_long;
538 else
539 promoted_type = builtin->builtin_long;
540 }
541 break;
542 }
543 }
544
545 if (promoted_type)
546 {
547 /* Promote both operands to common type. */
548 *arg1 = value_cast (promoted_type, *arg1);
549 *arg2 = value_cast (promoted_type, *arg2);
550 }
551 }
552
553 static int
554 ptrmath_type_p (const struct language_defn *lang, struct type *type)
555 {
556 type = check_typedef (type);
557 if (TYPE_IS_REFERENCE (type))
558 type = TYPE_TARGET_TYPE (type);
559
560 switch (type->code ())
561 {
562 case TYPE_CODE_PTR:
563 case TYPE_CODE_FUNC:
564 return 1;
565
566 case TYPE_CODE_ARRAY:
567 return type->is_vector () ? 0 : lang->c_style_arrays_p ();
568
569 default:
570 return 0;
571 }
572 }
573
574 /* Represents a fake method with the given parameter types. This is
575 used by the parser to construct a temporary "expected" type for
576 method overload resolution. FLAGS is used as instance flags of the
577 new type, in order to be able to make the new type represent a
578 const/volatile overload. */
579
580 class fake_method
581 {
582 public:
583 fake_method (type_instance_flags flags,
584 int num_types, struct type **param_types);
585 ~fake_method ();
586
587 /* The constructed type. */
588 struct type *type () { return &m_type; }
589
590 private:
591 struct type m_type {};
592 main_type m_main_type {};
593 };
594
595 fake_method::fake_method (type_instance_flags flags,
596 int num_types, struct type **param_types)
597 {
598 struct type *type = &m_type;
599
600 TYPE_MAIN_TYPE (type) = &m_main_type;
601 TYPE_LENGTH (type) = 1;
602 type->set_code (TYPE_CODE_METHOD);
603 TYPE_CHAIN (type) = type;
604 type->set_instance_flags (flags);
605 if (num_types > 0)
606 {
607 if (param_types[num_types - 1] == NULL)
608 {
609 --num_types;
610 type->set_has_varargs (true);
611 }
612 else if (check_typedef (param_types[num_types - 1])->code ()
613 == TYPE_CODE_VOID)
614 {
615 --num_types;
616 /* Caller should have ensured this. */
617 gdb_assert (num_types == 0);
618 type->set_is_prototyped (true);
619 }
620 }
621
622 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
623 neither an objfile nor a gdbarch. As a result we must manually
624 allocate memory for auxiliary fields, and free the memory ourselves
625 when we are done with it. */
626 type->set_num_fields (num_types);
627 type->set_fields
628 ((struct field *) xzalloc (sizeof (struct field) * num_types));
629
630 while (num_types-- > 0)
631 type->field (num_types).set_type (param_types[num_types]);
632 }
633
634 fake_method::~fake_method ()
635 {
636 xfree (m_type.fields ());
637 }
638
639 namespace expr
640 {
641
642 value *
643 type_instance_operation::evaluate (struct type *expect_type,
644 struct expression *exp,
645 enum noside noside)
646 {
647 type_instance_flags flags = std::get<0> (m_storage);
648 std::vector<type *> &types = std::get<1> (m_storage);
649
650 fake_method fake_expect_type (flags, types.size (), types.data ());
651 return std::get<2> (m_storage)->evaluate (fake_expect_type.type (),
652 exp, noside);
653 }
654
655 }
656
657 /* Helper for evaluating an OP_VAR_VALUE. */
658
659 value *
660 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
661 {
662 /* JYG: We used to just return value_zero of the symbol type if
663 we're asked to avoid side effects. Otherwise we return
664 value_of_variable (...). However I'm not sure if
665 value_of_variable () has any side effect. We need a full value
666 object returned here for whatis_exp () to call evaluate_type ()
667 and then pass the full value to value_rtti_target_type () if we
668 are dealing with a pointer or reference to a base class and print
669 object is on. */
670
671 struct value *ret = NULL;
672
673 try
674 {
675 ret = value_of_variable (var, blk);
676 }
677
678 catch (const gdb_exception_error &except)
679 {
680 if (noside != EVAL_AVOID_SIDE_EFFECTS)
681 throw;
682
683 ret = value_zero (SYMBOL_TYPE (var), not_lval);
684 }
685
686 return ret;
687 }
688
689 namespace expr
690
691 {
692
693 value *
694 var_value_operation::evaluate (struct type *expect_type,
695 struct expression *exp,
696 enum noside noside)
697 {
698 symbol *var = std::get<0> (m_storage);
699 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
700 error_unknown_type (var->print_name ());
701 return evaluate_var_value (noside, std::get<1> (m_storage), var);
702 }
703
704 } /* namespace expr */
705
706 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
707
708 value *
709 evaluate_var_msym_value (enum noside noside,
710 struct objfile *objfile, minimal_symbol *msymbol)
711 {
712 CORE_ADDR address;
713 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
714
715 if (noside == EVAL_AVOID_SIDE_EFFECTS && !the_type->is_gnu_ifunc ())
716 return value_zero (the_type, not_lval);
717 else
718 return value_at_lazy (the_type, address);
719 }
720
721 /* Helper for returning a value when handling EVAL_SKIP. */
722
723 value *
724 eval_skip_value (expression *exp)
725 {
726 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
727 }
728
729 /* See expression.h. */
730
731 value *
732 evaluate_subexp_do_call (expression *exp, enum noside noside,
733 value *callee,
734 gdb::array_view<value *> argvec,
735 const char *function_name,
736 type *default_return_type)
737 {
738 if (callee == NULL)
739 error (_("Cannot evaluate function -- may be inlined"));
740 if (noside == EVAL_AVOID_SIDE_EFFECTS)
741 {
742 /* If the return type doesn't look like a function type,
743 call an error. This can happen if somebody tries to turn
744 a variable into a function call. */
745
746 type *ftype = value_type (callee);
747
748 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
749 {
750 /* We don't know anything about what the internal
751 function might return, but we have to return
752 something. */
753 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
754 not_lval);
755 }
756 else if (ftype->code () == TYPE_CODE_XMETHOD)
757 {
758 type *return_type = result_type_of_xmethod (callee, argvec);
759
760 if (return_type == NULL)
761 error (_("Xmethod is missing return type."));
762 return value_zero (return_type, not_lval);
763 }
764 else if (ftype->code () == TYPE_CODE_FUNC
765 || ftype->code () == TYPE_CODE_METHOD)
766 {
767 if (ftype->is_gnu_ifunc ())
768 {
769 CORE_ADDR address = value_address (callee);
770 type *resolved_type = find_gnu_ifunc_target_type (address);
771
772 if (resolved_type != NULL)
773 ftype = resolved_type;
774 }
775
776 type *return_type = TYPE_TARGET_TYPE (ftype);
777
778 if (return_type == NULL)
779 return_type = default_return_type;
780
781 if (return_type == NULL)
782 error_call_unknown_return_type (function_name);
783
784 return allocate_value (return_type);
785 }
786 else
787 error (_("Expression of type other than "
788 "\"Function returning ...\" used as function"));
789 }
790 switch (value_type (callee)->code ())
791 {
792 case TYPE_CODE_INTERNAL_FUNCTION:
793 return call_internal_function (exp->gdbarch, exp->language_defn,
794 callee, argvec.size (), argvec.data ());
795 case TYPE_CODE_XMETHOD:
796 return call_xmethod (callee, argvec);
797 default:
798 return call_function_by_hand (callee, default_return_type, argvec);
799 }
800 }
801
802 /* Helper for evaluating an OP_FUNCALL. */
803
804 static value *
805 evaluate_funcall (type *expect_type, expression *exp, int *pos,
806 enum noside noside)
807 {
808 int tem;
809 int pc2 = 0;
810 value *arg1 = NULL;
811 value *arg2 = NULL;
812 int save_pos1;
813 symbol *function = NULL;
814 char *function_name = NULL;
815 const char *var_func_name = NULL;
816
817 int pc = (*pos);
818 (*pos) += 2;
819
820 exp_opcode op = exp->elts[*pos].opcode;
821 int nargs = longest_to_int (exp->elts[pc].longconst);
822 /* Allocate arg vector, including space for the function to be
823 called in argvec[0], a potential `this', and a terminating
824 NULL. */
825 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
826 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
827 {
828 /* First, evaluate the structure into arg2. */
829 pc2 = (*pos)++;
830
831 if (op == STRUCTOP_MEMBER)
832 {
833 arg2 = evaluate_subexp_for_address (exp, pos, noside);
834 }
835 else
836 {
837 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
838 }
839
840 /* If the function is a virtual function, then the aggregate
841 value (providing the structure) plays its part by providing
842 the vtable. Otherwise, it is just along for the ride: call
843 the function directly. */
844
845 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
846
847 type *a1_type = check_typedef (value_type (arg1));
848 if (noside == EVAL_SKIP)
849 tem = 1; /* Set it to the right arg index so that all
850 arguments can also be skipped. */
851 else if (a1_type->code () == TYPE_CODE_METHODPTR)
852 {
853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
854 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
855 else
856 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
857
858 /* Now, say which argument to start evaluating from. */
859 nargs++;
860 tem = 2;
861 argvec[1] = arg2;
862 }
863 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
864 {
865 struct type *type_ptr
866 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
867 struct type *target_type_ptr
868 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
869
870 /* Now, convert these values to an address. */
871 arg2 = value_cast (type_ptr, arg2);
872
873 long mem_offset = value_as_long (arg1);
874
875 arg1 = value_from_pointer (target_type_ptr,
876 value_as_long (arg2) + mem_offset);
877 arg1 = value_ind (arg1);
878 tem = 1;
879 }
880 else
881 error (_("Non-pointer-to-member value used in pointer-to-member "
882 "construct"));
883 }
884 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
885 {
886 /* Hair for method invocations. */
887 int tem2;
888
889 nargs++;
890 /* First, evaluate the structure into arg2. */
891 pc2 = (*pos)++;
892 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
893 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
894
895 if (op == STRUCTOP_STRUCT)
896 {
897 /* If v is a variable in a register, and the user types
898 v.method (), this will produce an error, because v has no
899 address.
900
901 A possible way around this would be to allocate a copy of
902 the variable on the stack, copy in the contents, call the
903 function, and copy out the contents. I.e. convert this
904 from call by reference to call by copy-return (or
905 whatever it's called). However, this does not work
906 because it is not the same: the method being called could
907 stash a copy of the address, and then future uses through
908 that address (after the method returns) would be expected
909 to use the variable itself, not some copy of it. */
910 arg2 = evaluate_subexp_for_address (exp, pos, noside);
911 }
912 else
913 {
914 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
915
916 /* Check to see if the operator '->' has been overloaded.
917 If the operator has been overloaded replace arg2 with the
918 value returned by the custom operator and continue
919 evaluation. */
920 while (unop_user_defined_p (op, arg2))
921 {
922 struct value *value = NULL;
923 try
924 {
925 value = value_x_unop (arg2, op, noside);
926 }
927
928 catch (const gdb_exception_error &except)
929 {
930 if (except.error == NOT_FOUND_ERROR)
931 break;
932 else
933 throw;
934 }
935
936 arg2 = value;
937 }
938 }
939 /* Now, say which argument to start evaluating from. */
940 tem = 2;
941 }
942 else if (op == OP_SCOPE
943 && overload_resolution
944 && (exp->language_defn->la_language == language_cplus))
945 {
946 /* Unpack it locally so we can properly handle overload
947 resolution. */
948 char *name;
949 int local_tem;
950
951 pc2 = (*pos)++;
952 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
953 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
954 struct type *type = exp->elts[pc2 + 1].type;
955 name = &exp->elts[pc2 + 3].string;
956
957 function = NULL;
958 function_name = NULL;
959 if (type->code () == TYPE_CODE_NAMESPACE)
960 {
961 function = cp_lookup_symbol_namespace (type->name (),
962 name,
963 get_selected_block (0),
964 VAR_DOMAIN).symbol;
965 if (function == NULL)
966 error (_("No symbol \"%s\" in namespace \"%s\"."),
967 name, type->name ());
968
969 tem = 1;
970 /* arg2 is left as NULL on purpose. */
971 }
972 else
973 {
974 gdb_assert (type->code () == TYPE_CODE_STRUCT
975 || type->code () == TYPE_CODE_UNION);
976 function_name = name;
977
978 /* We need a properly typed value for method lookup. For
979 static methods arg2 is otherwise unused. */
980 arg2 = value_zero (type, lval_memory);
981 ++nargs;
982 tem = 2;
983 }
984 }
985 else if (op == OP_ADL_FUNC)
986 {
987 /* Save the function position and move pos so that the arguments
988 can be evaluated. */
989 int func_name_len;
990
991 save_pos1 = *pos;
992 tem = 1;
993
994 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
995 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
996 }
997 else
998 {
999 /* Non-method function call. */
1000 save_pos1 = *pos;
1001 tem = 1;
1002
1003 /* If this is a C++ function wait until overload resolution. */
1004 if (op == OP_VAR_VALUE
1005 && overload_resolution
1006 && (exp->language_defn->la_language == language_cplus))
1007 {
1008 (*pos) += 4; /* Skip the evaluation of the symbol. */
1009 argvec[0] = NULL;
1010 }
1011 else
1012 {
1013 if (op == OP_VAR_MSYM_VALUE)
1014 {
1015 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1016 var_func_name = msym->print_name ();
1017 }
1018 else if (op == OP_VAR_VALUE)
1019 {
1020 symbol *sym = exp->elts[*pos + 2].symbol;
1021 var_func_name = sym->print_name ();
1022 }
1023
1024 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1025 type *type = value_type (argvec[0]);
1026 if (type && type->code () == TYPE_CODE_PTR)
1027 type = TYPE_TARGET_TYPE (type);
1028 if (type && type->code () == TYPE_CODE_FUNC)
1029 {
1030 for (; tem <= nargs && tem <= type->num_fields (); tem++)
1031 {
1032 argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
1033 exp, pos, noside);
1034 }
1035 }
1036 }
1037 }
1038
1039 /* Evaluate arguments (if not already done, e.g., namespace::func()
1040 and overload-resolution is off). */
1041 for (; tem <= nargs; tem++)
1042 {
1043 /* Ensure that array expressions are coerced into pointer
1044 objects. */
1045 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1046 }
1047
1048 /* Signal end of arglist. */
1049 argvec[tem] = 0;
1050
1051 if (noside == EVAL_SKIP)
1052 return eval_skip_value (exp);
1053
1054 if (op == OP_ADL_FUNC)
1055 {
1056 struct symbol *symp;
1057 char *func_name;
1058 int name_len;
1059 int string_pc = save_pos1 + 3;
1060
1061 /* Extract the function name. */
1062 name_len = longest_to_int (exp->elts[string_pc].longconst);
1063 func_name = (char *) alloca (name_len + 1);
1064 strcpy (func_name, &exp->elts[string_pc + 1].string);
1065
1066 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1067 func_name,
1068 NON_METHOD, /* not method */
1069 NULL, NULL, /* pass NULL symbol since
1070 symbol is unknown */
1071 NULL, &symp, NULL, 0, noside);
1072
1073 /* Now fix the expression being evaluated. */
1074 exp->elts[save_pos1 + 2].symbol = symp;
1075 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1076 }
1077
1078 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1079 || (op == OP_SCOPE && function_name != NULL))
1080 {
1081 int static_memfuncp;
1082 char *tstr;
1083
1084 /* Method invocation: stuff "this" as first parameter. If the
1085 method turns out to be static we undo this below. */
1086 argvec[1] = arg2;
1087
1088 if (op != OP_SCOPE)
1089 {
1090 /* Name of method from expression. */
1091 tstr = &exp->elts[pc2 + 2].string;
1092 }
1093 else
1094 tstr = function_name;
1095
1096 if (overload_resolution && (exp->language_defn->la_language
1097 == language_cplus))
