8815e04234bca54f4e8b66e33077fdec431f5365
[deliverable/binutils-gdb.git] / gdb / event-loop.c
1 /* Event loop machinery for GDB, the GNU debugger.
2 Copyright 1999 Free Software Foundation, Inc.
3 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "event-loop.h"
25 #include "event-top.h"
26 #include "inferior.h" /* For fetch_inferior_event. */
27 #ifdef HAVE_POLL
28 #include <poll.h>
29 #else
30 #include <sys/types.h>
31 #endif
32 #include <errno.h>
33 #include <setjmp.h>
34 #include <sys/time.h>
35
36 /* Type of the mask arguments to select. */
37
38 #ifndef NO_FD_SET
39 #define SELECT_MASK fd_set
40 #else
41 #ifndef _AIX
42 typedef long fd_mask;
43 #endif
44 #if defined(_IBMR2)
45 #define SELECT_MASK void
46 #else
47 #define SELECT_MASK int
48 #endif
49 #endif
50
51 /* Define "NBBY" (number of bits per byte) if it's not already defined. */
52
53 #ifndef NBBY
54 #define NBBY 8
55 #endif
56
57
58 /* Define the number of fd_masks in an fd_set */
59
60 #ifndef FD_SETSIZE
61 #ifdef OPEN_MAX
62 #define FD_SETSIZE OPEN_MAX
63 #else
64 #define FD_SETSIZE 256
65 #endif
66 #endif
67 #if !defined(howmany)
68 #define howmany(x, y) (((x)+((y)-1))/(y))
69 #endif
70 #ifndef NFDBITS
71 #define NFDBITS NBBY*sizeof(fd_mask)
72 #endif
73 #define MASK_SIZE howmany(FD_SETSIZE, NFDBITS)
74
75
76 typedef struct gdb_event gdb_event;
77 typedef void (event_handler_func) (int);
78
79 /* Event for the GDB event system. Events are queued by calling
80 async_queue_event and serviced later on by gdb_do_one_event. An
81 event can be, for instance, a file descriptor becoming ready to be
82 read. Servicing an event simply means that the procedure PROC will
83 be called. We have 2 queues, one for file handlers that we listen
84 to in the event loop, and one for the file handlers+events that are
85 ready. The procedure PROC associated with each event is always the
86 same (handle_file_event). Its duty is to invoke the handler
87 associated with the file descriptor whose state change generated
88 the event, plus doing other cleanups adn such. */
89
90 struct gdb_event
91 {
92 event_handler_func *proc; /* Procedure to call to service this event. */
93 int fd; /* File descriptor that is ready. */
94 struct gdb_event *next_event; /* Next in list of events or NULL. */
95 };
96
97 /* Information about each file descriptor we register with the event
98 loop. */
99
100 typedef struct file_handler
101 {
102 int fd; /* File descriptor. */
103 int mask; /* Events we want to monitor: POLLIN, etc. */
104 int ready_mask; /* Events that have been seen since
105 the last time. */
106 handler_func *proc; /* Procedure to call when fd is ready. */
107 gdb_client_data client_data; /* Argument to pass to proc. */
108 int error; /* Was an error detected on this fd? */
109 struct file_handler *next_file; /* Next registered file descriptor. */
110 }
111 file_handler;
112
113 /* PROC is a function to be invoked when the READY flag is set. This
114 happens when there has been a signal and the corresponding signal
115 handler has 'triggered' this async_signal_handler for
116 execution. The actual work to be done in response to a signal will
117 be carried out by PROC at a later time, within process_event. This
118 provides a deferred execution of signal handlers.
119 Async_init_signals takes care of setting up such an
120 asyn_signal_handler for each interesting signal. */
121 typedef struct async_signal_handler
122 {
123 int ready; /* If ready, call this handler from the main event loop,
124 using invoke_async_handler. */
125 struct async_signal_handler *next_handler; /* Ptr to next handler */
126 sig_handler_func *proc; /* Function to call to do the work */
127 gdb_client_data client_data; /* Argument to async_handler_func */
128 }
129 async_signal_handler;
130
131
132 /* Event queue:
133 - the first event in the queue is the head of the queue.
134 It will be the next to be serviced.
135 - the last event in the queue
136
137 Events can be inserted at the front of the queue or at the end of
138 the queue. Events will be extracted from the queue for processing
139 starting from the head. Therefore, events inserted at the head of
140 the queue will be processed in a last in first out fashion, while
141 those inserted at the tail of the queue will be processed in a first
142 in first out manner. All the fields are NULL if the queue is
143 empty. */
144
145 static struct
146 {
147 gdb_event *first_event; /* First pending event */
148 gdb_event *last_event; /* Last pending event */
149 }
150 event_queue;
151
152 /* Gdb_notifier is just a list of file descriptors gdb is interested in.
