* top.c (command_line_handler_continuation): Remove.
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "top.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "exceptions.h"
33 #include "cli/cli-script.h" /* for reset_command_nest_depth */
34 #include "main.h"
35
36 /* For dont_repeat() */
37 #include "gdbcmd.h"
38
39 /* readline include files */
40 #include "readline/readline.h"
41 #include "readline/history.h"
42
43 /* readline defines this. */
44 #undef savestring
45
46 static void rl_callback_read_char_wrapper (gdb_client_data client_data);
47 static void command_line_handler (char *rl);
48 static void change_line_handler (void);
49 static void change_annotation_level (void);
50 static void command_handler (char *command);
51
52 /* Signal handlers. */
53 #ifdef SIGQUIT
54 static void handle_sigquit (int sig);
55 #endif
56 #ifdef SIGHUP
57 static void handle_sighup (int sig);
58 #endif
59 static void handle_sigfpe (int sig);
60 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
61 static void handle_sigwinch (int sig);
62 #endif
63
64 /* Functions to be invoked by the event loop in response to
65 signals. */
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
68 #endif
69 #ifdef SIGHUP
70 static void async_disconnect (gdb_client_data);
71 #endif
72 static void async_float_handler (gdb_client_data);
73 #ifdef STOP_SIGNAL
74 static void async_stop_sig (gdb_client_data);
75 #endif
76
77 /* Readline offers an alternate interface, via callback
78 functions. These are all included in the file callback.c in the
79 readline distribution. This file provides (mainly) a function, which
80 the event loop uses as callback (i.e. event handler) whenever an event
81 is detected on the standard input file descriptor.
82 readline_callback_read_char is called (by the GDB event loop) whenever
83 there is a new character ready on the input stream. This function
84 incrementally builds a buffer internal to readline where it
85 accumulates the line read up to the point of invocation. In the
86 special case in which the character read is newline, the function
87 invokes a GDB supplied callback routine, which does the processing of
88 a full command line. This latter routine is the asynchronous analog
89 of the old command_line_input in gdb. Instead of invoking (and waiting
90 for) readline to read the command line and pass it back to
91 command_loop for processing, the new command_line_handler function has
92 the command line already available as its parameter. INPUT_HANDLER is
93 to be set to the function that readline will invoke when a complete
94 line of input is ready. CALL_READLINE is to be set to the function
95 that readline offers as callback to the event_loop. */
96
97 void (*input_handler) (char *);
98 void (*call_readline) (gdb_client_data);
99
100 /* Important variables for the event loop. */
101
102 /* This is used to determine if GDB is using the readline library or
103 its own simplified form of readline. It is used by the asynchronous
104 form of the set editing command.
105 ezannoni: as of 1999-04-29 I expect that this
106 variable will not be used after gdb is changed to use the event
107 loop as default engine, and event-top.c is merged into top.c. */
108 int async_command_editing_p;
109
110 /* This variable contains the new prompt that the user sets with the
111 set prompt command. */
112 char *new_async_prompt;
113
114 /* This is the annotation suffix that will be used when the
115 annotation_level is 2. */
116 char *async_annotation_suffix;
117
118 /* This is used to display the notification of the completion of an
119 asynchronous execution command. */
120 int exec_done_display_p = 0;
121
122 /* This is the file descriptor for the input stream that GDB uses to
123 read commands from. */
124 int input_fd;
125
126 /* This is the prompt stack. Prompts will be pushed on the stack as
127 needed by the different 'kinds' of user inputs GDB is asking
128 for. See event-loop.h. */
129 struct prompts the_prompts;
130
131 /* signal handling variables */
132 /* Each of these is a pointer to a function that the event loop will
133 invoke if the corresponding signal has received. The real signal
134 handlers mark these functions as ready to be executed and the event
135 loop, in a later iteration, calls them. See the function
136 invoke_async_signal_handler. */
137 void *sigint_token;
138 #ifdef SIGHUP
139 void *sighup_token;
140 #endif
141 #ifdef SIGQUIT
142 void *sigquit_token;
143 #endif
144 void *sigfpe_token;
145 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
146 void *sigwinch_token;
147 #endif
148 #ifdef STOP_SIGNAL
149 void *sigtstp_token;
150 #endif
151
152 /* Structure to save a partially entered command. This is used when
153 the user types '\' at the end of a command line. This is necessary
154 because each line of input is handled by a different call to
