Remove obsolete TYPE_FLAG_... values
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static char *top_level_prompt (void);
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef STOP_SIGNAL
72 static void async_stop_sig (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef STOP_SIGNAL
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. */
161
162 static void
163 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
164 {
165 struct gdb_exception gdb_expt = exception_none;
166
167 /* C++ exceptions can't normally be thrown across readline (unless
168 it is built with -fexceptions, but it won't by default on many
169 ABIs). So we instead wrap the readline call with a sjlj-based
170 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
171 TRY_SJLJ
172 {
173 rl_callback_read_char ();
174 if (after_char_processing_hook)
175 (*after_char_processing_hook) ();
176 }
177 CATCH_SJLJ (ex, RETURN_MASK_ALL)
178 {
179 gdb_expt = ex;
180 }
181 END_CATCH_SJLJ
182
183 /* Rethrow using the normal EH mechanism. */
184 if (gdb_expt.reason < 0)
185 throw_exception (gdb_expt);
186 }
187
188 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
189 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
190 across readline. See gdb_rl_callback_read_char_wrapper. */
191
192 static void
193 gdb_rl_callback_handler (char *rl)
194 {
195 struct gdb_exception gdb_rl_expt = exception_none;
196 struct ui *ui = current_ui;
197
198 TRY
199 {
200 ui->input_handler (rl);
201 }
202 CATCH (ex, RETURN_MASK_ALL)
203 {
204 gdb_rl_expt = ex;
205 }
206 END_CATCH
207
208 /* If we caught a GDB exception, longjmp out of the readline
209 callback. There's no other way for the callback to signal to
210 readline that an error happened. A normal return would have
211 readline potentially continue processing further input, redisplay
212 the prompt, etc. (This is what GDB historically did when it was
213 a C program.) Note that since we're long jumping, local variable
214 dtors are NOT run automatically. */
215 if (gdb_rl_expt.reason < 0)
216 throw_exception_sjlj (gdb_rl_expt);
217 }
218
219 /* Change the function to be invoked every time there is a character
220 ready on stdin. This is used when the user sets the editing off,
221 therefore bypassing readline, and letting gdb handle the input
222 itself, via gdb_readline_no_editing_callback. Also it is used in
223 the opposite case in which the user sets editing on again, by
224 restoring readline handling of the input.
225
226 NOTE: this operates on input_fd, not instream. If we are reading
227 commands from a file, instream will point to the file. However, we
228 always read commands from a file with editing off. This means that
229 the 'set editing on/off' will have effect only on the interactive
230 session. */
231
232 void
233 change_line_handler (int editing)
234 {
235 struct ui *ui = current_ui;
236
237 /* We can only have one instance of readline, so we only allow
238 editing on the main UI. */
239 if (ui != main_ui)
240 return;
241
242 /* Don't try enabling editing if the interpreter doesn't support it
243 (e.g., MI). */
244 if (!interp_supports_command_editing (top_level_interpreter ())
245 || !interp_supports_command_editing (command_interp ()))
246 return;
247
248 if (editing)
249 {
250 gdb_assert (ui == main_ui);
251
252 /* Turn on editing by using readline. */
253 ui->call_readline = gdb_rl_callback_read_char_wrapper;
254 }
255 else
256 {
257 /* Turn off editing by using gdb_readline_no_editing_callback. */
258 if (ui->command_editing)
259 gdb_rl_callback_handler_remove ();
260 ui->call_readline = gdb_readline_no_editing_callback;
261 }
262 ui->command_editing = editing;
263 }
264
265 /* The functions below are wrappers for rl_callback_handler_remove and
266 rl_callback_handler_install that keep track of whether the callback
267 handler is installed in readline. This is necessary because after
268 handling a target event of a background execution command, we may
269 need to reinstall the callback handler if it was removed due to a
270 secondary prompt. See gdb_readline_wrapper_line. We don't
271 unconditionally install the handler for every target event because
272 that also clears the line buffer, thus installing it while the user
273 is typing would lose input. */
274
275 /* Whether we've registered a callback handler with readline. */
276 static int callback_handler_installed;
277
278 /* See event-top.h, and above. */
279
280 void
281 gdb_rl_callback_handler_remove (void)
282 {
283 gdb_assert (current_ui == main_ui);
284
285 rl_callback_handler_remove ();
286 callback_handler_installed = 0;
287 }
288
289 /* See event-top.h, and above. Note this wrapper doesn't have an
290 actual callback parameter because we always install
291 INPUT_HANDLER. */
292
293 void
294 gdb_rl_callback_handler_install (const char *prompt)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 /* Calling rl_callback_handler_install resets readline's input
299 buffer. Calling this when we were already processing input
300 therefore loses input. */
301 gdb_assert (!callback_handler_installed);
302
303 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
304 callback_handler_installed = 1;
305 }
306
307 /* See event-top.h, and above. */
308
309 void
310 gdb_rl_callback_handler_reinstall (void)
311 {
312 gdb_assert (current_ui == main_ui);
313
314 if (!callback_handler_installed)
315 {
316 /* Passing NULL as prompt argument tells readline to not display
317 a prompt. */
318 gdb_rl_callback_handler_install (NULL);
319 }
320 }
321
322 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
323 prompt that is displayed is the current top level prompt.
