63f6896c0774933af84540fbe17a67ae771ba56e
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static void command_line_handler (char *rl);
52 static void change_line_handler (void);
53 static char *top_level_prompt (void);
54
55 /* Signal handlers. */
56 #ifdef SIGQUIT
57 static void handle_sigquit (int sig);
58 #endif
59 #ifdef SIGHUP
60 static void handle_sighup (int sig);
61 #endif
62 static void handle_sigfpe (int sig);
63
64 /* Functions to be invoked by the event loop in response to
65 signals. */
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
68 #endif
69 #ifdef SIGHUP
70 static void async_disconnect (gdb_client_data);
71 #endif
72 static void async_float_handler (gdb_client_data);
73 #ifdef STOP_SIGNAL
74 static void async_stop_sig (gdb_client_data);
75 #endif
76 static void async_sigterm_handler (gdb_client_data arg);
77
78 /* Instead of invoking (and waiting for) readline to read the command
79 line and pass it back for processing, we use readline's alternate
80 interface, via callback functions, so that the event loop can react
81 to other event sources while we wait for input. */
82
83 /* Important variables for the event loop. */
84
85 /* This is used to determine if GDB is using the readline library or
86 its own simplified form of readline. It is used by the asynchronous
87 form of the set editing command.
88 ezannoni: as of 1999-04-29 I expect that this
89 variable will not be used after gdb is changed to use the event
90 loop as default engine, and event-top.c is merged into top.c. */
91 int async_command_editing_p;
92
93 /* This is used to display the notification of the completion of an
94 asynchronous execution command. */
95 int exec_done_display_p = 0;
96
97 /* This is the file descriptor for the input stream that GDB uses to
98 read commands from. */
99 int input_fd;
100
101 /* Used by the stdin event handler to compensate for missed stdin events.
102 Setting this to a non-zero value inside an stdin callback makes the callback
103 run again. */
104 int call_stdin_event_handler_again_p;
105
106 /* Signal handling variables. */
107 /* Each of these is a pointer to a function that the event loop will
108 invoke if the corresponding signal has received. The real signal
109 handlers mark these functions as ready to be executed and the event
110 loop, in a later iteration, calls them. See the function
111 invoke_async_signal_handler. */
112 static struct async_signal_handler *sigint_token;
113 #ifdef SIGHUP
114 static struct async_signal_handler *sighup_token;
115 #endif
116 #ifdef SIGQUIT
117 static struct async_signal_handler *sigquit_token;
118 #endif
119 static struct async_signal_handler *sigfpe_token;
120 #ifdef STOP_SIGNAL
121 static struct async_signal_handler *sigtstp_token;
122 #endif
123 static struct async_signal_handler *async_sigterm_token;
124
125 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
126 character is processed. */
127 void (*after_char_processing_hook) (void);
128 \f
129
130 /* Wrapper function for calling into the readline library. This takes
131 care of a couple things:
132
133 - The event loop expects the callback function to have a parameter,
134 while readline expects none.
135
136 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
137 across readline requires special handling.
138
139 On the exceptions issue:
140
141 DWARF-based unwinding cannot cross code built without -fexceptions.
142 Any exception that tries to propagate through such code will fail
143 and the result is a call to std::terminate. While some ABIs, such
144 as x86-64, require all code to be built with exception tables,
145 others don't.
146
147 This is a problem when GDB calls some non-EH-aware C library code,
148 that calls into GDB again through a callback, and that GDB callback
149 code throws a C++ exception. Turns out this is exactly what
150 happens with GDB's readline callback.
151
152 In such cases, we must catch and save any C++ exception that might
153 be thrown from the GDB callback before returning to the
154 non-EH-aware code. When the non-EH-aware function itself returns
155 back to GDB, we then rethrow the original C++ exception.