155 command_line_handler, and normally there is no state retained
156 between different calls. */
157 int more_to_come = 0;
158
159 struct readline_input_state
160 {
161 char *linebuffer;
162 char *linebuffer_ptr;
163 }
164 readline_input_state;
165
166 /* This hook is called by rl_callback_read_char_wrapper after each
167 character is processed. */
168 void (*after_char_processing_hook) ();
169 \f
170
171 /* Wrapper function for calling into the readline library. The event
172 loop expects the callback function to have a paramter, while readline
173 expects none. */
174 static void
175 rl_callback_read_char_wrapper (gdb_client_data client_data)
176 {
177 rl_callback_read_char ();
178 if (after_char_processing_hook)
179 (*after_char_processing_hook) ();
180 }
181
182 /* Initialize all the necessary variables, start the event loop,
183 register readline, and stdin, start the loop. */
184 void
185 cli_command_loop (void)
186 {
187 /* If we are using readline, set things up and display the first
188 prompt, otherwise just print the prompt. */
189 if (async_command_editing_p)
190 {
191 int length;
192 char *a_prompt;
193 char *gdb_prompt = get_prompt ();
194
195 /* Tell readline what the prompt to display is and what function it
196 will need to call after a whole line is read. This also displays
197 the first prompt. */
198 length = strlen (PREFIX (0))
199 + strlen (gdb_prompt) + strlen (SUFFIX (0)) + 1;
200 a_prompt = (char *) alloca (length);
201 strcpy (a_prompt, PREFIX (0));
202 strcat (a_prompt, gdb_prompt);
203 strcat (a_prompt, SUFFIX (0));
204 rl_callback_handler_install (a_prompt, input_handler);
205 }
206 else
207 display_gdb_prompt (0);
208
209 /* Now it's time to start the event loop. */
210 start_event_loop ();
211 }
212
213 /* Change the function to be invoked every time there is a character
214 ready on stdin. This is used when the user sets the editing off,
215 therefore bypassing readline, and letting gdb handle the input
216 itself, via gdb_readline2. Also it is used in the opposite case in
217 which the user sets editing on again, by restoring readline
218 handling of the input. */
219 static void
220 change_line_handler (void)
221 {
222 /* NOTE: this operates on input_fd, not instream. If we are reading
223 commands from a file, instream will point to the file. However in
224 async mode, we always read commands from a file with editing
225 off. This means that the 'set editing on/off' will have effect
226 only on the interactive session. */
227
228 if (async_command_editing_p)
229 {
230 /* Turn on editing by using readline. */
231 call_readline = rl_callback_read_char_wrapper;
232 input_handler = command_line_handler;
233 }
234 else
235 {
236 /* Turn off editing by using gdb_readline2. */
237 rl_callback_handler_remove ();
238 call_readline = gdb_readline2;
239
240 /* Set up the command handler as well, in case we are called as
241 first thing from .gdbinit. */
242 input_handler = command_line_handler;
243 }
244 }
245
246 /* Displays the prompt. The prompt that is displayed is the current
247 top of the prompt stack, if the argument NEW_PROMPT is
248 0. Otherwise, it displays whatever NEW_PROMPT is. This is used
249 after each gdb command has completed, and in the following cases:
250 1. when the user enters a command line which is ended by '\'
251 indicating that the command will continue on the next line.
252 In that case the prompt that is displayed is the empty string.
253 2. When the user is entering 'commands' for a breakpoint, or
254 actions for a tracepoint. In this case the prompt will be '>'
255 3. Other????
256 FIXME: 2. & 3. not implemented yet for async. */
257 void
258 display_gdb_prompt (char *new_prompt)
259 {
260 int prompt_length = 0;
261 char *gdb_prompt = get_prompt ();
262
263 /* Reset the nesting depth used when trace-commands is set. */
264 reset_command_nest_depth ();
265
266 /* Each interpreter has its own rules on displaying the command
267 prompt. */
268 if (!current_interp_display_prompt_p ())
269 return;
270
271 if (target_executing && sync_execution)
272 {
273 /* This is to trick readline into not trying to display the
274 prompt. Even though we display the prompt using this
275 function, readline still tries to do its own display if we
276 don't call rl_callback_handler_install and
277 rl_callback_handler_remove (which readline detects because a
278 global variable is not set). If readline did that, it could
279 mess up gdb signal handlers for SIGINT. Readline assumes
280 that between calls to rl_set_signals and rl_clear_signals gdb
281 doesn't do anything with the signal handlers. Well, that's
282 not the case, because when the target executes we change the
283 SIGINT signal handler. If we allowed readline to display the
284 prompt, the signal handler change would happen exactly
285 between the calls to the above two functions.