1098 {
1099 /* Language is C++, do some overload resolution before
1100 evaluation. */
1101 struct value *valp = NULL;
1102
1103 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1104 tstr,
1105 METHOD, /* method */
1106 &arg2, /* the object */
1107 NULL, &valp, NULL,
1108 &static_memfuncp, 0, noside);
1109
1110 if (op == OP_SCOPE && !static_memfuncp)
1111 {
1112 /* For the time being, we don't handle this. */
1113 error (_("Call to overloaded function %s requires "
1114 "`this' pointer"),
1115 function_name);
1116 }
1117 argvec[1] = arg2; /* the ``this'' pointer */
1118 argvec[0] = valp; /* Use the method found after overload
1119 resolution. */
1120 }
1121 else
1122 /* Non-C++ case -- or no overload resolution. */
1123 {
1124 struct value *temp = arg2;
1125
1126 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1127 &static_memfuncp,
1128 op == STRUCTOP_STRUCT
1129 ? "structure" : "structure pointer");
1130 /* value_struct_elt updates temp with the correct value of
1131 the ``this'' pointer if necessary, so modify argvec[1] to
1132 reflect any ``this'' changes. */
1133 arg2
1134 = value_from_longest (lookup_pointer_type(value_type (temp)),
1135 value_address (temp)
1136 + value_embedded_offset (temp));
1137 argvec[1] = arg2; /* the ``this'' pointer */
1138 }
1139
1140 /* Take out `this' if needed. */
1141 if (static_memfuncp)
1142 {
1143 argvec[1] = argvec[0];
1144 nargs--;
1145 argvec++;
1146 }
1147 }
1148 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1149 {
1150 /* Pointer to member. argvec[1] is already set up. */
1151 argvec[0] = arg1;
1152 }
1153 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1154 {
1155 /* Non-member function being called. */
1156 /* fn: This can only be done for C++ functions. A C-style
1157 function in a C++ program, for instance, does not have the
1158 fields that are expected here. */
1159
1160 if (overload_resolution && (exp->language_defn->la_language
1161 == language_cplus))
1162 {
1163 /* Language is C++, do some overload resolution before
1164 evaluation. */
1165 struct symbol *symp;
1166 int no_adl = 0;
1167
1168 /* If a scope has been specified disable ADL. */
1169 if (op == OP_SCOPE)
1170 no_adl = 1;
1171
1172 if (op == OP_VAR_VALUE)
1173 function = exp->elts[save_pos1+2].symbol;
1174
1175 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1176 NULL, /* no need for name */
1177 NON_METHOD, /* not method */
1178 NULL, function, /* the function */
1179 NULL, &symp, NULL, no_adl, noside);
1180
1181 if (op == OP_VAR_VALUE)
1182 {
1183 /* Now fix the expression being evaluated. */
1184 exp->elts[save_pos1+2].symbol = symp;
1185 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1186 noside);
1187 }
1188 else
1189 argvec[0] = value_of_variable (symp, get_selected_block (0));
1190 }
1191 else
1192 {
1193 /* Not C++, or no overload resolution allowed. */
1194 /* Nothing to be done; argvec already correctly set up. */
1195 }
1196 }
1197 else
1198 {
1199 /* It is probably a C-style function. */
1200 /* Nothing to be done; argvec already correctly set up. */
1201 }
1202
1203 return evaluate_subexp_do_call (exp, noside, argvec[0],
1204 gdb::make_array_view (argvec + 1, nargs),
1205 var_func_name, expect_type);
1206 }
1207
1208 namespace expr
1209 {
1210
1211 value *
1212 operation::evaluate_funcall (struct type *expect_type,
1213 struct expression *exp,
1214 enum noside noside,
1215 const char *function_name,
1216 const std::vector<operation_up> &args)
1217 {
1218 std::vector<value *> vals (args.size ());
1219
1220 value *callee = evaluate_with_coercion (exp, noside);
1221 for (int i = 0; i < args.size (); ++i)
1222 vals[i] = args[i]->evaluate_with_coercion (exp, noside);
1223
1224 return evaluate_subexp_do_call (exp, noside, callee, vals,
1225 function_name, expect_type);
1226 }
1227
1228 value *
1229 var_value_operation::evaluate_funcall (struct type *expect_type,
1230 struct expression *exp,
1231 enum noside noside,
1232 const std::vector<operation_up> &args)
1233 {
1234 if (!overload_resolution
1235 || exp->language_defn->la_language != language_cplus)
1236 return operation::evaluate_funcall (expect_type, exp, noside, args);
1237
1238 std::vector<value *> argvec (args.size ());
1239 for (int i = 0; i < args.size (); ++i)
1240 argvec[i] = args[i]->evaluate_with_coercion (exp, noside);
1241
1242 struct symbol *symp;
1243 find_overload_match (argvec, NULL, NON_METHOD,
1244 NULL, std::get<0> (m_storage),
1245 NULL, &symp, NULL, 0, noside);
1246
1247 if (SYMBOL_TYPE (symp)->code () == TYPE_CODE_ERROR)
1248 error_unknown_type (symp->print_name ());
1249 value *callee = evaluate_var_value (noside, std::get<1> (m_storage), symp);
1250
1251 return evaluate_subexp_do_call (exp, noside, callee, argvec,
1252 nullptr, expect_type);
1253 }
1254
1255 value *
1256 scope_operation::evaluate_funcall (struct type *expect_type,
1257 struct expression *exp,
1258 enum noside noside,
1259 const std::vector<operation_up> &args)
1260 {
1261 if (!overload_resolution
1262 || exp->language_defn->la_language != language_cplus)
1263 return operation::evaluate_funcall (expect_type, exp, noside, args);
1264
1265 /* Unpack it locally so we can properly handle overload
1266 resolution. */
1267 const std::string &name = std::get<1> (m_storage);
1268 struct type *type = std::get<0> (m_storage);
1269
1270 symbol *function = NULL;
1271 const char *function_name = NULL;
1272 std::vector<value *> argvec (1 + args.size ());
1273 if (type->code () == TYPE_CODE_NAMESPACE)
1274 {
1275 function = cp_lookup_symbol_namespace (type->name (),
1276 name.c_str (),
1277 get_selected_block (0),
1278 VAR_DOMAIN).symbol;
1279 if (function == NULL)
1280 error (_("No symbol \"%s\" in namespace \"%s\"."),
1281 name.c_str (), type->name ());
1282 }
1283 else
1284 {
1285 gdb_assert (type->code () == TYPE_CODE_STRUCT
1286 || type->code () == TYPE_CODE_UNION);
1287 function_name = name.c_str ();
1288
1289 /* We need a properly typed value for method lookup. */
1290 argvec[0] = value_zero (type, lval_memory);
1291 }
1292
1293 for (int i = 0; i < args.size (); ++i)
1294 argvec[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
1295 gdb::array_view<value *> arg_view = argvec;
1296
1297 value *callee = nullptr;
1298 if (function_name != nullptr)
1299 {
1300 int static_memfuncp;
1301
1302 find_overload_match (arg_view, function_name, METHOD,
1303 &argvec[0], nullptr, &callee, nullptr,
1304 &static_memfuncp, 0, noside);
1305 if (!static_memfuncp)
1306 {
1307 /* For the time being, we don't handle this. */
1308 error (_("Call to overloaded function %s requires "
1309 "`this' pointer"),
1310 function_name);
1311 }
1312
1313 arg_view = arg_view.slice (1);
1314 }
1315 else
1316 {
1317 symbol *symp;
1318 arg_view = arg_view.slice (1);
1319 find_overload_match (arg_view, nullptr,
1320 NON_METHOD, nullptr, function,
1321 nullptr, &symp, nullptr, 1, noside);
1322 callee = value_of_variable (symp, get_selected_block (0));
1323 }
1324
1325 return evaluate_subexp_do_call (exp, noside, callee, arg_view,
1326 nullptr, expect_type);
1327 }
1328
1329 value *
1330 structop_member_base::evaluate_funcall (struct type *expect_type,
1331 struct expression *exp,
1332 enum noside noside,
1333 const std::vector<operation_up> &args)
1334 {
1335 /* First, evaluate the structure into lhs. */
1336 value *lhs;
1337 if (opcode () == STRUCTOP_MEMBER)
1338 lhs = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
1339 else
1340 lhs = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
1341
1342 std::vector<value *> vals (args.size () + 1);
1343 gdb::array_view<value *> val_view = vals;
1344 /* If the function is a virtual function, then the aggregate
1345 value (providing the structure) plays its part by providing
1346 the vtable. Otherwise, it is just along for the ride: call
1347 the function directly. */
1348 value *rhs = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
1349 value *callee;
1350
1351 type *a1_type = check_typedef (value_type (rhs));
1352 if (a1_type->code () == TYPE_CODE_METHODPTR)
1353 {
1354 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1355 callee = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
1356 else
1357 callee = cplus_method_ptr_to_value (&lhs, rhs);
1358
1359 vals[0] = lhs;
1360 }
1361 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
1362 {
1363 struct type *type_ptr
1364 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
1365 struct type *target_type_ptr
1366 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
1367
1368 /* Now, convert this value to an address. */
1369 lhs = value_cast (type_ptr, lhs);
1370
1371 long mem_offset = value_as_long (rhs);
1372
1373 callee = value_from_pointer (target_type_ptr,
1374 value_as_long (lhs) + mem_offset);
1375 callee = value_ind (callee);
1376
1377 val_view = val_view.slice (1);
1378 }
1379 else
1380 error (_("Non-pointer-to-member value used in pointer-to-member "
1381 "construct"));
1382
1383 for (int i = 0; i < args.size (); ++i)
1384 vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
1385
1386 return evaluate_subexp_do_call (exp, noside, callee, val_view,
1387 nullptr, expect_type);
1388
1389 }
1390
1391 value *
1392 structop_base_operation::evaluate_funcall
1393 (struct type *expect_type, struct expression *exp, enum noside noside,
1394 const std::vector<operation_up> &args)
1395 {
1396 std::vector<value *> vals (args.size () + 1);
1397 /* First, evaluate the structure into vals[0]. */
1398 enum exp_opcode op = opcode ();
1399 if (op == STRUCTOP_STRUCT)
1400 {
1401 /* If v is a variable in a register, and the user types
1402 v.method (), this will produce an error, because v has no
1403 address.
1404
1405 A possible way around this would be to allocate a copy of
1406 the variable on the stack, copy in the contents, call the
1407 function, and copy out the contents. I.e. convert this
1408 from call by reference to call by copy-return (or
1409 whatever it's called). However, this does not work
1410 because it is not the same: the method being called could
1411 stash a copy of the address, and then future uses through
1412 that address (after the method returns) would be expected
1413 to use the variable itself, not some copy of it. */
1414 vals[0] = std::get<0> (m_storage)->evaluate_for_address (exp, noside);
1415 }
1416 else
1417 {
1418 vals[0] = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
1419 /* Check to see if the operator '->' has been overloaded.
1420 If the operator has been overloaded replace vals[0] with the
1421 value returned by the custom operator and continue
1422 evaluation. */
1423 while (unop_user_defined_p (op, vals[0]))
1424 {
1425 struct value *value = nullptr;
1426 try
1427 {
1428 value = value_x_unop (vals[0], op, noside);
1429 }
1430 catch (const gdb_exception_error &except)
1431 {
1432 if (except.error == NOT_FOUND_ERROR)
1433 break;
1434 else
1435 throw;
1436 }
1437
1438 vals[0] = value;
1439 }
1440 }
1441
1442 for (int i = 0; i < args.size (); ++i)
1443 vals[i + 1] = args[i]->evaluate_with_coercion (exp, noside);
1444 gdb::array_view<value *> arg_view = vals;
1445
1446 int static_memfuncp;
1447 value *callee;
1448 const char *tstr = std::get<1> (m_storage).c_str ();
1449 if (overload_resolution
1450 && exp->language_defn->la_language == language_cplus)
1451 {
1452 /* Language is C++, do some overload resolution before
1453 evaluation. */
1454 value *val0 = vals[0];
1455 find_overload_match (arg_view, tstr, METHOD,
1456 &val0, nullptr, &callee, nullptr,
1457 &static_memfuncp, 0, noside);
1458 vals[0] = val0;
1459 }
1460 else
1461 /* Non-C++ case -- or no overload resolution. */
1462 {
1463 struct value *temp = vals[0];
1464
1465 callee = value_struct_elt (&temp, &vals[1], tstr,
1466 &static_memfuncp,
1467 op == STRUCTOP_STRUCT
1468 ? "structure" : "structure pointer");
1469 /* value_struct_elt updates temp with the correct value of the
1470 ``this'' pointer if necessary, so modify it to reflect any
1471 ``this'' changes. */
1472 vals[0] = value_from_longest (lookup_pointer_type (value_type (temp)),
1473 value_address (temp)
1474 + value_embedded_offset (temp));
1475 }
1476
1477 /* Take out `this' if needed. */
1478 if (static_memfuncp)
1479 arg_view = arg_view.slice (1);
1480
1481 return evaluate_subexp_do_call (exp, noside, callee, arg_view,
1482 nullptr, expect_type);
1483 }
1484
1485
1486 } /* namespace expr */
1487
1488 /* Return true if type is integral or reference to integral */
1489
1490 static bool
1491 is_integral_or_integral_reference (struct type *type)
1492 {
1493 if (is_integral_type (type))
1494 return true;
1495
1496 type = check_typedef (type);
1497 return (type != nullptr
1498 && TYPE_IS_REFERENCE (type)
1499 && is_integral_type (TYPE_TARGET_TYPE (type)));
1500 }
1501
1502 /* Helper function that implements the body of OP_SCOPE. */
1503
1504 struct value *
1505 eval_op_scope (struct type *expect_type, struct expression *exp,
1506 enum noside noside,
1507 struct type *type, const char *string)
1508 {
1509 if (noside == EVAL_SKIP)
1510 return eval_skip_value (exp);
1511 struct value *arg1 = value_aggregate_elt (type, string, expect_type,
1512 0, noside);
1513 if (arg1 == NULL)
1514 error (_("There is no field named %s"), string);
1515 return arg1;
1516 }
1517
1518 /* Helper function that implements the body of OP_VAR_ENTRY_VALUE. */
1519
1520 struct value *
1521 eval_op_var_entry_value (struct type *expect_type, struct expression *exp,
1522 enum noside noside, symbol *sym)
1523 {
1524 if (noside == EVAL_SKIP)
1525 return eval_skip_value (exp);
1526 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1527 return value_zero (SYMBOL_TYPE (sym), not_lval);
1528
1529 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1530 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1531 error (_("Symbol \"%s\" does not have any specific entry value"),
1532 sym->print_name ());
1533
1534 struct frame_info *frame = get_selected_frame (NULL);
1535 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1536 }
1537
1538 /* Helper function that implements the body of OP_VAR_MSYM_VALUE. */
1539
1540 struct value *
1541 eval_op_var_msym_value (struct type *expect_type, struct expression *exp,
1542 enum noside noside, bool outermost_p,
1543 minimal_symbol *msymbol, struct objfile *objfile)
1544 {
1545 value *val = evaluate_var_msym_value (noside, objfile, msymbol);
1546
1547 struct type *type = value_type (val);
1548 if (type->code () == TYPE_CODE_ERROR
1549 && (noside != EVAL_AVOID_SIDE_EFFECTS || !outermost_p))
1550 error_unknown_type (msymbol->print_name ());
1551 return val;
1552 }
1553
1554 /* Helper function that implements the body of OP_FUNC_STATIC_VAR. */
1555
1556 struct value *
1557 eval_op_func_static_var (struct type *expect_type, struct expression *exp,
1558 enum noside noside,
1559 value *func, const char *var)
1560 {
1561 if (noside == EVAL_SKIP)
1562 return eval_skip_value (exp);
1563 CORE_ADDR addr = value_address (func);
1564 const block *blk = block_for_pc (addr);
1565 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1566 if (sym.symbol == NULL)
1567 error (_("No symbol \"%s\" in specified context."), var);
1568 return evaluate_var_value (noside, sym.block, sym.symbol);
1569 }
1570
1571 /* Helper function that implements the body of OP_REGISTER. */
1572
1573 struct value *
1574 eval_op_register (struct type *expect_type, struct expression *exp,
1575 enum noside noside, const char *name)
1576 {
1577 int regno;
1578 struct value *val;
1579
1580 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1581 name, strlen (name));
1582 if (regno == -1)
1583 error (_("Register $%s not available."), name);
1584
1585 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1586 a value with the appropriate register type. Unfortunately,
1587 we don't have easy access to the type of user registers.