156
157 In the readline case however, the right thing to do is to longjmp
158 out of the callback, rather than do a normal return -- there's no
159 way for the callback to return to readline an indication that an
160 error happened, so a normal return would have rl_callback_read_char
161 potentially continue processing further input, redisplay the
162 prompt, etc. Instead of raw setjmp/longjmp however, we use our
163 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
164 levels of active setjmp/longjmp frames, needed in order to handle
165 the readline callback recursing, as happens with e.g., secondary
166 prompts / queries, through gdb_readline_wrapper. */
167
168 static void
169 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
170 {
171 struct gdb_exception gdb_expt = exception_none;
172
173 /* C++ exceptions can't normally be thrown across readline (unless
174 it is built with -fexceptions, but it won't by default on many
175 ABIs). So we instead wrap the readline call with a sjlj-based
176 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
177 TRY_SJLJ
178 {
179 rl_callback_read_char ();
180 if (after_char_processing_hook)
181 (*after_char_processing_hook) ();
182 }
183 CATCH_SJLJ (ex, RETURN_MASK_ALL)
184 {
185 gdb_expt = ex;
186 }
187 END_CATCH_SJLJ
188
189 /* Rethrow using the normal EH mechanism. */
190 if (gdb_expt.reason < 0)
191 throw_exception (gdb_expt);
192 }
193
194 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
195 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
196 across readline. See gdb_rl_callback_read_char_wrapper. */
197
198 static void
199 gdb_rl_callback_handler (char *rl)
200 {
201 struct gdb_exception gdb_rl_expt = exception_none;
202 struct ui *ui = current_ui;
203
204 TRY
205 {
206 ui->input_handler (rl);
207 }
208 CATCH (ex, RETURN_MASK_ALL)
209 {
210 gdb_rl_expt = ex;
211 }
212 END_CATCH
213
214 /* If we caught a GDB exception, longjmp out of the readline
215 callback. There's no other way for the callback to signal to
216 readline that an error happened. A normal return would have
217 readline potentially continue processing further input, redisplay
218 the prompt, etc. (This is what GDB historically did when it was
219 a C program.) Note that since we're long jumping, local variable
220 dtors are NOT run automatically. */
221 if (gdb_rl_expt.reason < 0)
222 throw_exception_sjlj (gdb_rl_expt);
223 }
224
225 /* Initialize all the necessary variables, start the event loop,
226 register readline, and stdin, start the loop. The DATA is the
227 interpreter data cookie, ignored for now. */
228
229 void
230 cli_command_loop (void *data)
231 {
232 display_gdb_prompt (0);
233
234 /* Now it's time to start the event loop. */
235 start_event_loop ();
236 }
237
238 /* Change the function to be invoked every time there is a character
239 ready on stdin. This is used when the user sets the editing off,
240 therefore bypassing readline, and letting gdb handle the input
241 itself, via gdb_readline_no_editing_callback. Also it is used in
242 the opposite case in which the user sets editing on again, by
243 restoring readline handling of the input. */
244 static void
245 change_line_handler (void)
246 {
247 struct ui *ui = current_ui;
248
249 /* NOTE: this operates on input_fd, not instream. If we are reading
250 commands from a file, instream will point to the file. However in
251 async mode, we always read commands from a file with editing
252 off. This means that the 'set editing on/off' will have effect
253 only on the interactive session. */
254
255 if (async_command_editing_p)
256 {
257 /* Turn on editing by using readline. */
258 ui->call_readline = gdb_rl_callback_read_char_wrapper;
259 ui->input_handler = command_line_handler;
260 }
261 else
262 {
263 /* Turn off editing by using gdb_readline_no_editing_callback. */
264 gdb_rl_callback_handler_remove ();
265 ui->call_readline = gdb_readline_no_editing_callback;
266
267 /* Set up the command handler as well, in case we are called as
268 first thing from .gdbinit. */
269 ui->input_handler = command_line_handler;
270 }
271 }
272
273 /* The functions below are wrappers for rl_callback_handler_remove and
274 rl_callback_handler_install that keep track of whether the callback
275 handler is installed in readline. This is necessary because after
276 handling a target event of a background execution command, we may
277 need to reinstall the callback handler if it was removed due to a
278 secondary prompt. See gdb_readline_wrapper_line. We don't
279 unconditionally install the handler for every target event because
280 that also clears the line buffer, thus installing it while the user
281 is typing would lose input. */
282
283 /* Whether we've registered a callback handler with readline. */
284 static int callback_handler_installed;
285
286 /* See event-top.h, and above. */
287
288 void
289 gdb_rl_callback_handler_remove (void)
290 {
291 rl_callback_handler_remove ();
292 callback_handler_installed = 0;
293 }
294
295 /* See event-top.h, and above. Note this wrapper doesn't have an
296 actual callback parameter because we always install
297 INPUT_HANDLER. */
298
299 void
300 gdb_rl_callback_handler_install (const char *prompt)
301 {
302 /* Calling rl_callback_handler_install resets readline's input
303 buffer. Calling this when we were already processing input
304 therefore loses input. */
305 gdb_assert (!callback_handler_installed);
306
307 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
308 callback_handler_installed = 1;
309 }
310
311 /* See event-top.h, and above. */
312
313 void
314 gdb_rl_callback_handler_reinstall (void)
315 {
316 if (!callback_handler_installed)
317 {
318 /* Passing NULL as prompt argument tells readline to not display
319 a prompt. */
320 gdb_rl_callback_handler_install (NULL);
321 }
322 }
323
324 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
325 prompt that is displayed is the current top level prompt.
326 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
327 prompt.
328
329 This is used after each gdb command has completed, and in the
330 following cases:
331
332 1. When the user enters a command line which is ended by '\'
333 indicating that the command will continue on the next line. In
334 that case the prompt that is displayed is the empty string.
