Remove make_cleanup_restore_current_ui
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static char *top_level_prompt (void);
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef STOP_SIGNAL
72 static void async_stop_sig (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef STOP_SIGNAL
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. */
161
162 static void
163 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
164 {
165 struct gdb_exception gdb_expt = exception_none;
166
167 /* C++ exceptions can't normally be thrown across readline (unless
168 it is built with -fexceptions, but it won't by default on many
169 ABIs). So we instead wrap the readline call with a sjlj-based
170 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
171 TRY_SJLJ
172 {
173 rl_callback_read_char ();
174 if (after_char_processing_hook)
175 (*after_char_processing_hook) ();
176 }
177 CATCH_SJLJ (ex, RETURN_MASK_ALL)
178 {
179 gdb_expt = ex;
180 }
181 END_CATCH_SJLJ
182
183 /* Rethrow using the normal EH mechanism. */
184 if (gdb_expt.reason < 0)
185 throw_exception (gdb_expt);
186 }
187
188 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
189 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
190 across readline. See gdb_rl_callback_read_char_wrapper. */
191
192 static void
193 gdb_rl_callback_handler (char *rl)
194 {
195 struct gdb_exception gdb_rl_expt = exception_none;
196 struct ui *ui = current_ui;
197
198 TRY
199 {
200 ui->input_handler (rl);
201 }
202 CATCH (ex, RETURN_MASK_ALL)
203 {
204 gdb_rl_expt = ex;
205 }
206 END_CATCH
207
208 /* If we caught a GDB exception, longjmp out of the readline
209 callback. There's no other way for the callback to signal to
210 readline that an error happened. A normal return would have
211 readline potentially continue processing further input, redisplay
212 the prompt, etc. (This is what GDB historically did when it was
213 a C program.) Note that since we're long jumping, local variable
214 dtors are NOT run automatically. */
215 if (gdb_rl_expt.reason < 0)
216 throw_exception_sjlj (gdb_rl_expt);
217 }
218
219 /* Change the function to be invoked every time there is a character
220 ready on stdin. This is used when the user sets the editing off,
221 therefore bypassing readline, and letting gdb handle the input
222 itself, via gdb_readline_no_editing_callback. Also it is used in
223 the opposite case in which the user sets editing on again, by
224 restoring readline handling of the input.
225
226 NOTE: this operates on input_fd, not instream. If we are reading
227 commands from a file, instream will point to the file. However, we
228 always read commands from a file with editing off. This means that
229 the 'set editing on/off' will have effect only on the interactive
230 session. */
231
232 void
233 change_line_handler (int editing)
234 {
235 struct ui *ui = current_ui;
236
237 /* We can only have one instance of readline, so we only allow
238 editing on the main UI. */
239 if (ui != main_ui)
240 return;
241
242 /* Don't try enabling editing if the interpreter doesn't support it
243 (e.g., MI). */
244 if (!interp_supports_command_editing (top_level_interpreter ())
245 || !interp_supports_command_editing (command_interp ()))
246 return;
247
248 if (editing)
249 {
250 gdb_assert (ui == main_ui);
251
252 /* Turn on editing by using readline. */
253 ui->call_readline = gdb_rl_callback_read_char_wrapper;
254 }
255 else
256 {
257 /* Turn off editing by using gdb_readline_no_editing_callback. */
258 if (ui->command_editing)
259 gdb_rl_callback_handler_remove ();
260 ui->call_readline = gdb_readline_no_editing_callback;
261 }
262 ui->command_editing = editing;
263 }
264
265 /* The functions below are wrappers for rl_callback_handler_remove and
266 rl_callback_handler_install that keep track of whether the callback
267 handler is installed in readline. This is necessary because after
268 handling a target event of a background execution command, we may
269 need to reinstall the callback handler if it was removed due to a
270 secondary prompt. See gdb_readline_wrapper_line. We don't
271 unconditionally install the handler for every target event because
272 that also clears the line buffer, thus installing it while the user
273 is typing would lose input. */
274
275 /* Whether we've registered a callback handler with readline. */
276 static int callback_handler_installed;
277
278 /* See event-top.h, and above. */
279
280 void
281 gdb_rl_callback_handler_remove (void)
282 {
283 gdb_assert (current_ui == main_ui);
284
285 rl_callback_handler_remove ();
286 callback_handler_installed = 0;
287 }
288
289 /* See event-top.h, and above. Note this wrapper doesn't have an
290 actual callback parameter because we always install
291 INPUT_HANDLER. */
292
293 void
294 gdb_rl_callback_handler_install (const char *prompt)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 /* Calling rl_callback_handler_install resets readline's input
299 buffer. Calling this when we were already processing input
300 therefore loses input. */
301 gdb_assert (!callback_handler_installed);
302
303 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
304 callback_handler_installed = 1;
305 }
306
307 /* See event-top.h, and above. */
308
309 void
310 gdb_rl_callback_handler_reinstall (void)
311 {
312 gdb_assert (current_ui == main_ui);
313
314 if (!callback_handler_installed)
315 {
316 /* Passing NULL as prompt argument tells readline to not display
317 a prompt. */
318 gdb_rl_callback_handler_install (NULL);
319 }
320 }
321
322 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
323 prompt that is displayed is the current top level prompt.
