2012-03-08 Luis Machado <lgustavo@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989-1991, 1993-1996, 2000-2012 Free Software
3 Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include "gdb_string.h"
47 #include "expression.h"
48 #include "value.h"
49 #include "parser-defs.h"
50 #include "language.h"
51 #include "f-lang.h"
52 #include "bfd.h" /* Required by objfiles.h. */
53 #include "symfile.h" /* Required by objfiles.h. */
54 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
55 #include "block.h"
56 #include <ctype.h>
57
58 #define parse_type builtin_type (parse_gdbarch)
59 #define parse_f_type builtin_f_type (parse_gdbarch)
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62 as well as gratuitiously global symbol names, so we can have multiple
63 yacc generated parsers in gdb. Note that these are only the variables
64 produced by yacc. If other parser generators (bison, byacc, etc) produce
65 additional global names that conflict at link time, then those parser
66 generators need to be fixed instead of adding those names to this list. */
67
68 #define yymaxdepth f_maxdepth
69 #define yyparse f_parse
70 #define yylex f_lex
71 #define yyerror f_error
72 #define yylval f_lval
73 #define yychar f_char
74 #define yydebug f_debug
75 #define yypact f_pact
76 #define yyr1 f_r1
77 #define yyr2 f_r2
78 #define yydef f_def
79 #define yychk f_chk
80 #define yypgo f_pgo
81 #define yyact f_act
82 #define yyexca f_exca
83 #define yyerrflag f_errflag
84 #define yynerrs f_nerrs
85 #define yyps f_ps
86 #define yypv f_pv
87 #define yys f_s
88 #define yy_yys f_yys
89 #define yystate f_state
90 #define yytmp f_tmp
91 #define yyv f_v
92 #define yy_yyv f_yyv
93 #define yyval f_val
94 #define yylloc f_lloc
95 #define yyreds f_reds /* With YYDEBUG defined */
96 #define yytoks f_toks /* With YYDEBUG defined */
97 #define yyname f_name /* With YYDEBUG defined */
98 #define yyrule f_rule /* With YYDEBUG defined */
99 #define yylhs f_yylhs
100 #define yylen f_yylen
101 #define yydefred f_yydefred
102 #define yydgoto f_yydgoto
103 #define yysindex f_yysindex
104 #define yyrindex f_yyrindex
105 #define yygindex f_yygindex
106 #define yytable f_yytable
107 #define yycheck f_yycheck
108
109 #ifndef YYDEBUG
110 #define YYDEBUG 1 /* Default to yydebug support */
111 #endif
112
113 #define YYFPRINTF parser_fprintf
114
115 int yyparse (void);
116
117 static int yylex (void);
118
119 void yyerror (char *);
120
121 static void growbuf_by_size (int);
122
123 static int match_string_literal (void);
124
125 %}
126
127 /* Although the yacc "value" of an expression is not used,
128 since the result is stored in the structure being created,
129 other node types do have values. */
130
131 %union
132 {
133 LONGEST lval;
134 struct {
135 LONGEST val;
136 struct type *type;
137 } typed_val;
138 DOUBLEST dval;
139 struct symbol *sym;
140 struct type *tval;
141 struct stoken sval;
142 struct ttype tsym;
143 struct symtoken ssym;
144 int voidval;
145 struct block *bval;
146 enum exp_opcode opcode;
147 struct internalvar *ivar;
148
149 struct type **tvec;
150 int *ivec;
151 }
152
153 %{
154 /* YYSTYPE gets defined by %union */
155 static int parse_number (char *, int, int, YYSTYPE *);
156 %}
157
158 %type <voidval> exp type_exp start variable
159 %type <tval> type typebase
160 %type <tvec> nonempty_typelist
161 /* %type <bval> block */
162
163 /* Fancy type parsing. */
164 %type <voidval> func_mod direct_abs_decl abs_decl
165 %type <tval> ptype
166
167 %token <typed_val> INT
168 %token <dval> FLOAT
169
170 /* Both NAME and TYPENAME tokens represent symbols in the input,
171 and both convey their data as strings.
172 But a TYPENAME is a string that happens to be defined as a typedef
173 or builtin type name (such as int or char)
174 and a NAME is any other symbol.