335
336 2. When the user is entering 'commands' for a breakpoint, or
337 actions for a tracepoint. In this case the prompt will be '>'
338
339 3. On prompting for pagination. */
340
341 void
342 display_gdb_prompt (const char *new_prompt)
343 {
344 char *actual_gdb_prompt = NULL;
345 struct cleanup *old_chain;
346
347 annotate_display_prompt ();
348
349 /* Reset the nesting depth used when trace-commands is set. */
350 reset_command_nest_depth ();
351
352 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
353
354 /* Do not call the python hook on an explicit prompt change as
355 passed to this function, as this forms a secondary/local prompt,
356 IE, displayed but not set. */
357 if (! new_prompt)
358 {
359 if (sync_execution)
360 {
361 /* This is to trick readline into not trying to display the
362 prompt. Even though we display the prompt using this
363 function, readline still tries to do its own display if
364 we don't call rl_callback_handler_install and
365 rl_callback_handler_remove (which readline detects
366 because a global variable is not set). If readline did
367 that, it could mess up gdb signal handlers for SIGINT.
368 Readline assumes that between calls to rl_set_signals and
369 rl_clear_signals gdb doesn't do anything with the signal
370 handlers. Well, that's not the case, because when the
371 target executes we change the SIGINT signal handler. If
372 we allowed readline to display the prompt, the signal
373 handler change would happen exactly between the calls to
374 the above two functions. Calling
375 rl_callback_handler_remove(), does the job. */
376
377 gdb_rl_callback_handler_remove ();
378 do_cleanups (old_chain);
379 return;
380 }
381 else
382 {
383 /* Display the top level prompt. */
384 actual_gdb_prompt = top_level_prompt ();
385 }
386 }
387 else
388 actual_gdb_prompt = xstrdup (new_prompt);
389
390 if (async_command_editing_p)
391 {
392 gdb_rl_callback_handler_remove ();
393 gdb_rl_callback_handler_install (actual_gdb_prompt);
394 }
395 /* new_prompt at this point can be the top of the stack or the one
396 passed in. It can't be NULL. */
397 else
398 {
399 /* Don't use a _filtered function here. It causes the assumed
400 character position to be off, since the newline we read from
401 the user is not accounted for. */
402 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
403 gdb_flush (gdb_stdout);
404 }
405
406 do_cleanups (old_chain);
407 }
408
409 /* Return the top level prompt, as specified by "set prompt", possibly
410 overriden by the python gdb.prompt_hook hook, and then composed
411 with the prompt prefix and suffix (annotations). The caller is
412 responsible for freeing the returned string. */
413
414 static char *
415 top_level_prompt (void)
416 {
417 char *prompt;
418
419 /* Give observers a chance of changing the prompt. E.g., the python
420 `gdb.prompt_hook' is installed as an observer. */
421 observer_notify_before_prompt (get_prompt ());
422
423 prompt = get_prompt ();
424
425 if (annotation_level >= 2)
426 {
427 /* Prefix needs to have new line at end. */
428 const char prefix[] = "\n\032\032pre-prompt\n";
429
430 /* Suffix needs to have a new line at end and \032 \032 at
431 beginning. */
432 const char suffix[] = "\n\032\032prompt\n";
433
434 return concat (prefix, prompt, suffix, (char *) NULL);
435 }
436
437 return xstrdup (prompt);
438 }
439
440 /* The main UI. */
441 static struct ui main_ui_;
442
443 struct ui *main_ui = &main_ui_;
444 struct ui *current_ui = &main_ui_;
445 struct ui *ui_list = &main_ui_;
446
447 /* Cleanup that restores the current UI. */
448
449 static void
450 restore_ui_cleanup (void *data)
451 {
452 current_ui = (struct ui *) data;
453 }
454
455 /* See top.h. */
456
457 void
458 switch_thru_all_uis_init (struct switch_thru_all_uis *state)
459 {
460 state->iter = ui_list;
461 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
462 }
463
464 /* See top.h. */
465
466 int
467 switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
468 {
469 if (state->iter != NULL)
470 {
471 current_ui = state->iter;
472 return 1;
473 }
474 else
475 {
476 do_cleanups (state->old_chain);
477 return 0;
478 }
479 }
480
481 /* See top.h. */
482
483 void
484 switch_thru_all_uis_next (struct switch_thru_all_uis *state)
485 {
486 state->iter = state->iter->next;
487 }
488
489 /* Get a pointer to the current UI's line buffer. This is used to