1588 So for these registers, we fetch the register value regardless
1589 of the evaluation mode. */
1590 if (noside == EVAL_AVOID_SIDE_EFFECTS
1591 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1592 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1593 else
1594 val = value_of_register (regno, get_selected_frame (NULL));
1595 if (val == NULL)
1596 error (_("Value of register %s not available."), name);
1597 else
1598 return val;
1599 }
1600
1601 /* Helper function that implements the body of OP_STRING. */
1602
1603 struct value *
1604 eval_op_string (struct type *expect_type, struct expression *exp,
1605 enum noside noside, int len, const char *string)
1606 {
1607 if (noside == EVAL_SKIP)
1608 return eval_skip_value (exp);
1609 struct type *type = language_string_char_type (exp->language_defn,
1610 exp->gdbarch);
1611 return value_string (string, len, type);
1612 }
1613
1614 /* Helper function that implements the body of OP_OBJC_SELECTOR. */
1615
1616 struct value *
1617 eval_op_objc_selector (struct type *expect_type, struct expression *exp,
1618 enum noside noside,
1619 const char *sel)
1620 {
1621 if (noside == EVAL_SKIP)
1622 return eval_skip_value (exp);
1623
1624 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1625 return value_from_longest (selector_type,
1626 lookup_child_selector (exp->gdbarch, sel));
1627 }
1628
1629 /* Helper function that implements the body of BINOP_CONCAT. */
1630
1631 struct value *
1632 eval_op_concat (struct type *expect_type, struct expression *exp,
1633 enum noside noside, struct value *arg1, struct value *arg2)
1634 {
1635 if (noside == EVAL_SKIP)
1636 return eval_skip_value (exp);
1637 if (binop_user_defined_p (BINOP_CONCAT, arg1, arg2))
1638 return value_x_binop (arg1, arg2, BINOP_CONCAT, OP_NULL, noside);
1639 else
1640 return value_concat (arg1, arg2);
1641 }
1642
1643 /* A helper function for TERNOP_SLICE. */
1644
1645 struct value *
1646 eval_op_ternop (struct type *expect_type, struct expression *exp,
1647 enum noside noside,
1648 struct value *array, struct value *low, struct value *upper)
1649 {
1650 if (noside == EVAL_SKIP)
1651 return eval_skip_value (exp);
1652 int lowbound = value_as_long (low);
1653 int upperbound = value_as_long (upper);
1654 return value_slice (array, lowbound, upperbound - lowbound + 1);
1655 }
1656
1657 /* A helper function for STRUCTOP_STRUCT. */
1658
1659 struct value *
1660 eval_op_structop_struct (struct type *expect_type, struct expression *exp,
1661 enum noside noside,
1662 struct value *arg1, const char *string)
1663 {
1664 if (noside == EVAL_SKIP)
1665 return eval_skip_value (exp);
1666 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1667 NULL, "structure");
1668 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1669 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1670 return arg3;
1671 }
1672
1673 /* A helper function for STRUCTOP_PTR. */
1674
1675 struct value *
1676 eval_op_structop_ptr (struct type *expect_type, struct expression *exp,
1677 enum noside noside,
1678 struct value *arg1, const char *string)
1679 {
1680 if (noside == EVAL_SKIP)
1681 return eval_skip_value (exp);
1682
1683 /* Check to see if operator '->' has been overloaded. If so replace
1684 arg1 with the value returned by evaluating operator->(). */
1685 while (unop_user_defined_p (STRUCTOP_PTR, arg1))
1686 {
1687 struct value *value = NULL;
1688 try
1689 {
1690 value = value_x_unop (arg1, STRUCTOP_PTR, noside);
1691 }
1692
1693 catch (const gdb_exception_error &except)
1694 {
1695 if (except.error == NOT_FOUND_ERROR)
1696 break;
1697 else
1698 throw;
1699 }
1700
1701 arg1 = value;
1702 }
1703
1704 /* JYG: if print object is on we need to replace the base type
1705 with rtti type in order to continue on with successful
1706 lookup of member / method only available in the rtti type. */
1707 {
1708 struct type *arg_type = value_type (arg1);
1709 struct type *real_type;
1710 int full, using_enc;
1711 LONGEST top;
1712 struct value_print_options opts;
1713
1714 get_user_print_options (&opts);
1715 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
1716 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
1717 {
1718 real_type = value_rtti_indirect_type (arg1, &full, &top,
1719 &using_enc);
1720 if (real_type)
1721 arg1 = value_cast (real_type, arg1);
1722 }
1723 }
1724
1725 struct value *arg3 = value_struct_elt (&arg1, NULL, string,
1726 NULL, "structure pointer");
1727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1728 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1729 return arg3;
1730 }
1731
1732 /* A helper function for STRUCTOP_MEMBER. */
1733
1734 struct value *
1735 eval_op_member (struct type *expect_type, struct expression *exp,
1736 enum noside noside,
1737 struct value *arg1, struct value *arg2)
1738 {
1739 long mem_offset;
1740
1741 if (noside == EVAL_SKIP)
1742 return eval_skip_value (exp);
1743
1744 struct value *arg3;
1745 struct type *type = check_typedef (value_type (arg2));
1746 switch (type->code ())
1747 {
1748 case TYPE_CODE_METHODPTR:
1749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1750 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1751 else
1752 {
1753 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1754 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
1755 return value_ind (arg2);
1756 }
1757
1758 case TYPE_CODE_MEMBERPTR:
1759 /* Now, convert these values to an address. */
1760 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
1761 arg1, 1);
1762
1763 mem_offset = value_as_long (arg2);
1764
1765 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1766 value_as_long (arg1) + mem_offset);
1767 return value_ind (arg3);
1768
1769 default:
1770 error (_("non-pointer-to-member value used "
1771 "in pointer-to-member construct"));
1772 }
1773 }
1774
1775 /* A helper function for BINOP_ADD. */
1776
1777 struct value *
1778 eval_op_add (struct type *expect_type, struct expression *exp,
1779 enum noside noside,
1780 struct value *arg1, struct value *arg2)
1781 {
1782 if (noside == EVAL_SKIP)
1783 return eval_skip_value (exp);
1784 if (binop_user_defined_p (BINOP_ADD, arg1, arg2))
1785 return value_x_binop (arg1, arg2, BINOP_ADD, OP_NULL, noside);
1786 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1787 && is_integral_or_integral_reference (value_type (arg2)))
1788 return value_ptradd (arg1, value_as_long (arg2));
1789 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
1790 && is_integral_or_integral_reference (value_type (arg1)))
1791 return value_ptradd (arg2, value_as_long (arg1));
1792 else
1793 {
1794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1795 return value_binop (arg1, arg2, BINOP_ADD);
1796 }
1797 }
1798
1799 /* A helper function for BINOP_SUB. */
1800
1801 struct value *
1802 eval_op_sub (struct type *expect_type, struct expression *exp,
1803 enum noside noside,
1804 struct value *arg1, struct value *arg2)
1805 {
1806 if (noside == EVAL_SKIP)
1807 return eval_skip_value (exp);
1808 if (binop_user_defined_p (BINOP_SUB, arg1, arg2))
1809 return value_x_binop (arg1, arg2, BINOP_SUB, OP_NULL, noside);
1810 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1811 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
1812 {
1813 /* FIXME -- should be ptrdiff_t */
1814 struct type *type = builtin_type (exp->gdbarch)->builtin_long;
1815 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1816 }
1817 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
1818 && is_integral_or_integral_reference (value_type (arg2)))
1819 return value_ptradd (arg1, - value_as_long (arg2));
1820 else
1821 {
1822 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1823 return value_binop (arg1, arg2, BINOP_SUB);
1824 }
1825 }
1826
1827 /* Helper function for several different binary operations. */
1828
1829 struct value *
1830 eval_op_binary (struct type *expect_type, struct expression *exp,
1831 enum noside noside, enum exp_opcode op,
1832 struct value *arg1, struct value *arg2)
1833 {
1834 if (noside == EVAL_SKIP)
1835 return eval_skip_value (exp);
1836 if (binop_user_defined_p (op, arg1, arg2))
1837 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1838 else
1839 {
1840 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1841 fudge arg2 to avoid division-by-zero, the caller is
1842 (theoretically) only looking for the type of the result. */
1843 if (noside == EVAL_AVOID_SIDE_EFFECTS
1844 /* ??? Do we really want to test for BINOP_MOD here?
1845 The implementation of value_binop gives it a well-defined
1846 value. */
1847 && (op == BINOP_DIV
1848 || op == BINOP_INTDIV
1849 || op == BINOP_REM
1850 || op == BINOP_MOD)
1851 && value_logical_not (arg2))
1852 {
1853 struct value *v_one;
1854
1855 v_one = value_one (value_type (arg2));
1856 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1857 return value_binop (arg1, v_one, op);
1858 }
1859 else
1860 {
1861 /* For shift and integer exponentiation operations,
1862 only promote the first argument. */
1863 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1864 && is_integral_type (value_type (arg2)))
1865 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1866 else
1867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1868
1869 return value_binop (arg1, arg2, op);
1870 }
1871 }
1872 }
1873
1874 /* A helper function for BINOP_SUBSCRIPT. */
1875
1876 struct value *
1877 eval_op_subscript (struct type *expect_type, struct expression *exp,
1878 enum noside noside, enum exp_opcode op,
1879 struct value *arg1, struct value *arg2)
1880 {
1881 if (noside == EVAL_SKIP)
1882 return eval_skip_value (exp);
1883 if (binop_user_defined_p (op, arg1, arg2))
1884 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1885 else
1886 {
1887 /* If the user attempts to subscript something that is not an
1888 array or pointer type (like a plain int variable for example),
1889 then report this as an error. */
1890
1891 arg1 = coerce_ref (arg1);
1892 struct type *type = check_typedef (value_type (arg1));
1893 if (type->code () != TYPE_CODE_ARRAY
1894 && type->code () != TYPE_CODE_PTR)
1895 {
1896 if (type->name ())
1897 error (_("cannot subscript something of type `%s'"),
1898 type->name ());
1899 else
1900 error (_("cannot subscript requested type"));
1901 }
1902
1903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1904 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1905 else
1906 return value_subscript (arg1, value_as_long (arg2));
1907 }
1908 }
1909
1910 /* A helper function for BINOP_EQUAL. */
1911
1912 struct value *
1913 eval_op_equal (struct type *expect_type, struct expression *exp,
1914 enum noside noside, enum exp_opcode op,
1915 struct value *arg1, struct value *arg2)
1916 {
1917 if (noside == EVAL_SKIP)
1918 return eval_skip_value (exp);
1919 if (binop_user_defined_p (op, arg1, arg2))
1920 {
1921 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1922 }
1923 else
1924 {
1925 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1926 int tem = value_equal (arg1, arg2);
1927 struct type *type = language_bool_type (exp->language_defn,
1928 exp->gdbarch);
1929 return value_from_longest (type, (LONGEST) tem);
1930 }
1931 }
1932
1933 /* A helper function for BINOP_NOTEQUAL. */
1934
1935 struct value *
1936 eval_op_notequal (struct type *expect_type, struct expression *exp,
1937 enum noside noside, enum exp_opcode op,
1938 struct value *arg1, struct value *arg2)
1939 {
1940 if (noside == EVAL_SKIP)
1941 return eval_skip_value (exp);
1942 if (binop_user_defined_p (op, arg1, arg2))
1943 {
1944 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1945 }
1946 else
1947 {
1948 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1949 int tem = value_equal (arg1, arg2);
1950 struct type *type = language_bool_type (exp->language_defn,
1951 exp->gdbarch);
1952 return value_from_longest (type, (LONGEST) ! tem);
1953 }
1954 }
1955
1956 /* A helper function for BINOP_LESS. */
1957
1958 struct value *
1959 eval_op_less (struct type *expect_type, struct expression *exp,
1960 enum noside noside, enum exp_opcode op,
1961 struct value *arg1, struct value *arg2)
1962 {
1963 if (noside == EVAL_SKIP)
1964 return eval_skip_value (exp);
1965 if (binop_user_defined_p (op, arg1, arg2))
1966 {
1967 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1968 }
1969 else
1970 {
1971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1972 int tem = value_less (arg1, arg2);
1973 struct type *type = language_bool_type (exp->language_defn,
1974 exp->gdbarch);
1975 return value_from_longest (type, (LONGEST) tem);
1976 }
1977 }
1978
1979 /* A helper function for BINOP_GTR. */
1980
1981 struct value *
1982 eval_op_gtr (struct type *expect_type, struct expression *exp,
1983 enum noside noside, enum exp_opcode op,
1984 struct value *arg1, struct value *arg2)
1985 {
1986 if (noside == EVAL_SKIP)
1987 return eval_skip_value (exp);
1988 if (binop_user_defined_p (op, arg1, arg2))
1989 {
1990 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1991 }
1992 else
1993 {
1994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1995 int tem = value_less (arg2, arg1);
1996 struct type *type = language_bool_type (exp->language_defn,
1997 exp->gdbarch);
1998 return value_from_longest (type, (LONGEST) tem);
1999 }
2000 }
2001
2002 /* A helper function for BINOP_GEQ. */
2003
2004 struct value *
2005 eval_op_geq (struct type *expect_type, struct expression *exp,
2006 enum noside noside, enum exp_opcode op,
2007 struct value *arg1, struct value *arg2)
2008 {
2009 if (noside == EVAL_SKIP)
2010 return eval_skip_value (exp);
2011 if (binop_user_defined_p (op, arg1, arg2))
2012 {
2013 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2014 }
2015 else
2016 {
2017 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2018 int tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2019 struct type *type = language_bool_type (exp->language_defn,
2020 exp->gdbarch);
2021 return value_from_longest (type, (LONGEST) tem);
2022 }
2023 }
2024
2025 /* A helper function for BINOP_LEQ. */
2026
2027 struct value *
2028 eval_op_leq (struct type *expect_type, struct expression *exp,
2029 enum noside noside, enum exp_opcode op,
2030 struct value *arg1, struct value *arg2)
2031 {
2032 if (noside == EVAL_SKIP)
2033 return eval_skip_value (exp);
2034 if (binop_user_defined_p (op, arg1, arg2))
2035 {
2036 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2037 }
2038 else
2039 {
2040 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2041 int tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2042 struct type *type = language_bool_type (exp->language_defn,
2043 exp->gdbarch);
2044 return value_from_longest (type, (LONGEST) tem);
2045 }
2046 }
2047
2048 /* A helper function for BINOP_REPEAT. */
2049
2050 struct value *
2051 eval_op_repeat (struct type *expect_type, struct expression *exp,
2052 enum noside noside, enum exp_opcode op,
2053 struct value *arg1, struct value *arg2)
2054 {
2055 if (noside == EVAL_SKIP)
2056 return eval_skip_value (exp);
2057 struct type *type = check_typedef (value_type (arg2));
2058 if (type->code () != TYPE_CODE_INT
2059 && type->code () != TYPE_CODE_ENUM)
2060 error (_("Non-integral right operand for \"@\" operator."));
2061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2062 {
2063 return allocate_repeat_value (value_type (arg1),
2064 longest_to_int (value_as_long (arg2)));
2065 }
2066 else
2067 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2068 }
2069
2070 /* A helper function for UNOP_PLUS. */
2071
2072 struct value *
2073 eval_op_plus (struct type *expect_type, struct expression *exp,
2074 enum noside noside, enum exp_opcode op,
2075 struct value *arg1)
2076 {
2077 if (noside == EVAL_SKIP)
2078 return eval_skip_value (exp);
2079 if (unop_user_defined_p (op, arg1))
2080 return value_x_unop (arg1, op, noside);
2081 else
2082 {
2083 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2084 return value_pos (arg1);
2085 }
2086 }
2087
2088 /* A helper function for UNOP_NEG. */
2089
2090 struct value *
2091 eval_op_neg (struct type *expect_type, struct expression *exp,
2092 enum noside noside, enum exp_opcode op,
2093 struct value *arg1)
2094 {
2095 if (noside == EVAL_SKIP)
2096 return eval_skip_value (exp);
2097 if (unop_user_defined_p (op, arg1))
2098 return value_x_unop (arg1, op, noside);
2099 else
2100 {
2101 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2102 return value_neg (arg1);
2103 }
2104 }
2105
2106 /* A helper function for UNOP_COMPLEMENT. */
2107
2108 struct value *
2109 eval_op_complement (struct type *expect_type, struct expression *exp,
2110 enum noside noside, enum exp_opcode op,
2111 struct value *arg1)
2112 {
2113 if (noside == EVAL_SKIP)
2114 return eval_skip_value (exp);
2115 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2116 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2117 else
2118 {
2119 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2120 return value_complement (arg1);
2121 }
2122 }
2123
2124 /* A helper function for UNOP_LOGICAL_NOT. */
2125
2126 struct value *
2127 eval_op_lognot (struct type *expect_type, struct expression *exp,
2128 enum noside noside, enum exp_opcode op,
2129 struct value *arg1)
2130 {
2131 if (noside == EVAL_SKIP)
2132 return eval_skip_value (exp);
2133 if (unop_user_defined_p (op, arg1))
2134 return value_x_unop (arg1, op, noside);
2135 else
2136 {
2137 struct type *type = language_bool_type (exp->language_defn,
2138 exp->gdbarch);
2139 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2140 }
2141 }
2142
2143 /* A helper function for UNOP_IND. */
2144
2145 struct value *
2146 eval_op_ind (struct type *expect_type, struct expression *exp,
2147 enum noside noside,
2148 struct value *arg1)
2149 {
2150 struct type *type = check_typedef (value_type (arg1));
2151 if (type->code () == TYPE_CODE_METHODPTR
2152 || type->code () == TYPE_CODE_MEMBERPTR)
2153 error (_("Attempt to dereference pointer "
2154 "to member without an object"));
2155 if (noside == EVAL_SKIP)
2156 return eval_skip_value (exp);
2157 if (unop_user_defined_p (UNOP_IND, arg1))
2158 return value_x_unop (arg1, UNOP_IND, noside);
2159 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2160 {
2161 type = check_typedef (value_type (arg1));
2162
2163 /* If the type pointed to is dynamic then in order to resolve the
2164 dynamic properties we must actually dereference the pointer.