175 Contexts where this distinction is not important can use the
176 nonterminal "name", which matches either NAME or TYPENAME. */
177
178 %token <sval> STRING_LITERAL
179 %token <lval> BOOLEAN_LITERAL
180 %token <ssym> NAME
181 %token <tsym> TYPENAME
182 %type <sval> name
183 %type <ssym> name_not_typename
184
185 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
186 but which would parse as a valid number in the current input radix.
187 E.g. "c" when input_radix==16. Depending on the parse, it will be
188 turned into a name or into a number. */
189
190 %token <ssym> NAME_OR_INT
191
192 %token SIZEOF
193 %token ERROR
194
195 /* Special type cases, put in to allow the parser to distinguish different
196 legal basetypes. */
197 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
198 %token LOGICAL_S8_KEYWORD
199 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
200 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
201 %token BOOL_AND BOOL_OR BOOL_NOT
202 %token <lval> CHARACTER
203
204 %token <voidval> VARIABLE
205
206 %token <opcode> ASSIGN_MODIFY
207
208 %left ','
209 %left ABOVE_COMMA
210 %right '=' ASSIGN_MODIFY
211 %right '?'
212 %left BOOL_OR
213 %right BOOL_NOT
214 %left BOOL_AND
215 %left '|'
216 %left '^'
217 %left '&'
218 %left EQUAL NOTEQUAL
219 %left LESSTHAN GREATERTHAN LEQ GEQ
220 %left LSH RSH
221 %left '@'
222 %left '+' '-'
223 %left '*' '/'
224 %right STARSTAR
225 %right '%'
226 %right UNARY
227 %right '('
228
229 \f
230 %%
231
232 start : exp
233 | type_exp
234 ;
235
236 type_exp: type
237 { write_exp_elt_opcode(OP_TYPE);
238 write_exp_elt_type($1);
239 write_exp_elt_opcode(OP_TYPE); }
240 ;
241
242 exp : '(' exp ')'
243 { }
244 ;
245
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
249 ;
250
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
253 ;
254
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
257 ;
258
259 exp : BOOL_NOT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
261 ;
262
263 exp : '~' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
265 ;
266
267 exp : SIZEOF exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_SIZEOF); }
269 ;
270
271 /* No more explicit array operators, we treat everything in F77 as
272 a function call. The disambiguation as to whether we are
273 doing a subscript operation or a function call is done
274 later in eval.c. */
275
276 exp : exp '('
277 { start_arglist (); }
278 arglist ')'
279 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
280 write_exp_elt_longcst ((LONGEST) end_arglist ());
281 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
282 ;
283
284 arglist :
285 ;
286
287 arglist : exp
288 { arglist_len = 1; }
289 ;
290
291 arglist : subrange
292 { arglist_len = 1; }
293 ;
294
295 arglist : arglist ',' exp %prec ABOVE_COMMA
296 { arglist_len++; }
297 ;
298
299 /* There are four sorts of subrange types in F90. */
300
301 subrange: exp ':' exp %prec ABOVE_COMMA
302 { write_exp_elt_opcode (OP_F90_RANGE);
303 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
304 write_exp_elt_opcode (OP_F90_RANGE); }
305 ;
306
307 subrange: exp ':' %prec ABOVE_COMMA
308 { write_exp_elt_opcode (OP_F90_RANGE);
309 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
310 write_exp_elt_opcode (OP_F90_RANGE); }
311 ;
312
313 subrange: ':' exp %prec ABOVE_COMMA
314 { write_exp_elt_opcode (OP_F90_RANGE);
315 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
316 write_exp_elt_opcode (OP_F90_RANGE); }
317 ;
318
319 subrange: ':' %prec ABOVE_COMMA
320 { write_exp_elt_opcode (OP_F90_RANGE);
321 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
322 write_exp_elt_opcode (OP_F90_RANGE); }
323 ;
324
325 complexnum: exp ',' exp
326 { }
327 ;
328
329 exp : '(' complexnum ')'
330 { write_exp_elt_opcode(OP_COMPLEX);
331 write_exp_elt_type (parse_f_type->builtin_complex_s16);
332 write_exp_elt_opcode(OP_COMPLEX); }