324 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
325 prompt.
326
327 This is used after each gdb command has completed, and in the
328 following cases:
329
330 1. When the user enters a command line which is ended by '\'
331 indicating that the command will continue on the next line. In
332 that case the prompt that is displayed is the empty string.
333
334 2. When the user is entering 'commands' for a breakpoint, or
335 actions for a tracepoint. In this case the prompt will be '>'
336
337 3. On prompting for pagination. */
338
339 void
340 display_gdb_prompt (const char *new_prompt)
341 {
342 char *actual_gdb_prompt = NULL;
343 struct cleanup *old_chain;
344
345 annotate_display_prompt ();
346
347 /* Reset the nesting depth used when trace-commands is set. */
348 reset_command_nest_depth ();
349
350 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
351
352 /* Do not call the python hook on an explicit prompt change as
353 passed to this function, as this forms a secondary/local prompt,
354 IE, displayed but not set. */
355 if (! new_prompt)
356 {
357 struct ui *ui = current_ui;
358
359 if (ui->prompt_state == PROMPTED)
360 internal_error (__FILE__, __LINE__, _("double prompt"));
361 else if (ui->prompt_state == PROMPT_BLOCKED)
362 {
363 /* This is to trick readline into not trying to display the
364 prompt. Even though we display the prompt using this
365 function, readline still tries to do its own display if
366 we don't call rl_callback_handler_install and
367 rl_callback_handler_remove (which readline detects
368 because a global variable is not set). If readline did
369 that, it could mess up gdb signal handlers for SIGINT.
370 Readline assumes that between calls to rl_set_signals and
371 rl_clear_signals gdb doesn't do anything with the signal
372 handlers. Well, that's not the case, because when the
373 target executes we change the SIGINT signal handler. If
374 we allowed readline to display the prompt, the signal
375 handler change would happen exactly between the calls to
376 the above two functions. Calling
377 rl_callback_handler_remove(), does the job. */
378
379 if (current_ui->command_editing)
380 gdb_rl_callback_handler_remove ();
381 do_cleanups (old_chain);
382 return;
383 }
384 else if (ui->prompt_state == PROMPT_NEEDED)
385 {
386 /* Display the top level prompt. */
387 actual_gdb_prompt = top_level_prompt ();
388 ui->prompt_state = PROMPTED;
389 }
390 }
391 else
392 actual_gdb_prompt = xstrdup (new_prompt);
393
394 if (current_ui->command_editing)
395 {
396 gdb_rl_callback_handler_remove ();
397 gdb_rl_callback_handler_install (actual_gdb_prompt);
398 }
399 /* new_prompt at this point can be the top of the stack or the one
400 passed in. It can't be NULL. */
401 else
402 {
403 /* Don't use a _filtered function here. It causes the assumed
404 character position to be off, since the newline we read from
405 the user is not accounted for. */
406 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
407 gdb_flush (gdb_stdout);
408 }
409
410 do_cleanups (old_chain);
411 }
412
413 /* Return the top level prompt, as specified by "set prompt", possibly
414 overriden by the python gdb.prompt_hook hook, and then composed
415 with the prompt prefix and suffix (annotations). The caller is
416 responsible for freeing the returned string. */
417
418 static char *
419 top_level_prompt (void)
420 {
421 char *prompt;
422
423 /* Give observers a chance of changing the prompt. E.g., the python
424 `gdb.prompt_hook' is installed as an observer. */
425 observer_notify_before_prompt (get_prompt ());
426
427 prompt = get_prompt ();
428
429 if (annotation_level >= 2)
430 {
431 /* Prefix needs to have new line at end. */
432 const char prefix[] = "\n\032\032pre-prompt\n";
433
434 /* Suffix needs to have a new line at end and \032 \032 at
435 beginning. */
436 const char suffix[] = "\n\032\032prompt\n";
437
438 return concat (prefix, prompt, suffix, (char *) NULL);
439 }
440
441 return xstrdup (prompt);
442 }
443
444 /* See top.h. */
445
446 struct ui *main_ui;
447 struct ui *current_ui;
448 struct ui *ui_list;
449
450 /* Get a pointer to the current UI's line buffer. This is used to
451 construct a whole line of input from partial input. */
452
453 static struct buffer *