153 These are the input file descriptor, and the target file
154 descriptor. We have two flavors of the notifier, one for platforms
155 that have the POLL function, the other for those that don't, and
156 only support SELECT. Each of the elements in the gdb_notifier list is
157 basically a description of what kind of events gdb is interested
158 in, for each fd. */
159
160 /* As of 1999-04-30 only the input file descriptor is registered with the
161 event loop. */
162
163 #ifdef HAVE_POLL
164 /* Poll based implementation of the notifier. */
165
166 static struct
167 {
168 /* Ptr to head of file handler list. */
169 file_handler *first_file_handler;
170
171 /* Ptr to array of pollfd structures. */
172 struct pollfd *poll_fds;
173
174 /* Number of file descriptors to monitor. */
175 int num_fds;
176
177 /* Timeout in milliseconds for calls to poll(). */
178 int timeout;
179
180 /* Flag to tell whether the timeout value shuld be used. */
181 int timeout_valid;
182 }
183 gdb_notifier;
184
185 #else /* ! HAVE_POLL */
186
187 /* Select based implementation of the notifier. */
188
189 static struct
190 {
191 /* Ptr to head of file handler list. */
192 file_handler *first_file_handler;
193
194 /* Masks to be used in the next call to select.
195 Bits are set in response to calls to create_file_handler. */
196 fd_mask check_masks[3 * MASK_SIZE];
197
198 /* What file descriptors were found ready by select. */
199 fd_mask ready_masks[3 * MASK_SIZE];
200
201 /* Number of valid bits (highest fd value + 1). */
202 int num_fds;
203
204 /* Time structure for calls to select(). */
205 struct timeval timeout;
206
207 /* Flag to tell whether the timeout struct should be used. */
208 int timeout_valid;
209 }
210 gdb_notifier;
211
212 #endif /* HAVE_POLL */
213
214 /* Structure associated with a timer. PROC will be executed at the
215 first occasion after WHEN. */
216 struct gdb_timer
217 {
218 struct timeval when;
219 int timer_id;
220 struct gdb_timer *next;
221 timer_handler_func *proc; /* Function to call to do the work */
222 gdb_client_data client_data; /* Argument to async_handler_func */
223 }
224 gdb_timer;
225
226 /* List of currently active timers. It is sorted in order of
227 increasing timers.*/
228 static struct
229 {
230 /* Pointer to first in timer list. */
231 struct gdb_timer *first_timer;
232
233 /* Length of timer list. */
234 int num_timers;
235 }
236 timer_list;
237
238 /* All the async_signal_handlers gdb is interested in are kept onto
239 this list. */
240 static struct
241 {
242 /* Pointer to first in handler list. */
243 async_signal_handler *first_handler;
244
245 /* Pointer to last in handler list. */
246 async_signal_handler *last_handler;
247 }
248 sighandler_list;
249
250 /* Is any of the handlers ready? Check this variable using
251 check_async_ready. This is used by process_event, to determine
252 whether or not to invoke the invoke_async_signal_handler
253 function. */
254 static int async_handler_ready = 0;
255
256 static void create_file_handler (int fd, int mask, handler_func *proc, gdb_client_data client_data);
257 static void invoke_async_signal_handler (void);
258 static void handle_file_event (int event_file_desc);
259 static int gdb_wait_for_event (void);
260 static int gdb_do_one_event (void);
261 static int check_async_ready (void);
262 static void async_queue_event (gdb_event *event_ptr, queue_position position);
263 static gdb_event * create_file_event (int fd);
264 static int process_event (void);
265 static void handle_timer_event (int dummy);
266 static void poll_timers (void);
267 \f
268
269 /* Insert an event object into the gdb event queue at
270 the specified position.
271 POSITION can be head or tail, with values TAIL, HEAD.
272 EVENT_PTR points to the event to be inserted into the queue.
273 The caller must allocate memory for the event. It is freed
274 after the event has ben handled.
275 Events in the queue will be processed head to tail, therefore,
276 events inserted at the head of the queue will be processed
277 as last in first out. Event appended at the tail of the queue
278 will be processed first in first out. */
279 static void
280 async_queue_event (gdb_event *event_ptr, queue_position position)
281 {
282 if (position == TAIL)
283 {
284 /* The event will become the new last_event. */
285
286 event_ptr->next_event = NULL;
287 if (event_queue.first_event == NULL)
288 event_queue.first_event = event_ptr;
289 else
290 event_queue.last_event->next_event = event_ptr;
291 event_queue.last_event = event_ptr;
292 }
293 else if (position == HEAD)
294 {
295 /* The event becomes the new first_event. */
296
297 event_ptr->next_event = event_queue.first_event;
298 if (event_queue.first_event == NULL)
299 event_queue.last_event = event_ptr;
300 event_queue.first_event = event_ptr;
301 }
302 }
303
304 /* Create a file event, to be enqueued in the event queue for
305 processing. The procedure associated to this event is always
306 handle_file_event, which will in turn invoke the one that was
307 associated to FD when it was registered with the event loop. */
308 static gdb_event *
309 create_file_event (int fd)
310 {
311 gdb_event *file_event_ptr;
312
313 file_event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
314 file_event_ptr->proc = handle_file_event;
315 file_event_ptr->fd = fd;
316 return (file_event_ptr);
317 }
318
319 /* Process one event.