333 ;
334
335 exp : '(' type ')' exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_CAST);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_CAST); }
339 ;
340
341 exp : exp '%' name
342 { write_exp_elt_opcode (STRUCTOP_STRUCT);
343 write_exp_string ($3);
344 write_exp_elt_opcode (STRUCTOP_STRUCT); }
345 ;
346
347 /* Binary operators in order of decreasing precedence. */
348
349 exp : exp '@' exp
350 { write_exp_elt_opcode (BINOP_REPEAT); }
351 ;
352
353 exp : exp STARSTAR exp
354 { write_exp_elt_opcode (BINOP_EXP); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '+' exp
366 { write_exp_elt_opcode (BINOP_ADD); }
367 ;
368
369 exp : exp '-' exp
370 { write_exp_elt_opcode (BINOP_SUB); }
371 ;
372
373 exp : exp LSH exp
374 { write_exp_elt_opcode (BINOP_LSH); }
375 ;
376
377 exp : exp RSH exp
378 { write_exp_elt_opcode (BINOP_RSH); }
379 ;
380
381 exp : exp EQUAL exp
382 { write_exp_elt_opcode (BINOP_EQUAL); }
383 ;
384
385 exp : exp NOTEQUAL exp
386 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
387 ;
388
389 exp : exp LEQ exp
390 { write_exp_elt_opcode (BINOP_LEQ); }
391 ;
392
393 exp : exp GEQ exp
394 { write_exp_elt_opcode (BINOP_GEQ); }
395 ;
396
397 exp : exp LESSTHAN exp
398 { write_exp_elt_opcode (BINOP_LESS); }
399 ;
400
401 exp : exp GREATERTHAN exp
402 { write_exp_elt_opcode (BINOP_GTR); }
403 ;
404
405 exp : exp '&' exp
406 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
407 ;
408
409 exp : exp '^' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
411 ;
412
413 exp : exp '|' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
415 ;
416
417 exp : exp BOOL_AND exp
418 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
419 ;
420
421
422 exp : exp BOOL_OR exp
423 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
424 ;
425
426 exp : exp '=' exp
427 { write_exp_elt_opcode (BINOP_ASSIGN); }
428 ;
429
430 exp : exp ASSIGN_MODIFY exp
431 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
432 write_exp_elt_opcode ($2);
433 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
434 ;
435
436 exp : INT
437 { write_exp_elt_opcode (OP_LONG);
438 write_exp_elt_type ($1.type);
439 write_exp_elt_longcst ((LONGEST)($1.val));
440 write_exp_elt_opcode (OP_LONG); }
441 ;
442
443 exp : NAME_OR_INT
444 { YYSTYPE val;
445 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
446 write_exp_elt_opcode (OP_LONG);
447 write_exp_elt_type (val.typed_val.type);
448 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
449 write_exp_elt_opcode (OP_LONG); }
450 ;
451
452 exp : FLOAT
453 { write_exp_elt_opcode (OP_DOUBLE);
454 write_exp_elt_type (parse_f_type->builtin_real_s8);
455 write_exp_elt_dblcst ($1);
456 write_exp_elt_opcode (OP_DOUBLE); }
457 ;
458
459 exp : variable
460 ;
461
462 exp : VARIABLE
463 ;
464
465 exp : SIZEOF '(' type ')' %prec UNARY
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type (parse_f_type->builtin_integer);
468 CHECK_TYPEDEF ($3);
469 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
470 write_exp_elt_opcode (OP_LONG); }
471 ;
472
473 exp : BOOLEAN_LITERAL
474 { write_exp_elt_opcode (OP_BOOL);
475 write_exp_elt_longcst ((LONGEST) $1);
476 write_exp_elt_opcode (OP_BOOL);
477 }
478 ;
479
480 exp : STRING_LITERAL
481 {
482 write_exp_elt_opcode (OP_STRING);
483 write_exp_string ($1);
484 write_exp_elt_opcode (OP_STRING);
485 }
486 ;
487
488 variable: name_not_typename
489 { struct symbol *sym = $1.sym;
490
491 if (sym)
492 {
493 if (symbol_read_needs_frame (sym))
494 {
495 if (innermost_block == 0
496 || contained_in (block_found,
497 innermost_block))
498 innermost_block = block_found;
499 }
500 write_exp_elt_opcode (OP_VAR_VALUE);
501 /* We want to use the selected frame, not
502 another more inner frame which happens to
503 be in the same block. */
504 write_exp_elt_block (NULL);
505 write_exp_elt_sym (sym);