454 get_command_line_buffer (void)
455 {
456 return &current_ui->line_buffer;
457 }
458
459 /* When there is an event ready on the stdin file descriptor, instead
460 of calling readline directly throught the callback function, or
461 instead of calling gdb_readline_no_editing_callback, give gdb a
462 chance to detect errors and do something. */
463
464 void
465 stdin_event_handler (int error, gdb_client_data client_data)
466 {
467 struct ui *ui = (struct ui *) client_data;
468
469 if (error)
470 {
471 /* Switch to the main UI, so diagnostics always go there. */
472 current_ui = main_ui;
473
474 delete_file_handler (ui->input_fd);
475 if (main_ui == ui)
476 {
477 /* If stdin died, we may as well kill gdb. */
478 printf_unfiltered (_("error detected on stdin\n"));
479 quit_command ((char *) 0, 0);
480 }
481 else
482 {
483 /* Simply delete the UI. */
484 delete_ui (ui);
485 }
486 }
487 else
488 {
489 /* Switch to the UI whose input descriptor woke up the event
490 loop. */
491 current_ui = ui;
492
493 /* This makes sure a ^C immediately followed by further input is
494 always processed in that order. E.g,. with input like
495 "^Cprint 1\n", the SIGINT handler runs, marks the async
496 signal handler, and then select/poll may return with stdin
497 ready, instead of -1/EINTR. The
498 gdb.base/double-prompt-target-event-error.exp test exercises
499 this. */
500 QUIT;
501
502 do
503 {
504 call_stdin_event_handler_again_p = 0;
505 ui->call_readline (client_data);
506 }
507 while (call_stdin_event_handler_again_p != 0);
508 }
509 }
510
511 /* See top.h. */
512
513 void
514 ui_register_input_event_handler (struct ui *ui)
515 {
516 add_file_handler (ui->input_fd, stdin_event_handler, ui);
517 }
518
519 /* See top.h. */
520
521 void
522 ui_unregister_input_event_handler (struct ui *ui)
523 {
524 delete_file_handler (ui->input_fd);
525 }
526
527 /* Re-enable stdin after the end of an execution command in
528 synchronous mode, or after an error from the target, and we aborted
529 the exec operation. */
530
531 void
532 async_enable_stdin (void)
533 {
534 struct ui *ui = current_ui;
535
536 if (ui->prompt_state == PROMPT_BLOCKED)
537 {
538 target_terminal_ours ();
539 ui_register_input_event_handler (ui);
540 ui->prompt_state = PROMPT_NEEDED;
541 }
542 }
543
544 /* Disable reads from stdin (the console) marking the command as
545 synchronous. */
546
547 void
548 async_disable_stdin (void)
549 {
550 struct ui *ui = current_ui;
551
552 ui->prompt_state = PROMPT_BLOCKED;
553 delete_file_handler (ui->input_fd);
554 }
555 \f
556
557 /* Handle a gdb command line. This function is called when
558 handle_line_of_input has concatenated one or more input lines into
559 a whole command. */
560
561 void
562 command_handler (char *command)
563 {
564 struct ui *ui = current_ui;
565 struct cleanup *stat_chain;
566 char *c;
567
568 if (ui->instream == ui->stdin_stream)
569 reinitialize_more_filter ();
570
571 stat_chain = make_command_stats_cleanup (1);
572
573 /* Do not execute commented lines. */
574 for (c = command; *c == ' ' || *c == '\t'; c++)
575 ;
576 if (c[0] != '#')
577 {
578 execute_command (command, ui->instream == ui->stdin_stream);
579
580 /* Do any commands attached to breakpoint we stopped at. */
581 bpstat_do_actions ();
582 }
583
584 do_cleanups (stat_chain);
585 }
586
587 /* Append RL, an input line returned by readline or one of its
588 emulations, to CMD_LINE_BUFFER. Returns the command line if we
589 have a whole command line ready to be processed by the command
590 interpreter or NULL if the command line isn't complete yet (input
591 line ends in a backslash). Takes ownership of RL. */
592
593 static char *
594 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
595 {
596 char *cmd;
597 size_t len;
598
599 len = strlen (rl);
600
601 if (len > 0 && rl[len - 1] == '\\')
602 {
603 /* Don't copy the backslash and wait for more. */
604 buffer_grow (cmd_line_buffer, rl, len - 1);
605 cmd = NULL;
606 }
607 else
608 {
609 /* Copy whole line including terminating null, and we're
610 done. */
611 buffer_grow (cmd_line_buffer, rl, len + 1);
612 cmd = cmd_line_buffer->buffer;
613 }
614
615 /* Allocated in readline. */
616 xfree (rl);
617
618 return cmd;
619 }
620
621 /* Handle a line of input coming from readline.