2165 There is a risk that this dereference will have side-effects
2166 in the inferior, but being able to print accurate type
2167 information seems worth the risk. */
2168 if ((type->code () != TYPE_CODE_PTR
2169 && !TYPE_IS_REFERENCE (type))
2170 || !is_dynamic_type (TYPE_TARGET_TYPE (type)))
2171 {
2172 if (type->code () == TYPE_CODE_PTR
2173 || TYPE_IS_REFERENCE (type)
2174 /* In C you can dereference an array to get the 1st elt. */
2175 || type->code () == TYPE_CODE_ARRAY)
2176 return value_zero (TYPE_TARGET_TYPE (type),
2177 lval_memory);
2178 else if (type->code () == TYPE_CODE_INT)
2179 /* GDB allows dereferencing an int. */
2180 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2181 lval_memory);
2182 else
2183 error (_("Attempt to take contents of a non-pointer value."));
2184 }
2185 }
2186
2187 /* Allow * on an integer so we can cast it to whatever we want.
2188 This returns an int, which seems like the most C-like thing to
2189 do. "long long" variables are rare enough that
2190 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2191 if (type->code () == TYPE_CODE_INT)
2192 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2193 (CORE_ADDR) value_as_address (arg1));
2194 return value_ind (arg1);
2195 }
2196
2197 /* A helper function for UNOP_ALIGNOF. */
2198
2199 struct value *
2200 eval_op_alignof (struct type *expect_type, struct expression *exp,
2201 enum noside noside,
2202 struct value *arg1)
2203 {
2204 struct type *type = value_type (arg1);
2205 /* FIXME: This should be size_t. */
2206 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2207 ULONGEST align = type_align (type);
2208 if (align == 0)
2209 error (_("could not determine alignment of type"));
2210 return value_from_longest (size_type, align);
2211 }
2212
2213 /* A helper function for UNOP_MEMVAL. */
2214
2215 struct value *
2216 eval_op_memval (struct type *expect_type, struct expression *exp,
2217 enum noside noside,
2218 struct value *arg1, struct type *type)
2219 {
2220 if (noside == EVAL_SKIP)
2221 return eval_skip_value (exp);
2222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2223 return value_zero (type, lval_memory);
2224 else
2225 return value_at_lazy (type, value_as_address (arg1));
2226 }
2227
2228 /* A helper function for UNOP_PREINCREMENT. */
2229
2230 struct value *
2231 eval_op_preinc (struct type *expect_type, struct expression *exp,
2232 enum noside noside, enum exp_opcode op,
2233 struct value *arg1)
2234 {
2235 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2236 return arg1;
2237 else if (unop_user_defined_p (op, arg1))
2238 {
2239 return value_x_unop (arg1, op, noside);
2240 }
2241 else
2242 {
2243 struct value *arg2;
2244 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2245 arg2 = value_ptradd (arg1, 1);
2246 else
2247 {
2248 struct value *tmp = arg1;
2249
2250 arg2 = value_one (value_type (arg1));
2251 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2252 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2253 }
2254
2255 return value_assign (arg1, arg2);
2256 }
2257 }
2258
2259 /* A helper function for UNOP_PREDECREMENT. */
2260
2261 struct value *
2262 eval_op_predec (struct type *expect_type, struct expression *exp,
2263 enum noside noside, enum exp_opcode op,
2264 struct value *arg1)
2265 {
2266 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2267 return arg1;
2268 else if (unop_user_defined_p (op, arg1))
2269 {
2270 return value_x_unop (arg1, op, noside);
2271 }
2272 else
2273 {
2274 struct value *arg2;
2275 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2276 arg2 = value_ptradd (arg1, -1);
2277 else
2278 {
2279 struct value *tmp = arg1;
2280
2281 arg2 = value_one (value_type (arg1));
2282 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2283 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2284 }
2285
2286 return value_assign (arg1, arg2);
2287 }
2288 }
2289
2290 /* A helper function for UNOP_POSTINCREMENT. */
2291
2292 struct value *
2293 eval_op_postinc (struct type *expect_type, struct expression *exp,
2294 enum noside noside, enum exp_opcode op,
2295 struct value *arg1)
2296 {
2297 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2298 return arg1;
2299 else if (unop_user_defined_p (op, arg1))
2300 {
2301 return value_x_unop (arg1, op, noside);
2302 }
2303 else
2304 {
2305 struct value *arg3 = value_non_lval (arg1);
2306 struct value *arg2;
2307
2308 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2309 arg2 = value_ptradd (arg1, 1);
2310 else
2311 {
2312 struct value *tmp = arg1;
2313
2314 arg2 = value_one (value_type (arg1));
2315 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2316 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2317 }
2318
2319 value_assign (arg1, arg2);
2320 return arg3;
2321 }
2322 }
2323
2324 /* A helper function for UNOP_POSTDECREMENT. */
2325
2326 struct value *
2327 eval_op_postdec (struct type *expect_type, struct expression *exp,
2328 enum noside noside, enum exp_opcode op,
2329 struct value *arg1)
2330 {
2331 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2332 return arg1;
2333 else if (unop_user_defined_p (op, arg1))
2334 {
2335 return value_x_unop (arg1, op, noside);
2336 }
2337 else
2338 {
2339 struct value *arg3 = value_non_lval (arg1);
2340 struct value *arg2;
2341
2342 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2343 arg2 = value_ptradd (arg1, -1);
2344 else
2345 {
2346 struct value *tmp = arg1;
2347
2348 arg2 = value_one (value_type (arg1));
2349 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2350 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2351 }
2352
2353 value_assign (arg1, arg2);
2354 return arg3;
2355 }
2356 }
2357
2358 /* A helper function for OP_TYPE. */
2359
2360 struct value *
2361 eval_op_type (struct type *expect_type, struct expression *exp,
2362 enum noside noside, struct type *type)
2363 {
2364 if (noside == EVAL_SKIP)
2365 return eval_skip_value (exp);
2366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2367 return allocate_value (type);
2368 else
2369 error (_("Attempt to use a type name as an expression"));
2370 }
2371
2372 /* A helper function for BINOP_ASSIGN_MODIFY. */
2373
2374 struct value *
2375 eval_binop_assign_modify (struct type *expect_type, struct expression *exp,
2376 enum noside noside, enum exp_opcode op,
2377 struct value *arg1, struct value *arg2)
2378 {
2379 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2380 return arg1;
2381 if (binop_user_defined_p (op, arg1, arg2))
2382 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2383 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2384 value_type (arg1))
2385 && is_integral_type (value_type (arg2)))
2386 arg2 = value_ptradd (arg1, value_as_long (arg2));
2387 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2388 value_type (arg1))
2389 && is_integral_type (value_type (arg2)))
2390 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2391 else
2392 {
2393 struct value *tmp = arg1;
2394
2395 /* For shift and integer exponentiation operations,
2396 only promote the first argument. */
2397 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2398 && is_integral_type (value_type (arg2)))
2399 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2400 else
2401 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2402
2403 arg2 = value_binop (tmp, arg2, op);
2404 }
2405 return value_assign (arg1, arg2);
2406 }
2407
2408 /* Note that ARGS needs 2 empty slots up front and must end with a
2409 null pointer. */
2410 static struct value *
2411 eval_op_objc_msgcall (struct type *expect_type, struct expression *exp,
2412 enum noside noside, CORE_ADDR selector,
2413 value *target, gdb::array_view<value *> args)
2414 {
2415 CORE_ADDR responds_selector = 0;
2416 CORE_ADDR method_selector = 0;
2417
2418 int struct_return = 0;
2419
2420 struct value *msg_send = NULL;
2421 struct value *msg_send_stret = NULL;
2422 int gnu_runtime = 0;
2423
2424 struct value *method = NULL;
2425 struct value *called_method = NULL;
2426
2427 struct type *selector_type = NULL;
2428 struct type *long_type;
2429 struct type *type;
2430
2431 struct value *ret = NULL;
2432 CORE_ADDR addr = 0;
2433
2434 value *argvec[5];
2435
2436 long_type = builtin_type (exp->gdbarch)->builtin_long;
2437 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2438
2439 if (value_as_long (target) == 0)
2440 return value_from_longest (long_type, 0);
2441
2442 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
2443 gnu_runtime = 1;
2444
2445 /* Find the method dispatch (Apple runtime) or method lookup
2446 (GNU runtime) function for Objective-C. These will be used
2447 to lookup the symbol information for the method. If we
2448 can't find any symbol information, then we'll use these to
2449 call the method, otherwise we can call the method
2450 directly. The msg_send_stret function is used in the special
2451 case of a method that returns a structure (Apple runtime
2452 only). */
2453 if (gnu_runtime)
2454 {
2455 type = selector_type;
2456
2457 type = lookup_function_type (type);
2458 type = lookup_pointer_type (type);
2459 type = lookup_function_type (type);
2460 type = lookup_pointer_type (type);
2461
2462 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
2463 msg_send_stret
2464 = find_function_in_inferior ("objc_msg_lookup", NULL);
2465
2466 msg_send = value_from_pointer (type, value_as_address (msg_send));
2467 msg_send_stret = value_from_pointer (type,
2468 value_as_address (msg_send_stret));
2469 }
2470 else
2471 {
2472 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
2473 /* Special dispatcher for methods returning structs. */
2474 msg_send_stret
2475 = find_function_in_inferior ("objc_msgSend_stret", NULL);
2476 }
2477
2478 /* Verify the target object responds to this method. The
2479 standard top-level 'Object' class uses a different name for
2480 the verification method than the non-standard, but more
2481 often used, 'NSObject' class. Make sure we check for both. */
2482
2483 responds_selector
2484 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
2485 if (responds_selector == 0)
2486 responds_selector
2487 = lookup_child_selector (exp->gdbarch, "respondsTo:");
2488
2489 if (responds_selector == 0)
2490 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
2491
2492 method_selector
2493 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
2494 if (method_selector == 0)
2495 method_selector
2496 = lookup_child_selector (exp->gdbarch, "methodFor:");
2497
2498 if (method_selector == 0)
2499 error (_("no 'methodFor:' or 'methodForSelector:' method"));
2500
2501 /* Call the verification method, to make sure that the target
2502 class implements the desired method. */
2503
2504 argvec[0] = msg_send;
2505 argvec[1] = target;
2506 argvec[2] = value_from_longest (long_type, responds_selector);
2507 argvec[3] = value_from_longest (long_type, selector);
2508 argvec[4] = 0;
2509
2510 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2511 if (gnu_runtime)
2512 {
2513 /* Function objc_msg_lookup returns a pointer. */
2514 argvec[0] = ret;
2515 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2516 }
2517 if (value_as_long (ret) == 0)
2518 error (_("Target does not respond to this message selector."));
2519
2520 /* Call "methodForSelector:" method, to get the address of a
2521 function method that implements this selector for this
2522 class. If we can find a symbol at that address, then we
2523 know the return type, parameter types etc. (that's a good
2524 thing). */
2525
2526 argvec[0] = msg_send;
2527 argvec[1] = target;
2528 argvec[2] = value_from_longest (long_type, method_selector);
2529 argvec[3] = value_from_longest (long_type, selector);
2530 argvec[4] = 0;
2531
2532 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2533 if (gnu_runtime)
2534 {
2535 argvec[0] = ret;
2536 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
2537 }
2538
2539 /* ret should now be the selector. */
2540
2541 addr = value_as_long (ret);
2542 if (addr)
2543 {
2544 struct symbol *sym = NULL;
2545
2546 /* The address might point to a function descriptor;
2547 resolve it to the actual code address instead. */
2548 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
2549 current_top_target ());
2550
2551 /* Is it a high_level symbol? */
2552 sym = find_pc_function (addr);
2553 if (sym != NULL)
2554 method = value_of_variable (sym, 0);
2555 }
2556
2557 /* If we found a method with symbol information, check to see
2558 if it returns a struct. Otherwise assume it doesn't. */
2559
2560 if (method)
2561 {
2562 CORE_ADDR funaddr;
2563 struct type *val_type;
2564
2565 funaddr = find_function_addr (method, &val_type);
2566
2567 block_for_pc (funaddr);
2568
2569 val_type = check_typedef (val_type);
2570
2571 if ((val_type == NULL)
2572 || (val_type->code () == TYPE_CODE_ERROR))
2573 {
2574 if (expect_type != NULL)
2575 val_type = expect_type;
2576 }
2577
2578 struct_return = using_struct_return (exp->gdbarch, method,
2579 val_type);
2580 }
2581 else if (expect_type != NULL)
2582 {
2583 struct_return = using_struct_return (exp->gdbarch, NULL,
2584 check_typedef (expect_type));
2585 }
2586
2587 /* Found a function symbol. Now we will substitute its
2588 value in place of the message dispatcher (obj_msgSend),
2589 so that we call the method directly instead of thru
2590 the dispatcher. The main reason for doing this is that
2591 we can now evaluate the return value and parameter values
2592 according to their known data types, in case we need to
2593 do things like promotion, dereferencing, special handling
2594 of structs and doubles, etc.
