* dvp-opc.c (parse_vif_unpackloc,insert_vif_unpackloc): Delete.
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4 Contributed by Motorola. Adapted from the C parser by Farooq Butt
5 (fmbutt@engage.sps.mot.com).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include "gdb_string.h"
47 #include "expression.h"
48 #include "value.h"
49 #include "parser-defs.h"
50 #include "language.h"
51 #include "f-lang.h"
52 #include "bfd.h" /* Required by objfiles.h. */
53 #include "symfile.h" /* Required by objfiles.h. */
54 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
55
56 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
57 as well as gratuitiously global symbol names, so we can have multiple
58 yacc generated parsers in gdb. Note that these are only the variables
59 produced by yacc. If other parser generators (bison, byacc, etc) produce
60 additional global names that conflict at link time, then those parser
61 generators need to be fixed instead of adding those names to this list. */
62
63 #define yymaxdepth f_maxdepth
64 #define yyparse f_parse
65 #define yylex f_lex
66 #define yyerror f_error
67 #define yylval f_lval
68 #define yychar f_char
69 #define yydebug f_debug
70 #define yypact f_pact
71 #define yyr1 f_r1
72 #define yyr2 f_r2
73 #define yydef f_def
74 #define yychk f_chk
75 #define yypgo f_pgo
76 #define yyact f_act
77 #define yyexca f_exca
78 #define yyerrflag f_errflag
79 #define yynerrs f_nerrs
80 #define yyps f_ps
81 #define yypv f_pv
82 #define yys f_s
83 #define yy_yys f_yys
84 #define yystate f_state
85 #define yytmp f_tmp
86 #define yyv f_v
87 #define yy_yyv f_yyv
88 #define yyval f_val
89 #define yylloc f_lloc
90 #define yyreds f_reds /* With YYDEBUG defined */
91 #define yytoks f_toks /* With YYDEBUG defined */
92 #define yylhs f_yylhs
93 #define yylen f_yylen
94 #define yydefred f_yydefred
95 #define yydgoto f_yydgoto
96 #define yysindex f_yysindex
97 #define yyrindex f_yyrindex
98 #define yygindex f_yygindex
99 #define yytable f_yytable
100 #define yycheck f_yycheck
101
102 #ifndef YYDEBUG
103 #define YYDEBUG 1 /* Default to no yydebug support */
104 #endif
105
106 int yyparse PARAMS ((void));
107
108 static int yylex PARAMS ((void));
109
110 void yyerror PARAMS ((char *));
111
112 static void growbuf_by_size PARAMS ((int));
113
114 static int match_string_literal PARAMS ((void));
115
116 %}
117
118 /* Although the yacc "value" of an expression is not used,
119 since the result is stored in the structure being created,
120 other node types do have values. */
121
122 %union
123 {
124 LONGEST lval;
125 struct {
126 LONGEST val;
127 struct type *type;
128 } typed_val;
129 DOUBLEST dval;
130 struct symbol *sym;
131 struct type *tval;
132 struct stoken sval;
133 struct ttype tsym;
134 struct symtoken ssym;
135 int voidval;
136 struct block *bval;
137 enum exp_opcode opcode;
138 struct internalvar *ivar;
139
140 struct type **tvec;
141 int *ivec;
142 }
143
144 %{
145 /* YYSTYPE gets defined by %union */
146 static int parse_number PARAMS ((char *, int, int, YYSTYPE *));
147 %}
148
149 %type <voidval> exp type_exp start variable
150 %type <tval> type typebase
151 %type <tvec> nonempty_typelist
152 /* %type <bval> block */
153
154 /* Fancy type parsing. */
155 %type <voidval> func_mod direct_abs_decl abs_decl
156 %type <tval> ptype
157
158 %token <typed_val> INT
159 %token <dval> FLOAT
160
161 /* Both NAME and TYPENAME tokens represent symbols in the input,
162 and both convey their data as strings.
163 But a TYPENAME is a string that happens to be defined as a typedef
164 or builtin type name (such as int or char)
165 and a NAME is any other symbol.