324 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
325 prompt.
326
327 This is used after each gdb command has completed, and in the
328 following cases:
329
330 1. When the user enters a command line which is ended by '\'
331 indicating that the command will continue on the next line. In
332 that case the prompt that is displayed is the empty string.
333
334 2. When the user is entering 'commands' for a breakpoint, or
335 actions for a tracepoint. In this case the prompt will be '>'
336
337 3. On prompting for pagination. */
338
339 void
340 display_gdb_prompt (const char *new_prompt)
341 {
342 char *actual_gdb_prompt = NULL;
343 struct cleanup *old_chain;
344
345 annotate_display_prompt ();
346
347 /* Reset the nesting depth used when trace-commands is set. */
348 reset_command_nest_depth ();
349
350 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
351
352 /* Do not call the python hook on an explicit prompt change as
353 passed to this function, as this forms a secondary/local prompt,
354 IE, displayed but not set. */
355 if (! new_prompt)
356 {
357 struct ui *ui = current_ui;
358
359 if (ui->prompt_state == PROMPTED)
360 internal_error (__FILE__, __LINE__, _("double prompt"));
361 else if (ui->prompt_state == PROMPT_BLOCKED)
362 {
363 /* This is to trick readline into not trying to display the
364 prompt. Even though we display the prompt using this
365 function, readline still tries to do its own display if
366 we don't call rl_callback_handler_install and
367 rl_callback_handler_remove (which readline detects
368 because a global variable is not set). If readline did
369 that, it could mess up gdb signal handlers for SIGINT.
370 Readline assumes that between calls to rl_set_signals and
371 rl_clear_signals gdb doesn't do anything with the signal
372 handlers. Well, that's not the case, because when the
373 target executes we change the SIGINT signal handler. If
374 we allowed readline to display the prompt, the signal
375 handler change would happen exactly between the calls to
376 the above two functions. Calling
377 rl_callback_handler_remove(), does the job. */
378
379 if (current_ui->command_editing)
380 gdb_rl_callback_handler_remove ();
381 do_cleanups (old_chain);
382 return;
383 }
384 else if (ui->prompt_state == PROMPT_NEEDED)
385 {
386 /* Display the top level prompt. */
387 actual_gdb_prompt = top_level_prompt ();
388 ui->prompt_state = PROMPTED;
389 }
390 }
391 else
392 actual_gdb_prompt = xstrdup (new_prompt);
393
394 if (current_ui->command_editing)
395 {
396 gdb_rl_callback_handler_remove ();
397 gdb_rl_callback_handler_install (actual_gdb_prompt);
398 }
399 /* new_prompt at this point can be the top of the stack or the one
400 passed in. It can't be NULL. */
401 else
402 {
403 /* Don't use a _filtered function here. It causes the assumed
404 character position to be off, since the newline we read from
405 the user is not accounted for. */
406 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
407 gdb_flush (gdb_stdout);
408 }
409
410 do_cleanups (old_chain);
411 }
412
413 /* Return the top level prompt, as specified by "set prompt", possibly
414 overriden by the python gdb.prompt_hook hook, and then composed
415 with the prompt prefix and suffix (annotations). The caller is
416 responsible for freeing the returned string. */
417
418 static char *
419 top_level_prompt (void)
420 {
421 char *prompt;
422
423 /* Give observers a chance of changing the prompt. E.g., the python
424 `gdb.prompt_hook' is installed as an observer. */
425 observer_notify_before_prompt (get_prompt ());
426
427 prompt = get_prompt ();
428
429 if (annotation_level >= 2)
430 {
431 /* Prefix needs to have new line at end. */
432 const char prefix[] = "\n\032\032pre-prompt\n";
433
434 /* Suffix needs to have a new line at end and \032 \032 at
435 beginning. */
436 const char suffix[] = "\n\032\032prompt\n";
437
438 return concat (prefix, prompt, suffix, (char *) NULL);
439 }
440
441 return xstrdup (prompt);
442 }
443
444 /* See top.h. */
445
446 struct ui *main_ui;
447 struct ui *current_ui;
448 struct ui *ui_list;
449
450 /* See top.h. */
451
452 void
453 restore_ui_cleanup (void *data)
454 {
455 current_ui = (struct ui *) data;
456 }
457
458 /* See top.h. */
459
460 void
461 switch_thru_all_uis_init (struct switch_thru_all_uis *state)
462 {
463 state->iter = ui_list;