2595
2596 We want to use the type signature of 'method', but still
2597 jump to objc_msgSend() or objc_msgSend_stret() to better
2598 mimic the behavior of the runtime. */
2599
2600 if (method)
2601 {
2602 if (value_type (method)->code () != TYPE_CODE_FUNC)
2603 error (_("method address has symbol information "
2604 "with non-function type; skipping"));
2605
2606 /* Create a function pointer of the appropriate type, and
2607 replace its value with the value of msg_send or
2608 msg_send_stret. We must use a pointer here, as
2609 msg_send and msg_send_stret are of pointer type, and
2610 the representation may be different on systems that use
2611 function descriptors. */
2612 if (struct_return)
2613 called_method
2614 = value_from_pointer (lookup_pointer_type (value_type (method)),
2615 value_as_address (msg_send_stret));
2616 else
2617 called_method
2618 = value_from_pointer (lookup_pointer_type (value_type (method)),
2619 value_as_address (msg_send));
2620 }
2621 else
2622 {
2623 if (struct_return)
2624 called_method = msg_send_stret;
2625 else
2626 called_method = msg_send;
2627 }
2628
2629 if (noside == EVAL_SKIP)
2630 return eval_skip_value (exp);
2631
2632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2633 {
2634 /* If the return type doesn't look like a function type,
2635 call an error. This can happen if somebody tries to
2636 turn a variable into a function call. This is here
2637 because people often want to call, eg, strcmp, which
2638 gdb doesn't know is a function. If gdb isn't asked for
2639 it's opinion (ie. through "whatis"), it won't offer
2640 it. */
2641
2642 struct type *callee_type = value_type (called_method);
2643
2644 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
2645 callee_type = TYPE_TARGET_TYPE (callee_type);
2646 callee_type = TYPE_TARGET_TYPE (callee_type);
2647
2648 if (callee_type)
2649 {
2650 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
2651 return allocate_value (expect_type);
2652 else
2653 return allocate_value (callee_type);
2654 }
2655 else
2656 error (_("Expression of type other than "
2657 "\"method returning ...\" used as a method"));
2658 }
2659
2660 /* Now depending on whether we found a symbol for the method,
2661 we will either call the runtime dispatcher or the method
2662 directly. */
2663
2664 args[0] = target;
2665 args[1] = value_from_longest (long_type, selector);
2666
2667 if (gnu_runtime && (method != NULL))
2668 {
2669 /* Function objc_msg_lookup returns a pointer. */
2670 struct type *tem_type = value_type (called_method);
2671 tem_type = lookup_pointer_type (lookup_function_type (tem_type));
2672 deprecated_set_value_type (called_method, tem_type);
2673 called_method = call_function_by_hand (called_method, NULL, args);
2674 }
2675
2676 return call_function_by_hand (called_method, NULL, args);
2677 }
2678
2679 /* Helper function for MULTI_SUBSCRIPT. */
2680
2681 static struct value *
2682 eval_multi_subscript (struct type *expect_type, struct expression *exp,
2683 enum noside noside, value *arg1,
2684 gdb::array_view<value *> args)
2685 {
2686 if (noside == EVAL_SKIP)
2687 return arg1;
2688 for (value *arg2 : args)
2689 {
2690 if (binop_user_defined_p (MULTI_SUBSCRIPT, arg1, arg2))
2691 {
2692 arg1 = value_x_binop (arg1, arg2, MULTI_SUBSCRIPT, OP_NULL, noside);
2693 }
2694 else
2695 {
2696 arg1 = coerce_ref (arg1);
2697 struct type *type = check_typedef (value_type (arg1));
2698
2699 switch (type->code ())
2700 {
2701 case TYPE_CODE_PTR:
2702 case TYPE_CODE_ARRAY:
2703 case TYPE_CODE_STRING:
2704 arg1 = value_subscript (arg1, value_as_long (arg2));
2705 break;
2706
2707 default:
2708 if (type->name ())
2709 error (_("cannot subscript something of type `%s'"),
2710 type->name ());
2711 else
2712 error (_("cannot subscript requested type"));
2713 }
2714 }
2715 }
2716 return (arg1);
2717 }
2718
2719 namespace expr
2720 {
2721
2722 value *
2723 objc_msgcall_operation::evaluate (struct type *expect_type,
2724 struct expression *exp,
2725 enum noside noside)
2726 {
2727 enum noside sub_no_side = EVAL_NORMAL;
2728 struct type *selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
2729
2730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2731 sub_no_side = EVAL_NORMAL;
2732 else
2733 sub_no_side = noside;
2734 value *target
2735 = std::get<1> (m_storage)->evaluate (selector_type, exp, sub_no_side);
2736
2737 if (value_as_long (target) == 0)
2738 sub_no_side = EVAL_AVOID_SIDE_EFFECTS;
2739 else
2740 sub_no_side = noside;
2741 std::vector<operation_up> &args = std::get<2> (m_storage);
2742 value **argvec = XALLOCAVEC (struct value *, args.size () + 3);
2743 argvec[0] = nullptr;
2744 argvec[1] = nullptr;
2745 for (int i = 0; i < args.size (); ++i)
2746 argvec[i + 2] = args[i]->evaluate_with_coercion (exp, sub_no_side);
2747 argvec[args.size () + 2] = nullptr;
2748
2749 return eval_op_objc_msgcall (expect_type, exp, noside, std::
2750 get<0> (m_storage), target,
2751 gdb::make_array_view (argvec,
2752 args.size () + 3));
2753 }
2754
2755 value *
2756 multi_subscript_operation::evaluate (struct type *expect_type,
2757 struct expression *exp,
2758 enum noside noside)
2759 {
2760 value *arg1 = std::get<0> (m_storage)->evaluate_with_coercion (exp, noside);
2761 std::vector<operation_up> &values = std::get<1> (m_storage);
2762 value **argvec = XALLOCAVEC (struct value *, values.size ());
2763 for (int ix = 0; ix < values.size (); ++ix)
2764 argvec[ix] = values[ix]->evaluate_with_coercion (exp, noside);
2765 return eval_multi_subscript (expect_type, exp, noside, arg1,
2766 gdb::make_array_view (argvec, values.size ()));
2767 }
2768
2769 value *
2770 logical_and_operation::evaluate (struct type *expect_type,
2771 struct expression *exp,
2772 enum noside noside)
2773 {
2774 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
2775 if (noside == EVAL_SKIP)
2776 return eval_skip_value (exp);
2777
2778 value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
2779 EVAL_AVOID_SIDE_EFFECTS);
2780
2781 if (binop_user_defined_p (BINOP_LOGICAL_AND, arg1, arg2))
2782 {
2783 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2784 return value_x_binop (arg1, arg2, BINOP_LOGICAL_AND, OP_NULL, noside);
2785 }
2786 else
2787 {
2788 int tem = value_logical_not (arg1);
2789 if (!tem)
2790 {
2791 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2792 tem = value_logical_not (arg2);
2793 }
2794 struct type *type = language_bool_type (exp->language_defn,
2795 exp->gdbarch);
2796 return value_from_longest (type, !tem);
2797 }
2798 }
2799
2800 value *
2801 logical_or_operation::evaluate (struct type *expect_type,
2802 struct expression *exp,
2803 enum noside noside)
2804 {
2805 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
2806 if (noside == EVAL_SKIP)
2807 return eval_skip_value (exp);
2808
2809 value *arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp,
2810 EVAL_AVOID_SIDE_EFFECTS);
2811
2812 if (binop_user_defined_p (BINOP_LOGICAL_OR, arg1, arg2))
2813 {
2814 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2815 return value_x_binop (arg1, arg2, BINOP_LOGICAL_OR, OP_NULL, noside);
2816 }
2817 else
2818 {
2819 int tem = value_logical_not (arg1);
2820 if (tem)
2821 {
2822 arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
2823 tem = value_logical_not (arg2);
2824 }
2825
2826 struct type *type = language_bool_type (exp->language_defn,
2827 exp->gdbarch);
2828 return value_from_longest (type, !tem);
2829 }
2830 }
2831
2832 value *
2833 adl_func_operation::evaluate (struct type *expect_type,
2834 struct expression *exp,
2835 enum noside noside)
2836 {
2837 std::vector<operation_up> &arg_ops = std::get<2> (m_storage);
2838 std::vector<value *> args (arg_ops.size ());
2839 for (int i = 0; i < arg_ops.size (); ++i)
2840 args[i] = arg_ops[i]->evaluate_with_coercion (exp, noside);
2841
2842 struct symbol *symp;
2843 find_overload_match (args, std::get<0> (m_storage).c_str (),
2844 NON_METHOD,
2845 nullptr, nullptr,
2846 nullptr, &symp, nullptr, 0, noside);
2847 if (SYMBOL_TYPE (symp)->code () == TYPE_CODE_ERROR)
2848 error_unknown_type (symp->print_name ());
2849 value *callee = evaluate_var_value (noside, std::get<1> (m_storage), symp);
2850 return evaluate_subexp_do_call (exp, noside, callee, args,
2851 nullptr, expect_type);
2852
2853 }
2854
2855 /* This function evaluates brace-initializers (in C/C++) for
2856 structure types. */
2857
2858 struct value *
2859 array_operation::evaluate_struct_tuple (struct value *struct_val,
2860 struct expression *exp,
2861 enum noside noside, int nargs)
2862 {
2863 const std::vector<operation_up> &in_args = std::get<2> (m_storage);
2864 struct type *struct_type = check_typedef (value_type (struct_val));
2865 struct type *field_type;
2866 int fieldno = -1;
2867
2868 int idx = 0;
2869 while (--nargs >= 0)
2870 {
2871 struct value *val = NULL;
2872 int bitpos, bitsize;
2873 bfd_byte *addr;
2874
2875 fieldno++;
2876 /* Skip static fields. */
2877 while (fieldno < struct_type->num_fields ()
2878 && field_is_static (&struct_type->field (fieldno)))
2879 fieldno++;
2880 if (fieldno >= struct_type->num_fields ())
2881 error (_("too many initializers"));
2882 field_type = struct_type->field (fieldno).type ();
2883 if (field_type->code () == TYPE_CODE_UNION
2884 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
2885 error (_("don't know which variant you want to set"));
2886
2887 /* Here, struct_type is the type of the inner struct,
2888 while substruct_type is the type of the inner struct.
2889 These are the same for normal structures, but a variant struct
2890 contains anonymous union fields that contain substruct fields.
2891 The value fieldno is the index of the top-level (normal or
2892 anonymous union) field in struct_field, while the value
2893 subfieldno is the index of the actual real (named inner) field
2894 in substruct_type. */
2895
2896 field_type = struct_type->field (fieldno).type ();
2897 if (val == 0)
2898 val = in_args[idx++]->evaluate (field_type, exp, noside);
2899
2900 /* Now actually set the field in struct_val. */
2901
2902 /* Assign val to field fieldno. */
2903 if (value_type (val) != field_type)
2904 val = value_cast (field_type, val);
2905
2906 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
2907 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
2908 addr = value_contents_writeable (struct_val) + bitpos / 8;
2909 if (bitsize)
2910 modify_field (struct_type, addr,
2911 value_as_long (val), bitpos % 8, bitsize);
2912 else
2913 memcpy (addr, value_contents (val),
2914 TYPE_LENGTH (value_type (val)));
2915
2916 }
2917 return struct_val;
2918 }
2919
2920 value *
2921 array_operation::evaluate (struct type *expect_type,
2922 struct expression *exp,
2923 enum noside noside)
2924 {
2925 int tem;
2926 int tem2 = std::get<0> (m_storage);
2927 int tem3 = std::get<1> (m_storage);
2928 const std::vector<operation_up> &in_args = std::get<2> (m_storage);
2929 int nargs = tem3 - tem2 + 1;
2930 struct type *type = expect_type ? check_typedef (expect_type) : nullptr;
2931
2932 if (expect_type != nullptr && noside != EVAL_SKIP
2933 && type->code () == TYPE_CODE_STRUCT)
2934 {
2935 struct value *rec = allocate_value (expect_type);
2936
2937 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
2938 return evaluate_struct_tuple (rec, exp, noside, nargs);
2939 }
2940
2941 if (expect_type != nullptr && noside != EVAL_SKIP
2942 && type->code () == TYPE_CODE_ARRAY)
2943 {
2944 struct type *range_type = type->index_type ();
2945 struct type *element_type = TYPE_TARGET_TYPE (type);
2946 struct value *array = allocate_value (expect_type);
2947 int element_size = TYPE_LENGTH (check_typedef (element_type));
2948 LONGEST low_bound, high_bound, index;
2949
2950 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
2951 {
2952 low_bound = 0;
2953 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
2954 }
2955 index = low_bound;
2956 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
2957 for (tem = nargs; --nargs >= 0;)
2958 {
2959 struct value *element;
2960
2961 element = in_args[index - low_bound]->evaluate (element_type,
2962 exp, noside);
2963 if (value_type (element) != element_type)
2964 element = value_cast (element_type, element);
2965 if (index > high_bound)
2966 /* To avoid memory corruption. */
2967 error (_("Too many array elements"));
2968 memcpy (value_contents_raw (array)
2969 + (index - low_bound) * element_size,
2970 value_contents (element),
2971 element_size);
2972 index++;
2973 }
2974 return array;
2975 }
2976
2977 if (expect_type != nullptr && noside != EVAL_SKIP
2978 && type->code () == TYPE_CODE_SET)
2979 {
2980 struct value *set = allocate_value (expect_type);
2981 gdb_byte *valaddr = value_contents_raw (set);
2982 struct type *element_type = type->index_type ();
2983 struct type *check_type = element_type;
2984 LONGEST low_bound, high_bound;
2985
2986 /* Get targettype of elementtype. */
2987 while (check_type->code () == TYPE_CODE_RANGE
2988 || check_type->code () == TYPE_CODE_TYPEDEF)
2989 check_type = TYPE_TARGET_TYPE (check_type);
2990
2991 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
2992 error (_("(power)set type with unknown size"));
2993 memset (valaddr, '\0', TYPE_LENGTH (type));
2994 int idx = 0;
2995 for (tem = 0; tem < nargs; tem++)
2996 {
2997 LONGEST range_low, range_high;
2998 struct type *range_low_type, *range_high_type;
2999 struct value *elem_val;
3000
3001 elem_val = in_args[idx++]->evaluate (element_type, exp, noside);
3002 range_low_type = range_high_type = value_type (elem_val);
3003 range_low = range_high = value_as_long (elem_val);
3004
3005 /* Check types of elements to avoid mixture of elements from
3006 different types. Also check if type of element is "compatible"
3007 with element type of powerset. */
3008 if (range_low_type->code () == TYPE_CODE_RANGE)
3009 range_low_type = TYPE_TARGET_TYPE (range_low_type);
3010 if (range_high_type->code () == TYPE_CODE_RANGE)
3011 range_high_type = TYPE_TARGET_TYPE (range_high_type);
3012 if ((range_low_type->code () != range_high_type->code ())
3013 || (range_low_type->code () == TYPE_CODE_ENUM
3014 && (range_low_type != range_high_type)))
3015 /* different element modes. */
3016 error (_("POWERSET tuple elements of different mode"));
3017 if ((check_type->code () != range_low_type->code ())
3018 || (check_type->code () == TYPE_CODE_ENUM
3019 && range_low_type != check_type))
3020 error (_("incompatible POWERSET tuple elements"));
3021 if (range_low > range_high)
3022 {
3023 warning (_("empty POWERSET tuple range"));
3024 continue;
3025 }
3026 if (range_low < low_bound || range_high > high_bound)
3027 error (_("POWERSET tuple element out of range"));
3028 range_low -= low_bound;
3029 range_high -= low_bound;
3030 for (; range_low <= range_high; range_low++)
3031 {
3032 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
3033
3034 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
3035 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
3036 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
3037 |= 1 << bit_index;
3038 }
3039 }
3040 return set;
3041 }
3042
3043 value **argvec = XALLOCAVEC (struct value *, nargs);
3044 for (tem = 0; tem < nargs; tem++)
3045 {
3046 /* Ensure that array expressions are coerced into pointer
3047 objects. */
3048 argvec[tem] = in_args[tem]->evaluate_with_coercion (exp, noside);
3049 }
3050 if (noside == EVAL_SKIP)
3051 return eval_skip_value (exp);
3052 return value_array (tem2, tem3, argvec);
3053 }
3054
3055 }
3056
3057 struct value *
3058 evaluate_subexp_standard (struct type *expect_type,
3059 struct expression *exp, int *pos,
3060 enum noside noside)
3061 {