490 construct a whole line of input from partial input. */
491
492 static struct buffer *
493 get_command_line_buffer (void)
494 {
495 return &current_ui->line_buffer;
496 }
497
498 /* When there is an event ready on the stdin file descriptor, instead
499 of calling readline directly throught the callback function, or
500 instead of calling gdb_readline_no_editing_callback, give gdb a
501 chance to detect errors and do something. */
502
503 void
504 stdin_event_handler (int error, gdb_client_data client_data)
505 {
506 struct ui *ui = current_ui;
507
508 if (error)
509 {
510 printf_unfiltered (_("error detected on stdin\n"));
511 delete_file_handler (input_fd);
512 /* If stdin died, we may as well kill gdb. */
513 quit_command ((char *) 0, stdin == instream);
514 }
515 else
516 {
517 /* This makes sure a ^C immediately followed by further input is
518 always processed in that order. E.g,. with input like
519 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
520 handler, and then select/poll may return with stdin ready,
521 instead of -1/EINTR. The
522 gdb.base/double-prompt-target-event-error.exp test exercises
523 this. */
524 QUIT;
525
526 do
527 {
528 call_stdin_event_handler_again_p = 0;
529 ui->call_readline (client_data);
530 } while (call_stdin_event_handler_again_p != 0);
531 }
532 }
533
534 /* Re-enable stdin after the end of an execution command in
535 synchronous mode, or after an error from the target, and we aborted
536 the exec operation. */
537
538 void
539 async_enable_stdin (void)
540 {
541 if (sync_execution)
542 {
543 /* See NOTE in async_disable_stdin(). */
544 /* FIXME: cagney/1999-09-27: Call this before clearing
545 sync_execution. Current target_terminal_ours() implementations
546 check for sync_execution before switching the terminal. */
547 target_terminal_ours ();
548 sync_execution = 0;
549 }
550 }
551
552 /* Disable reads from stdin (the console) marking the command as
553 synchronous. */
554
555 void
556 async_disable_stdin (void)
557 {
558 sync_execution = 1;
559 }
560 \f
561
562 /* Handle a gdb command line. This function is called when
563 handle_line_of_input has concatenated one or more input lines into
564 a whole command. */
565
566 void
567 command_handler (char *command)
568 {
569 struct cleanup *stat_chain;
570 char *c;
571
572 if (instream == stdin)
573 reinitialize_more_filter ();
574
575 stat_chain = make_command_stats_cleanup (1);
576
577 /* Do not execute commented lines. */
578 for (c = command; *c == ' ' || *c == '\t'; c++)
579 ;
580 if (c[0] != '#')
581 {
582 execute_command (command, instream == stdin);
583
584 /* Do any commands attached to breakpoint we stopped at. */
585 bpstat_do_actions ();
586 }
587
588 do_cleanups (stat_chain);
589 }
590
591 /* Append RL, an input line returned by readline or one of its
592 emulations, to CMD_LINE_BUFFER. Returns the command line if we
593 have a whole command line ready to be processed by the command
594 interpreter or NULL if the command line isn't complete yet (input
595 line ends in a backslash). Takes ownership of RL. */
596
597 static char *
598 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
599 {
600 char *cmd;
601 size_t len;
602
603 len = strlen (rl);
604
605 if (len > 0 && rl[len - 1] == '\\')
606 {
607 /* Don't copy the backslash and wait for more. */
608 buffer_grow (cmd_line_buffer, rl, len - 1);
609 cmd = NULL;
610 }
611 else
612 {
613 /* Copy whole line including terminating null, and we're
614 done. */
615 buffer_grow (cmd_line_buffer, rl, len + 1);
616 cmd = cmd_line_buffer->buffer;
617 }
618
619 /* Allocated in readline. */
620 xfree (rl);
621
622 return cmd;
623 }
624
625 /* Handle a line of input coming from readline.
626
627 If the read line ends with a continuation character (backslash),
628 save the partial input in CMD_LINE_BUFFER (except the backslash),
629 and return NULL. Otherwise, save the partial input and return a
630 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
631 whole command line is ready to be executed.
632
633 Returns EOF on end of file.
634
635 If REPEAT, handle command repetitions:
636
637 - If the input command line is NOT empty, the command returned is
638 copied into the global 'saved_command_line' var so that it can
639 be repeated later.
640
641 - OTOH, if the input command line IS empty, return the previously
642 saved command instead of the empty input line.