464 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
465 }
466
467 /* See top.h. */
468
469 int
470 switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
471 {
472 if (state->iter != NULL)
473 {
474 current_ui = state->iter;
475 return 1;
476 }
477 else
478 {
479 do_cleanups (state->old_chain);
480 return 0;
481 }
482 }
483
484 /* See top.h. */
485
486 void
487 switch_thru_all_uis_next (struct switch_thru_all_uis *state)
488 {
489 state->iter = state->iter->next;
490 }
491
492 /* Get a pointer to the current UI's line buffer. This is used to
493 construct a whole line of input from partial input. */
494
495 static struct buffer *
496 get_command_line_buffer (void)
497 {
498 return &current_ui->line_buffer;
499 }
500
501 /* When there is an event ready on the stdin file descriptor, instead
502 of calling readline directly throught the callback function, or
503 instead of calling gdb_readline_no_editing_callback, give gdb a
504 chance to detect errors and do something. */
505
506 void
507 stdin_event_handler (int error, gdb_client_data client_data)
508 {
509 struct ui *ui = (struct ui *) client_data;
510
511 if (error)
512 {
513 /* Switch to the main UI, so diagnostics always go there. */
514 current_ui = main_ui;
515
516 delete_file_handler (ui->input_fd);
517 if (main_ui == ui)
518 {
519 /* If stdin died, we may as well kill gdb. */
520 printf_unfiltered (_("error detected on stdin\n"));
521 quit_command ((char *) 0, 0);
522 }
523 else
524 {
525 /* Simply delete the UI. */
526 delete_ui (ui);
527 }
528 }
529 else
530 {
531 /* Switch to the UI whose input descriptor woke up the event
532 loop. */
533 current_ui = ui;
534
535 /* This makes sure a ^C immediately followed by further input is
536 always processed in that order. E.g,. with input like
537 "^Cprint 1\n", the SIGINT handler runs, marks the async
538 signal handler, and then select/poll may return with stdin
539 ready, instead of -1/EINTR. The
540 gdb.base/double-prompt-target-event-error.exp test exercises
541 this. */
542 QUIT;
543
544 do
545 {
546 call_stdin_event_handler_again_p = 0;
547 ui->call_readline (client_data);
548 }
549 while (call_stdin_event_handler_again_p != 0);
550 }
551 }
552
553 /* See top.h. */
554
555 void
556 ui_register_input_event_handler (struct ui *ui)
557 {
558 add_file_handler (ui->input_fd, stdin_event_handler, ui);
559 }
560
561 /* See top.h. */
562
563 void
564 ui_unregister_input_event_handler (struct ui *ui)
565 {
566 delete_file_handler (ui->input_fd);
567 }
568
569 /* Re-enable stdin after the end of an execution command in
570 synchronous mode, or after an error from the target, and we aborted
571 the exec operation. */
572
573 void
574 async_enable_stdin (void)
575 {
576 struct ui *ui = current_ui;
577
578 if (ui->prompt_state == PROMPT_BLOCKED)
579 {
580 target_terminal_ours ();
581 ui_register_input_event_handler (ui);
582 ui->prompt_state = PROMPT_NEEDED;
583 }
584 }
585
586 /* Disable reads from stdin (the console) marking the command as
587 synchronous. */
588
589 void
590 async_disable_stdin (void)
591 {
592 struct ui *ui = current_ui;
593
594 ui->prompt_state = PROMPT_BLOCKED;
595 delete_file_handler (ui->input_fd);
596 }
597 \f
598
599 /* Handle a gdb command line. This function is called when
600 handle_line_of_input has concatenated one or more input lines into
601 a whole command. */
602
603 void
604 command_handler (char *command)
605 {
606 struct ui *ui = current_ui;
607 struct cleanup *stat_chain;
608 char *c;
609
610 if (ui->instream == ui->stdin_stream)
611 reinitialize_more_filter ();
612
613 stat_chain = make_command_stats_cleanup (1);
614
615 /* Do not execute commented lines. */
616 for (c = command; *c == ' ' || *c == '\t'; c++)
617 ;
618 if (c[0] != '#')
619 {
620 execute_command (command, ui->instream == ui->stdin_stream);
621
622 /* Do any commands attached to breakpoint we stopped at. */
623 bpstat_do_actions ();
624 }
625
626 do_cleanups (stat_chain);
627 }
628
629 /* Append RL, an input line returned by readline or one of its
630 emulations, to CMD_LINE_BUFFER. Returns the command line if we
631 have a whole command line ready to be processed by the command
632 interpreter or NULL if the command line isn't complete yet (input
633 line ends in a backslash). Takes ownership of RL. */
634
635 static char *