166 Contexts where this distinction is not important can use the
167 nonterminal "name", which matches either NAME or TYPENAME. */
168
169 %token <sval> STRING_LITERAL
170 %token <lval> BOOLEAN_LITERAL
171 %token <ssym> NAME
172 %token <tsym> TYPENAME
173 %type <sval> name
174 %type <ssym> name_not_typename
175 %type <tsym> typename
176
177 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
178 but which would parse as a valid number in the current input radix.
179 E.g. "c" when input_radix==16. Depending on the parse, it will be
180 turned into a name or into a number. */
181
182 %token <ssym> NAME_OR_INT
183
184 %token SIZEOF
185 %token ERROR
186
187 /* Special type cases, put in to allow the parser to distinguish different
188 legal basetypes. */
189 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
190 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
191 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
192 %token BOOL_AND BOOL_OR BOOL_NOT
193 %token <lval> CHARACTER
194
195 %token <voidval> VARIABLE
196
197 %token <opcode> ASSIGN_MODIFY
198
199 %left ','
200 %left ABOVE_COMMA
201 %right '=' ASSIGN_MODIFY
202 %right '?'
203 %left BOOL_OR
204 %right BOOL_NOT
205 %left BOOL_AND
206 %left '|'
207 %left '^'
208 %left '&'
209 %left EQUAL NOTEQUAL
210 %left LESSTHAN GREATERTHAN LEQ GEQ
211 %left LSH RSH
212 %left '@'
213 %left '+' '-'
214 %left '*' '/' '%'
215 %right UNARY
216 %right '('
217
218 \f
219 %%
220
221 start : exp
222 | type_exp
223 ;
224
225 type_exp: type
226 { write_exp_elt_opcode(OP_TYPE);
227 write_exp_elt_type($1);
228 write_exp_elt_opcode(OP_TYPE); }
229 ;
230
231 exp : '(' exp ')'
232 { }
233 ;
234
235 /* Expressions, not including the comma operator. */
236 exp : '*' exp %prec UNARY
237 { write_exp_elt_opcode (UNOP_IND); }
238
239 exp : '&' exp %prec UNARY
240 { write_exp_elt_opcode (UNOP_ADDR); }
241
242 exp : '-' exp %prec UNARY
243 { write_exp_elt_opcode (UNOP_NEG); }
244 ;
245
246 exp : BOOL_NOT exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
248 ;
249
250 exp : '~' exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
252 ;
253
254 exp : SIZEOF exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_SIZEOF); }
256 ;
257
258 /* No more explicit array operators, we treat everything in F77 as
259 a function call. The disambiguation as to whether we are
260 doing a subscript operation or a function call is done
261 later in eval.c. */
262
263 exp : exp '('
264 { start_arglist (); }
265 arglist ')'
266 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
267 write_exp_elt_longcst ((LONGEST) end_arglist ());
268 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
269 ;
270
271 arglist :
272 ;
273
274 arglist : exp
275 { arglist_len = 1; }
276 ;
277
278 arglist : substring
279 { arglist_len = 2;}
280
281 arglist : arglist ',' exp %prec ABOVE_COMMA
282 { arglist_len++; }
283 ;
284
285 substring: exp ':' exp %prec ABOVE_COMMA
286 { }
287 ;
288
289
290 complexnum: exp ',' exp
291 { }
292 ;
293
294 exp : '(' complexnum ')'
295 { write_exp_elt_opcode(OP_COMPLEX); }
296 ;
297
298 exp : '(' type ')' exp %prec UNARY
299 { write_exp_elt_opcode (UNOP_CAST);
300 write_exp_elt_type ($2);
301 write_exp_elt_opcode (UNOP_CAST); }
302 ;
303
304 /* Binary operators in order of decreasing precedence. */
305
306 exp : exp '@' exp
307 { write_exp_elt_opcode (BINOP_REPEAT); }
308 ;
309
310 exp : exp '*' exp
311 { write_exp_elt_opcode (BINOP_MUL); }
312 ;
313
314 exp : exp '/' exp
315 { write_exp_elt_opcode (BINOP_DIV); }
316 ;
317
318 exp : exp '%' exp
319 { write_exp_elt_opcode (BINOP_REM); }