3062 enum exp_opcode op;
3063 int tem, tem2, tem3;
3064 int pc, oldpos;
3065 struct value *arg1 = NULL;
3066 struct value *arg2 = NULL;
3067 struct type *type;
3068 int nargs;
3069 struct value **argvec;
3070 int ix;
3071 struct type **arg_types;
3072
3073 pc = (*pos)++;
3074 op = exp->elts[pc].opcode;
3075
3076 switch (op)
3077 {
3078 case OP_SCOPE:
3079 tem = longest_to_int (exp->elts[pc + 2].longconst);
3080 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
3081 return eval_op_scope (expect_type, exp, noside,
3082 exp->elts[pc + 1].type,
3083 &exp->elts[pc + 3].string);
3084
3085 case OP_LONG:
3086 (*pos) += 3;
3087 return value_from_longest (exp->elts[pc + 1].type,
3088 exp->elts[pc + 2].longconst);
3089
3090 case OP_FLOAT:
3091 (*pos) += 3;
3092 return value_from_contents (exp->elts[pc + 1].type,
3093 exp->elts[pc + 2].floatconst);
3094
3095 case OP_ADL_FUNC:
3096 case OP_VAR_VALUE:
3097 {
3098 (*pos) += 3;
3099 symbol *var = exp->elts[pc + 2].symbol;
3100 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
3101 error_unknown_type (var->print_name ());
3102 if (noside != EVAL_SKIP)
3103 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
3104 else
3105 {
3106 /* Return a dummy value of the correct type when skipping, so
3107 that parent functions know what is to be skipped. */
3108 return allocate_value (SYMBOL_TYPE (var));
3109 }
3110 }
3111
3112 case OP_VAR_MSYM_VALUE:
3113 {
3114 (*pos) += 3;
3115
3116 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3117 return eval_op_var_msym_value (expect_type, exp, noside,
3118 pc == 0, msymbol,
3119 exp->elts[pc + 1].objfile);
3120 }
3121
3122 case OP_VAR_ENTRY_VALUE:
3123 (*pos) += 2;
3124
3125 {
3126 struct symbol *sym = exp->elts[pc + 1].symbol;
3127
3128 return eval_op_var_entry_value (expect_type, exp, noside, sym);
3129 }
3130
3131 case OP_FUNC_STATIC_VAR:
3132 tem = longest_to_int (exp->elts[pc + 1].longconst);
3133 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
3134 if (noside == EVAL_SKIP)
3135 return eval_skip_value (exp);
3136
3137 {
3138 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
3139
3140 return eval_op_func_static_var (expect_type, exp, noside, func,
3141 &exp->elts[pc + 2].string);
3142 }
3143
3144 case OP_LAST:
3145 (*pos) += 2;
3146 return
3147 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
3148
3149 case OP_REGISTER:
3150 {
3151 const char *name = &exp->elts[pc + 2].string;
3152
3153 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3154 return eval_op_register (expect_type, exp, noside, name);
3155 }
3156 case OP_BOOL:
3157 (*pos) += 2;
3158 type = language_bool_type (exp->language_defn, exp->gdbarch);
3159 return value_from_longest (type, exp->elts[pc + 1].longconst);
3160
3161 case OP_INTERNALVAR:
3162 (*pos) += 2;
3163 return value_of_internalvar (exp->gdbarch,
3164 exp->elts[pc + 1].internalvar);
3165
3166 case OP_STRING:
3167 tem = longest_to_int (exp->elts[pc + 1].longconst);
3168 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
3169 return eval_op_string (expect_type, exp, noside, tem,
3170 &exp->elts[pc + 2].string);
3171
3172 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
3173 NSString constant. */
3174 tem = longest_to_int (exp->elts[pc + 1].longconst);
3175 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
3176 if (noside == EVAL_SKIP)
3177 return eval_skip_value (exp);
3178 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
3179
3180 case OP_ARRAY:
3181 (*pos) += 3;
3182 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
3183 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
3184 nargs = tem3 - tem2 + 1;
3185 type = expect_type ? check_typedef (expect_type) : nullptr;
3186
3187 if (expect_type != nullptr && noside != EVAL_SKIP
3188 && type->code () == TYPE_CODE_STRUCT)
3189 {
3190 struct value *rec = allocate_value (expect_type);
3191
3192 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
3193 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
3194 }
3195
3196 if (expect_type != nullptr && noside != EVAL_SKIP
3197 && type->code () == TYPE_CODE_ARRAY)
3198 {
3199 struct type *range_type = type->index_type ();
3200 struct type *element_type = TYPE_TARGET_TYPE (type);
3201 struct value *array = allocate_value (expect_type);
3202 int element_size = TYPE_LENGTH (check_typedef (element_type));
3203 LONGEST low_bound, high_bound, index;
3204
3205 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
3206 {
3207 low_bound = 0;
3208 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
3209 }
3210 index = low_bound;
3211 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
3212 for (tem = nargs; --nargs >= 0;)
3213 {
3214 struct value *element;
3215
3216 element = evaluate_subexp (element_type, exp, pos, noside);
3217 if (value_type (element) != element_type)
3218 element = value_cast (element_type, element);
3219 if (index > high_bound)
3220 /* To avoid memory corruption. */
3221 error (_("Too many array elements"));
3222 memcpy (value_contents_raw (array)
3223 + (index - low_bound) * element_size,
3224 value_contents (element),
3225 element_size);
3226 index++;
3227 }
3228 return array;
3229 }
3230
3231 if (expect_type != nullptr && noside != EVAL_SKIP
3232 && type->code () == TYPE_CODE_SET)
3233 {
3234 struct value *set = allocate_value (expect_type);
3235 gdb_byte *valaddr = value_contents_raw (set);
3236 struct type *element_type = type->index_type ();
3237 struct type *check_type = element_type;
3238 LONGEST low_bound, high_bound;
3239
3240 /* Get targettype of elementtype. */
3241 while (check_type->code () == TYPE_CODE_RANGE
3242 || check_type->code () == TYPE_CODE_TYPEDEF)
3243 check_type = TYPE_TARGET_TYPE (check_type);
3244
3245 if (!get_discrete_bounds (element_type, &low_bound, &high_bound))
3246 error (_("(power)set type with unknown size"));
3247 memset (valaddr, '\0', TYPE_LENGTH (type));
3248 for (tem = 0; tem < nargs; tem++)
3249 {
3250 LONGEST range_low, range_high;
3251 struct type *range_low_type, *range_high_type;
3252 struct value *elem_val;
3253
3254 elem_val = evaluate_subexp (element_type, exp, pos, noside);
3255 range_low_type = range_high_type = value_type (elem_val);
3256 range_low = range_high = value_as_long (elem_val);
3257
3258 /* Check types of elements to avoid mixture of elements from
3259 different types. Also check if type of element is "compatible"
3260 with element type of powerset. */
3261 if (range_low_type->code () == TYPE_CODE_RANGE)
3262 range_low_type = TYPE_TARGET_TYPE (range_low_type);
3263 if (range_high_type->code () == TYPE_CODE_RANGE)
3264 range_high_type = TYPE_TARGET_TYPE (range_high_type);
3265 if ((range_low_type->code () != range_high_type->code ())
3266 || (range_low_type->code () == TYPE_CODE_ENUM
3267 && (range_low_type != range_high_type)))
3268 /* different element modes. */
3269 error (_("POWERSET tuple elements of different mode"));
3270 if ((check_type->code () != range_low_type->code ())
3271 || (check_type->code () == TYPE_CODE_ENUM
3272 && range_low_type != check_type))
3273 error (_("incompatible POWERSET tuple elements"));
3274 if (range_low > range_high)
3275 {
3276 warning (_("empty POWERSET tuple range"));
3277 continue;
3278 }
3279 if (range_low < low_bound || range_high > high_bound)
3280 error (_("POWERSET tuple element out of range"));
3281 range_low -= low_bound;
3282 range_high -= low_bound;
3283 for (; range_low <= range_high; range_low++)
3284 {
3285 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
3286
3287 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
3288 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
3289 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
3290 |= 1 << bit_index;
3291 }
3292 }
3293 return set;
3294 }
3295
3296 argvec = XALLOCAVEC (struct value *, nargs);
3297 for (tem = 0; tem < nargs; tem++)
3298 {
3299 /* Ensure that array expressions are coerced into pointer
3300 objects. */
3301 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
3302 }
3303 if (noside == EVAL_SKIP)
3304 return eval_skip_value (exp);
3305 return value_array (tem2, tem3, argvec);
3306
3307 case TERNOP_SLICE:
3308 {
3309 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
3310 struct value *low = evaluate_subexp (nullptr, exp, pos, noside);
3311 struct value *upper = evaluate_subexp (nullptr, exp, pos, noside);
3312 return eval_op_ternop (expect_type, exp, noside, array, low, upper);
3313 }
3314
3315 case TERNOP_COND:
3316 /* Skip third and second args to evaluate the first one. */
3317 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3318 if (value_logical_not (arg1))
3319 {
3320 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3321 return evaluate_subexp (nullptr, exp, pos, noside);
3322 }
3323 else
3324 {
3325 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3326 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3327 return arg2;
3328 }
3329
3330 case OP_OBJC_SELECTOR:
3331 { /* Objective C @selector operator. */
3332 char *sel = &exp->elts[pc + 2].string;
3333 int len = longest_to_int (exp->elts[pc + 1].longconst);
3334
3335 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
3336 if (sel[len] != 0)
3337 sel[len] = 0; /* Make sure it's terminated. */
3338
3339 return eval_op_objc_selector (expect_type, exp, noside, sel);
3340 }
3341
3342 case OP_OBJC_MSGCALL:
3343 { /* Objective C message (method) call. */
3344 CORE_ADDR selector = 0;
3345
3346 enum noside sub_no_side = EVAL_NORMAL;
3347
3348 struct value *target = NULL;
3349
3350 struct type *selector_type = NULL;
3351
3352 selector = exp->elts[pc + 1].longconst;
3353 nargs = exp->elts[pc + 2].longconst;
3354 argvec = XALLOCAVEC (struct value *, nargs + 3);
3355
3356 (*pos) += 3;
3357
3358 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
3359
3360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3361 sub_no_side = EVAL_NORMAL;
3362 else
3363 sub_no_side = noside;
3364
3365 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
3366
3367 if (value_as_long (target) == 0)
3368 sub_no_side = EVAL_SKIP;
3369 else
3370 sub_no_side = noside;
3371
3372 /* Now depending on whether we found a symbol for the method,
3373 we will either call the runtime dispatcher or the method
3374 directly. */
3375
3376 argvec[0] = nullptr;
3377 argvec[1] = nullptr;
3378 /* User-supplied arguments. */
3379 for (tem = 0; tem < nargs; tem++)
3380 argvec[tem + 2] = evaluate_subexp_with_coercion (exp, pos,
3381 sub_no_side);
3382 argvec[tem + 3] = 0;
3383
3384 auto call_args = gdb::make_array_view (argvec, nargs + 3);
3385
3386 return eval_op_objc_msgcall (expect_type, exp, noside, selector,
3387 target, call_args);
3388 }
3389 break;
3390
3391 case OP_FUNCALL:
3392 return evaluate_funcall (expect_type, exp, pos, noside);
3393
3394 case OP_COMPLEX:
3395 /* We have a complex number, There should be 2 floating
3396 point numbers that compose it. */
3397 (*pos) += 2;
3398 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3399 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3400
3401 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
3402
3403 case STRUCTOP_STRUCT:
3404 tem = longest_to_int (exp->elts[pc + 1].longconst);
3405 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
3406 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3407 return eval_op_structop_struct (expect_type, exp, noside, arg1,
3408 &exp->elts[pc + 2].string);
3409
3410 case STRUCTOP_PTR:
3411 tem = longest_to_int (exp->elts[pc + 1].longconst);
3412 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
3413 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3414 return eval_op_structop_ptr (expect_type, exp, noside, arg1,
3415 &exp->elts[pc + 2].string);
3416
3417 case STRUCTOP_MEMBER:
3418 case STRUCTOP_MPTR:
3419 if (op == STRUCTOP_MEMBER)
3420 arg1 = evaluate_subexp_for_address (exp, pos, noside);
3421 else
3422 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3423
3424 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3425
3426 return eval_op_member (expect_type, exp, noside, arg1, arg2);
3427
3428 case TYPE_INSTANCE:
3429 {
3430 type_instance_flags flags
3431 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
3432 nargs = longest_to_int (exp->elts[pc + 2].longconst);
3433 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
3434 for (ix = 0; ix < nargs; ++ix)
3435 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
3436
3437 fake_method fake_expect_type (flags, nargs, arg_types);
3438 *(pos) += 4 + nargs;
3439 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
3440 noside);
3441 }
3442
3443 case BINOP_CONCAT:
3444 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
3445 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
3446 return eval_op_concat (expect_type, exp, noside, arg1, arg2);
3447
3448 case BINOP_ASSIGN:
3449 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3450 /* Special-case assignments where the left-hand-side is a
3451 convenience variable -- in these, don't bother setting an
3452 expected type. This avoids a weird case where re-assigning a
3453 string or array to an internal variable could error with "Too
3454 many array elements". */
3455 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
3456 ? nullptr
3457 : value_type (arg1),
3458 exp, pos, noside);
3459
3460 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
3461 return arg1;
3462 if (binop_user_defined_p (op, arg1, arg2))
3463 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
3464 else
3465 return value_assign (arg1, arg2);
3466
3467 case BINOP_ASSIGN_MODIFY:
3468 (*pos) += 2;
3469 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3470 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3471 op = exp->elts[pc + 1].opcode;
3472 return eval_binop_assign_modify (expect_type, exp, noside, op,
3473 arg1, arg2);
3474
3475 case BINOP_ADD:
3476 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
3477 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
3478 return eval_op_add (expect_type, exp, noside, arg1, arg2);
3479
3480 case BINOP_SUB:
3481 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
3482 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
3483 return eval_op_sub (expect_type, exp, noside, arg1, arg2);
3484
3485 case BINOP_EXP:
3486 case BINOP_MUL:
3487 case BINOP_DIV:
3488 case BINOP_INTDIV:
3489 case BINOP_REM:
3490 case BINOP_MOD:
3491 case BINOP_LSH:
3492 case BINOP_RSH:
3493 case BINOP_BITWISE_AND:
3494 case BINOP_BITWISE_IOR:
3495 case BINOP_BITWISE_XOR:
3496 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3497 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3498 return eval_op_binary (expect_type, exp, noside, op, arg1, arg2);
3499
3500 case BINOP_SUBSCRIPT:
3501 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3502 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3503 return eval_op_subscript (expect_type, exp, noside, op, arg1, arg2);
3504
3505 case MULTI_SUBSCRIPT:
3506 (*pos) += 2;
3507 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3508 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
3509 argvec = XALLOCAVEC (struct value *, nargs);
3510 for (ix = 0; ix < nargs; ++ix)
3511 argvec[ix] = evaluate_subexp_with_coercion (exp, pos, noside);
3512 return eval_multi_subscript (expect_type, exp, noside, arg1,
3513 gdb::make_array_view (argvec, nargs));
3514
3515 case BINOP_LOGICAL_AND:
3516 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3517 if (noside == EVAL_SKIP)
3518 {
3519 evaluate_subexp (nullptr, exp, pos, noside);
3520 return eval_skip_value (exp);
3521 }
3522
3523 oldpos = *pos;
3524 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3525 *pos = oldpos;
3526