622
623 If the read line ends with a continuation character (backslash),
624 save the partial input in CMD_LINE_BUFFER (except the backslash),
625 and return NULL. Otherwise, save the partial input and return a
626 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
627 whole command line is ready to be executed.
628
629 Returns EOF on end of file.
630
631 If REPEAT, handle command repetitions:
632
633 - If the input command line is NOT empty, the command returned is
634 copied into the global 'saved_command_line' var so that it can
635 be repeated later.
636
637 - OTOH, if the input command line IS empty, return the previously
638 saved command instead of the empty input line.
639 */
640
641 char *
642 handle_line_of_input (struct buffer *cmd_line_buffer,
643 char *rl, int repeat, char *annotation_suffix)
644 {
645 struct ui *ui = current_ui;
646 int from_tty = ui->instream == ui->stdin_stream;
647 char *p1;
648 char *cmd;
649
650 if (rl == NULL)
651 return (char *) EOF;
652
653 cmd = command_line_append_input_line (cmd_line_buffer, rl);
654 if (cmd == NULL)
655 return NULL;
656
657 /* We have a complete command line now. Prepare for the next
658 command, but leave ownership of memory to the buffer . */
659 cmd_line_buffer->used_size = 0;
660
661 if (from_tty && annotation_level > 1)
662 {
663 printf_unfiltered (("\n\032\032post-"));
664 puts_unfiltered (annotation_suffix);
665 printf_unfiltered (("\n"));
666 }
667
668 #define SERVER_COMMAND_PREFIX "server "
669 if (startswith (cmd, SERVER_COMMAND_PREFIX))
670 {
671 /* Note that we don't set `saved_command_line'. Between this
672 and the check in dont_repeat, this insures that repeating
673 will still do the right thing. */
674 return cmd + strlen (SERVER_COMMAND_PREFIX);
675 }
676
677 /* Do history expansion if that is wished. */
678 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
679 {
680 char *history_value;
681 int expanded;
682
683 expanded = history_expand (cmd, &history_value);
684 if (expanded)
685 {
686 size_t len;
687
688 /* Print the changes. */
689 printf_unfiltered ("%s\n", history_value);
690
691 /* If there was an error, call this function again. */
692 if (expanded < 0)
693 {
694 xfree (history_value);
695 return cmd;
696 }
697
698 /* history_expand returns an allocated string. Just replace
699 our buffer with it. */
700 len = strlen (history_value);
701 xfree (buffer_finish (cmd_line_buffer));
702 cmd_line_buffer->buffer = history_value;
703 cmd_line_buffer->buffer_size = len + 1;
704 cmd = history_value;
705 }
706 }
707
708 /* If we just got an empty line, and that is supposed to repeat the
709 previous command, return the previously saved command. */
710 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
711 ;
712 if (repeat && *p1 == '\0')
713 return saved_command_line;
714
715 /* Add command to history if appropriate. Note: lines consisting
716 solely of comments are also added to the command history. This
717 is useful when you type a command, and then realize you don't
718 want to execute it quite yet. You can comment out the command
719 and then later fetch it from the value history and remove the
720 '#'. The kill ring is probably better, but some people are in
721 the habit of commenting things out. */
722 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
723 gdb_add_history (cmd);
724
725 /* Save into global buffer if appropriate. */
726 if (repeat)
727 {
728 xfree (saved_command_line);
729 saved_command_line = xstrdup (cmd);
730 return saved_command_line;
731 }
732 else
733 return cmd;
734 }
735
736 /* Handle a complete line of input. This is called by the callback
737 mechanism within the readline library. Deal with incomplete
738 commands as well, by saving the partial input in a global
739 buffer.