636 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
637 {
638 char *cmd;
639 size_t len;
640
641 len = strlen (rl);
642
643 if (len > 0 && rl[len - 1] == '\\')
644 {
645 /* Don't copy the backslash and wait for more. */
646 buffer_grow (cmd_line_buffer, rl, len - 1);
647 cmd = NULL;
648 }
649 else
650 {
651 /* Copy whole line including terminating null, and we're
652 done. */
653 buffer_grow (cmd_line_buffer, rl, len + 1);
654 cmd = cmd_line_buffer->buffer;
655 }
656
657 /* Allocated in readline. */
658 xfree (rl);
659
660 return cmd;
661 }
662
663 /* Handle a line of input coming from readline.
664
665 If the read line ends with a continuation character (backslash),
666 save the partial input in CMD_LINE_BUFFER (except the backslash),
667 and return NULL. Otherwise, save the partial input and return a
668 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
669 whole command line is ready to be executed.
670
671 Returns EOF on end of file.
672
673 If REPEAT, handle command repetitions:
674
675 - If the input command line is NOT empty, the command returned is
676 copied into the global 'saved_command_line' var so that it can
677 be repeated later.
678
679 - OTOH, if the input command line IS empty, return the previously
680 saved command instead of the empty input line.
681 */
682
683 char *
684 handle_line_of_input (struct buffer *cmd_line_buffer,
685 char *rl, int repeat, char *annotation_suffix)
686 {
687 struct ui *ui = current_ui;
688 int from_tty = ui->instream == ui->stdin_stream;
689 char *p1;
690 char *cmd;
691
692 if (rl == NULL)
693 return (char *) EOF;
694
695 cmd = command_line_append_input_line (cmd_line_buffer, rl);
696 if (cmd == NULL)
697 return NULL;
698
699 /* We have a complete command line now. Prepare for the next
700 command, but leave ownership of memory to the buffer . */
701 cmd_line_buffer->used_size = 0;
702
703 if (from_tty && annotation_level > 1)
704 {
705 printf_unfiltered (("\n\032\032post-"));
706 puts_unfiltered (annotation_suffix);
707 printf_unfiltered (("\n"));
708 }
709
710 #define SERVER_COMMAND_PREFIX "server "
711 if (startswith (cmd, SERVER_COMMAND_PREFIX))
712 {
713 /* Note that we don't set `saved_command_line'. Between this
714 and the check in dont_repeat, this insures that repeating
715 will still do the right thing. */
716 return cmd + strlen (SERVER_COMMAND_PREFIX);
717 }
718
719 /* Do history expansion if that is wished. */
720 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
721 {
722 char *history_value;
723 int expanded;
724
725 expanded = history_expand (cmd, &history_value);
726 if (expanded)
727 {
728 size_t len;
729
730 /* Print the changes. */
731 printf_unfiltered ("%s\n", history_value);
732
733 /* If there was an error, call this function again. */
734 if (expanded < 0)
735 {
736 xfree (history_value);
737 return cmd;
738 }
739
740 /* history_expand returns an allocated string. Just replace
741 our buffer with it. */
742 len = strlen (history_value);
743 xfree (buffer_finish (cmd_line_buffer));
744 cmd_line_buffer->buffer = history_value;
745 cmd_line_buffer->buffer_size = len + 1;
746 cmd = history_value;
747 }
748 }
749
750 /* If we just got an empty line, and that is supposed to repeat the
751 previous command, return the previously saved command. */
752 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
753 ;
754 if (repeat && *p1 == '\0')
755 return saved_command_line;
756
757 /* Add command to history if appropriate. Note: lines consisting
758 solely of comments are also added to the command history. This
759 is useful when you type a command, and then realize you don't
760 want to execute it quite yet. You can comment out the command
761 and then later fetch it from the value history and remove the
762 '#'. The kill ring is probably better, but some people are in
763 the habit of commenting things out. */
764 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
765 gdb_add_history (cmd);
766
767 /* Save into global buffer if appropriate. */
768 if (repeat)
769 {
770 xfree (saved_command_line);
771 saved_command_line = xstrdup (cmd);
772 return saved_command_line;
773 }
774 else
775 return cmd;
776 }
777
778 /* Handle a complete line of input. This is called by the callback
779 mechanism within the readline library. Deal with incomplete
780 commands as well, by saving the partial input in a global
781 buffer.