643 */
644
645 char *
646 handle_line_of_input (struct buffer *cmd_line_buffer,
647 char *rl, int repeat, char *annotation_suffix)
648 {
649 char *p1;
650 char *cmd;
651
652 if (rl == NULL)
653 return (char *) EOF;
654
655 cmd = command_line_append_input_line (cmd_line_buffer, rl);
656 if (cmd == NULL)
657 return NULL;
658
659 /* We have a complete command line now. Prepare for the next
660 command, but leave ownership of memory to the buffer . */
661 cmd_line_buffer->used_size = 0;
662
663 if (annotation_level > 1 && instream == stdin)
664 {
665 printf_unfiltered (("\n\032\032post-"));
666 puts_unfiltered (annotation_suffix);
667 printf_unfiltered (("\n"));
668 }
669
670 #define SERVER_COMMAND_PREFIX "server "
671 if (startswith (cmd, SERVER_COMMAND_PREFIX))
672 {
673 /* Note that we don't set `saved_command_line'. Between this
674 and the check in dont_repeat, this insures that repeating
675 will still do the right thing. */
676 return cmd + strlen (SERVER_COMMAND_PREFIX);
677 }
678
679 /* Do history expansion if that is wished. */
680 if (history_expansion_p && instream == stdin
681 && ISATTY (instream))
682 {
683 char *history_value;
684 int expanded;
685
686 expanded = history_expand (cmd, &history_value);
687 if (expanded)
688 {
689 size_t len;
690
691 /* Print the changes. */
692 printf_unfiltered ("%s\n", history_value);
693
694 /* If there was an error, call this function again. */
695 if (expanded < 0)
696 {
697 xfree (history_value);
698 return cmd;
699 }
700
701 /* history_expand returns an allocated string. Just replace
702 our buffer with it. */
703 len = strlen (history_value);
704 xfree (buffer_finish (cmd_line_buffer));
705 cmd_line_buffer->buffer = history_value;
706 cmd_line_buffer->buffer_size = len + 1;
707 cmd = history_value;
708 }
709 }
710
711 /* If we just got an empty line, and that is supposed to repeat the
712 previous command, return the previously saved command. */
713 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
714 ;
715 if (repeat && *p1 == '\0')
716 return saved_command_line;
717
718 /* Add command to history if appropriate. Note: lines consisting
719 solely of comments are also added to the command history. This
720 is useful when you type a command, and then realize you don't
721 want to execute it quite yet. You can comment out the command
722 and then later fetch it from the value history and remove the
723 '#'. The kill ring is probably better, but some people are in
724 the habit of commenting things out. */
725 if (*cmd != '\0' && input_from_terminal_p ())
726 gdb_add_history (cmd);
727
728 /* Save into global buffer if appropriate. */
729 if (repeat)
730 {
731 xfree (saved_command_line);
732 saved_command_line = xstrdup (cmd);
733 return saved_command_line;
734 }
735 else
736 return cmd;
737 }
738
739 /* Handle a complete line of input. This is called by the callback
740 mechanism within the readline library. Deal with incomplete
741 commands as well, by saving the partial input in a global
742 buffer.
743
744 NOTE: This is the asynchronous version of the command_line_input
745 function. */
746
747 void
748 command_line_handler (char *rl)
749 {
750 struct buffer *line_buffer = get_command_line_buffer ();
751 char *cmd;
752
753 cmd = handle_line_of_input (line_buffer, rl, instream == stdin, "prompt");
754 if (cmd == (char *) EOF)
755 {
756 /* stdin closed. The connection with the terminal is gone.
757 This happens at the end of a testsuite run, after Expect has
758 hung up but GDB is still alive. In such a case, we just quit
759 gdb killing the inferior program too. */
760 printf_unfiltered ("quit\n");
761 execute_command ("quit", stdin == instream);
762 }
763 else if (cmd == NULL)
764 {
765 /* We don't have a full line yet. Print an empty prompt. */
766 display_gdb_prompt ("");
767 }
768 else
769 {
770 command_handler (cmd);
771 display_gdb_prompt (0);
772 }
773 }
774
775 /* Does reading of input from terminal w/o the editing features
776 provided by the readline library. Calls the line input handler
777 once we have a whole input line. */
778
779 void
780 gdb_readline_no_editing_callback (gdb_client_data client_data)
781 {
782 int c;
783 char *result;
784 struct buffer line_buffer;
785 static int done_once = 0;
786 struct ui *ui = current_ui;
787
788 buffer_init (&line_buffer);
789
790 /* Unbuffer the input stream, so that, later on, the calls to fgetc
791 fetch only one char at the time from the stream. The fgetc's will
792 get up to the first newline, but there may be more chars in the
793 stream after '\n'. If we buffer the input and fgetc drains the
794 stream, getting stuff beyond the newline as well, a select, done
795 afterwards will not trigger. */
796 if (!done_once && !ISATTY (instream))
797 {
798 setbuf (instream, NULL);
799 done_once = 1;
800 }
801
802 /* We still need the while loop here, even though it would seem
803 obvious to invoke gdb_readline_no_editing_callback at every
804 character entered. If not using the readline library, the
805 terminal is in cooked mode, which sends the characters all at
806 once. Poll will notice that the input fd has changed state only
807 after enter is pressed. At this point we still need to fetch all
808 the chars entered. */
809
810 while (1)
811 {
812 /* Read from stdin if we are executing a user defined command.