740
741 NOTE: This is the asynchronous version of the command_line_input
742 function. */
743
744 void
745 command_line_handler (char *rl)
746 {
747 struct buffer *line_buffer = get_command_line_buffer ();
748 struct ui *ui = current_ui;
749 char *cmd;
750
751 cmd = handle_line_of_input (line_buffer, rl, 1, "prompt");
752 if (cmd == (char *) EOF)
753 {
754 /* stdin closed. The connection with the terminal is gone.
755 This happens at the end of a testsuite run, after Expect has
756 hung up but GDB is still alive. In such a case, we just quit
757 gdb killing the inferior program too. */
758 printf_unfiltered ("quit\n");
759 execute_command ("quit", 1);
760 }
761 else if (cmd == NULL)
762 {
763 /* We don't have a full line yet. Print an empty prompt. */
764 display_gdb_prompt ("");
765 }
766 else
767 {
768 ui->prompt_state = PROMPT_NEEDED;
769
770 command_handler (cmd);
771
772 if (ui->prompt_state != PROMPTED)
773 display_gdb_prompt (0);
774 }
775 }
776
777 /* Does reading of input from terminal w/o the editing features
778 provided by the readline library. Calls the line input handler
779 once we have a whole input line. */
780
781 void
782 gdb_readline_no_editing_callback (gdb_client_data client_data)
783 {
784 int c;
785 char *result;
786 struct buffer line_buffer;
787 static int done_once = 0;
788 struct ui *ui = current_ui;
789
790 buffer_init (&line_buffer);
791
792 /* Unbuffer the input stream, so that, later on, the calls to fgetc
793 fetch only one char at the time from the stream. The fgetc's will
794 get up to the first newline, but there may be more chars in the
795 stream after '\n'. If we buffer the input and fgetc drains the
796 stream, getting stuff beyond the newline as well, a select, done
797 afterwards will not trigger. */
798 if (!done_once && !ISATTY (ui->instream))
799 {
800 setbuf (ui->instream, NULL);
801 done_once = 1;
802 }
803
804 /* We still need the while loop here, even though it would seem
805 obvious to invoke gdb_readline_no_editing_callback at every
806 character entered. If not using the readline library, the
807 terminal is in cooked mode, which sends the characters all at
808 once. Poll will notice that the input fd has changed state only
809 after enter is pressed. At this point we still need to fetch all
810 the chars entered. */
811
812 while (1)
813 {
814 /* Read from stdin if we are executing a user defined command.
815 This is the right thing for prompt_for_continue, at least. */
816 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
817
818 if (c == EOF)
819 {
820 if (line_buffer.used_size > 0)
821 {
822 /* The last line does not end with a newline. Return it, and
823 if we are called again fgetc will still return EOF and
824 we'll return NULL then. */
825 break;
826 }
827 xfree (buffer_finish (&line_buffer));
828 ui->input_handler (NULL);
829 return;
830 }
831
832 if (c == '\n')
833 {
834 if (line_buffer.used_size > 0
835 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
836 line_buffer.used_size--;
837 break;
838 }
839
840 buffer_grow_char (&line_buffer, c);
841 }
842
843 buffer_grow_char (&line_buffer, '\0');
844 result = buffer_finish (&line_buffer);
845 ui->input_handler (result);
846 }
847 \f
848
849 /* The serial event associated with the QUIT flag. set_quit_flag sets
850 this, and check_quit_flag clears it. Used by interruptible_select
851 to be able to do interruptible I/O with no race with the SIGINT
852 handler. */
853 static struct serial_event *quit_serial_event;
854
855 /* Initialization of signal handlers and tokens. There is a function
856 handle_sig* for each of the signals GDB cares about. Specifically:
857 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
858 functions are the actual signal handlers associated to the signals
859 via calls to signal(). The only job for these functions is to
860 enqueue the appropriate event/procedure with the event loop. Such
861 procedures are the old signal handlers. The event loop will take
862 care of invoking the queued procedures to perform the usual tasks
863 associated with the reception of the signal. */
864 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
865 init_signals will become obsolete as we move to have to event loop
866 as the default for gdb. */
867 void
868 async_init_signals (void)
869 {
870 initialize_async_signal_handlers ();
871
872 quit_serial_event = make_serial_event ();
873
874 signal (SIGINT, handle_sigint);
875 sigint_token =
876 create_async_signal_handler (async_request_quit, NULL);
877 signal (SIGTERM, handle_sigterm);
878 async_sigterm_token
879 = create_async_signal_handler (async_sigterm_handler, NULL);
880
881 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