782
783 NOTE: This is the asynchronous version of the command_line_input
784 function. */
785
786 void
787 command_line_handler (char *rl)
788 {
789 struct buffer *line_buffer = get_command_line_buffer ();
790 struct ui *ui = current_ui;
791 char *cmd;
792
793 cmd = handle_line_of_input (line_buffer, rl, 1, "prompt");
794 if (cmd == (char *) EOF)
795 {
796 /* stdin closed. The connection with the terminal is gone.
797 This happens at the end of a testsuite run, after Expect has
798 hung up but GDB is still alive. In such a case, we just quit
799 gdb killing the inferior program too. */
800 printf_unfiltered ("quit\n");
801 execute_command ("quit", 1);
802 }
803 else if (cmd == NULL)
804 {
805 /* We don't have a full line yet. Print an empty prompt. */
806 display_gdb_prompt ("");
807 }
808 else
809 {
810 ui->prompt_state = PROMPT_NEEDED;
811
812 command_handler (cmd);
813
814 if (ui->prompt_state != PROMPTED)
815 display_gdb_prompt (0);
816 }
817 }
818
819 /* Does reading of input from terminal w/o the editing features
820 provided by the readline library. Calls the line input handler
821 once we have a whole input line. */
822
823 void
824 gdb_readline_no_editing_callback (gdb_client_data client_data)
825 {
826 int c;
827 char *result;
828 struct buffer line_buffer;
829 static int done_once = 0;
830 struct ui *ui = current_ui;
831
832 buffer_init (&line_buffer);
833
834 /* Unbuffer the input stream, so that, later on, the calls to fgetc
835 fetch only one char at the time from the stream. The fgetc's will
836 get up to the first newline, but there may be more chars in the
837 stream after '\n'. If we buffer the input and fgetc drains the
838 stream, getting stuff beyond the newline as well, a select, done
839 afterwards will not trigger. */
840 if (!done_once && !ISATTY (ui->instream))
841 {
842 setbuf (ui->instream, NULL);
843 done_once = 1;
844 }
845
846 /* We still need the while loop here, even though it would seem
847 obvious to invoke gdb_readline_no_editing_callback at every
848 character entered. If not using the readline library, the
849 terminal is in cooked mode, which sends the characters all at
850 once. Poll will notice that the input fd has changed state only
851 after enter is pressed. At this point we still need to fetch all
852 the chars entered. */
853
854 while (1)
855 {
856 /* Read from stdin if we are executing a user defined command.