813 This is the right thing for prompt_for_continue, at least. */
814 c = fgetc (instream ? instream : stdin);
815
816 if (c == EOF)
817 {
818 if (line_buffer.used_size > 0)
819 {
820 /* The last line does not end with a newline. Return it, and
821 if we are called again fgetc will still return EOF and
822 we'll return NULL then. */
823 break;
824 }
825 xfree (buffer_finish (&line_buffer));
826 ui->input_handler (NULL);
827 return;
828 }
829
830 if (c == '\n')
831 {
832 if (line_buffer.used_size > 0
833 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
834 line_buffer.used_size--;
835 break;
836 }
837
838 buffer_grow_char (&line_buffer, c);
839 }
840
841 buffer_grow_char (&line_buffer, '\0');
842 result = buffer_finish (&line_buffer);
843 ui->input_handler (result);
844 }
845 \f
846
847 /* The serial event associated with the QUIT flag. set_quit_flag sets
848 this, and check_quit_flag clears it. Used by interruptible_select
849 to be able to do interruptible I/O with no race with the SIGINT
850 handler. */
851 static struct serial_event *quit_serial_event;
852
853 /* Initialization of signal handlers and tokens. There is a function
854 handle_sig* for each of the signals GDB cares about. Specifically:
855 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
856 functions are the actual signal handlers associated to the signals
857 via calls to signal(). The only job for these functions is to
858 enqueue the appropriate event/procedure with the event loop. Such
859 procedures are the old signal handlers. The event loop will take
860 care of invoking the queued procedures to perform the usual tasks
861 associated with the reception of the signal. */
862 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
863 init_signals will become obsolete as we move to have to event loop
864 as the default for gdb. */
865 void
866 async_init_signals (void)
867 {
868 initialize_async_signal_handlers ();
869
870 quit_serial_event = make_serial_event ();
871
872 signal (SIGINT, handle_sigint);
873 sigint_token =
874 create_async_signal_handler (async_request_quit, NULL);
875 signal (SIGTERM, handle_sigterm);
876 async_sigterm_token
877 = create_async_signal_handler (async_sigterm_handler, NULL);
878
879 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
880 to the inferior and breakpoints will be ignored. */
881 #ifdef SIGTRAP
882 signal (SIGTRAP, SIG_DFL);
883 #endif
884
885 #ifdef SIGQUIT
886 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
887 passed to the inferior, which we don't want. It would be
888 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
889 on BSD4.3 systems using vfork, that can affect the
890 GDB process as well as the inferior (the signal handling tables
891 might be in memory, shared between the two). Since we establish
892 a handler for SIGQUIT, when we call exec it will set the signal
893 to SIG_DFL for us. */
894 signal (SIGQUIT, handle_sigquit);
895 sigquit_token =
896 create_async_signal_handler (async_do_nothing, NULL);
897 #endif
898 #ifdef SIGHUP
899 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
900 sighup_token =
901 create_async_signal_handler (async_disconnect, NULL);
902 else
903 sighup_token =
904 create_async_signal_handler (async_do_nothing, NULL);
905 #endif
906 signal (SIGFPE, handle_sigfpe);
907 sigfpe_token =
908 create_async_signal_handler (async_float_handler, NULL);
909
910 #ifdef STOP_SIGNAL
911 sigtstp_token =
912 create_async_signal_handler (async_stop_sig, NULL);
913 #endif
914 }
915
916 /* See defs.h. */
917
918 void
919 quit_serial_event_set (void)
920 {
921 serial_event_set (quit_serial_event);
922 }
923
924 /* See defs.h. */
925
926 void
927 quit_serial_event_clear (void)
928 {
929 serial_event_clear (quit_serial_event);
930 }
931
932 /* Return the selectable file descriptor of the serial event
933 associated with the quit flag. */
934
935 static int
936 quit_serial_event_fd (void)
937 {
938 return serial_event_fd (quit_serial_event);
939 }
940
941 /* See defs.h. */
942
943 void
944 default_quit_handler (void)
945 {
946 if (check_quit_flag ())
947 {
948 if (target_terminal_is_ours ())
949 quit ();
950 else
951 target_pass_ctrlc ();
952 }
953 }
954
955 /* See defs.h. */
956 quit_handler_ftype *quit_handler = default_quit_handler;
957
958 /* Data for make_cleanup_override_quit_handler. Wrap the previous
959 handler pointer in a data struct because it's not portable to cast
960 a function pointer to a data pointer, which is what make_cleanup
961 expects. */
962 struct quit_handler_cleanup_data
963 {
964 /* The previous quit handler. */
965 quit_handler_ftype *prev_handler;
966 };
967
968 /* Cleanup call that restores the previous quit handler. */
969
970 static void
971 restore_quit_handler (void *arg)
972 {
973 struct quit_handler_cleanup_data *data
974 = (struct quit_handler_cleanup_data *) arg;
975
976 quit_handler = data->prev_handler;
977 }
978
979 /* Destructor for the quit handler cleanup. */
980
981 static void
982 restore_quit_handler_dtor (void *arg)
983 {
984 xfree (arg);
985 }