882 to the inferior and breakpoints will be ignored. */
883 #ifdef SIGTRAP
884 signal (SIGTRAP, SIG_DFL);
885 #endif
886
887 #ifdef SIGQUIT
888 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
889 passed to the inferior, which we don't want. It would be
890 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
891 on BSD4.3 systems using vfork, that can affect the
892 GDB process as well as the inferior (the signal handling tables
893 might be in memory, shared between the two). Since we establish
894 a handler for SIGQUIT, when we call exec it will set the signal
895 to SIG_DFL for us. */
896 signal (SIGQUIT, handle_sigquit);
897 sigquit_token =
898 create_async_signal_handler (async_do_nothing, NULL);
899 #endif
900 #ifdef SIGHUP
901 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
902 sighup_token =
903 create_async_signal_handler (async_disconnect, NULL);
904 else
905 sighup_token =
906 create_async_signal_handler (async_do_nothing, NULL);
907 #endif
908 signal (SIGFPE, handle_sigfpe);
909 sigfpe_token =
910 create_async_signal_handler (async_float_handler, NULL);
911
912 #ifdef STOP_SIGNAL
913 sigtstp_token =
914 create_async_signal_handler (async_stop_sig, NULL);
915 #endif
916 }
917
918 /* See defs.h. */
919
920 void
921 quit_serial_event_set (void)
922 {
923 serial_event_set (quit_serial_event);
924 }
925
926 /* See defs.h. */
927
928 void
929 quit_serial_event_clear (void)
930 {
931 serial_event_clear (quit_serial_event);
932 }
933
934 /* Return the selectable file descriptor of the serial event
935 associated with the quit flag. */
936
937 static int
938 quit_serial_event_fd (void)
939 {
940 return serial_event_fd (quit_serial_event);
941 }
942
943 /* See defs.h. */
944
945 void
946 default_quit_handler (void)
947 {
948 if (check_quit_flag ())
949 {
950 if (target_terminal_is_ours ())
951 quit ();
952 else
953 target_pass_ctrlc ();
954 }
955 }
956
957 /* See defs.h. */
958 quit_handler_ftype *quit_handler = default_quit_handler;
959
960 /* Data for make_cleanup_override_quit_handler. Wrap the previous
961 handler pointer in a data struct because it's not portable to cast
962 a function pointer to a data pointer, which is what make_cleanup
963 expects. */
964 struct quit_handler_cleanup_data
965 {
966 /* The previous quit handler. */
967 quit_handler_ftype *prev_handler;
968 };
969
970 /* Cleanup call that restores the previous quit handler. */
971
972 static void
973 restore_quit_handler (void *arg)
974 {
975 struct quit_handler_cleanup_data *data
976 = (struct quit_handler_cleanup_data *) arg;
977
978 quit_handler = data->prev_handler;
979 }
980
981 /* Destructor for the quit handler cleanup. */
982
983 static void
984 restore_quit_handler_dtor (void *arg)
985 {
986 xfree (arg);
987 }
988
989 /* See defs.h. */
990
991 struct cleanup *
992 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
993 {
994 struct cleanup *old_chain;
995 struct quit_handler_cleanup_data *data;
996
997 data = XNEW (struct quit_handler_cleanup_data);
998 data->prev_handler = quit_handler;
999 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1000 restore_quit_handler_dtor);
1001 quit_handler = new_quit_handler;
1002 return old_chain;
1003 }
1004
1005 /* Handle a SIGINT. */
1006
1007 void
1008 handle_sigint (int sig)
1009 {
1010 signal (sig, handle_sigint);
1011
1012 /* We could be running in a loop reading in symfiles or something so
1013 it may be quite a while before we get back to the event loop. So
1014 set quit_flag to 1 here. Then if QUIT is called before we get to
1015 the event loop, we will unwind as expected. */
1016 set_quit_flag ();
1017
1018 /* In case nothing calls QUIT before the event loop is reached, the
1019 event loop handles it. */
1020 mark_async_signal_handler (sigint_token);
1021 }
1022
1023 /* See gdb_select.h. */
1024
1025 int
1026 interruptible_select (int n,
1027 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1028 struct timeval *timeout)
1029 {
1030 fd_set my_readfds;
1031 int fd;
1032 int res;
1033
1034 if (readfds == NULL)
1035 {
1036 readfds = &my_readfds;
1037 FD_ZERO (&my_readfds);
1038 }
1039
1040 fd = quit_serial_event_fd ();
1041 FD_SET (fd, readfds);
1042 if (n <= fd)
1043 n = fd + 1;
1044
1045 do
1046 {
1047 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1048 }
1049 while (res == -1 && errno == EINTR);
1050
1051 if (res == 1 && FD_ISSET (fd, readfds))
1052 {
1053 errno = EINTR;
1054 return -1;
1055 }
1056 return res;
1057 }
1058
1059 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1060
1061 static void
1062 async_sigterm_handler (gdb_client_data arg)
1063 {
1064 quit_force (NULL, 0);
1065 }
1066
1067 /* See defs.h. */
1068 volatile int sync_quit_force_run;
1069
1070 /* Quit GDB if SIGTERM is received.