506 write_exp_elt_opcode (OP_VAR_VALUE);
507 break;
508 }
509 else
510 {
511 struct minimal_symbol *msymbol;
512 char *arg = copy_name ($1.stoken);
513
514 msymbol =
515 lookup_minimal_symbol (arg, NULL, NULL);
516 if (msymbol != NULL)
517 write_exp_msymbol (msymbol);
518 else if (!have_full_symbols () && !have_partial_symbols ())
519 error (_("No symbol table is loaded. Use the \"file\" command."));
520 else
521 error (_("No symbol \"%s\" in current context."),
522 copy_name ($1.stoken));
523 }
524 }
525 ;
526
527
528 type : ptype
529 ;
530
531 ptype : typebase
532 | typebase abs_decl
533 {
534 /* This is where the interesting stuff happens. */
535 int done = 0;
536 int array_size;
537 struct type *follow_type = $1;
538 struct type *range_type;
539
540 while (!done)
541 switch (pop_type ())
542 {
543 case tp_end:
544 done = 1;
545 break;
546 case tp_pointer:
547 follow_type = lookup_pointer_type (follow_type);
548 break;
549 case tp_reference:
550 follow_type = lookup_reference_type (follow_type);
551 break;
552 case tp_array:
553 array_size = pop_type_int ();
554 if (array_size != -1)
555 {
556 range_type =
557 create_range_type ((struct type *) NULL,
558 parse_f_type->builtin_integer,
559 0, array_size - 1);
560 follow_type =
561 create_array_type ((struct type *) NULL,
562 follow_type, range_type);
563 }
564 else
565 follow_type = lookup_pointer_type (follow_type);
566 break;
567 case tp_function:
568 follow_type = lookup_function_type (follow_type);
569 break;
570 }
571 $$ = follow_type;
572 }
573 ;
574
575 abs_decl: '*'
576 { push_type (tp_pointer); $$ = 0; }
577 | '*' abs_decl
578 { push_type (tp_pointer); $$ = $2; }
579 | '&'
580 { push_type (tp_reference); $$ = 0; }
581 | '&' abs_decl
582 { push_type (tp_reference); $$ = $2; }
583 | direct_abs_decl
584 ;
585
586 direct_abs_decl: '(' abs_decl ')'
587 { $$ = $2; }
588 | direct_abs_decl func_mod
589 { push_type (tp_function); }
590 | func_mod
591 { push_type (tp_function); }
592 ;
593
594 func_mod: '(' ')'
595 { $$ = 0; }
596 | '(' nonempty_typelist ')'
597 { free ($2); $$ = 0; }
598 ;
599
600 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
601 : TYPENAME
602 { $$ = $1.type; }
603 | INT_KEYWORD
604 { $$ = parse_f_type->builtin_integer; }
605 | INT_S2_KEYWORD
606 { $$ = parse_f_type->builtin_integer_s2; }
607 | CHARACTER
608 { $$ = parse_f_type->builtin_character; }
609 | LOGICAL_S8_KEYWORD
610 { $$ = parse_f_type->builtin_logical_s8; }
611 | LOGICAL_KEYWORD
612 { $$ = parse_f_type->builtin_logical; }
613 | LOGICAL_S2_KEYWORD
614 { $$ = parse_f_type->builtin_logical_s2; }
615 | LOGICAL_S1_KEYWORD
616 { $$ = parse_f_type->builtin_logical_s1; }
617 | REAL_KEYWORD
618 { $$ = parse_f_type->builtin_real; }
619 | REAL_S8_KEYWORD
620 { $$ = parse_f_type->builtin_real_s8; }
621 | REAL_S16_KEYWORD
622 { $$ = parse_f_type->builtin_real_s16; }
623 | COMPLEX_S8_KEYWORD
624 { $$ = parse_f_type->builtin_complex_s8; }
625 | COMPLEX_S16_KEYWORD
626 { $$ = parse_f_type->builtin_complex_s16; }
627 | COMPLEX_S32_KEYWORD
628 { $$ = parse_f_type->builtin_complex_s32; }
629 ;
630
631 nonempty_typelist
632 : type
633 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
634 $<ivec>$[0] = 1; /* Number of types in vector */
635 $$[1] = $1;
636 }
637 | nonempty_typelist ',' type
638 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
639 $$ = (struct type **) realloc ((char *) $1, len);
640 $$[$<ivec>$[0]] = $3;
641 }
642 ;
643
644 name : NAME
645 { $$ = $1.stoken; }
646 ;
647
648 name_not_typename : NAME
649 /* These would be useful if name_not_typename was useful, but it is just
650 a fake for "variable", so these cause reduce/reduce conflicts because
651 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
652 =exp) or just an exp. If name_not_typename was ever used in an lvalue
653 context where only a name could occur, this might be useful.