320 ;
321
322 exp : exp '+' exp
323 { write_exp_elt_opcode (BINOP_ADD); }
324 ;
325
326 exp : exp '-' exp
327 { write_exp_elt_opcode (BINOP_SUB); }
328 ;
329
330 exp : exp LSH exp
331 { write_exp_elt_opcode (BINOP_LSH); }
332 ;
333
334 exp : exp RSH exp
335 { write_exp_elt_opcode (BINOP_RSH); }
336 ;
337
338 exp : exp EQUAL exp
339 { write_exp_elt_opcode (BINOP_EQUAL); }
340 ;
341
342 exp : exp NOTEQUAL exp
343 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
344 ;
345
346 exp : exp LEQ exp
347 { write_exp_elt_opcode (BINOP_LEQ); }
348 ;
349
350 exp : exp GEQ exp
351 { write_exp_elt_opcode (BINOP_GEQ); }
352 ;
353
354 exp : exp LESSTHAN exp
355 { write_exp_elt_opcode (BINOP_LESS); }
356 ;
357
358 exp : exp GREATERTHAN exp
359 { write_exp_elt_opcode (BINOP_GTR); }
360 ;
361
362 exp : exp '&' exp
363 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
364 ;
365
366 exp : exp '^' exp
367 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
368 ;
369
370 exp : exp '|' exp
371 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
372 ;
373
374 exp : exp BOOL_AND exp
375 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
376 ;
377
378
379 exp : exp BOOL_OR exp
380 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
381 ;
382
383 exp : exp '=' exp
384 { write_exp_elt_opcode (BINOP_ASSIGN); }
385 ;
386
387 exp : exp ASSIGN_MODIFY exp
388 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
389 write_exp_elt_opcode ($2);
390 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
391 ;
392
393 exp : INT
394 { write_exp_elt_opcode (OP_LONG);
395 write_exp_elt_type ($1.type);
396 write_exp_elt_longcst ((LONGEST)($1.val));
397 write_exp_elt_opcode (OP_LONG); }
398 ;
399
400 exp : NAME_OR_INT
401 { YYSTYPE val;
402 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
403 write_exp_elt_opcode (OP_LONG);
404 write_exp_elt_type (val.typed_val.type);
405 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
406 write_exp_elt_opcode (OP_LONG); }
407 ;
408
409 exp : FLOAT
410 { write_exp_elt_opcode (OP_DOUBLE);
411 write_exp_elt_type (builtin_type_f_real_s8);
412 write_exp_elt_dblcst ($1);
413 write_exp_elt_opcode (OP_DOUBLE); }
414 ;
415
416 exp : variable
417 ;
418
419 exp : VARIABLE
420 ;
421
422 exp : SIZEOF '(' type ')' %prec UNARY
423 { write_exp_elt_opcode (OP_LONG);
424 write_exp_elt_type (builtin_type_f_integer);
425 CHECK_TYPEDEF ($3);
426 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
427 write_exp_elt_opcode (OP_LONG); }
428 ;
429
430 exp : BOOLEAN_LITERAL
431 { write_exp_elt_opcode (OP_BOOL);
432 write_exp_elt_longcst ((LONGEST) $1);
433 write_exp_elt_opcode (OP_BOOL);
434 }
435 ;
436
437 exp : STRING_LITERAL
438 {
439 write_exp_elt_opcode (OP_STRING);
440 write_exp_string ($1);
441 write_exp_elt_opcode (OP_STRING);
442 }
443 ;
444
445 variable: name_not_typename
446 { struct symbol *sym = $1.sym;
447
448 if (sym)
449 {
450 if (symbol_read_needs_frame (sym))
451 {
452 if (innermost_block == 0 ||
453 contained_in (block_found,
454 innermost_block))
455 innermost_block = block_found;
456 }
457 write_exp_elt_opcode (OP_VAR_VALUE);
458 /* We want to use the selected frame, not
459 another more inner frame which happens to
460 be in the same block. */
461 write_exp_elt_block (NULL);
462 write_exp_elt_sym (sym);
463 write_exp_elt_opcode (OP_VAR_VALUE);
464 break;
465 }
466 else
467 {
468 struct minimal_symbol *msymbol;
469 register char *arg = copy_name ($1.stoken);
470
471 msymbol =
472 lookup_minimal_symbol (arg, NULL, NULL);
473 if (msymbol != NULL)
474 {
475 write_exp_msymbol (msymbol,