286 Calling rl_callback_handler_remove(), does the job. */
287
288 rl_callback_handler_remove ();
289 return;
290 }
291
292 if (!new_prompt)
293 {
294 /* Just use the top of the prompt stack. */
295 prompt_length = strlen (PREFIX (0)) +
296 strlen (SUFFIX (0)) +
297 strlen (gdb_prompt) + 1;
298
299 new_prompt = (char *) alloca (prompt_length);
300
301 /* Prefix needs to have new line at end. */
302 strcpy (new_prompt, PREFIX (0));
303 strcat (new_prompt, gdb_prompt);
304 /* Suffix needs to have a new line at end and \032 \032 at
305 beginning. */
306 strcat (new_prompt, SUFFIX (0));
307 }
308
309 if (async_command_editing_p)
310 {
311 rl_callback_handler_remove ();
312 rl_callback_handler_install (new_prompt, input_handler);
313 }
314 /* new_prompt at this point can be the top of the stack or the one passed in */
315 else if (new_prompt)
316 {
317 /* Don't use a _filtered function here. It causes the assumed
318 character position to be off, since the newline we read from
319 the user is not accounted for. */
320 fputs_unfiltered (new_prompt, gdb_stdout);
321 gdb_flush (gdb_stdout);
322 }
323 }
324
325 /* Used when the user requests a different annotation level, with
326 'set annotate'. It pushes a new prompt (with prefix and suffix) on top
327 of the prompt stack, if the annotation level desired is 2, otherwise
328 it pops the top of the prompt stack when we want the annotation level
329 to be the normal ones (1 or 0). */
330 static void
331 change_annotation_level (void)
332 {
333 char *prefix, *suffix;
334
335 if (!PREFIX (0) || !PROMPT (0) || !SUFFIX (0))
336 {
337 /* The prompt stack has not been initialized to "", we are
338 using gdb w/o the --async switch */
339 warning (_("Command has same effect as set annotate"));
340 return;
341 }
342
343 if (annotation_level > 1)
344 {
345 if (!strcmp (PREFIX (0), "") && !strcmp (SUFFIX (0), ""))
346 {
347 /* Push a new prompt if the previous annotation_level was not >1. */
348 prefix = (char *) alloca (strlen (async_annotation_suffix) + 10);
349 strcpy (prefix, "\n\032\032pre-");
350 strcat (prefix, async_annotation_suffix);
351 strcat (prefix, "\n");
352
353 suffix = (char *) alloca (strlen (async_annotation_suffix) + 6);
354 strcpy (suffix, "\n\032\032");
355 strcat (suffix, async_annotation_suffix);
356 strcat (suffix, "\n");
357
358 push_prompt (prefix, (char *) 0, suffix);
359 }
360 }
361 else
362 {
363 if (strcmp (PREFIX (0), "") && strcmp (SUFFIX (0), ""))
364 {
365 /* Pop the top of the stack, we are going back to annotation < 1. */
366 pop_prompt ();
367 }
368 }
369 }
370
371 /* Pushes a new prompt on the prompt stack. Each prompt has three
372 parts: prefix, prompt, suffix. Usually prefix and suffix are empty
373 strings, except when the annotation level is 2. Memory is allocated
374 within savestring for the new prompt. */
375 void
376 push_prompt (char *prefix, char *prompt, char *suffix)
377 {
378 the_prompts.top++;
379 PREFIX (0) = savestring (prefix, strlen (prefix));
380
381 /* Note that this function is used by the set annotate 2
382 command. This is why we take care of saving the old prompt
383 in case a new one is not specified. */
384 if (prompt)
385 PROMPT (0) = savestring (prompt, strlen (prompt));
386 else
387 PROMPT (0) = savestring (PROMPT (-1), strlen (PROMPT (-1)));
388
389 SUFFIX (0) = savestring (suffix, strlen (suffix));
390 }
391
392 /* Pops the top of the prompt stack, and frees the memory allocated for it. */
393 void
394 pop_prompt (void)
395 {
396 /* If we are not during a 'synchronous' execution command, in which
397 case, the top prompt would be empty. */
398 if (strcmp (PROMPT (0), ""))
399 /* This is for the case in which the prompt is set while the
400 annotation level is 2. The top prompt will be changed, but when
401 we return to annotation level < 2, we want that new prompt to be
402 in effect, until the user does another 'set prompt'. */
403 if (strcmp (PROMPT (0), PROMPT (-1)))
404 {
405 xfree (PROMPT (-1));
406 PROMPT (-1) = savestring (PROMPT (0), strlen (PROMPT (0)));
407 }
408
409 xfree (PREFIX (0));
410 xfree (PROMPT (0));
411 xfree (SUFFIX (0));
412 the_prompts.top--;
413 }
414
415 /* When there is an event ready on the stdin file desriptor, instead
416 of calling readline directly throught the callback function, or
417 instead of calling gdb_readline2, give gdb a chance to detect
418 errors and do something. */
419 void
420 stdin_event_handler (int error, gdb_client_data client_data)
421 {
422 if (error)
423 {
424 printf_unfiltered (_("error detected on stdin\n"));
425 delete_file_handler (input_fd);
426 discard_all_continuations ();
427 /* If stdin died, we may as well kill gdb. */