654 | NAME_OR_INT
655 */
656 ;
657
658 %%
659
660 /* Take care of parsing a number (anything that starts with a digit).
661 Set yylval and return the token type; update lexptr.
662 LEN is the number of characters in it. */
663
664 /*** Needs some error checking for the float case ***/
665
666 static int
667 parse_number (char *p, int len, int parsed_float, YYSTYPE *putithere)
668 {
669 LONGEST n = 0;
670 LONGEST prevn = 0;
671 int c;
672 int base = input_radix;
673 int unsigned_p = 0;
674 int long_p = 0;
675 ULONGEST high_bit;
676 struct type *signed_type;
677 struct type *unsigned_type;
678
679 if (parsed_float)
680 {
681 /* It's a float since it contains a point or an exponent. */
682 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
683 char *tmp, *tmp2;
684
685 tmp = xstrdup (p);
686 for (tmp2 = tmp; *tmp2; ++tmp2)
687 if (*tmp2 == 'd' || *tmp2 == 'D')
688 *tmp2 = 'e';
689 putithere->dval = atof (tmp);
690 free (tmp);
691 return FLOAT;
692 }
693
694 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
695 if (p[0] == '0')
696 switch (p[1])
697 {
698 case 'x':
699 case 'X':
700 if (len >= 3)
701 {
702 p += 2;
703 base = 16;
704 len -= 2;
705 }
706 break;
707
708 case 't':
709 case 'T':
710 case 'd':
711 case 'D':
712 if (len >= 3)
713 {
714 p += 2;
715 base = 10;
716 len -= 2;
717 }
718 break;
719
720 default:
721 base = 8;
722 break;
723 }
724
725 while (len-- > 0)
726 {
727 c = *p++;
728 if (isupper (c))
729 c = tolower (c);
730 if (len == 0 && c == 'l')
731 long_p = 1;
732 else if (len == 0 && c == 'u')
733 unsigned_p = 1;
734 else
735 {
736 int i;
737 if (c >= '0' && c <= '9')
738 i = c - '0';
739 else if (c >= 'a' && c <= 'f')
740 i = c - 'a' + 10;
741 else
742 return ERROR; /* Char not a digit */
743 if (i >= base)
744 return ERROR; /* Invalid digit in this base */
745 n *= base;
746 n += i;
747 }
748 /* Portably test for overflow (only works for nonzero values, so make
749 a second check for zero). */
750 if ((prevn >= n) && n != 0)
751 unsigned_p=1; /* Try something unsigned */
752 /* If range checking enabled, portably test for unsigned overflow. */
753 if (RANGE_CHECK && n != 0)
754 {
755 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
756 range_error (_("Overflow on numeric constant."));
757 }
758 prevn = n;
759 }
760
761 /* If the number is too big to be an int, or it's got an l suffix
762 then it's a long. Work out if this has to be a long by
763 shifting right and seeing if anything remains, and the
764 target int size is different to the target long size.