476 lookup_function_type (builtin_type_int),
477 builtin_type_int);
478 }
479 else if (!have_full_symbols () && !have_partial_symbols ())
480 error ("No symbol table is loaded. Use the \"file\" command.");
481 else
482 error ("No symbol \"%s\" in current context.",
483 copy_name ($1.stoken));
484 }
485 }
486 ;
487
488
489 type : ptype
490 ;
491
492 ptype : typebase
493 | typebase abs_decl
494 {
495 /* This is where the interesting stuff happens. */
496 int done = 0;
497 int array_size;
498 struct type *follow_type = $1;
499 struct type *range_type;
500
501 while (!done)
502 switch (pop_type ())
503 {
504 case tp_end:
505 done = 1;
506 break;
507 case tp_pointer:
508 follow_type = lookup_pointer_type (follow_type);
509 break;
510 case tp_reference:
511 follow_type = lookup_reference_type (follow_type);
512 break;
513 case tp_array:
514 array_size = pop_type_int ();
515 if (array_size != -1)
516 {
517 range_type =
518 create_range_type ((struct type *) NULL,
519 builtin_type_f_integer, 0,
520 array_size - 1);
521 follow_type =
522 create_array_type ((struct type *) NULL,
523 follow_type, range_type);
524 }
525 else
526 follow_type = lookup_pointer_type (follow_type);
527 break;
528 case tp_function:
529 follow_type = lookup_function_type (follow_type);
530 break;
531 }
532 $$ = follow_type;
533 }
534 ;
535
536 abs_decl: '*'
537 { push_type (tp_pointer); $$ = 0; }
538 | '*' abs_decl
539 { push_type (tp_pointer); $$ = $2; }
540 | '&'
541 { push_type (tp_reference); $$ = 0; }
542 | '&' abs_decl
543 { push_type (tp_reference); $$ = $2; }
544 | direct_abs_decl
545 ;
546
547 direct_abs_decl: '(' abs_decl ')'
548 { $$ = $2; }
549 | direct_abs_decl func_mod
550 { push_type (tp_function); }
551 | func_mod
552 { push_type (tp_function); }
553 ;
554
555 func_mod: '(' ')'
556 { $$ = 0; }
557 | '(' nonempty_typelist ')'
558 { free ((PTR)$2); $$ = 0; }
559 ;
560
561 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
562 : TYPENAME
563 { $$ = $1.type; }
564 | INT_KEYWORD
565 { $$ = builtin_type_f_integer; }
566 | INT_S2_KEYWORD
567 { $$ = builtin_type_f_integer_s2; }
568 | CHARACTER
569 { $$ = builtin_type_f_character; }
570 | LOGICAL_KEYWORD
571 { $$ = builtin_type_f_logical;}
572 | LOGICAL_S2_KEYWORD
573 { $$ = builtin_type_f_logical_s2;}
574 | LOGICAL_S1_KEYWORD
575 { $$ = builtin_type_f_logical_s1;}
576 | REAL_KEYWORD
577 { $$ = builtin_type_f_real;}
578 | REAL_S8_KEYWORD
579 { $$ = builtin_type_f_real_s8;}
580 | REAL_S16_KEYWORD
581 { $$ = builtin_type_f_real_s16;}
582 | COMPLEX_S8_KEYWORD
583 { $$ = builtin_type_f_complex_s8;}
584 | COMPLEX_S16_KEYWORD
585 { $$ = builtin_type_f_complex_s16;}
586 | COMPLEX_S32_KEYWORD
587 { $$ = builtin_type_f_complex_s32;}
588 ;
589
590 typename: TYPENAME
591 ;
592
593 nonempty_typelist
594 : type
595 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
596 $<ivec>$[0] = 1; /* Number of types in vector */
597 $$[1] = $1;
598 }
599 | nonempty_typelist ',' type
600 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
601 $$ = (struct type **) realloc ((char *) $1, len);
602 $$[$<ivec>$[0]] = $3;
603 }
604 ;
605
606 name : NAME
607 { $$ = $1.stoken; }
608 | TYPENAME
609 { $$ = $1.stoken; }
610 | NAME_OR_INT
611 { $$ = $1.stoken; }
612 ;
613
614 name_not_typename : NAME
615 /* These would be useful if name_not_typename was useful, but it is just
616 a fake for "variable", so these cause reduce/reduce conflicts because
617 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
618 =exp) or just an exp. If name_not_typename was ever used in an lvalue
619 context where only a name could occur, this might be useful.