428 quit_command ((char *) 0, stdin == instream);
429 }
430 else
431 (*call_readline) (client_data);
432 }
433
434 /* Re-enable stdin after the end of an execution command in
435 synchronous mode, or after an error from the target, and we aborted
436 the exec operation. */
437
438 void
439 async_enable_stdin (void)
440 {
441 if (sync_execution)
442 {
443 /* See NOTE in async_disable_stdin() */
444 /* FIXME: cagney/1999-09-27: Call this before clearing
445 sync_execution. Current target_terminal_ours() implementations
446 check for sync_execution before switching the terminal. */
447 target_terminal_ours ();
448 pop_prompt ();
449 sync_execution = 0;
450 }
451 }
452
453 /* Disable reads from stdin (the console) marking the command as
454 synchronous. */
455
456 void
457 async_disable_stdin (void)
458 {
459 sync_execution = 1;
460 push_prompt ("", "", "");
461 /* FIXME: cagney/1999-09-27: At present this call is technically
462 redundant since infcmd.c and infrun.c both already call
463 target_terminal_inferior(). As the terminal handling (in
464 sync/async mode) is refined, the duplicate calls can be
465 eliminated (Here or in infcmd.c/infrun.c). */
466 target_terminal_inferior ();
467 }
468 \f
469
470 /* Handles a gdb command. This function is called by
471 command_line_handler, which has processed one or more input lines
472 into COMMAND. */
473 /* NOTE: 1999-04-30 This is the asynchronous version of the command_loop
474 function. The command_loop function will be obsolete when we
475 switch to use the event loop at every execution of gdb. */
476 static void
477 command_handler (char *command)
478 {
479 struct cleanup *old_chain;
480 int stdin_is_tty = ISATTY (stdin);
481 long time_at_cmd_start;
482 #ifdef HAVE_SBRK
483 long space_at_cmd_start = 0;
484 #endif
485 extern int display_time;
486 extern int display_space;
487
488 quit_flag = 0;
489 if (instream == stdin && stdin_is_tty)
490 reinitialize_more_filter ();
491 old_chain = make_cleanup (null_cleanup, 0);
492
493 /* If readline returned a NULL command, it means that the
494 connection with the terminal is gone. This happens at the
495 end of a testsuite run, after Expect has hung up
496 but GDB is still alive. In such a case, we just quit gdb
497 killing the inferior program too. */
498 if (command == 0)
499 {
500 printf_unfiltered ("quit\n");
501 execute_command ("quit", stdin == instream);
502 }
503
504 time_at_cmd_start = get_run_time ();
505
506 if (display_space)
507 {
508 #ifdef HAVE_SBRK
509 char *lim = (char *) sbrk (0);
510 space_at_cmd_start = lim - lim_at_start;
511 #endif
512 }
513
514 execute_command (command, instream == stdin);
515
516 /* Do any commands attached to breakpoint we stopped at. Only if we
517 are always running synchronously. Or if we have just executed a
518 command that doesn't start the target. */
519 if (!target_can_async_p () || !target_executing)
520 {
521 bpstat_do_actions (&stop_bpstat);
522 do_cleanups (old_chain);
523
524 if (display_time)
525 {
526 long cmd_time = get_run_time () - time_at_cmd_start;
527
528 printf_unfiltered (_("Command execution time: %ld.%06ld\n"),
529 cmd_time / 1000000, cmd_time % 1000000);
530 }
531
532 if (display_space)
533 {
534 #ifdef HAVE_SBRK
535 char *lim = (char *) sbrk (0);
536 long space_now = lim - lim_at_start;
537 long space_diff = space_now - space_at_cmd_start;
538
539 printf_unfiltered (_("Space used: %ld (%c%ld for this command)\n"),
540 space_now,
541 (space_diff >= 0 ? '+' : '-'),
542 space_diff);
543 #endif
544 }
545 }
546 }
547
548 /* Handle a complete line of input. This is called by the callback
549 mechanism within the readline library. Deal with incomplete commands
550 as well, by saving the partial input in a global buffer. */
551
552 /* NOTE: 1999-04-30 This is the asynchronous version of the
553 command_line_input function. command_line_input will become
554 obsolete once we use the event loop as the default mechanism in
555 GDB. */
556 static void
557 command_line_handler (char *rl)
558 {
559 static char *linebuffer = 0;
560 static unsigned linelength = 0;
561 char *p;
562 char *p1;
563 extern char *line;
564 extern int linesize;
565 char *nline;
566 char got_eof = 0;
567
568
569 int repeat = (instream == stdin);
570
571 if (annotation_level > 1 && instream == stdin)
572 {
573 printf_unfiltered (("\n\032\032post-"));
574 puts_unfiltered (async_annotation_suffix);
575 printf_unfiltered (("\n"));
576 }
577
578 if (linebuffer == 0)
579 {
580 linelength = 80;
581 linebuffer = (char *) xmalloc (linelength);
582 }
583
584 p = linebuffer;
585
586 if (more_to_come)
587 {
588 strcpy (linebuffer, readline_input_state.linebuffer);
589 p = readline_input_state.linebuffer_ptr;