765
766 In the expression below, we could have tested
767 (n >> gdbarch_int_bit (parse_gdbarch))
768 to see if it was zero,
769 but too many compilers warn about that, when ints and longs
770 are the same size. So we shift it twice, with fewer bits
771 each time, for the same result. */
772
773 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
774 && ((n >> 2)
775 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
776 || long_p)
777 {
778 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
779 unsigned_type = parse_type->builtin_unsigned_long;
780 signed_type = parse_type->builtin_long;
781 }
782 else
783 {
784 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
785 unsigned_type = parse_type->builtin_unsigned_int;
786 signed_type = parse_type->builtin_int;
787 }
788
789 putithere->typed_val.val = n;
790
791 /* If the high bit of the worked out type is set then this number
792 has to be unsigned. */
793
794 if (unsigned_p || (n & high_bit))
795 putithere->typed_val.type = unsigned_type;
796 else
797 putithere->typed_val.type = signed_type;
798
799 return INT;
800 }
801
802 struct token
803 {
804 char *operator;
805 int token;
806 enum exp_opcode opcode;
807 };
808
809 static const struct token dot_ops[] =
810 {
811 { ".and.", BOOL_AND, BINOP_END },
812 { ".AND.", BOOL_AND, BINOP_END },
813 { ".or.", BOOL_OR, BINOP_END },
814 { ".OR.", BOOL_OR, BINOP_END },
815 { ".not.", BOOL_NOT, BINOP_END },
816 { ".NOT.", BOOL_NOT, BINOP_END },
817 { ".eq.", EQUAL, BINOP_END },
818 { ".EQ.", EQUAL, BINOP_END },
819 { ".eqv.", EQUAL, BINOP_END },
820 { ".NEQV.", NOTEQUAL, BINOP_END },
821 { ".neqv.", NOTEQUAL, BINOP_END },
822 { ".EQV.", EQUAL, BINOP_END },
823 { ".ne.", NOTEQUAL, BINOP_END },
824 { ".NE.", NOTEQUAL, BINOP_END },
825 { ".le.", LEQ, BINOP_END },
826 { ".LE.", LEQ, BINOP_END },
827 { ".ge.", GEQ, BINOP_END },
828 { ".GE.", GEQ, BINOP_END },
829 { ".gt.", GREATERTHAN, BINOP_END },
830 { ".GT.", GREATERTHAN, BINOP_END },
831 { ".lt.", LESSTHAN, BINOP_END },
832 { ".LT.", LESSTHAN, BINOP_END },
833 { NULL, 0, 0 }
834 };
835
836 struct f77_boolean_val
837 {
838 char *name;
839 int value;
840 };
841
842 static const struct f77_boolean_val boolean_values[] =
843 {
844 { ".true.", 1 },
845 { ".TRUE.", 1 },
846 { ".false.", 0 },
847 { ".FALSE.", 0 },
848 { NULL, 0 }
849 };
850
851 static const struct token f77_keywords[] =
852 {
853 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
854 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
855 { "character", CHARACTER, BINOP_END },
856 { "integer_2", INT_S2_KEYWORD, BINOP_END },
857 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
858 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
859 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
860 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
861 { "integer", INT_KEYWORD, BINOP_END },
862 { "logical", LOGICAL_KEYWORD, BINOP_END },
863 { "real_16", REAL_S16_KEYWORD, BINOP_END },
864 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
865 { "sizeof", SIZEOF, BINOP_END },
866 { "real_8", REAL_S8_KEYWORD, BINOP_END },
867 { "real", REAL_KEYWORD, BINOP_END },
868 { NULL, 0, 0 }
869 };
870
871 /* Implementation of a dynamically expandable buffer for processing input
872 characters acquired through lexptr and building a value to return in
873 yylval. Ripped off from ch-exp.y */
874
875 static char *tempbuf; /* Current buffer contents */
876 static int tempbufsize; /* Size of allocated buffer */
877 static int tempbufindex; /* Current index into buffer */
878
879 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
880
881 #define CHECKBUF(size) \
882 do { \
883 if (tempbufindex + (size) >= tempbufsize) \
884 { \
885 growbuf_by_size (size); \
886 } \
887 } while (0);
888
889
890 /* Grow the static temp buffer if necessary, including allocating the
891 first one on demand. */
892
893 static void
894 growbuf_by_size (int count)
895 {
896 int growby;
897
898 growby = max (count, GROWBY_MIN_SIZE);
899 tempbufsize += growby;
900 if (tempbuf == NULL)
901 tempbuf = (char *) malloc (tempbufsize);
902 else
903 tempbuf = (char *) realloc (tempbuf, tempbufsize);
904 }
905
906 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
907 string-literals.