620 | NAME_OR_INT
621 */
622 ;
623
624 %%
625
626 /* Take care of parsing a number (anything that starts with a digit).
627 Set yylval and return the token type; update lexptr.
628 LEN is the number of characters in it. */
629
630 /*** Needs some error checking for the float case ***/
631
632 static int
633 parse_number (p, len, parsed_float, putithere)
634 register char *p;
635 register int len;
636 int parsed_float;
637 YYSTYPE *putithere;
638 {
639 register LONGEST n = 0;
640 register LONGEST prevn = 0;
641 register int i;
642 register int c;
643 register int base = input_radix;
644 int unsigned_p = 0;
645 int long_p = 0;
646 ULONGEST high_bit;
647 struct type *signed_type;
648 struct type *unsigned_type;
649
650 if (parsed_float)
651 {
652 /* It's a float since it contains a point or an exponent. */
653 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
654 char *tmp, *tmp2;
655
656 tmp = strsave (p);
657 for (tmp2 = tmp; *tmp2; ++tmp2)
658 if (*tmp2 == 'd' || *tmp2 == 'D')
659 *tmp2 = 'e';
660 putithere->dval = atof (tmp);
661 free (tmp);
662 return FLOAT;
663 }
664
665 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
666 if (p[0] == '0')
667 switch (p[1])
668 {
669 case 'x':
670 case 'X':
671 if (len >= 3)
672 {
673 p += 2;
674 base = 16;
675 len -= 2;
676 }
677 break;
678
679 case 't':
680 case 'T':
681 case 'd':
682 case 'D':
683 if (len >= 3)
684 {
685 p += 2;
686 base = 10;
687 len -= 2;
688 }
689 break;
690
691 default:
692 base = 8;
693 break;
694 }
695
696 while (len-- > 0)
697 {
698 c = *p++;
699 if (c >= 'A' && c <= 'Z')
700 c += 'a' - 'A';
701 if (c != 'l' && c != 'u')
702 n *= base;
703 if (c >= '0' && c <= '9')
704 n += i = c - '0';
705 else
706 {
707 if (base > 10 && c >= 'a' && c <= 'f')
708 n += i = c - 'a' + 10;
709 else if (len == 0 && c == 'l')
710 long_p = 1;
711 else if (len == 0 && c == 'u')
712 unsigned_p = 1;
713 else
714 return ERROR; /* Char not a digit */
715 }
716 if (i >= base)
717 return ERROR; /* Invalid digit in this base */
718
719 /* Portably test for overflow (only works for nonzero values, so make
720 a second check for zero). */
721 if ((prevn >= n) && n != 0)
722 unsigned_p=1; /* Try something unsigned */
723 /* If range checking enabled, portably test for unsigned overflow. */
724 if (RANGE_CHECK && n != 0)
725 {
726 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
727 range_error("Overflow on numeric constant.");
728 }
729 prevn = n;
730 }
731
732 /* If the number is too big to be an int, or it's got an l suffix
733 then it's a long. Work out if this has to be a long by
734 shifting right and and seeing if anything remains, and the
735 target int size is different to the target long size.