320 The event can be the next one to be serviced in the event queue,
321 or an asynchronous event handler can be invoked in response to
322 the reception of a signal.
323 If an event was processed (either way), 1 is returned otherwise
324 0 is returned.
325 Scan the queue from head to tail, processing therefore the high
326 priority events first, by invoking the associated event handler
327 procedure. */
328 static int
329 process_event (void)
330 {
331 gdb_event *event_ptr, *prev_ptr;
332 event_handler_func *proc;
333 int fd;
334
335 /* First let's see if there are any asynchronous event handlers that
336 are ready. These would be the result of invoking any of the
337 signal handlers. */
338
339 if (check_async_ready ())
340 {
341 invoke_async_signal_handler ();
342 return 1;
343 }
344
345 /* Look in the event queue to find an event that is ready
346 to be processed. */
347
348 for (event_ptr = event_queue.first_event; event_ptr != NULL;
349 event_ptr = event_ptr->next_event)
350 {
351 /* Call the handler for the event. */
352
353 proc = event_ptr->proc;
354 fd = event_ptr->fd;
355
356 /* Let's get rid of the event from the event queue. We need to
357 do this now because while processing the event, the proc
358 function could end up calling 'error' and therefore jump out
359 to the caller of this function, gdb_do_one_event. In that
360 case, we would have on the event queue an event wich has been
361 processed, but not deleted. */
362
363 if (event_queue.first_event == event_ptr)
364 {
365 event_queue.first_event = event_ptr->next_event;
366 if (event_ptr->next_event == NULL)
367 event_queue.last_event = NULL;
368 }
369 else
370 {
371 prev_ptr = event_queue.first_event;
372 while (prev_ptr->next_event != event_ptr)
373 prev_ptr = prev_ptr->next_event;
374
375 prev_ptr->next_event = event_ptr->next_event;
376 if (event_ptr->next_event == NULL)
377 event_queue.last_event = prev_ptr;
378 }
379 free ((char *) event_ptr);
380
381 /* Now call the procedure associted with the event. */
382 (*proc) (fd);
383 return 1;
384 }
385
386 /* this is the case if there are no event on the event queue. */
387 return 0;
388 }
389
390 /* Process one high level event. If nothing is ready at this time,
391 wait for something to happen (via gdb_wait_for_event), then process
392 it. Returns 1 if something was done otherwise returns 0 (this can
393 happen if there are no event sources to wait for). */
394 static int
395 gdb_do_one_event (void)
396 {
397 int result = 0;
398
399 while (1)
400 {
401 if (!SET_TOP_LEVEL ())
402 {
403 /* Any events already waiting in the queue? */
404 if (process_event ())
405 {
406 result = 1;
407 break;
408 }
409
410 /* Are any timers that are ready? If so, put an event on the queue.*/
411 poll_timers ();
412
413 /* Wait for a new event. If gdb_wait_for_event returns -1,
414 we should get out because this means that there are no
415 event sources left. This will make the event loop stop,
416 and the application exit. */
417
418 result = gdb_wait_for_event ();
419 if (result < 0)
420 {
421 result = 0;
422 break;
423 }
424
425 /* Handle any new events occurred while waiting. */
426 if (process_event ())
427 {
428 result = 1;
429 break;
430 }
431
432 /* If gdb_wait_for_event has returned 1, it means that one
433 event has been handled. We break out of the loop. */
434 if (result)
435 break;
436 } /* end of if !set_top_level */
437 else
438 {
439 /* FIXME: this should really be a call to a hook that is
440 interface specific, because interfaces can display the
441 prompt in their own way. */
442 display_gdb_prompt (0);
443 /* Maybe better to set a flag to be checked somewhere as to
444 whether display the prompt or not. */
445 }
446 }
447 return result;
448 }
449 \f
450
451 /* Start up the event loop. This is the entry point to the event loop
452 from the command loop. */
453 void
454 start_event_loop (void)
455 {
456 /* Loop until there is something to do. This is the entry point to
457 the event loop engine. gdb_do_one_event will process one event
458 for each invocation. It always returns 1, unless there are no
459 more event sources registered. In this case it returns 0. */
460 while (gdb_do_one_event () != 0)
461 ;
462
463 /* We are done with the event loop. There are no more event sources
464 to listen to. So we exit GDB. */
465 return;
466 }
467 \f
468
469 /* Wrapper function for create_file_handler, so that the caller
470 doesn't have to know implementation details about the use of poll
471 vs. select. */
472 void
473 add_file_handler (int fd, handler_func *proc, gdb_client_data client_data)
474 {
475 #ifdef HAVE_POLL
476 create_file_handler (fd, POLLIN, proc, client_data);
477 #else
478 create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION, proc, client_data);
479 #endif
480 }
481
482 /* Add a file handler/descriptor to the list of descriptors we are
483 interested in.