986
987 /* See defs.h. */
988
989 struct cleanup *
990 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
991 {
992 struct cleanup *old_chain;
993 struct quit_handler_cleanup_data *data;
994
995 data = XNEW (struct quit_handler_cleanup_data);
996 data->prev_handler = quit_handler;
997 old_chain = make_cleanup_dtor (restore_quit_handler, data,
998 restore_quit_handler_dtor);
999 quit_handler = new_quit_handler;
1000 return old_chain;
1001 }
1002
1003 /* Handle a SIGINT. */
1004
1005 void
1006 handle_sigint (int sig)
1007 {
1008 signal (sig, handle_sigint);
1009
1010 /* We could be running in a loop reading in symfiles or something so
1011 it may be quite a while before we get back to the event loop. So
1012 set quit_flag to 1 here. Then if QUIT is called before we get to
1013 the event loop, we will unwind as expected. */
1014 set_quit_flag ();
1015
1016 /* In case nothing calls QUIT before the event loop is reached, the
1017 event loop handles it. */
1018 mark_async_signal_handler (sigint_token);
1019 }
1020
1021 /* See gdb_select.h. */
1022
1023 int
1024 interruptible_select (int n,
1025 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1026 struct timeval *timeout)
1027 {
1028 fd_set my_readfds;
1029 int fd;
1030 int res;
1031
1032 if (readfds == NULL)
1033 {
1034 readfds = &my_readfds;
1035 FD_ZERO (&my_readfds);
1036 }
1037
1038 fd = quit_serial_event_fd ();
1039 FD_SET (fd, readfds);
1040 if (n <= fd)
1041 n = fd + 1;
1042
1043 do
1044 {
1045 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1046 }
1047 while (res == -1 && errno == EINTR);
1048
1049 if (res == 1 && FD_ISSET (fd, readfds))
1050 {
1051 errno = EINTR;
1052 return -1;
1053 }
1054 return res;
1055 }
1056
1057 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1058
1059 static void
1060 async_sigterm_handler (gdb_client_data arg)
1061 {
1062 quit_force (NULL, stdin == instream);
1063 }
1064
1065 /* See defs.h. */
1066 volatile int sync_quit_force_run;
1067
1068 /* Quit GDB if SIGTERM is received.
1069 GDB would quit anyway, but this way it will clean up properly. */
1070 void
1071 handle_sigterm (int sig)
1072 {
1073 signal (sig, handle_sigterm);
1074
1075 sync_quit_force_run = 1;
1076 set_quit_flag ();
1077
1078 mark_async_signal_handler (async_sigterm_token);
1079 }
1080
1081 /* Do the quit. All the checks have been done by the caller. */
1082 void
1083 async_request_quit (gdb_client_data arg)
1084 {
1085 /* If the quit_flag has gotten reset back to 0 by the time we get
1086 back here, that means that an exception was thrown to unwind the
1087 current command before we got back to the event loop. So there
1088 is no reason to call quit again here. */
1089 QUIT;
1090 }
1091
1092 #ifdef SIGQUIT
1093 /* Tell the event loop what to do if SIGQUIT is received.
1094 See event-signal.c. */
1095 static void
1096 handle_sigquit (int sig)
1097 {
1098 mark_async_signal_handler (sigquit_token);
1099 signal (sig, handle_sigquit);
1100 }
1101 #endif
1102
1103 #if defined (SIGQUIT) || defined (SIGHUP)
1104 /* Called by the event loop in response to a SIGQUIT or an
1105 ignored SIGHUP. */
1106 static void
1107 async_do_nothing (gdb_client_data arg)
1108 {
1109 /* Empty function body. */
1110 }
1111 #endif
1112
1113 #ifdef SIGHUP
1114 /* Tell the event loop what to do if SIGHUP is received.
1115 See event-signal.c. */
1116 static void
1117 handle_sighup (int sig)
1118 {
1119 mark_async_signal_handler (sighup_token);
1120 signal (sig, handle_sighup);
1121 }
1122
1123 /* Called by the event loop to process a SIGHUP. */
1124 static void
1125 async_disconnect (gdb_client_data arg)
1126 {
1127
1128 TRY
1129 {
1130 quit_cover ();
1131 }
1132
1133 CATCH (exception, RETURN_MASK_ALL)
1134 {
1135 fputs_filtered ("Could not kill the program being debugged",
1136 gdb_stderr);
1137 exception_print (gdb_stderr, exception);
1138 }
1139 END_CATCH
1140
1141 TRY
1142 {
1143 pop_all_targets ();
1144 }
1145 CATCH (exception, RETURN_MASK_ALL)
1146 {
1147 }
1148 END_CATCH
1149
1150 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1151 raise (SIGHUP);
1152 }
1153 #endif
1154
1155 #ifdef STOP_SIGNAL
1156 void
1157 handle_stop_sig (int sig)
1158 {
1159 mark_async_signal_handler (sigtstp_token);
1160 signal (sig, handle_stop_sig);
1161 }
1162
1163 static void
1164 async_stop_sig (gdb_client_data arg)
1165 {
1166 char *prompt = get_prompt ();
1167
1168 #if STOP_SIGNAL == SIGTSTP
1169 signal (SIGTSTP, SIG_DFL);
1170 #if HAVE_SIGPROCMASK
1171 {
1172 sigset_t zero;
1173
1174 sigemptyset (&zero);
1175 sigprocmask (SIG_SETMASK, &zero, 0);
1176 }
1177 #elif HAVE_SIGSETMASK
1178 sigsetmask (0);
1179 #endif
1180 raise (SIGTSTP);
1181 signal (SIGTSTP, handle_stop_sig);
1182 #else
1183 signal (STOP_SIGNAL, handle_stop_sig);
1184 #endif
1185 printf_unfiltered ("%s", prompt);
1186 gdb_flush (gdb_stdout);
1187
1188 /* Forget about any previous command -- null line now will do
1189 nothing. */
1190 dont_repeat ();
1191 }
1192 #endif /* STOP_SIGNAL */
1193
1194 /* Tell the event loop what to do if SIGFPE is received.