857 This is the right thing for prompt_for_continue, at least. */
858 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
859
860 if (c == EOF)
861 {
862 if (line_buffer.used_size > 0)
863 {
864 /* The last line does not end with a newline. Return it, and
865 if we are called again fgetc will still return EOF and
866 we'll return NULL then. */
867 break;
868 }
869 xfree (buffer_finish (&line_buffer));
870 ui->input_handler (NULL);
871 return;
872 }
873
874 if (c == '\n')
875 {
876 if (line_buffer.used_size > 0
877 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
878 line_buffer.used_size--;
879 break;
880 }
881
882 buffer_grow_char (&line_buffer, c);
883 }
884
885 buffer_grow_char (&line_buffer, '\0');
886 result = buffer_finish (&line_buffer);
887 ui->input_handler (result);
888 }
889 \f
890
891 /* The serial event associated with the QUIT flag. set_quit_flag sets
892 this, and check_quit_flag clears it. Used by interruptible_select
893 to be able to do interruptible I/O with no race with the SIGINT
894 handler. */
895 static struct serial_event *quit_serial_event;
896
897 /* Initialization of signal handlers and tokens. There is a function
898 handle_sig* for each of the signals GDB cares about. Specifically:
899 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
900 functions are the actual signal handlers associated to the signals
901 via calls to signal(). The only job for these functions is to
902 enqueue the appropriate event/procedure with the event loop. Such
903 procedures are the old signal handlers. The event loop will take
904 care of invoking the queued procedures to perform the usual tasks
905 associated with the reception of the signal. */
906 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
907 init_signals will become obsolete as we move to have to event loop
908 as the default for gdb. */
909 void
910 async_init_signals (void)
911 {
912 initialize_async_signal_handlers ();
913
914 quit_serial_event = make_serial_event ();
915
916 signal (SIGINT, handle_sigint);
917 sigint_token =
918 create_async_signal_handler (async_request_quit, NULL);
919 signal (SIGTERM, handle_sigterm);
920 async_sigterm_token
921 = create_async_signal_handler (async_sigterm_handler, NULL);
922
923 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
924 to the inferior and breakpoints will be ignored. */
925 #ifdef SIGTRAP
926 signal (SIGTRAP, SIG_DFL);
927 #endif
928
929 #ifdef SIGQUIT
930 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
931 passed to the inferior, which we don't want. It would be
932 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
933 on BSD4.3 systems using vfork, that can affect the
934 GDB process as well as the inferior (the signal handling tables
935 might be in memory, shared between the two). Since we establish
936 a handler for SIGQUIT, when we call exec it will set the signal
937 to SIG_DFL for us. */
938 signal (SIGQUIT, handle_sigquit);
939 sigquit_token =
940 create_async_signal_handler (async_do_nothing, NULL);
941 #endif
942 #ifdef SIGHUP
943 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
944 sighup_token =
945 create_async_signal_handler (async_disconnect, NULL);
946 else
947 sighup_token =
948 create_async_signal_handler (async_do_nothing, NULL);
949 #endif
950 signal (SIGFPE, handle_sigfpe);
951 sigfpe_token =
952 create_async_signal_handler (async_float_handler, NULL);
953
954 #ifdef STOP_SIGNAL
955 sigtstp_token =
956 create_async_signal_handler (async_stop_sig, NULL);
957 #endif
958 }
959
960 /* See defs.h. */
961
962 void
963 quit_serial_event_set (void)
964 {
965 serial_event_set (quit_serial_event);
966 }
967
968 /* See defs.h. */
969
970 void
971 quit_serial_event_clear (void)
972 {
973 serial_event_clear (quit_serial_event);
974 }
975
976 /* Return the selectable file descriptor of the serial event
977 associated with the quit flag. */
978
979 static int
980 quit_serial_event_fd (void)
981 {
982 return serial_event_fd (quit_serial_event);
983 }
984
985 /* See defs.h. */
986
987 void
988 default_quit_handler (void)
989 {
990 if (check_quit_flag ())
991 {
992 if (target_terminal_is_ours ())
993 quit ();
994 else
995 target_pass_ctrlc ();
996 }
997 }
998
999 /* See defs.h. */
1000 quit_handler_ftype *quit_handler = default_quit_handler;
1001
1002 /* Data for make_cleanup_override_quit_handler. Wrap the previous
1003 handler pointer in a data struct because it's not portable to cast
1004 a function pointer to a data pointer, which is what make_cleanup
1005 expects. */
1006 struct quit_handler_cleanup_data
1007 {
1008 /* The previous quit handler. */
1009 quit_handler_ftype *prev_handler;
1010 };
1011
1012 /* Cleanup call that restores the previous quit handler. */
1013
1014 static void
1015 restore_quit_handler (void *arg)
1016 {
1017 struct quit_handler_cleanup_data *data
1018 = (struct quit_handler_cleanup_data *) arg;
1019
1020 quit_handler = data->prev_handler;
1021 }
1022
1023 /* Destructor for the quit handler cleanup. */
1024
1025 static void
1026 restore_quit_handler_dtor (void *arg)
1027 {