590 xfree (readline_input_state.linebuffer);
591 more_to_come = 0;
592 pop_prompt ();
593 }
594
595 #ifdef STOP_SIGNAL
596 if (job_control)
597 signal (STOP_SIGNAL, handle_stop_sig);
598 #endif
599
600 /* Make sure that all output has been output. Some machines may let
601 you get away with leaving out some of the gdb_flush, but not all. */
602 wrap_here ("");
603 gdb_flush (gdb_stdout);
604 gdb_flush (gdb_stderr);
605
606 if (source_file_name != NULL)
607 ++source_line_number;
608
609 /* If we are in this case, then command_handler will call quit
610 and exit from gdb. */
611 if (!rl || rl == (char *) EOF)
612 {
613 got_eof = 1;
614 command_handler (0);
615 return; /* Lint. */
616 }
617 if (strlen (rl) + 1 + (p - linebuffer) > linelength)
618 {
619 linelength = strlen (rl) + 1 + (p - linebuffer);
620 nline = (char *) xrealloc (linebuffer, linelength);
621 p += nline - linebuffer;
622 linebuffer = nline;
623 }
624 p1 = rl;
625 /* Copy line. Don't copy null at end. (Leaves line alone
626 if this was just a newline) */
627 while (*p1)
628 *p++ = *p1++;
629
630 xfree (rl); /* Allocated in readline. */
631
632 if (p > linebuffer && *(p - 1) == '\\')
633 {
634 p--; /* Put on top of '\'. */
635
636 readline_input_state.linebuffer = savestring (linebuffer,
637 strlen (linebuffer));
638 readline_input_state.linebuffer_ptr = p;
639
640 /* We will not invoke a execute_command if there is more
641 input expected to complete the command. So, we need to
642 print an empty prompt here. */
643 more_to_come = 1;
644 push_prompt ("", "", "");
645 display_gdb_prompt (0);
646 return;
647 }
648
649 #ifdef STOP_SIGNAL
650 if (job_control)
651 signal (STOP_SIGNAL, SIG_DFL);
652 #endif
653
654 #define SERVER_COMMAND_LENGTH 7
655 server_command =
656 (p - linebuffer > SERVER_COMMAND_LENGTH)
657 && strncmp (linebuffer, "server ", SERVER_COMMAND_LENGTH) == 0;
658 if (server_command)
659 {
660 /* Note that we don't set `line'. Between this and the check in
661 dont_repeat, this insures that repeating will still do the
662 right thing. */
663 *p = '\0';
664 command_handler (linebuffer + SERVER_COMMAND_LENGTH);
665 display_gdb_prompt (0);
666 return;
667 }
668
669 /* Do history expansion if that is wished. */
670 if (history_expansion_p && instream == stdin
671 && ISATTY (instream))
672 {
673 char *history_value;
674 int expanded;
675
676 *p = '\0'; /* Insert null now. */
677 expanded = history_expand (linebuffer, &history_value);
678 if (expanded)
679 {
680 /* Print the changes. */
681 printf_unfiltered ("%s\n", history_value);
682
683 /* If there was an error, call this function again. */
684 if (expanded < 0)
685 {
686 xfree (history_value);
687 return;
688 }
689 if (strlen (history_value) > linelength)
690 {
691 linelength = strlen (history_value) + 1;
692 linebuffer = (char *) xrealloc (linebuffer, linelength);
693 }
694 strcpy (linebuffer, history_value);
695 p = linebuffer + strlen (linebuffer);
696 }
697 xfree (history_value);
698 }
699
700 /* If we just got an empty line, and that is supposed
701 to repeat the previous command, return the value in the
702 global buffer. */
703 if (repeat && p == linebuffer && *p != '\\')
704 {
705 command_handler (line);
706 display_gdb_prompt (0);
707 return;
708 }
709
710 for (p1 = linebuffer; *p1 == ' ' || *p1 == '\t'; p1++);
711 if (repeat && !*p1)
712 {
713 command_handler (line);
714 display_gdb_prompt (0);
715 return;
716 }
717
718 *p = 0;
719
720 /* Add line to history if appropriate. */
721 if (instream == stdin
722 && ISATTY (stdin) && *linebuffer)
723 add_history (linebuffer);
724
725 /* Note: lines consisting solely of comments are added to the command
726 history. This is useful when you type a command, and then
727 realize you don't want to execute it quite yet. You can comment
728 out the command and then later fetch it from the value history
729 and remove the '#'. The kill ring is probably better, but some
730 people are in the habit of commenting things out. */
731 if (*p1 == '#')
732 *p1 = '\0'; /* Found a comment. */
733
734 /* Save into global buffer if appropriate. */
735 if (repeat)
736 {
737 if (linelength > linesize)
738 {
739 line = xrealloc (line, linelength);
740 linesize = linelength;
741 }
742 strcpy (line, linebuffer);
743 if (!more_to_come)
744 {
745 command_handler (line);
746 display_gdb_prompt (0);
747 }
748 return;
749 }
750
751 command_handler (linebuffer);
752 display_gdb_prompt (0);
753 return;
754 }
755
756 /* Does reading of input from terminal w/o the editing features
757 provided by the readline library. */
758
759 /* NOTE: 1999-04-30 Asynchronous version of gdb_readline. gdb_readline
760 will become obsolete when the event loop is made the default