736
737 In the expression below, we could have tested
738 (n >> TARGET_INT_BIT)
739 to see if it was zero,
740 but too many compilers warn about that, when ints and longs
741 are the same size. So we shift it twice, with fewer bits
742 each time, for the same result. */
743
744 if ((TARGET_INT_BIT != TARGET_LONG_BIT
745 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
746 || long_p)
747 {
748 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
749 unsigned_type = builtin_type_unsigned_long;
750 signed_type = builtin_type_long;
751 }
752 else
753 {
754 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
755 unsigned_type = builtin_type_unsigned_int;
756 signed_type = builtin_type_int;
757 }
758
759 putithere->typed_val.val = n;
760
761 /* If the high bit of the worked out type is set then this number
762 has to be unsigned. */
763
764 if (unsigned_p || (n & high_bit))
765 putithere->typed_val.type = unsigned_type;
766 else
767 putithere->typed_val.type = signed_type;
768
769 return INT;
770 }
771
772 struct token
773 {
774 char *operator;
775 int token;
776 enum exp_opcode opcode;
777 };
778
779 static const struct token dot_ops[] =
780 {
781 { ".and.", BOOL_AND, BINOP_END },
782 { ".AND.", BOOL_AND, BINOP_END },
783 { ".or.", BOOL_OR, BINOP_END },
784 { ".OR.", BOOL_OR, BINOP_END },
785 { ".not.", BOOL_NOT, BINOP_END },
786 { ".NOT.", BOOL_NOT, BINOP_END },
787 { ".eq.", EQUAL, BINOP_END },
788 { ".EQ.", EQUAL, BINOP_END },
789 { ".eqv.", EQUAL, BINOP_END },
790 { ".NEQV.", NOTEQUAL, BINOP_END },
791 { ".neqv.", NOTEQUAL, BINOP_END },
792 { ".EQV.", EQUAL, BINOP_END },
793 { ".ne.", NOTEQUAL, BINOP_END },
794 { ".NE.", NOTEQUAL, BINOP_END },
795 { ".le.", LEQ, BINOP_END },
796 { ".LE.", LEQ, BINOP_END },
797 { ".ge.", GEQ, BINOP_END },
798 { ".GE.", GEQ, BINOP_END },
799 { ".gt.", GREATERTHAN, BINOP_END },
800 { ".GT.", GREATERTHAN, BINOP_END },
801 { ".lt.", LESSTHAN, BINOP_END },
802 { ".LT.", LESSTHAN, BINOP_END },
803 { NULL, 0, 0 }
804 };
805
806 struct f77_boolean_val
807 {
808 char *name;
809 int value;
810 };
811
812 static const struct f77_boolean_val boolean_values[] =
813 {
814 { ".true.", 1 },
815 { ".TRUE.", 1 },
816 { ".false.", 0 },
817 { ".FALSE.", 0 },
818 { NULL, 0 }
819 };
820
821 static const struct token f77_keywords[] =
822 {
823 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
824 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
825 { "character", CHARACTER, BINOP_END },
826 { "integer_2", INT_S2_KEYWORD, BINOP_END },
827 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
828 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
829 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
830 { "integer", INT_KEYWORD, BINOP_END },
831 { "logical", LOGICAL_KEYWORD, BINOP_END },
832 { "real_16", REAL_S16_KEYWORD, BINOP_END },
833 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
834 { "sizeof", SIZEOF, BINOP_END },
835 { "real_8", REAL_S8_KEYWORD, BINOP_END },
836 { "real", REAL_KEYWORD, BINOP_END },
837 { NULL, 0, 0 }
838 };
839
840 /* Implementation of a dynamically expandable buffer for processing input
841 characters acquired through lexptr and building a value to return in
842 yylval. Ripped off from ch-exp.y */
843
844 static char *tempbuf; /* Current buffer contents */
845 static int tempbufsize; /* Size of allocated buffer */
846 static int tempbufindex; /* Current index into buffer */
847
848 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
849
850 #define CHECKBUF(size) \
851 do { \
852 if (tempbufindex + (size) >= tempbufsize) \
853 { \
854 growbuf_by_size (size); \
855 } \
856 } while (0);
857
858
859 /* Grow the static temp buffer if necessary, including allocating the first one
860 on demand. */
861
862 static void
863 growbuf_by_size (count)
864 int count;
865 {
866 int growby;
867
868 growby = max (count, GROWBY_MIN_SIZE);
869 tempbufsize += growby;
870 if (tempbuf == NULL)
871 tempbuf = (char *) malloc (tempbufsize);
872 else
873 tempbuf = (char *) realloc (tempbuf, tempbufsize);
874 }
875
876 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
877 string-literals.