484 FD is the file descriptor for the file/stream to be listened to.
485 For the poll case, MASK is a combination (OR) of
486 POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM,
487 POLLWRBAND: these are the events we are interested in. If any of them
488 occurs, proc should be called.
489 For the select case, MASK is a combination of READABLE, WRITABLE, EXCEPTION.
490 PROC is the procedure that will be called when an event occurs for
491 FD. CLIENT_DATA is the argument to pass to PROC. */
492 static void
493 create_file_handler (int fd, int mask, handler_func *proc, gdb_client_data client_data)
494 {
495 file_handler *file_ptr;
496
497 #ifndef HAVE_POLL
498 int index, bit;
499 #endif
500
501 /* Do we already have a file handler for this file? (We may be
502 changing its associated procedure). */
503 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
504 file_ptr = file_ptr->next_file)
505 {
506 if (file_ptr->fd == fd)
507 break;
508 }
509
510 /* It is a new file descriptor. Add it to the list. Otherwise, just
511 change the data associated with it.*/
512 if (file_ptr == NULL)
513 {
514 file_ptr = (file_handler *) xmalloc (sizeof (file_handler));
515 file_ptr->fd = fd;
516 file_ptr->ready_mask = 0;
517 file_ptr->next_file = gdb_notifier.first_file_handler;
518 gdb_notifier.first_file_handler = file_ptr;
519 #ifdef HAVE_POLL
520 gdb_notifier.num_fds++;
521 #endif
522 }
523 file_ptr->proc = proc;
524 file_ptr->client_data = client_data;
525 file_ptr->mask = mask;
526
527 #ifdef HAVE_POLL
528
529 if (gdb_notifier.poll_fds)
530 gdb_notifier.poll_fds =
531 (struct pollfd *) realloc (gdb_notifier.poll_fds,
532 (gdb_notifier.num_fds) * sizeof (struct pollfd));
533 else
534 gdb_notifier.poll_fds =
535 (struct pollfd *) xmalloc (sizeof (struct pollfd));
536 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
537 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
538 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
539
540 #else /* ! HAVE_POLL */
541
542 index = fd / (NBBY * sizeof (fd_mask));
543 bit = 1 << (fd % (NBBY * sizeof (fd_mask)));
544
545 if (mask & GDB_READABLE)
546 gdb_notifier.check_masks[index] |= bit;
547 else
548 gdb_notifier.check_masks[index] &= ~bit;
549
550 if (mask & GDB_WRITABLE)
551 (gdb_notifier.check_masks + MASK_SIZE)[index] |= bit;
552 else
553 (gdb_notifier.check_masks + MASK_SIZE)[index] &= ~bit;
554
555 if (mask & GDB_EXCEPTION)
556 (gdb_notifier.check_masks + 2 * (MASK_SIZE))[index] |= bit;
557 else
558 (gdb_notifier.check_masks + 2 * (MASK_SIZE))[index] &= ~bit;
559
560 if (gdb_notifier.num_fds <= fd)
561 gdb_notifier.num_fds = fd + 1;
562
563 #endif /* HAVE_POLL */
564 }
565
566 /* Remove the file descriptor FD from the list of monitored fd's:
567 i.e. we don't care anymore about events on the FD. */
568 void
569 delete_file_handler (int fd)
570 {
571 file_handler *file_ptr, *prev_ptr = NULL;
572 int i, j;
573 struct pollfd *new_poll_fds;
574 #ifndef HAVE_POLL
575 int index, bit;
576 unsigned long flags;
577 #endif
578
579 /* Find the entry for the given file. */
580
581 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
582 file_ptr = file_ptr->next_file)
583 {
584 if (file_ptr->fd == fd)
585 break;
586 }
587
588 if (file_ptr == NULL)
589 return;
590
591 #ifdef HAVE_POLL
592 /* Create a new poll_fds array by copying every fd's information but the
593 one we want to get rid of. */
594
595 new_poll_fds =
596 (struct pollfd *) xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));
597
598 for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
599 {
600 if ((gdb_notifier.poll_fds + i)->fd != fd)
601 {
602 (new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
603 (new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
604 (new_poll_fds + j)->revents = (gdb_notifier.poll_fds + i)->revents;
605 j++;
606 }
607 }
608 free (gdb_notifier.poll_fds);
609 gdb_notifier.poll_fds = new_poll_fds;
610 gdb_notifier.num_fds--;
611
612 #else /* ! HAVE_POLL */
613
614 index = fd / (NBBY * sizeof (fd_mask));
615 bit = 1 << (fd % (NBBY * sizeof (fd_mask)));
616