3527 if (binop_user_defined_p (op, arg1, arg2))
3528 {
3529 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3530 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
3531 }
3532 else
3533 {
3534 tem = value_logical_not (arg1);
3535 arg2
3536 = evaluate_subexp (nullptr, exp, pos, (tem ? EVAL_SKIP : noside));
3537 type = language_bool_type (exp->language_defn, exp->gdbarch);
3538 return value_from_longest (type,
3539 (LONGEST) (!tem && !value_logical_not (arg2)));
3540 }
3541
3542 case BINOP_LOGICAL_OR:
3543 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3544 if (noside == EVAL_SKIP)
3545 {
3546 evaluate_subexp (nullptr, exp, pos, noside);
3547 return eval_skip_value (exp);
3548 }
3549
3550 oldpos = *pos;
3551 arg2 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3552 *pos = oldpos;
3553
3554 if (binop_user_defined_p (op, arg1, arg2))
3555 {
3556 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3557 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
3558 }
3559 else
3560 {
3561 tem = value_logical_not (arg1);
3562 arg2
3563 = evaluate_subexp (nullptr, exp, pos, (!tem ? EVAL_SKIP : noside));
3564 type = language_bool_type (exp->language_defn, exp->gdbarch);
3565 return value_from_longest (type,
3566 (LONGEST) (!tem || !value_logical_not (arg2)));
3567 }
3568
3569 case BINOP_EQUAL:
3570 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3571 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3572 return eval_op_equal (expect_type, exp, noside, op, arg1, arg2);
3573
3574 case BINOP_NOTEQUAL:
3575 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3576 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3577 return eval_op_notequal (expect_type, exp, noside, op, arg1, arg2);
3578
3579 case BINOP_LESS:
3580 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3581 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3582 return eval_op_less (expect_type, exp, noside, op, arg1, arg2);
3583
3584 case BINOP_GTR:
3585 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3586 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3587 return eval_op_gtr (expect_type, exp, noside, op, arg1, arg2);
3588
3589 case BINOP_GEQ:
3590 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3591 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3592 return eval_op_geq (expect_type, exp, noside, op, arg1, arg2);
3593
3594 case BINOP_LEQ:
3595 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3596 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
3597 return eval_op_leq (expect_type, exp, noside, op, arg1, arg2);
3598
3599 case BINOP_REPEAT:
3600 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3601 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
3602 return eval_op_repeat (expect_type, exp, noside, op, arg1, arg2);
3603
3604 case BINOP_COMMA:
3605 evaluate_subexp (nullptr, exp, pos, noside);
3606 return evaluate_subexp (nullptr, exp, pos, noside);
3607
3608 case UNOP_PLUS:
3609 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3610 return eval_op_plus (expect_type, exp, noside, op, arg1);
3611
3612 case UNOP_NEG:
3613 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3614 return eval_op_neg (expect_type, exp, noside, op, arg1);
3615
3616 case UNOP_COMPLEMENT:
3617 /* C++: check for and handle destructor names. */
3618
3619 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3620 return eval_op_complement (expect_type, exp, noside, op, arg1);
3621
3622 case UNOP_LOGICAL_NOT:
3623 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
3624 return eval_op_lognot (expect_type, exp, noside, op, arg1);
3625
3626 case UNOP_IND:
3627 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
3628 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
3629 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3630 return eval_op_ind (expect_type, exp, noside, arg1);
3631
3632 case UNOP_ADDR:
3633 /* C++: check for and handle pointer to members. */
3634
3635 if (noside == EVAL_SKIP)
3636 {
3637 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3638 return eval_skip_value (exp);
3639 }
3640 else
3641 return evaluate_subexp_for_address (exp, pos, noside);
3642
3643 case UNOP_SIZEOF:
3644 if (noside == EVAL_SKIP)
3645 {
3646 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3647 return eval_skip_value (exp);
3648 }
3649 return evaluate_subexp_for_sizeof (exp, pos, noside);
3650
3651 case UNOP_ALIGNOF:
3652 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3653 return eval_op_alignof (expect_type, exp, noside, arg1);
3654
3655 case UNOP_CAST:
3656 (*pos) += 2;
3657 type = exp->elts[pc + 1].type;
3658 return evaluate_subexp_for_cast (exp, pos, noside, type);
3659
3660 case UNOP_CAST_TYPE:
3661 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3662 type = value_type (arg1);
3663 return evaluate_subexp_for_cast (exp, pos, noside, type);
3664
3665 case UNOP_DYNAMIC_CAST:
3666 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3667 type = value_type (arg1);
3668 arg1 = evaluate_subexp (type, exp, pos, noside);
3669 if (noside == EVAL_SKIP)
3670 return eval_skip_value (exp);
3671 return value_dynamic_cast (type, arg1);
3672
3673 case UNOP_REINTERPRET_CAST:
3674 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3675 type = value_type (arg1);
3676 arg1 = evaluate_subexp (type, exp, pos, noside);
3677 if (noside == EVAL_SKIP)
3678 return eval_skip_value (exp);
3679 return value_reinterpret_cast (type, arg1);
3680
3681 case UNOP_MEMVAL:
3682 (*pos) += 2;
3683 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3684 return eval_op_memval (expect_type, exp, noside, arg1,
3685 exp->elts[pc + 1].type);
3686
3687 case UNOP_MEMVAL_TYPE:
3688 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3689 type = value_type (arg1);
3690 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3691 return eval_op_memval (expect_type, exp, noside, arg1, type);
3692
3693 case UNOP_PREINCREMENT:
3694 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3695 return eval_op_preinc (expect_type, exp, noside, op, arg1);
3696
3697 case UNOP_PREDECREMENT:
3698 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3699 return eval_op_predec (expect_type, exp, noside, op, arg1);
3700
3701 case UNOP_POSTINCREMENT:
3702 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3703 return eval_op_postinc (expect_type, exp, noside, op, arg1);
3704
3705 case UNOP_POSTDECREMENT:
3706 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
3707 return eval_op_postdec (expect_type, exp, noside, op, arg1);
3708
3709 case OP_THIS:
3710 (*pos) += 1;
3711 return value_of_this (exp->language_defn);
3712
3713 case OP_TYPE:
3714 /* The value is not supposed to be used. This is here to make it
3715 easier to accommodate expressions that contain types. */
3716 (*pos) += 2;
3717 return eval_op_type (expect_type, exp, noside, exp->elts[pc + 1].type);
3718
3719 case OP_TYPEOF:
3720 case OP_DECLTYPE:
3721 if (noside == EVAL_SKIP)
3722 {
3723 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
3724 return eval_skip_value (exp);
3725 }
3726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3727 {
3728 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3729 struct value *result;
3730
3731 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3732
3733 /* 'decltype' has special semantics for lvalues. */
3734 if (op == OP_DECLTYPE
3735 && (sub_op == BINOP_SUBSCRIPT
3736 || sub_op == STRUCTOP_MEMBER
3737 || sub_op == STRUCTOP_MPTR
3738 || sub_op == UNOP_IND
3739 || sub_op == STRUCTOP_STRUCT
3740 || sub_op == STRUCTOP_PTR
3741 || sub_op == OP_SCOPE))
3742 {
3743 type = value_type (result);
3744
3745 if (!TYPE_IS_REFERENCE (type))
3746 {
3747 type = lookup_lvalue_reference_type (type);
3748 result = allocate_value (type);
3749 }
3750 }
3751
3752 return result;
3753 }
3754 else
3755 error (_("Attempt to use a type as an expression"));
3756
3757 case OP_TYPEID:
3758 {
3759 struct value *result;
3760 enum exp_opcode sub_op = exp->elts[*pos].opcode;
3761
3762 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
3763 result = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3764 else
3765 result = evaluate_subexp (nullptr, exp, pos, noside);
3766
3767 if (noside != EVAL_NORMAL)
3768 return allocate_value (cplus_typeid_type (exp->gdbarch));
3769
3770 return cplus_typeid (result);
3771 }
3772
3773 default:
3774 /* Removing this case and compiling with gcc -Wall reveals that
3775 a lot of cases are hitting this case. Some of these should
3776 probably be removed from expression.h; others are legitimate
3777 expressions which are (apparently) not fully implemented.
3778
3779 If there are any cases landing here which mean a user error,
3780 then they should be separate cases, with more descriptive
3781 error messages. */
3782
3783 error (_("GDB does not (yet) know how to "
3784 "evaluate that kind of expression"));
3785 }
3786
3787 gdb_assert_not_reached ("missed return?");
3788 }
3789 \f
3790 /* Helper for evaluate_subexp_for_address. */
3791
3792 static value *
3793 evaluate_subexp_for_address_base (struct expression *exp, enum noside noside,
3794 value *x)
3795 {
3796 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3797 {
3798 struct type *type = check_typedef (value_type (x));
3799
3800 if (TYPE_IS_REFERENCE (type))
3801 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3802 not_lval);
3803 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3804 return value_zero (lookup_pointer_type (value_type (x)),
3805 not_lval);
3806 else
3807 error (_("Attempt to take address of "
3808 "value not located in memory."));
3809 }
3810 return value_addr (x);
3811 }
3812
3813 /* Evaluate a subexpression of EXP, at index *POS,
3814 and return the address of that subexpression.
3815 Advance *POS over the subexpression.
3816 If the subexpression isn't an lvalue, get an error.
3817 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
3818 then only the type of the result need be correct. */
3819
3820 static struct value *
3821 evaluate_subexp_for_address (struct expression *exp, int *pos,
3822 enum noside noside)
3823 {
3824 enum exp_opcode op;
3825 int pc;
3826 struct symbol *var;
3827 struct value *x;
3828 int tem;
3829
3830 pc = (*pos);
3831 op = exp->elts[pc].opcode;
3832
3833 switch (op)
3834 {
3835 case UNOP_IND:
3836 (*pos)++;
3837 x = evaluate_subexp (nullptr, exp, pos, noside);
3838
3839 /* We can't optimize out "&*" if there's a user-defined operator*. */
3840 if (unop_user_defined_p (op, x))
3841 {
3842 x = value_x_unop (x, op, noside);
3843 goto default_case_after_eval;
3844 }
3845
3846 return coerce_array (x);
3847
3848 case UNOP_MEMVAL:
3849 (*pos) += 3;
3850 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3851 evaluate_subexp (nullptr, exp, pos, noside));
3852
3853 case UNOP_MEMVAL_TYPE:
3854 {
3855 struct type *type;
3856
3857 (*pos) += 1;
3858 x = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3859 type = value_type (x);
3860 return value_cast (lookup_pointer_type (type),
3861 evaluate_subexp (nullptr, exp, pos, noside));
3862 }
3863
3864 case OP_VAR_VALUE:
3865 var = exp->elts[pc + 2].symbol;
3866
3867 /* C++: The "address" of a reference should yield the address
3868 * of the object pointed to. Let value_addr() deal with it. */
3869 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3870 goto default_case;
3871
3872 (*pos) += 4;
3873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3874 {
3875 struct type *type =
3876 lookup_pointer_type (SYMBOL_TYPE (var));
3877 enum address_class sym_class = SYMBOL_CLASS (var);
3878
3879 if (sym_class == LOC_CONST
3880 || sym_class == LOC_CONST_BYTES
3881 || sym_class == LOC_REGISTER)
3882 error (_("Attempt to take address of register or constant."));
3883
3884 return
3885 value_zero (type, not_lval);
3886 }
3887 else
3888 return address_of_variable (var, exp->elts[pc + 1].block);
3889
3890 case OP_VAR_MSYM_VALUE:
3891 {
3892 (*pos) += 4;
3893
3894 value *val = evaluate_var_msym_value (noside,
3895 exp->elts[pc + 1].objfile,
3896 exp->elts[pc + 2].msymbol);
3897 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3898 {
3899 struct type *type = lookup_pointer_type (value_type (val));
3900 return value_zero (type, not_lval);
3901 }
3902 else
3903 return value_addr (val);
3904 }
3905
3906 case OP_SCOPE:
3907 tem = longest_to_int (exp->elts[pc + 2].longconst);
3908 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3909 x = value_aggregate_elt (exp->elts[pc + 1].type,
3910 &exp->elts[pc + 3].string,
3911 NULL, 1, noside);
3912 if (x == NULL)
3913 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3914 return x;
3915
3916 default:
3917 default_case:
3918 x = evaluate_subexp (nullptr, exp, pos, noside);
3919 default_case_after_eval:
3920 return evaluate_subexp_for_address_base (exp, noside, x);
3921 }
3922 }
3923
3924 namespace expr
3925 {
3926
3927 value *
3928 operation::evaluate_for_cast (struct type *expect_type,
3929 struct expression *exp,
3930 enum noside noside)
3931 {
3932 value *val = evaluate (expect_type, exp, noside);
3933 if (noside == EVAL_SKIP)
3934 return eval_skip_value (exp);
3935 return value_cast (expect_type, val);
3936 }
3937
3938 value *
3939 operation::evaluate_for_address (struct expression *exp, enum noside noside)
3940 {
3941 value *val = evaluate (nullptr, exp, noside);
3942 return evaluate_subexp_for_address_base (exp, noside, val);
3943 }
3944
3945 value *
3946 scope_operation::evaluate_for_address (struct expression *exp,
3947 enum noside noside)
3948 {
3949 value *x = value_aggregate_elt (std::get<0> (m_storage),
3950 std::get<1> (m_storage).c_str (),
3951 NULL, 1, noside);
3952 if (x == NULL)
3953 error (_("There is no field named %s"), std::get<1> (m_storage).c_str ());
3954 return x;
3955 }
3956
3957 value *
3958 unop_ind_base_operation::evaluate_for_address (struct expression *exp,
3959 enum noside noside)
3960 {
3961 value *x = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
3962
3963 /* We can't optimize out "&*" if there's a user-defined operator*. */
3964 if (unop_user_defined_p (UNOP_IND, x))
3965 {
3966 x = value_x_unop (x, UNOP_IND, noside);
3967 return evaluate_subexp_for_address_base (exp, noside, x);
3968 }
3969
3970 return coerce_array (x);
3971 }
3972
3973 value *
3974 var_msym_value_operation::evaluate_for_address (struct expression *exp,
3975 enum noside noside)
3976 {
3977 value *val = evaluate_var_msym_value (noside,
3978 std::get<1> (m_storage),
3979 std::get<0> (m_storage));
3980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3981 {
3982 struct type *type = lookup_pointer_type (value_type (val));
3983 return value_zero (type, not_lval);
3984 }
3985 else
3986 return value_addr (val);
3987 }
3988
3989 value *
3990 unop_memval_operation::evaluate_for_address (struct expression *exp,
3991 enum noside noside)
3992 {
3993 return value_cast (lookup_pointer_type (std::get<1> (m_storage)),
3994 std::get<0> (m_storage)->evaluate (nullptr, exp, noside));
3995 }
3996
3997 value *
3998 unop_memval_type_operation::evaluate_for_address (struct expression *exp,
3999 enum noside noside)
4000 {
4001 value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
4002 EVAL_AVOID_SIDE_EFFECTS);
4003 struct type *type = value_type (typeval);
4004 return value_cast (lookup_pointer_type (type),
4005 std::get<1> (m_storage)->evaluate (nullptr, exp, noside));
4006 }
4007
4008 }
4009
4010 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
4011 When used in contexts where arrays will be coerced anyway, this is
4012 equivalent to `evaluate_subexp' but much faster because it avoids
4013 actually fetching array contents (perhaps obsolete now that we have
4014 value_lazy()).