1195 See event-signal.c. */
1196 static void
1197 handle_sigfpe (int sig)
1198 {
1199 mark_async_signal_handler (sigfpe_token);
1200 signal (sig, handle_sigfpe);
1201 }
1202
1203 /* Event loop will call this functin to process a SIGFPE. */
1204 static void
1205 async_float_handler (gdb_client_data arg)
1206 {
1207 /* This message is based on ANSI C, section 4.7. Note that integer
1208 divide by zero causes this, so "float" is a misnomer. */
1209 error (_("Erroneous arithmetic operation."));
1210 }
1211 \f
1212
1213 /* Called by do_setshow_command. */
1214 void
1215 set_async_editing_command (char *args, int from_tty,
1216 struct cmd_list_element *c)
1217 {
1218 change_line_handler ();
1219 }
1220
1221 /* Set things up for readline to be invoked via the alternate
1222 interface, i.e. via a callback function
1223 (gdb_rl_callback_read_char), and hook up instream to the event
1224 loop. */
1225
1226 void
1227 gdb_setup_readline (void)
1228 {
1229 struct ui *ui = current_ui;
1230
1231 /* This function is a noop for the sync case. The assumption is
1232 that the sync setup is ALL done in gdb_init, and we would only
1233 mess it up here. The sync stuff should really go away over
1234 time. */
1235 if (!batch_silent)
1236 gdb_stdout = stdio_fileopen (stdout);
1237 gdb_stderr = stderr_fileopen ();
1238 gdb_stdlog = gdb_stderr; /* for moment */
1239 gdb_stdtarg = gdb_stderr; /* for moment */
1240 gdb_stdtargerr = gdb_stderr; /* for moment */
1241
1242 /* If the input stream is connected to a terminal, turn on
1243 editing. */
1244 if (ISATTY (instream))
1245 {
1246 /* Tell gdb that we will be using the readline library. This
1247 could be overwritten by a command in .gdbinit like 'set
1248 editing on' or 'off'. */
1249 async_command_editing_p = 1;
1250
1251 /* When a character is detected on instream by select or poll,
1252 readline will be invoked via this callback function. */
1253 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1254 }
1255 else
1256 {
1257 async_command_editing_p = 0;
1258 ui->call_readline = gdb_readline_no_editing_callback;
1259 }
1260
1261 /* When readline has read an end-of-line character, it passes the
1262 complete line to gdb for processing; command_line_handler is the
1263 function that does this. */
1264 ui->input_handler = command_line_handler;
1265
1266 /* Tell readline to use the same input stream that gdb uses. */
1267 rl_instream = instream;
1268
1269 /* Get a file descriptor for the input stream, so that we can
1270 register it with the event loop. */
1271 input_fd = fileno (instream);
1272
1273 /* Now we need to create the event sources for the input file
1274 descriptor. */
1275 /* At this point in time, this is the only event source that we
1276 register with the even loop. Another source is going to be the
1277 target program (inferior), but that must be registered only when
1278 it actually exists (I.e. after we say 'run' or after we connect
1279 to a remote target. */
1280 add_file_handler (input_fd, stdin_event_handler, 0);
1281 }
1282
1283 /* Disable command input through the standard CLI channels. Used in
1284 the suspend proc for interpreters that use the standard gdb readline
1285 interface, like the cli & the mi. */
1286 void
1287 gdb_disable_readline (void)
1288 {
1289 /* FIXME - It is too heavyweight to delete and remake these every
1290 time you run an interpreter that needs readline. It is probably
1291 better to have the interpreters cache these, which in turn means
1292 that this needs to be moved into interpreter specific code. */
1293
1294 #if 0
1295 ui_file_delete (gdb_stdout);
1296 ui_file_delete (gdb_stderr);
1297 gdb_stdlog = NULL;
1298 gdb_stdtarg = NULL;
1299 gdb_stdtargerr = NULL;
1300 #endif
1301
1302 gdb_rl_callback_handler_remove ();
1303 delete_file_handler (input_fd);
1304 }
This page took 0.052548 seconds and 3 git commands to generate.