1071 GDB would quit anyway, but this way it will clean up properly. */
1072 void
1073 handle_sigterm (int sig)
1074 {
1075 signal (sig, handle_sigterm);
1076
1077 sync_quit_force_run = 1;
1078 set_quit_flag ();
1079
1080 mark_async_signal_handler (async_sigterm_token);
1081 }
1082
1083 /* Do the quit. All the checks have been done by the caller. */
1084 void
1085 async_request_quit (gdb_client_data arg)
1086 {
1087 /* If the quit_flag has gotten reset back to 0 by the time we get
1088 back here, that means that an exception was thrown to unwind the
1089 current command before we got back to the event loop. So there
1090 is no reason to call quit again here. */
1091 QUIT;
1092 }
1093
1094 #ifdef SIGQUIT
1095 /* Tell the event loop what to do if SIGQUIT is received.
1096 See event-signal.c. */
1097 static void
1098 handle_sigquit (int sig)
1099 {
1100 mark_async_signal_handler (sigquit_token);
1101 signal (sig, handle_sigquit);
1102 }
1103 #endif
1104
1105 #if defined (SIGQUIT) || defined (SIGHUP)
1106 /* Called by the event loop in response to a SIGQUIT or an
1107 ignored SIGHUP. */
1108 static void
1109 async_do_nothing (gdb_client_data arg)
1110 {
1111 /* Empty function body. */
1112 }
1113 #endif
1114
1115 #ifdef SIGHUP
1116 /* Tell the event loop what to do if SIGHUP is received.
1117 See event-signal.c. */
1118 static void
1119 handle_sighup (int sig)
1120 {
1121 mark_async_signal_handler (sighup_token);
1122 signal (sig, handle_sighup);
1123 }
1124
1125 /* Called by the event loop to process a SIGHUP. */
1126 static void
1127 async_disconnect (gdb_client_data arg)
1128 {
1129
1130 TRY
1131 {
1132 quit_cover ();
1133 }
1134
1135 CATCH (exception, RETURN_MASK_ALL)
1136 {
1137 fputs_filtered ("Could not kill the program being debugged",
1138 gdb_stderr);
1139 exception_print (gdb_stderr, exception);
1140 }
1141 END_CATCH
1142
1143 TRY
1144 {
1145 pop_all_targets ();
1146 }
1147 CATCH (exception, RETURN_MASK_ALL)
1148 {
1149 }
1150 END_CATCH
1151
1152 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1153 raise (SIGHUP);
1154 }
1155 #endif
1156
1157 #ifdef STOP_SIGNAL
1158 void
1159 handle_stop_sig (int sig)
1160 {
1161 mark_async_signal_handler (sigtstp_token);
1162 signal (sig, handle_stop_sig);
1163 }
1164
1165 static void
1166 async_stop_sig (gdb_client_data arg)
1167 {
1168 char *prompt = get_prompt ();
1169
1170 #if STOP_SIGNAL == SIGTSTP
1171 signal (SIGTSTP, SIG_DFL);
1172 #if HAVE_SIGPROCMASK
1173 {
1174 sigset_t zero;
1175
1176 sigemptyset (&zero);
1177 sigprocmask (SIG_SETMASK, &zero, 0);
1178 }
1179 #elif HAVE_SIGSETMASK
1180 sigsetmask (0);
1181 #endif
1182 raise (SIGTSTP);
1183 signal (SIGTSTP, handle_stop_sig);
1184 #else
1185 signal (STOP_SIGNAL, handle_stop_sig);
1186 #endif
1187 printf_unfiltered ("%s", prompt);
1188 gdb_flush (gdb_stdout);
1189
1190 /* Forget about any previous command -- null line now will do
1191 nothing. */
1192 dont_repeat ();
1193 }
1194 #endif /* STOP_SIGNAL */
1195
1196 /* Tell the event loop what to do if SIGFPE is received.