761 execution for gdb. */
762 void
763 gdb_readline2 (gdb_client_data client_data)
764 {
765 int c;
766 char *result;
767 int input_index = 0;
768 int result_size = 80;
769 static int done_once = 0;
770
771 /* Unbuffer the input stream, so that, later on, the calls to fgetc
772 fetch only one char at the time from the stream. The fgetc's will
773 get up to the first newline, but there may be more chars in the
774 stream after '\n'. If we buffer the input and fgetc drains the
775 stream, getting stuff beyond the newline as well, a select, done
776 afterwards will not trigger. */
777 if (!done_once && !ISATTY (instream))
778 {
779 setbuf (instream, NULL);
780 done_once = 1;
781 }
782
783 result = (char *) xmalloc (result_size);
784
785 /* We still need the while loop here, even though it would seem
786 obvious to invoke gdb_readline2 at every character entered. If
787 not using the readline library, the terminal is in cooked mode,
788 which sends the characters all at once. Poll will notice that the
789 input fd has changed state only after enter is pressed. At this
790 point we still need to fetch all the chars entered. */
791
792 while (1)
793 {
794 /* Read from stdin if we are executing a user defined command.
795 This is the right thing for prompt_for_continue, at least. */
796 c = fgetc (instream ? instream : stdin);
797
798 if (c == EOF)
799 {
800 if (input_index > 0)
801 /* The last line does not end with a newline. Return it, and
802 if we are called again fgetc will still return EOF and
803 we'll return NULL then. */
804 break;
805 xfree (result);
806 (*input_handler) (0);
807 return;
808 }
809
810 if (c == '\n')
811 {
812 if (input_index > 0 && result[input_index - 1] == '\r')
813 input_index--;
814 break;
815 }
816
817 result[input_index++] = c;
818 while (input_index >= result_size)
819 {
820 result_size *= 2;
821 result = (char *) xrealloc (result, result_size);
822 }
823 }
824
825 result[input_index++] = '\0';
826 (*input_handler) (result);
827 }
828 \f
829
830 /* Initialization of signal handlers and tokens. There is a function
831 handle_sig* for each of the signals GDB cares about. Specifically:
832 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
833 functions are the actual signal handlers associated to the signals
834 via calls to signal(). The only job for these functions is to
835 enqueue the appropriate event/procedure with the event loop. Such
836 procedures are the old signal handlers. The event loop will take
837 care of invoking the queued procedures to perform the usual tasks
838 associated with the reception of the signal. */
839 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
840 init_signals will become obsolete as we move to have to event loop
841 as the default for gdb. */
842 void
843 async_init_signals (void)
844 {
845 signal (SIGINT, handle_sigint);
846 sigint_token =
847 create_async_signal_handler (async_request_quit, NULL);
848 signal (SIGTERM, handle_sigterm);
849
850 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
851 to the inferior and breakpoints will be ignored. */
852 #ifdef SIGTRAP
853 signal (SIGTRAP, SIG_DFL);
854 #endif
855
856 #ifdef SIGQUIT
857 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
858 passed to the inferior, which we don't want. It would be
859 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
860 on BSD4.3 systems using vfork, that can affect the
861 GDB process as well as the inferior (the signal handling tables
862 might be in memory, shared between the two). Since we establish
863 a handler for SIGQUIT, when we call exec it will set the signal
864 to SIG_DFL for us. */
865 signal (SIGQUIT, handle_sigquit);
866 sigquit_token =
867 create_async_signal_handler (async_do_nothing, NULL);
868 #endif
869 #ifdef SIGHUP
870 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
871 sighup_token =
872 create_async_signal_handler (async_disconnect, NULL);
873 else
874 sighup_token =
875 create_async_signal_handler (async_do_nothing, NULL);
876 #endif
877 signal (SIGFPE, handle_sigfpe);
878 sigfpe_token =
879 create_async_signal_handler (async_float_handler, NULL);
880
881 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
882 signal (SIGWINCH, handle_sigwinch);
883 sigwinch_token =
884 create_async_signal_handler (SIGWINCH_HANDLER, NULL);
885 #endif
886 #ifdef STOP_SIGNAL
887 sigtstp_token =
888 create_async_signal_handler (async_stop_sig, NULL);
889 #endif
890
891 }
892
893 void
894 mark_async_signal_handler_wrapper (void *token)
895 {
896 mark_async_signal_handler ((struct async_signal_handler *) token);
897 }
898
899 /* Tell the event loop what to do if SIGINT is received.