617 if (file_ptr->mask & GDB_READABLE)
618 gdb_notifier.check_masks[index] &= ~bit;
619 if (file_ptr->mask & GDB_WRITABLE)
620 (gdb_notifier.check_masks + MASK_SIZE)[index] &= ~bit;
621 if (file_ptr->mask & GDB_EXCEPTION)
622 (gdb_notifier.check_masks + 2 * (MASK_SIZE))[index] &= ~bit;
623
624 /* Find current max fd. */
625
626 if ((fd + 1) == gdb_notifier.num_fds)
627 {
628 for (gdb_notifier.num_fds = 0; index >= 0; index--)
629 {
630 flags = gdb_notifier.check_masks[index]
631 | (gdb_notifier.check_masks + MASK_SIZE)[index]
632 | (gdb_notifier.check_masks + 2 * (MASK_SIZE))[index];
633 if (flags)
634 {
635 for (i = (NBBY * sizeof (fd_mask)); i > 0; i--)
636 {
637 if (flags & (((unsigned long) 1) << (i - 1)))
638 break;
639 }
640 gdb_notifier.num_fds = index * (NBBY * sizeof (fd_mask)) + i;
641 break;
642 }
643 }
644 }
645 #endif /* HAVE_POLL */
646
647 /* Deactivate the file descriptor, by clearing its mask,
648 so that it will not fire again. */
649
650 file_ptr->mask = 0;
651
652 /* Get rid of the file handler in the file handler list. */
653 if (file_ptr == gdb_notifier.first_file_handler)
654 gdb_notifier.first_file_handler = file_ptr->next_file;
655 else
656 {
657 for (prev_ptr = gdb_notifier.first_file_handler;
658 prev_ptr->next_file != file_ptr;
659 prev_ptr = prev_ptr->next_file)
660 ;
661 prev_ptr->next_file = file_ptr->next_file;
662 }
663 free ((char *) file_ptr);
664 }
665
666 /* Handle the given event by calling the procedure associated to the
667 corresponding file handler. Called by process_event indirectly,
668 through event_ptr->proc. EVENT_FILE_DESC is file descriptor of the
669 event in the front of the event queue. */
670 static void
671 handle_file_event (int event_file_desc)
672 {
673 file_handler *file_ptr;
674 int mask;
675 #ifdef HAVE_POLL
676 int error_mask;
677 int error_mask_returned;
678 #endif
679
680 /* Search the file handler list to find one that matches the fd in
681 the event. */
682 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
683 file_ptr = file_ptr->next_file)
684 {
685 if (file_ptr->fd == event_file_desc)
686 {
687 /* With poll, the ready_mask could have any of three events
688 set to 1: POLLHUP, POLLERR, POLLNVAL. These events cannot
689 be used in the requested event mask (events), but they
690 can be returned in the return mask (revents). We need to
691 check for those event too, and add them to the mask which
692 will be passed to the handler. */
693
694 /* See if the desired events (mask) match the received
695 events (ready_mask). */
696
697 #ifdef HAVE_POLL
698 error_mask = POLLHUP | POLLERR | POLLNVAL;
699 mask = (file_ptr->ready_mask & file_ptr->mask) |
700 (file_ptr->ready_mask & error_mask);
701 error_mask_returned = mask & error_mask;
702
703 if (error_mask_returned != 0)
704 {
705 /* Work in progress. We may need to tell somebody what
706 kind of error we had. */
707 /*if (error_mask_returned & POLLHUP)
708 printf_unfiltered ("Hangup detected on fd %d\n", file_ptr->fd);
709 if (error_mask_returned & POLLERR)
710 printf_unfiltered ("Error detected on fd %d\n", file_ptr->fd);
711 if (error_mask_returned & POLLNVAL)
712 printf_unfiltered ("Invalid fd %d\n", file_ptr->fd);*/
713 file_ptr->error = 1;
714 }
715 else
716 file_ptr->error = 0;
717 #else /* ! HAVE_POLL */
718 if (file_ptr->ready_mask & GDB_EXCEPTION)
719 {
720 printf_unfiltered ("Exception condition detected on fd %d\n", file_ptr->fd);
721 file_ptr->error = 1;
722 }
723 else
724 file_ptr->error = 0;
725 mask = file_ptr->ready_mask & file_ptr->mask;
726 #endif /* HAVE_POLL */
727
728 /* Clear the received events for next time around. */
729 file_ptr->ready_mask = 0;
730
731 /* If there was a match, then call the handler. */
732 if (mask != 0)
733 (*file_ptr->proc) (file_ptr->error, file_ptr->fd, file_ptr->client_data);
734 break;
735 }
736 }
737 }
738
739 /* Called by gdb_do_one_event to wait for new events on the
740 monitored file descriptors. Queue file events as they are
741 detected by the poll.
742 If there are no events, this function will block in the
743 call to poll.