4015
4016 Note that we currently only do the coercion for C expressions, where
4017 arrays are zero based and the coercion is correct. For other languages,
4018 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
4019 to decide if coercion is appropriate. */
4020
4021 struct value *
4022 evaluate_subexp_with_coercion (struct expression *exp,
4023 int *pos, enum noside noside)
4024 {
4025 enum exp_opcode op;
4026 int pc;
4027 struct value *val;
4028 struct symbol *var;
4029 struct type *type;
4030
4031 pc = (*pos);
4032 op = exp->elts[pc].opcode;
4033
4034 switch (op)
4035 {
4036 case OP_VAR_VALUE:
4037 var = exp->elts[pc + 2].symbol;
4038 type = check_typedef (SYMBOL_TYPE (var));
4039 if (type->code () == TYPE_CODE_ARRAY
4040 && !type->is_vector ()
4041 && CAST_IS_CONVERSION (exp->language_defn))
4042 {
4043 (*pos) += 4;
4044 val = address_of_variable (var, exp->elts[pc + 1].block);
4045 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4046 val);
4047 }
4048 /* FALLTHROUGH */
4049
4050 default:
4051 return evaluate_subexp (nullptr, exp, pos, noside);
4052 }
4053 }
4054
4055 namespace expr
4056 {
4057
4058 value *
4059 var_value_operation::evaluate_for_address (struct expression *exp,
4060 enum noside noside)
4061 {
4062 symbol *var = std::get<0> (m_storage);
4063
4064 /* C++: The "address" of a reference should yield the address
4065 * of the object pointed to. Let value_addr() deal with it. */
4066 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
4067 return operation::evaluate_for_address (exp, noside);
4068
4069 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4070 {
4071 struct type *type = lookup_pointer_type (SYMBOL_TYPE (var));
4072 enum address_class sym_class = SYMBOL_CLASS (var);
4073
4074 if (sym_class == LOC_CONST
4075 || sym_class == LOC_CONST_BYTES
4076 || sym_class == LOC_REGISTER)
4077 error (_("Attempt to take address of register or constant."));
4078
4079 return value_zero (type, not_lval);
4080 }
4081 else
4082 return address_of_variable (var, std::get<1> (m_storage));
4083 }
4084
4085 value *
4086 var_value_operation::evaluate_with_coercion (struct expression *exp,
4087 enum noside noside)
4088 {
4089 struct symbol *var = std::get<0> (m_storage);
4090 struct type *type = check_typedef (SYMBOL_TYPE (var));
4091 if (type->code () == TYPE_CODE_ARRAY
4092 && !type->is_vector ()
4093 && CAST_IS_CONVERSION (exp->language_defn))
4094 {
4095 struct value *val = address_of_variable (var, std::get<1> (m_storage));
4096 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), val);
4097 }
4098 return evaluate (nullptr, exp, noside);
4099 }
4100
4101 }
4102
4103 /* Helper function for evaluating the size of a type. */
4104
4105 static value *
4106 evaluate_subexp_for_sizeof_base (struct expression *exp, struct type *type)
4107 {
4108 /* FIXME: This should be size_t. */
4109 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
4110 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
4111 "When applied to a reference or a reference type, the result is
4112 the size of the referenced type." */
4113 type = check_typedef (type);
4114 if (exp->language_defn->la_language == language_cplus
4115 && (TYPE_IS_REFERENCE (type)))
4116 type = check_typedef (TYPE_TARGET_TYPE (type));
4117 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
4118 }
4119
4120 /* Evaluate a subexpression of EXP, at index *POS,
4121 and return a value for the size of that subexpression.
4122 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
4123 we allow side-effects on the operand if its type is a variable
4124 length array. */
4125
4126 static struct value *
4127 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
4128 enum noside noside)
4129 {
4130 /* FIXME: This should be size_t. */
4131 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
4132 enum exp_opcode op;
4133 int pc;
4134 struct type *type;
4135 struct value *val;
4136
4137 pc = (*pos);
4138 op = exp->elts[pc].opcode;
4139
4140 switch (op)
4141 {
4142 /* This case is handled specially
4143 so that we avoid creating a value for the result type.
4144 If the result type is very big, it's desirable not to
4145 create a value unnecessarily. */
4146 case UNOP_IND:
4147 (*pos)++;
4148 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
4149 type = check_typedef (value_type (val));
4150 if (type->code () != TYPE_CODE_PTR
4151 && !TYPE_IS_REFERENCE (type)
4152 && type->code () != TYPE_CODE_ARRAY)
4153 error (_("Attempt to take contents of a non-pointer value."));
4154 type = TYPE_TARGET_TYPE (type);
4155 if (is_dynamic_type (type))
4156 type = value_type (value_ind (val));
4157 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
4158
4159 case UNOP_MEMVAL:
4160 (*pos) += 3;
4161 type = exp->elts[pc + 1].type;
4162 break;
4163
4164 case UNOP_MEMVAL_TYPE:
4165 (*pos) += 1;
4166 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
4167 type = value_type (val);
4168 break;
4169
4170 case OP_VAR_VALUE:
4171 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
4172 if (is_dynamic_type (type))
4173 {
4174 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
4175 type = value_type (val);
4176 if (type->code () == TYPE_CODE_ARRAY)
4177 {
4178 if (type_not_allocated (type) || type_not_associated (type))
4179 return value_zero (size_type, not_lval);
4180 else if (is_dynamic_type (type->index_type ())
4181 && type->bounds ()->high.kind () == PROP_UNDEFINED)
4182 return allocate_optimized_out_value (size_type);
4183 }
4184 }
4185 else
4186 (*pos) += 4;
4187 break;
4188
4189 case OP_VAR_MSYM_VALUE:
4190 {
4191 (*pos) += 4;
4192
4193 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
4194 value *mval = evaluate_var_msym_value (noside,
4195 exp->elts[pc + 1].objfile,
4196 msymbol);
4197
4198 type = value_type (mval);
4199 if (type->code () == TYPE_CODE_ERROR)
4200 error_unknown_type (msymbol->print_name ());
4201
4202 return value_from_longest (size_type, TYPE_LENGTH (type));
4203 }
4204 break;
4205
4206 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
4207 type of the subscript is a variable length array type. In this case we
4208 must re-evaluate the right hand side of the subscription to allow
4209 side-effects. */
4210 case BINOP_SUBSCRIPT:
4211 if (noside == EVAL_NORMAL)
4212 {
4213 int npc = (*pos) + 1;
4214
4215 val = evaluate_subexp (nullptr, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
4216 type = check_typedef (value_type (val));
4217 if (type->code () == TYPE_CODE_ARRAY)
4218 {
4219 type = check_typedef (TYPE_TARGET_TYPE (type));
4220 if (type->code () == TYPE_CODE_ARRAY)
4221 {
4222 type = type->index_type ();
4223 /* Only re-evaluate the right hand side if the resulting type
4224 is a variable length type. */
4225 if (type->bounds ()->flag_bound_evaluated)
4226 {
4227 val = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
4228 return value_from_longest
4229 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
4230 }
4231 }
4232 }
4233 }
4234
4235 /* Fall through. */
4236
4237 default:
4238 val = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
4239 type = value_type (val);
4240 break;
4241 }
4242
4243 return evaluate_subexp_for_sizeof_base (exp, type);
4244 }
4245
4246 namespace expr
4247 {
4248
4249 value *
4250 operation::evaluate_for_sizeof (struct expression *exp, enum noside noside)
4251 {
4252 value *val = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
4253 return evaluate_subexp_for_sizeof_base (exp, value_type (val));
4254 }
4255
4256 value *
4257 var_msym_value_operation::evaluate_for_sizeof (struct expression *exp,
4258 enum noside noside)
4259
4260 {
4261 minimal_symbol *msymbol = std::get<0> (m_storage);
4262 value *mval = evaluate_var_msym_value (noside,
4263 std::get<1> (m_storage),
4264 msymbol);
4265
4266 struct type *type = value_type (mval);
4267 if (type->code () == TYPE_CODE_ERROR)
4268 error_unknown_type (msymbol->print_name ());
4269
4270 /* FIXME: This should be size_t. */
4271 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
4272 return value_from_longest (size_type, TYPE_LENGTH (type));
4273 }
4274
4275 value *
4276 subscript_operation::evaluate_for_sizeof (struct expression *exp,
4277 enum noside noside)
4278 {
4279 if (noside == EVAL_NORMAL)
4280 {
4281 value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
4282 EVAL_AVOID_SIDE_EFFECTS);
4283 struct type *type = check_typedef (value_type (val));
4284 if (type->code () == TYPE_CODE_ARRAY)
4285 {
4286 type = check_typedef (TYPE_TARGET_TYPE (type));
4287 if (type->code () == TYPE_CODE_ARRAY)
4288 {
4289 type = type->index_type ();
4290 /* Only re-evaluate the right hand side if the resulting type
4291 is a variable length type. */
4292 if (type->bounds ()->flag_bound_evaluated)
4293 {
4294 val = evaluate (nullptr, exp, EVAL_NORMAL);
4295 /* FIXME: This should be size_t. */
4296 struct type *size_type
4297 = builtin_type (exp->gdbarch)->builtin_int;
4298 return value_from_longest
4299 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
4300 }
4301 }
4302 }
4303 }
4304
4305 return operation::evaluate_for_sizeof (exp, noside);
4306 }
4307
4308 value *
4309 unop_ind_base_operation::evaluate_for_sizeof (struct expression *exp,
4310 enum noside noside)
4311 {
4312 value *val = std::get<0> (m_storage)->evaluate (nullptr, exp,
4313 EVAL_AVOID_SIDE_EFFECTS);
4314 struct type *type = check_typedef (value_type (val));
4315 if (type->code () != TYPE_CODE_PTR
4316 && !TYPE_IS_REFERENCE (type)
4317 && type->code () != TYPE_CODE_ARRAY)
4318 error (_("Attempt to take contents of a non-pointer value."));
4319 type = TYPE_TARGET_TYPE (type);
4320 if (is_dynamic_type (type))
4321 type = value_type (value_ind (val));
4322 /* FIXME: This should be size_t. */
4323 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
4324 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
4325 }
4326
4327 value *
4328 unop_memval_operation::evaluate_for_sizeof (struct expression *exp,
4329 enum noside noside)
4330 {
4331 return evaluate_subexp_for_sizeof_base (exp, std::get<1> (m_storage));
4332 }
4333
4334 value *
4335 unop_memval_type_operation::evaluate_for_sizeof (struct expression *exp,
4336 enum noside noside)
4337 {
4338 value *typeval = std::get<0> (m_storage)->evaluate (nullptr, exp,
4339 EVAL_AVOID_SIDE_EFFECTS);
4340 return evaluate_subexp_for_sizeof_base (exp, value_type (typeval));
4341 }
4342
4343 value *
4344 var_value_operation::evaluate_for_sizeof (struct expression *exp,
4345 enum noside noside)
4346 {
4347 struct type *type = SYMBOL_TYPE (std::get<0> (m_storage));
4348 if (is_dynamic_type (type))
4349 {
4350 value *val = evaluate (nullptr, exp, EVAL_NORMAL);
4351 type = value_type (val);
4352 if (type->code () == TYPE_CODE_ARRAY)
4353 {
4354 /* FIXME: This should be size_t. */
4355 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
4356 if (type_not_allocated (type) || type_not_associated (type))
4357 return value_zero (size_type, not_lval);
4358 else if (is_dynamic_type (type->index_type ())
4359 && type->bounds ()->high.kind () == PROP_UNDEFINED)
4360 return allocate_optimized_out_value (size_type);
4361 }
4362 }
4363 return evaluate_subexp_for_sizeof_base (exp, type);
4364 }
4365
4366 }
4367
4368 /* Evaluate a subexpression of EXP, at index *POS, and return a value
4369 for that subexpression cast to TO_TYPE. Advance *POS over the
4370 subexpression. */
4371
4372 static value *
4373 evaluate_subexp_for_cast (expression *exp, int *pos,
4374 enum noside noside,
4375 struct type *to_type)
4376 {
4377 int pc = *pos;
4378
4379 /* Don't let symbols be evaluated with evaluate_subexp because that
4380 throws an "unknown type" error for no-debug data symbols.
4381 Instead, we want the cast to reinterpret the symbol. */
4382 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
4383 || exp->elts[pc].opcode == OP_VAR_VALUE)
4384 {
4385 (*pos) += 4;
4386
4387 value *val;
4388 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
4389 {
4390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4391 return value_zero (to_type, not_lval);
4392
4393 val = evaluate_var_msym_value (noside,
4394 exp->elts[pc + 1].objfile,
4395 exp->elts[pc + 2].msymbol);
4396 }
4397 else
4398 val = evaluate_var_value (noside,
4399 exp->elts[pc + 1].block,
4400 exp->elts[pc + 2].symbol);
4401
4402 if (noside == EVAL_SKIP)
4403 return eval_skip_value (exp);
4404
4405 val = value_cast (to_type, val);
4406
4407 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
4408 if (VALUE_LVAL (val) == lval_memory)
4409 {
4410 if (value_lazy (val))
4411 value_fetch_lazy (val);
4412 VALUE_LVAL (val) = not_lval;
4413 }
4414 return val;
4415 }
4416
4417 value *val = evaluate_subexp (to_type, exp, pos, noside);
4418 if (noside == EVAL_SKIP)
4419 return eval_skip_value (exp);
4420 return value_cast (to_type, val);
4421 }
4422
4423 namespace expr
4424 {
4425
4426 value *
4427 var_msym_value_operation::evaluate_for_cast (struct type *to_type,
4428 struct expression *exp,
4429 enum noside noside)
4430 {
4431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4432 return value_zero (to_type, not_lval);
4433
4434 value *val = evaluate_var_msym_value (noside,
4435 std::get<1> (m_storage),
4436 std::get<0> (m_storage));
4437
4438 if (noside == EVAL_SKIP)
4439 return eval_skip_value (exp);
4440
4441 val = value_cast (to_type, val);
4442
4443 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
4444 if (VALUE_LVAL (val) == lval_memory)
4445 {
4446 if (value_lazy (val))
4447 value_fetch_lazy (val);
4448 VALUE_LVAL (val) = not_lval;
4449 }
4450 return val;
4451 }
4452
4453 value *
4454 var_value_operation::evaluate_for_cast (struct type *to_type,
4455 struct expression *exp,
4456 enum noside noside)
4457 {
4458 value *val = evaluate_var_value (noside,
4459 std::get<1> (m_storage),
4460 std::get<0> (m_storage));
4461
4462 if (noside == EVAL_SKIP)
4463 return eval_skip_value (exp);
4464
4465 val = value_cast (to_type, val);
4466
4467 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
4468 if (VALUE_LVAL (val) == lval_memory)
4469 {
4470 if (value_lazy (val))
4471 value_fetch_lazy (val);
4472 VALUE_LVAL (val) = not_lval;
4473 }
4474 return val;
4475 }
4476
4477 }
4478
4479 /* Parse a type expression in the string [P..P+LENGTH). */
4480
4481 struct type *
4482 parse_and_eval_type (const char *p, int length)
4483 {
4484 char *tmp = (char *) alloca (length + 4);
4485
4486 tmp[0] = '(';
4487 memcpy (tmp + 1, p, length);
4488 tmp[length + 1] = ')';
4489 tmp[length + 2] = '0';
4490 tmp[length + 3] = '\0';
4491 expression_up expr = parse_expression (tmp);
4492 if (expr->first_opcode () != UNOP_CAST)
4493 error (_("Internal error in eval_type."));
4494 return expr->elts[1].type;
4495 }
This page took 0.143537 seconds and 5 git commands to generate.