1028 xfree (arg);
1029 }
1030
1031 /* See defs.h. */
1032
1033 struct cleanup *
1034 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
1035 {
1036 struct cleanup *old_chain;
1037 struct quit_handler_cleanup_data *data;
1038
1039 data = XNEW (struct quit_handler_cleanup_data);
1040 data->prev_handler = quit_handler;
1041 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1042 restore_quit_handler_dtor);
1043 quit_handler = new_quit_handler;
1044 return old_chain;
1045 }
1046
1047 /* Handle a SIGINT. */
1048
1049 void
1050 handle_sigint (int sig)
1051 {
1052 signal (sig, handle_sigint);
1053
1054 /* We could be running in a loop reading in symfiles or something so
1055 it may be quite a while before we get back to the event loop. So
1056 set quit_flag to 1 here. Then if QUIT is called before we get to
1057 the event loop, we will unwind as expected. */
1058 set_quit_flag ();
1059
1060 /* In case nothing calls QUIT before the event loop is reached, the
1061 event loop handles it. */
1062 mark_async_signal_handler (sigint_token);
1063 }
1064
1065 /* See gdb_select.h. */
1066
1067 int
1068 interruptible_select (int n,
1069 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1070 struct timeval *timeout)
1071 {
1072 fd_set my_readfds;
1073 int fd;
1074 int res;
1075
1076 if (readfds == NULL)
1077 {
1078 readfds = &my_readfds;
1079 FD_ZERO (&my_readfds);
1080 }
1081
1082 fd = quit_serial_event_fd ();
1083 FD_SET (fd, readfds);
1084 if (n <= fd)
1085 n = fd + 1;
1086
1087 do
1088 {
1089 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1090 }
1091 while (res == -1 && errno == EINTR);
1092
1093 if (res == 1 && FD_ISSET (fd, readfds))
1094 {
1095 errno = EINTR;
1096 return -1;
1097 }
1098 return res;
1099 }
1100
1101 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1102
1103 static void
1104 async_sigterm_handler (gdb_client_data arg)
1105 {
1106 quit_force (NULL, 0);
1107 }
1108
1109 /* See defs.h. */
1110 volatile int sync_quit_force_run;
1111
1112 /* Quit GDB if SIGTERM is received.
1113 GDB would quit anyway, but this way it will clean up properly. */
1114 void
1115 handle_sigterm (int sig)
1116 {
1117 signal (sig, handle_sigterm);
1118
1119 sync_quit_force_run = 1;
1120 set_quit_flag ();
1121
1122 mark_async_signal_handler (async_sigterm_token);
1123 }
1124
1125 /* Do the quit. All the checks have been done by the caller. */
1126 void
1127 async_request_quit (gdb_client_data arg)
1128 {
1129 /* If the quit_flag has gotten reset back to 0 by the time we get
1130 back here, that means that an exception was thrown to unwind the
1131 current command before we got back to the event loop. So there
1132 is no reason to call quit again here. */
1133 QUIT;
1134 }
1135
1136 #ifdef SIGQUIT
1137 /* Tell the event loop what to do if SIGQUIT is received.
1138 See event-signal.c. */
1139 static void
1140 handle_sigquit (int sig)
1141 {
1142 mark_async_signal_handler (sigquit_token);
1143 signal (sig, handle_sigquit);
1144 }
1145 #endif
1146
1147 #if defined (SIGQUIT) || defined (SIGHUP)
1148 /* Called by the event loop in response to a SIGQUIT or an
1149 ignored SIGHUP. */
1150 static void
1151 async_do_nothing (gdb_client_data arg)
1152 {
1153 /* Empty function body. */
1154 }
1155 #endif
1156
1157 #ifdef SIGHUP
1158 /* Tell the event loop what to do if SIGHUP is received.
1159 See event-signal.c. */
1160 static void
1161 handle_sighup (int sig)
1162 {
1163 mark_async_signal_handler (sighup_token);
1164 signal (sig, handle_sighup);
1165 }
1166
1167 /* Called by the event loop to process a SIGHUP. */
1168 static void
1169 async_disconnect (gdb_client_data arg)
1170 {
1171
1172 TRY
1173 {
1174 quit_cover ();
1175 }
1176
1177 CATCH (exception, RETURN_MASK_ALL)
1178 {
1179 fputs_filtered ("Could not kill the program being debugged",
1180 gdb_stderr);
1181 exception_print (gdb_stderr, exception);
1182 }
1183 END_CATCH
1184
1185 TRY
1186 {
1187 pop_all_targets ();
1188 }
1189 CATCH (exception, RETURN_MASK_ALL)
1190 {
1191 }
1192 END_CATCH
1193
1194 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1195 raise (SIGHUP);
1196 }
1197 #endif
1198
1199 #ifdef STOP_SIGNAL
1200 void
1201 handle_stop_sig (int sig)
1202 {
1203 mark_async_signal_handler (sigtstp_token);
1204 signal (sig, handle_stop_sig);
1205 }
1206
1207 static void
1208 async_stop_sig (gdb_client_data arg)
1209 {
1210 char *prompt = get_prompt ();
1211
1212 #if STOP_SIGNAL == SIGTSTP
1213 signal (SIGTSTP, SIG_DFL);
1214 #if HAVE_SIGPROCMASK
1215 {
1216 sigset_t zero;
1217
1218 sigemptyset (&zero);
1219 sigprocmask (SIG_SETMASK, &zero, 0);
1220 }
1221 #elif HAVE_SIGSETMASK
1222 sigsetmask (0);
1223 #endif
1224 raise (SIGTSTP);
1225 signal (SIGTSTP, handle_stop_sig);
1226 #else
1227 signal (STOP_SIGNAL, handle_stop_sig);
1228 #endif
1229 printf_unfiltered ("%s", prompt);
1230 gdb_flush (gdb_stdout);
1231
1232 /* Forget about any previous command -- null line now will do
1233 nothing. */
1234 dont_repeat ();
1235 }
1236 #endif /* STOP_SIGNAL */
1237
1238 /* Tell the event loop what to do if SIGFPE is received.