744 Return -1 if there are no files descriptors to monitor,
745 otherwise return 0. */
746 static int
747 gdb_wait_for_event (void)
748 {
749 file_handler *file_ptr;
750 gdb_event *file_event_ptr;
751 int num_found = 0;
752 int i;
753
754 #ifndef HAVE_POLL
755 int mask, bit, index;
756 #endif
757
758 /* Make sure all output is done before getting another event. */
759 gdb_flush (gdb_stdout);
760 gdb_flush (gdb_stderr);
761
762 if (gdb_notifier.num_fds == 0)
763 return -1;
764
765 #ifdef HAVE_POLL
766 num_found =
767 poll (gdb_notifier.poll_fds,
768 (unsigned long) gdb_notifier.num_fds,
769 gdb_notifier.timeout_valid ? gdb_notifier.timeout : -1);
770
771 /* Don't print anything if we get out of poll because of a
772 signal.*/
773 if (num_found == -1 && errno != EINTR)
774 perror_with_name ("Poll");
775
776 #else /* ! HAVE_POLL */
777 memcpy (gdb_notifier.ready_masks,
778 gdb_notifier.check_masks,
779 3 * MASK_SIZE * sizeof (fd_mask));
780 num_found = select (gdb_notifier.num_fds,
781 (SELECT_MASK *) & gdb_notifier.ready_masks[0],
782 (SELECT_MASK *) & gdb_notifier.ready_masks[MASK_SIZE],
783 (SELECT_MASK *) & gdb_notifier.ready_masks[2 * MASK_SIZE],
784 gdb_notifier.timeout_valid ? gdb_notifier.timeout : NULL);
785
786 /* Clear the masks after an error from select. */
787 if (num_found == -1)
788 {
789 memset (gdb_notifier.ready_masks,
790 0, 3 * MASK_SIZE * sizeof (fd_mask));
791 /* Dont print anything is we got a signal, let gdb handle it. */
792 if (errno != EINTR)
793 perror_with_name ("Select");
794 }
795 #endif /* HAVE_POLL */
796
797 /* Enqueue all detected file events. */
798
799 #ifdef HAVE_POLL
800
801 for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++)
802 {
803 if ((gdb_notifier.poll_fds + i)->revents)
804 num_found--;
805 else
806 continue;
807
808 for (file_ptr = gdb_notifier.first_file_handler;
809 file_ptr != NULL;
810 file_ptr = file_ptr->next_file)
811 {
812 if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
813 break;
814 }
815
816 if (file_ptr)
817 {
818 /* Enqueue an event only if this is still a new event for
819 this fd. */
820 if (file_ptr->ready_mask == 0)
821 {
822 file_event_ptr = create_file_event (file_ptr->fd);
823 async_queue_event (file_event_ptr, TAIL);
824 }
825 }
826
827 file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents;
828 }
829
830 #else /* ! HAVE_POLL */
831 for (file_ptr = gdb_notifier.first_file_handler;
832 (file_ptr != NULL) && (num_found > 0);
833 file_ptr = file_ptr->next_file)
834 {
835 index = file_ptr->fd / (NBBY * sizeof (fd_mask));
836 bit = 1 << (file_ptr->fd % (NBBY * sizeof (fd_mask)));
837 mask = 0;
838
839 if (gdb_notifier.ready_masks[index] & bit)
840 mask |= GDB_READABLE;
841 if ((gdb_notifier.ready_masks + MASK_SIZE)[index] & bit)
842 mask |= GDB_WRITABLE;
843 if ((gdb_notifier.ready_masks + 2 * (MASK_SIZE))[index] & bit)
844 mask |= GDB_EXCEPTION;
845
846 if (!mask)
847 continue;
848 else
849 num_found--;
850
851 /* Enqueue an event only if this is still a new event for
852 this fd. */
853
854 if (file_ptr->ready_mask == 0)
855 {
856 file_event_ptr = create_file_event (file_ptr->fd);
857 async_queue_event (file_event_ptr, TAIL);
858 }
859 file_ptr->ready_mask = mask;
860 }
861 #endif /* HAVE_POLL */
862
863 return 0;
864 }
865 \f
866
867 /* Create an asynchronous handler, allocating memory for it.
868 Return a pointer to the newly created handler.
869 This pointer will be used to invoke the handler by
870 invoke_async_signal_handler.