878
879 Recognize a string literal. A string literal is a nonzero sequence
880 of characters enclosed in matching single quotes, except that
881 a single character inside single quotes is a character literal, which
882 we reject as a string literal. To embed the terminator character inside
883 a string, it is simply doubled (I.E. 'this''is''one''string') */
884
885 static int
886 match_string_literal ()
887 {
888 char *tokptr = lexptr;
889
890 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
891 {
892 CHECKBUF (1);
893 if (*tokptr == *lexptr)
894 {
895 if (*(tokptr + 1) == *lexptr)
896 tokptr++;
897 else
898 break;
899 }
900 tempbuf[tempbufindex++] = *tokptr;
901 }
902 if (*tokptr == '\0' /* no terminator */
903 || tempbufindex == 0) /* no string */
904 return 0;
905 else
906 {
907 tempbuf[tempbufindex] = '\0';
908 yylval.sval.ptr = tempbuf;
909 yylval.sval.length = tempbufindex;
910 lexptr = ++tokptr;
911 return STRING_LITERAL;
912 }
913 }
914
915 /* Read one token, getting characters through lexptr. */
916
917 static int
918 yylex ()
919 {
920 int c;
921 int namelen;
922 unsigned int i,token;
923 char *tokstart;
924
925 retry:
926
927 tokstart = lexptr;
928
929 /* First of all, let us make sure we are not dealing with the
930 special tokens .true. and .false. which evaluate to 1 and 0. */
931
932 if (*lexptr == '.')
933 {
934 for (i = 0; boolean_values[i].name != NULL; i++)
935 {
936 if STREQN (tokstart, boolean_values[i].name,
937 strlen (boolean_values[i].name))
938 {
939 lexptr += strlen (boolean_values[i].name);
940 yylval.lval = boolean_values[i].value;
941 return BOOLEAN_LITERAL;
942 }
943 }
944 }
945
946 /* See if it is a special .foo. operator */
947
948 for (i = 0; dot_ops[i].operator != NULL; i++)
949 if (STREQN (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)))
950 {
951 lexptr += strlen (dot_ops[i].operator);
952 yylval.opcode = dot_ops[i].opcode;
953 return dot_ops[i].token;
954 }
955
956 switch (c = *tokstart)
957 {
958 case 0:
959 return 0;
960
961 case ' ':
962 case '\t':
963 case '\n':
964 lexptr++;
965 goto retry;
966
967 case '\'':
968 token = match_string_literal ();
969 if (token != 0)
970 return (token);
971 break;
972
973 case '(':
974 paren_depth++;
975 lexptr++;
976 return c;
977
978 case ')':
979 if (paren_depth == 0)
980 return 0;
981 paren_depth--;
982 lexptr++;
983 return c;
984
985 case ',':
986 if (comma_terminates && paren_depth == 0)
987 return 0;
988 lexptr++;
989 return c;
990
991 case '.':
992 /* Might be a floating point number. */
993 if (lexptr[1] < '0' || lexptr[1] > '9')
994 goto symbol; /* Nope, must be a symbol. */
995 /* FALL THRU into number case. */
996
997 case '0':
998 case '1':
999 case '2':
1000 case '3':
1001 case '4':
1002 case '5':
1003 case '6':
1004 case '7':
1005 case '8':
1006 case '9':
1007 {
1008 /* It's a number. */
1009 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1010 register char *p = tokstart;
1011 int hex = input_radix > 10;
1012
1013 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1014 {
1015 p += 2;
1016 hex = 1;
1017 }
1018 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1019 {
1020 p += 2;
1021 hex = 0;
1022 }
1023
1024 for (;; ++p)
1025 {
1026 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1027 got_dot = got_e = 1;
1028 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1029 got_dot = got_d = 1;
1030 else if (!hex && !got_dot && *p == '.')