1197 See event-signal.c. */
1198 static void
1199 handle_sigfpe (int sig)
1200 {
1201 mark_async_signal_handler (sigfpe_token);
1202 signal (sig, handle_sigfpe);
1203 }
1204
1205 /* Event loop will call this functin to process a SIGFPE. */
1206 static void
1207 async_float_handler (gdb_client_data arg)
1208 {
1209 /* This message is based on ANSI C, section 4.7. Note that integer
1210 divide by zero causes this, so "float" is a misnomer. */
1211 error (_("Erroneous arithmetic operation."));
1212 }
1213 \f
1214
1215 /* Set things up for readline to be invoked via the alternate
1216 interface, i.e. via a callback function
1217 (gdb_rl_callback_read_char), and hook up instream to the event
1218 loop. */
1219
1220 void
1221 gdb_setup_readline (int editing)
1222 {
1223 struct ui *ui = current_ui;
1224
1225 /* This function is a noop for the sync case. The assumption is
1226 that the sync setup is ALL done in gdb_init, and we would only
1227 mess it up here. The sync stuff should really go away over
1228 time. */
1229 if (!batch_silent)
1230 gdb_stdout = stdio_fileopen (ui->outstream);
1231 gdb_stderr = stderr_fileopen (ui->errstream);
1232 gdb_stdlog = gdb_stderr; /* for moment */
1233 gdb_stdtarg = gdb_stderr; /* for moment */
1234 gdb_stdtargerr = gdb_stderr; /* for moment */
1235
1236 /* If the input stream is connected to a terminal, turn on editing.
1237 However, that is only allowed on the main UI, as we can only have
1238 one instance of readline. */
1239 if (ISATTY (ui->instream) && editing && ui == main_ui)
1240 {
1241 /* Tell gdb that we will be using the readline library. This
1242 could be overwritten by a command in .gdbinit like 'set
1243 editing on' or 'off'. */
1244 ui->command_editing = 1;
1245
1246 /* When a character is detected on instream by select or poll,
1247 readline will be invoked via this callback function. */
1248 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1249
1250 /* Tell readline to use the same input stream that gdb uses. */
1251 rl_instream = ui->instream;
1252 }
1253 else
1254 {
1255 ui->command_editing = 0;
1256 ui->call_readline = gdb_readline_no_editing_callback;
1257 }
1258
1259 /* Now create the event source for this UI's input file descriptor.
1260 Another source is going to be the target program (inferior), but
1261 that must be registered only when it actually exists (I.e. after
1262 we say 'run' or after we connect to a remote target. */
1263 ui_register_input_event_handler (ui);
1264 }
1265
1266 /* Disable command input through the standard CLI channels. Used in
1267 the suspend proc for interpreters that use the standard gdb readline
1268 interface, like the cli & the mi. */
1269
1270 void
1271 gdb_disable_readline (void)
1272 {
1273 struct ui *ui = current_ui;
1274
1275 /* FIXME - It is too heavyweight to delete and remake these every
1276 time you run an interpreter that needs readline. It is probably
1277 better to have the interpreters cache these, which in turn means
1278 that this needs to be moved into interpreter specific code. */
1279
1280 #if 0
1281 ui_file_delete (gdb_stdout);
1282 ui_file_delete (gdb_stderr);
1283 gdb_stdlog = NULL;
1284 gdb_stdtarg = NULL;
1285 gdb_stdtargerr = NULL;
1286 #endif
1287
1288 if (ui->command_editing)
1289 gdb_rl_callback_handler_remove ();
1290 delete_file_handler (ui->input_fd);
1291 }
This page took 0.07062 seconds and 5 git commands to generate.