871 PROC is the function to call with CLIENT_DATA argument
872 whenever the handler is invoked. */
873 async_signal_handler *
874 create_async_signal_handler (sig_handler_func *proc, gdb_client_data client_data)
875 {
876 async_signal_handler *async_handler_ptr;
877
878 async_handler_ptr =
879 (async_signal_handler *) xmalloc (sizeof (async_signal_handler));
880 async_handler_ptr->ready = 0;
881 async_handler_ptr->next_handler = NULL;
882 async_handler_ptr->proc = proc;
883 async_handler_ptr->client_data = client_data;
884 if (sighandler_list.first_handler == NULL)
885 sighandler_list.first_handler = async_handler_ptr;
886 else
887 sighandler_list.last_handler->next_handler = async_handler_ptr;
888 sighandler_list.last_handler = async_handler_ptr;
889 return async_handler_ptr;
890 }
891
892 /* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information will
893 be used when the handlers are invoked, after we have waited for
894 some event. The caller of this function is the interrupt handler
895 associated with a signal. */
896 void
897 mark_async_signal_handler (async_signal_handler *async_handler_ptr)
898 {
899 ((async_signal_handler *) async_handler_ptr)->ready = 1;
900 async_handler_ready = 1;
901 }
902
903 /* Call all the handlers that are ready. */
904 static void
905 invoke_async_signal_handler (void)
906 {
907 async_signal_handler *async_handler_ptr;
908
909 if (async_handler_ready == 0)
910 return;
911 async_handler_ready = 0;
912
913 /* Invoke ready handlers. */
914
915 while (1)
916 {
917 for (async_handler_ptr = sighandler_list.first_handler;
918 async_handler_ptr != NULL;
919 async_handler_ptr = async_handler_ptr->next_handler)
920 {
921 if (async_handler_ptr->ready)
922 break;
923 }
924 if (async_handler_ptr == NULL)
925 break;
926 async_handler_ptr->ready = 0;
927 (*async_handler_ptr->proc) (async_handler_ptr->client_data);
928 }
929
930 return;
931 }
932
933 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
934 Free the space allocated for it. */
935 void
936 delete_async_signal_handler (async_signal_handler **async_handler_ptr)
937 {
938 async_signal_handler *prev_ptr;
939
940 if (sighandler_list.first_handler == (*async_handler_ptr))
941 {
942 sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
943 if (sighandler_list.first_handler == NULL)
944 sighandler_list.last_handler = NULL;
945 }
946 else
947 {
948 prev_ptr = sighandler_list.first_handler;
949 while (prev_ptr->next_handler != (*async_handler_ptr) && prev_ptr)
950 prev_ptr = prev_ptr->next_handler;
951 prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
952 if (sighandler_list.last_handler == (*async_handler_ptr))
953 sighandler_list.last_handler = prev_ptr;
954 }
955 free ((char *) (*async_handler_ptr));
956 (*async_handler_ptr) = NULL;
957 }
958
959 /* Is it necessary to call invoke_async_signal_handler? */
960 static int
961 check_async_ready (void)
962 {
963 return async_handler_ready;
964 }
965
966 /* FIXME: where does this function belong? */
967 /* General function to handle events in the inferior. So far it just
968 takes care of detecting errors reported by select() or poll(),
969 otherwise it assumes that all is OK, and goes on reading data from
970 the fd. This however may not always be what we want to do. */
971 void
972 inferior_event_handler (int error, gdb_client_data client_data, int fd)
973 {
974 if (error == 1)
975 {
976 printf_unfiltered ("error detected on fd %d\n", fd);
977 delete_file_handler (fd);
978 discard_all_continuations ();
979 }
980 else
981 fetch_inferior_event (client_data);
982 }
983
984 /* Create a timer that will expire in MILLISECONDS from now. When the
985 timer is ready, PROC will be executed. At creation, the timer is
986 aded to the timers queue. This queue is kept sorted in order of
987 increasing timers. Return a handle to the timer struct.*/
988 int
989 create_timer (int milliseconds, timer_handler_func *proc, gdb_client_data client_data)
990 {
991 struct gdb_timer *timer_ptr, *timer_index, *prev_timer;
992 struct timeval time_now, delta;
993
994 /* compute seconds */
995 delta.tv_sec = milliseconds / 1000;
996 /* compute microseconds */
997 delta.tv_usec = (milliseconds % 1000) * 1000;
998
999 gettimeofday (&time_now, NULL);
1000
1001 timer_ptr = (struct gdb_timer *) xmalloc (sizeof (gdb_timer));
1002 timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec;
1003 timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec;
1004 /* carry? */
1005 if (timer_ptr->when.tv_usec >= 1000000 )
1006 {
1007 timer_ptr->when.tv_sec += 1;
1008 timer_ptr->when.tv_usec -= 1000000;
1009 }
1010 timer_ptr->proc = proc;
1011 timer_ptr->client_data = client_data;
1012 timer_list.num_timers ++;
1013 timer_ptr->timer_id = timer_list.num_timers;
1014