1031 got_dot = 1;
1032 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1033 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1034 && (*p == '-' || *p == '+'))
1035 /* This is the sign of the exponent, not the end of the
1036 number. */
1037 continue;
1038 /* We will take any letters or digits. parse_number will
1039 complain if past the radix, or if L or U are not final. */
1040 else if ((*p < '0' || *p > '9')
1041 && ((*p < 'a' || *p > 'z')
1042 && (*p < 'A' || *p > 'Z')))
1043 break;
1044 }
1045 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1046 &yylval);
1047 if (toktype == ERROR)
1048 {
1049 char *err_copy = (char *) alloca (p - tokstart + 1);
1050
1051 memcpy (err_copy, tokstart, p - tokstart);
1052 err_copy[p - tokstart] = 0;
1053 error ("Invalid number \"%s\".", err_copy);
1054 }
1055 lexptr = p;
1056 return toktype;
1057 }
1058
1059 case '+':
1060 case '-':
1061 case '*':
1062 case '/':
1063 case '%':
1064 case '|':
1065 case '&':
1066 case '^':
1067 case '~':
1068 case '!':
1069 case '@':
1070 case '<':
1071 case '>':
1072 case '[':
1073 case ']':
1074 case '?':
1075 case ':':
1076 case '=':
1077 case '{':
1078 case '}':
1079 symbol:
1080 lexptr++;
1081 return c;
1082 }
1083
1084 if (!(c == '_' || c == '$'
1085 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1086 /* We must have come across a bad character (e.g. ';'). */
1087 error ("Invalid character '%c' in expression.", c);
1088
1089 namelen = 0;
1090 for (c = tokstart[namelen];
1091 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1092 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1093 c = tokstart[++namelen]);
1094
1095 /* The token "if" terminates the expression and is NOT
1096 removed from the input stream. */
1097
1098 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1099 return 0;
1100
1101 lexptr += namelen;
1102
1103 /* Catch specific keywords. */
1104
1105 for (i = 0; f77_keywords[i].operator != NULL; i++)
1106 if (STREQN(tokstart, f77_keywords[i].operator,
1107 strlen(f77_keywords[i].operator)))
1108 {
1109 /* lexptr += strlen(f77_keywords[i].operator); */
1110 yylval.opcode = f77_keywords[i].opcode;
1111 return f77_keywords[i].token;
1112 }
1113
1114 yylval.sval.ptr = tokstart;
1115 yylval.sval.length = namelen;
1116
1117 if (*tokstart == '$')
1118 {
1119 write_dollar_variable (yylval.sval);
1120 return VARIABLE;
1121 }
1122
1123 /* Use token-type TYPENAME for symbols that happen to be defined
1124 currently as names of types; NAME for other symbols.
1125 The caller is not constrained to care about the distinction. */
1126 {
1127 char *tmp = copy_name (yylval.sval);
1128 struct symbol *sym;
1129 int is_a_field_of_this = 0;
1130 int hextype;
1131
1132 sym = lookup_symbol (tmp, expression_context_block,
1133 VAR_NAMESPACE,
1134 current_language->la_language == language_cplus
1135 ? &is_a_field_of_this : NULL,
1136 NULL);
1137 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1138 {
1139 yylval.tsym.type = SYMBOL_TYPE (sym);
1140 return TYPENAME;
1141 }
1142 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1143 return TYPENAME;
1144
1145 /* Input names that aren't symbols but ARE valid hex numbers,
1146 when the input radix permits them, can be names or numbers
1147 depending on the parse. Note we support radixes > 16 here. */
1148 if (!sym
1149 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1150 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1151 {
1152 YYSTYPE newlval; /* Its value is ignored. */
1153 hextype = parse_number (tokstart, namelen, 0, &newlval);
1154 if (hextype == INT)
1155 {
1156 yylval.ssym.sym = sym;
1157 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1158 return NAME_OR_INT;
1159 }
1160 }
1161
1162 /* Any other kind of symbol */
1163 yylval.ssym.sym = sym;
1164 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1165 return NAME;
1166 }
1167 }
1168
1169 void
1170 yyerror (msg)
1171 char *msg;
1172 {
1173 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1174 }
This page took 0.054659 seconds and 4 git commands to generate.