900 See event-signal.c. */
901 void
902 handle_sigint (int sig)
903 {
904 signal (sig, handle_sigint);
905
906 /* We could be running in a loop reading in symfiles or something so
907 it may be quite a while before we get back to the event loop. So
908 set quit_flag to 1 here. Then if QUIT is called before we get to
909 the event loop, we will unwind as expected. */
910
911 quit_flag = 1;
912
913 /* If immediate_quit is set, we go ahead and process the SIGINT right
914 away, even if we usually would defer this to the event loop. The
915 assumption here is that it is safe to process ^C immediately if
916 immediate_quit is set. If we didn't, SIGINT would be really
917 processed only the next time through the event loop. To get to
918 that point, though, the command that we want to interrupt needs to
919 finish first, which is unacceptable. If immediate quit is not set,
920 we process SIGINT the next time through the loop, which is fine. */
921 gdb_call_async_signal_handler (sigint_token, immediate_quit);
922 }
923
924 /* Quit GDB if SIGTERM is received.
925 GDB would quit anyway, but this way it will clean up properly. */
926 void
927 handle_sigterm (int sig)
928 {
929 signal (sig, handle_sigterm);
930 quit_force ((char *) 0, stdin == instream);
931 }
932
933 /* Do the quit. All the checks have been done by the caller. */
934 void
935 async_request_quit (gdb_client_data arg)
936 {
937 /* If the quit_flag has gotten reset back to 0 by the time we get
938 back here, that means that an exception was thrown to unwind the
939 current command before we got back to the event loop. So there
940 is no reason to call quit again here, unless immediate_quit is
941 set.*/
942
943 if (quit_flag || immediate_quit)
944 quit ();
945 }
946
947 #ifdef SIGQUIT
948 /* Tell the event loop what to do if SIGQUIT is received.
949 See event-signal.c. */
950 static void
951 handle_sigquit (int sig)
952 {
953 mark_async_signal_handler_wrapper (sigquit_token);
954 signal (sig, handle_sigquit);
955 }
956 #endif
957
958 #if defined (SIGQUIT) || defined (SIGHUP)
959 /* Called by the event loop in response to a SIGQUIT or an
960 ignored SIGHUP. */
961 static void
962 async_do_nothing (gdb_client_data arg)
963 {
964 /* Empty function body. */
965 }
966 #endif
967
968 #ifdef SIGHUP
969 /* Tell the event loop what to do if SIGHUP is received.
970 See event-signal.c. */
971 static void
972 handle_sighup (int sig)
973 {
974 mark_async_signal_handler_wrapper (sighup_token);
975 signal (sig, handle_sighup);
976 }
977
978 /* Called by the event loop to process a SIGHUP */
979 static void
980 async_disconnect (gdb_client_data arg)
981 {
982 catch_errors (quit_cover, NULL,
983 "Could not kill the program being debugged",
984 RETURN_MASK_ALL);
985 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
986 kill (getpid (), SIGHUP);
987 }
988 #endif
989
990 #ifdef STOP_SIGNAL
991 void
992 handle_stop_sig (int sig)
993 {
994 mark_async_signal_handler_wrapper (sigtstp_token);
995 signal (sig, handle_stop_sig);
996 }
997
998 static void
999 async_stop_sig (gdb_client_data arg)
1000 {
1001 char *prompt = get_prompt ();
1002 #if STOP_SIGNAL == SIGTSTP
1003 signal (SIGTSTP, SIG_DFL);
1004 #if HAVE_SIGPROCMASK
1005 {
1006 sigset_t zero;
1007
1008 sigemptyset (&zero);
1009 sigprocmask (SIG_SETMASK, &zero, 0);
1010 }
1011 #elif HAVE_SIGSETMASK
1012 sigsetmask (0);
1013 #endif
1014 kill (getpid (), SIGTSTP);
1015 signal (SIGTSTP, handle_stop_sig);
1016 #else
1017 signal (STOP_SIGNAL, handle_stop_sig);
1018 #endif
1019 printf_unfiltered ("%s", prompt);
1020 gdb_flush (gdb_stdout);
1021
1022 /* Forget about any previous command -- null line now will do nothing. */
1023 dont_repeat ();
1024 }
1025 #endif /* STOP_SIGNAL */
1026
1027 /* Tell the event loop what to do if SIGFPE is received.