1239 See event-signal.c. */
1240 static void
1241 handle_sigfpe (int sig)
1242 {
1243 mark_async_signal_handler (sigfpe_token);
1244 signal (sig, handle_sigfpe);
1245 }
1246
1247 /* Event loop will call this functin to process a SIGFPE. */
1248 static void
1249 async_float_handler (gdb_client_data arg)
1250 {
1251 /* This message is based on ANSI C, section 4.7. Note that integer
1252 divide by zero causes this, so "float" is a misnomer. */
1253 error (_("Erroneous arithmetic operation."));
1254 }
1255 \f
1256
1257 /* Set things up for readline to be invoked via the alternate
1258 interface, i.e. via a callback function
1259 (gdb_rl_callback_read_char), and hook up instream to the event
1260 loop. */
1261
1262 void
1263 gdb_setup_readline (int editing)
1264 {
1265 struct ui *ui = current_ui;
1266
1267 /* This function is a noop for the sync case. The assumption is
1268 that the sync setup is ALL done in gdb_init, and we would only
1269 mess it up here. The sync stuff should really go away over
1270 time. */
1271 if (!batch_silent)
1272 gdb_stdout = stdio_fileopen (ui->outstream);
1273 gdb_stderr = stderr_fileopen (ui->errstream);
1274 gdb_stdlog = gdb_stderr; /* for moment */
1275 gdb_stdtarg = gdb_stderr; /* for moment */
1276 gdb_stdtargerr = gdb_stderr; /* for moment */
1277
1278 /* If the input stream is connected to a terminal, turn on editing.
1279 However, that is only allowed on the main UI, as we can only have
1280 one instance of readline. */
1281 if (ISATTY (ui->instream) && editing && ui == main_ui)
1282 {
1283 /* Tell gdb that we will be using the readline library. This
1284 could be overwritten by a command in .gdbinit like 'set
1285 editing on' or 'off'. */
1286 ui->command_editing = 1;
1287
1288 /* When a character is detected on instream by select or poll,
1289 readline will be invoked via this callback function. */
1290 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1291
1292 /* Tell readline to use the same input stream that gdb uses. */
1293 rl_instream = ui->instream;
1294 }
1295 else
1296 {
1297 ui->command_editing = 0;
1298 ui->call_readline = gdb_readline_no_editing_callback;
1299 }
1300
1301 /* Now create the event source for this UI's input file descriptor.
1302 Another source is going to be the target program (inferior), but
1303 that must be registered only when it actually exists (I.e. after
1304 we say 'run' or after we connect to a remote target. */
1305 ui_register_input_event_handler (ui);
1306 }
1307
1308 /* Disable command input through the standard CLI channels. Used in
1309 the suspend proc for interpreters that use the standard gdb readline
1310 interface, like the cli & the mi. */
1311
1312 void
1313 gdb_disable_readline (void)
1314 {
1315 struct ui *ui = current_ui;
1316
1317 /* FIXME - It is too heavyweight to delete and remake these every
1318 time you run an interpreter that needs readline. It is probably
1319 better to have the interpreters cache these, which in turn means
1320 that this needs to be moved into interpreter specific code. */
1321
1322 #if 0
1323 ui_file_delete (gdb_stdout);
1324 ui_file_delete (gdb_stderr);
1325 gdb_stdlog = NULL;
1326 gdb_stdtarg = NULL;
1327 gdb_stdtargerr = NULL;
1328 #endif
1329
1330 if (ui->command_editing)
1331 gdb_rl_callback_handler_remove ();
1332 delete_file_handler (ui->input_fd);
1333 }
This page took 0.087561 seconds and 4 git commands to generate.