1015 /* Now add the timer to the timer queue, making sure it is sorted in
1016 increasing order of expiration. */
1017
1018 for (timer_index = timer_list.first_timer;
1019 timer_index != NULL;
1020 timer_index = timer_index->next)
1021 {
1022 /* If the seconds field is greater or if it is the same, but the
1023 microsecond field is greater. */
1024 if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec) ||
1025 ((timer_index->when.tv_sec == timer_ptr->when.tv_sec)
1026 && (timer_index->when.tv_usec > timer_ptr->when.tv_usec)))
1027 break;
1028 }
1029
1030 if (timer_index == timer_list.first_timer)
1031 {
1032 timer_ptr->next = timer_list.first_timer;
1033 timer_list.first_timer = timer_ptr;
1034
1035 }
1036 else
1037 {
1038 for (prev_timer = timer_list.first_timer;
1039 prev_timer->next != timer_index;
1040 prev_timer = prev_timer->next)
1041 ;
1042
1043 prev_timer->next = timer_ptr;
1044 timer_ptr->next = timer_index;
1045 }
1046
1047 gdb_notifier.timeout_valid = 0;
1048 return timer_ptr->timer_id;
1049 }
1050
1051 /* There is a chance that the creator of the timer wants to get rid of
1052 it before it expires. */
1053 void
1054 delete_timer (int id)
1055 {
1056 struct gdb_timer *timer_ptr, *prev_timer = NULL;
1057
1058 /* Find the entry for the given timer. */
1059
1060 for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
1061 timer_ptr = timer_ptr->next)
1062 {
1063 if (timer_ptr->timer_id == id)
1064 break;
1065 }
1066
1067 if (timer_ptr == NULL)
1068 return;
1069 /* Get rid of the timer in the timer list. */
1070 if (timer_ptr == timer_list.first_timer)
1071 timer_list.first_timer = timer_ptr->next;
1072 else
1073 {
1074 for (prev_timer = timer_list.first_timer;
1075 prev_timer->next != timer_ptr;
1076 prev_timer = prev_timer->next)
1077 ;
1078 prev_timer->next = timer_ptr->next;
1079 }
1080 free ((char *) timer_ptr);
1081
1082 gdb_notifier.timeout_valid = 0;
1083 }
1084
1085 /* When a timer event is put on the event queue, it will be handled by
1086 this function. Just call the assiciated procedure and delete the
1087 timer event from the event queue. Repeat this for each timer that
1088 has expired.*/
1089 static void
1090 handle_timer_event (int dummy)
1091 {
1092 struct timeval time_now;
1093 struct gdb_timer *timer_ptr, *saved_timer;
1094
1095 gettimeofday (&time_now, NULL);
1096 timer_ptr = timer_list.first_timer;
1097
1098 while (timer_ptr != NULL)
1099 {
1100 if ((timer_ptr->when.tv_sec > time_now.tv_sec) ||
1101 ((timer_ptr->when.tv_sec == time_now.tv_sec) &&
1102 (timer_ptr->when.tv_usec > time_now.tv_usec)))
1103 break;
1104
1105 /* Get rid of the timer from the beginning of the list. */
1106 timer_list.first_timer = timer_ptr->next;
1107 saved_timer = timer_ptr;
1108 timer_ptr = timer_ptr->next;
1109 /* Call the procedure associated with that timer. */
1110 (*saved_timer->proc) (timer_ptr->client_data);
1111 free (saved_timer);
1112 }
1113
1114 gdb_notifier.timeout_valid = 0;
1115 }
1116
1117 /* Check whether any timers in the timers queue are ready. If at least
1118 one timer is ready, stick an event onto the event queue. Even in
1119 case more than one timer is ready, one event is enough, because the
1120 handle_timer_event() will go through the timers list and call the
1121 procedures associated with all that have expired. Update the
1122 timeout for the select() or poll() as well.*/
1123 static void
1124 poll_timers (void)
1125 {
1126 struct timeval time_now, delta;
1127 gdb_event *event_ptr;
1128
1129 if (timer_list.num_timers)
1130 {
1131 gettimeofday (&time_now, NULL);
1132 delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec;
1133 delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec;
1134 /* borrow? */
1135 if (delta.tv_usec < 0)
1136 {
1137 delta.tv_sec -= 1;
1138 delta.tv_usec += 1000000;
1139 }
1140
1141 /* Oops it expired already. Tell select / poll to return
1142 immediately. */
1143 if (delta.tv_sec < 0)
1144 {
1145 delta.tv_sec = 0;
1146 delta.tv_usec = 0;
1147 }
1148
1149 if (delta.tv_sec == 0 && delta.tv_usec == 0)
1150 {
1151 event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event));
1152 event_ptr->proc = handle_timer_event;
1153 event_ptr->fd = timer_list.first_timer->timer_id;
1154 async_queue_event (event_ptr, TAIL);
1155 }
1156
1157 /* Now we need to update the timeout for select/ poll, because we
1158 don't want to sit there while this timer is expiring. */
1159 #ifdef HAVE_POLL
1160 gdb_notifier.timeout = delta.tv_sec * 1000;
1161 #else
1162 gdb_notifier.timeout.sec = delta.tv_sec;
1163 gdb_notifier.timeout.usec = delta.tv_usec;
1164 #endif
1165 gdb_notifier.timeout_valid = 1;
1166 }
1167 else
1168 gdb_notifier.timeout_valid = 0;
1169 }
This page took 0.054414 seconds and 3 git commands to generate.