1028 See event-signal.c. */
1029 static void
1030 handle_sigfpe (int sig)
1031 {
1032 mark_async_signal_handler_wrapper (sigfpe_token);
1033 signal (sig, handle_sigfpe);
1034 }
1035
1036 /* Event loop will call this functin to process a SIGFPE. */
1037 static void
1038 async_float_handler (gdb_client_data arg)
1039 {
1040 /* This message is based on ANSI C, section 4.7. Note that integer
1041 divide by zero causes this, so "float" is a misnomer. */
1042 error (_("Erroneous arithmetic operation."));
1043 }
1044
1045 /* Tell the event loop what to do if SIGWINCH is received.
1046 See event-signal.c. */
1047 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1048 static void
1049 handle_sigwinch (int sig)
1050 {
1051 mark_async_signal_handler_wrapper (sigwinch_token);
1052 signal (sig, handle_sigwinch);
1053 }
1054 #endif
1055 \f
1056
1057 /* Called by do_setshow_command. */
1058 void
1059 set_async_editing_command (char *args, int from_tty, struct cmd_list_element *c)
1060 {
1061 change_line_handler ();
1062 }
1063
1064 /* Called by do_setshow_command. */
1065 void
1066 set_async_annotation_level (char *args, int from_tty, struct cmd_list_element *c)
1067 {
1068 change_annotation_level ();
1069 }
1070
1071 /* Called by do_setshow_command. */
1072 void
1073 set_async_prompt (char *args, int from_tty, struct cmd_list_element *c)
1074 {
1075 PROMPT (0) = savestring (new_async_prompt, strlen (new_async_prompt));
1076 }
1077
1078 /* Set things up for readline to be invoked via the alternate
1079 interface, i.e. via a callback function (rl_callback_read_char),
1080 and hook up instream to the event loop. */
1081 void
1082 gdb_setup_readline (void)
1083 {
1084 /* This function is a noop for the sync case. The assumption is
1085 that the sync setup is ALL done in gdb_init, and we would only
1086 mess it up here. The sync stuff should really go away over
1087 time. */
1088 if (!batch_silent)
1089 gdb_stdout = stdio_fileopen (stdout);
1090 gdb_stderr = stdio_fileopen (stderr);
1091 gdb_stdlog = gdb_stderr; /* for moment */
1092 gdb_stdtarg = gdb_stderr; /* for moment */
1093
1094 /* If the input stream is connected to a terminal, turn on
1095 editing. */
1096 if (ISATTY (instream))
1097 {
1098 /* Tell gdb that we will be using the readline library. This
1099 could be overwritten by a command in .gdbinit like 'set
1100 editing on' or 'off'. */
1101 async_command_editing_p = 1;
1102
1103 /* When a character is detected on instream by select or poll,
1104 readline will be invoked via this callback function. */
1105 call_readline = rl_callback_read_char_wrapper;
1106 }
1107 else
1108 {
1109 async_command_editing_p = 0;
1110 call_readline = gdb_readline2;
1111 }
1112
1113 /* When readline has read an end-of-line character, it passes the
1114 complete line to gdb for processing. command_line_handler is the
1115 function that does this. */
1116 input_handler = command_line_handler;
1117
1118 /* Tell readline to use the same input stream that gdb uses. */
1119 rl_instream = instream;
1120
1121 /* Get a file descriptor for the input stream, so that we can
1122 register it with the event loop. */
1123 input_fd = fileno (instream);
1124
1125 /* Now we need to create the event sources for the input file
1126 descriptor. */
1127 /* At this point in time, this is the only event source that we
1128 register with the even loop. Another source is going to be the
1129 target program (inferior), but that must be registered only when
1130 it actually exists (I.e. after we say 'run' or after we connect
1131 to a remote target. */
1132 add_file_handler (input_fd, stdin_event_handler, 0);
1133 }
1134
1135 /* Disable command input through the standard CLI channels. Used in
1136 the suspend proc for interpreters that use the standard gdb readline
1137 interface, like the cli & the mi. */
1138 void
1139 gdb_disable_readline (void)
1140 {
1141 /* FIXME - It is too heavyweight to delete and remake these every
1142 time you run an interpreter that needs readline. It is probably
1143 better to have the interpreters cache these, which in turn means
1144 that this needs to be moved into interpreter specific code. */
1145
1146 #if 0
1147 ui_file_delete (gdb_stdout);
1148 ui_file_delete (gdb_stderr);
1149 gdb_stdlog = NULL;
1150 gdb_stdtarg = NULL;
1151 #endif
1152
1153 rl_callback_handler_remove ();
1154 delete_file_handler (input_fd);
1155 }
This page took 0.15859 seconds and 4 git commands to generate.