908
909 Recognize a string literal. A string literal is a nonzero sequence
910 of characters enclosed in matching single quotes, except that
911 a single character inside single quotes is a character literal, which
912 we reject as a string literal. To embed the terminator character inside
913 a string, it is simply doubled (I.E. 'this''is''one''string') */
914
915 static int
916 match_string_literal (void)
917 {
918 char *tokptr = lexptr;
919
920 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
921 {
922 CHECKBUF (1);
923 if (*tokptr == *lexptr)
924 {
925 if (*(tokptr + 1) == *lexptr)
926 tokptr++;
927 else
928 break;
929 }
930 tempbuf[tempbufindex++] = *tokptr;
931 }
932 if (*tokptr == '\0' /* no terminator */
933 || tempbufindex == 0) /* no string */
934 return 0;
935 else
936 {
937 tempbuf[tempbufindex] = '\0';
938 yylval.sval.ptr = tempbuf;
939 yylval.sval.length = tempbufindex;
940 lexptr = ++tokptr;
941 return STRING_LITERAL;
942 }
943 }
944
945 /* Read one token, getting characters through lexptr. */
946
947 static int
948 yylex (void)
949 {
950 int c;
951 int namelen;
952 unsigned int i,token;
953 char *tokstart;
954
955 retry:
956
957 prev_lexptr = lexptr;
958
959 tokstart = lexptr;
960
961 /* First of all, let us make sure we are not dealing with the
962 special tokens .true. and .false. which evaluate to 1 and 0. */
963
964 if (*lexptr == '.')
965 {
966 for (i = 0; boolean_values[i].name != NULL; i++)
967 {
968 if (strncmp (tokstart, boolean_values[i].name,
969 strlen (boolean_values[i].name)) == 0)
970 {
971 lexptr += strlen (boolean_values[i].name);
972 yylval.lval = boolean_values[i].value;
973 return BOOLEAN_LITERAL;
974 }
975 }
976 }
977
978 /* See if it is a special .foo. operator. */
979
980 for (i = 0; dot_ops[i].operator != NULL; i++)
981 if (strncmp (tokstart, dot_ops[i].operator,
982 strlen (dot_ops[i].operator)) == 0)
983 {
984 lexptr += strlen (dot_ops[i].operator);
985 yylval.opcode = dot_ops[i].opcode;
986 return dot_ops[i].token;
987 }
988
989 /* See if it is an exponentiation operator. */
990
991 if (strncmp (tokstart, "**", 2) == 0)
992 {
993 lexptr += 2;
994 yylval.opcode = BINOP_EXP;
995 return STARSTAR;
996 }
997
998 switch (c = *tokstart)
999 {
1000 case 0:
1001 return 0;
1002
1003 case ' ':
1004 case '\t':
1005 case '\n':
1006 lexptr++;
1007 goto retry;
1008
1009 case '\'':
1010 token = match_string_literal ();
1011 if (token != 0)
1012 return (token);
1013 break;
1014
1015 case '(':
1016 paren_depth++;
1017 lexptr++;
1018 return c;
1019
1020 case ')':
1021 if (paren_depth == 0)
1022 return 0;
1023 paren_depth--;
1024 lexptr++;
1025 return c;
1026
1027 case ',':
1028 if (comma_terminates && paren_depth == 0)
1029 return 0;
1030 lexptr++;
1031 return c;
1032
1033 case '.':
1034 /* Might be a floating point number. */
1035 if (lexptr[1] < '0' || lexptr[1] > '9')
1036 goto symbol; /* Nope, must be a symbol. */
1037 /* FALL THRU into number case. */
1038
1039 case '0':
1040 case '1':
1041 case '2':
1042 case '3':
1043 case '4':
1044 case '5':
1045 case '6':
1046 case '7':
1047 case '8':
1048 case '9':
1049 {
1050 /* It's a number. */
1051 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1052 char *p = tokstart;
1053 int hex = input_radix > 10;
1054
1055 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1056 {
1057 p += 2;
1058 hex = 1;
1059 }
1060 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1061 || p[1]=='d' || p[1]=='D'))
1062 {
1063 p += 2;
1064 hex = 0;
1065 }
1066
1067 for (;; ++p)
1068 {
1069 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1070 got_dot = got_e = 1;
1071 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1072 got_dot = got_d = 1;
1073 else if (!hex && !got_dot && *p == '.')
1074 got_dot = 1;
1075 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1076 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1077 && (*p == '-' || *p == '+'))
1078 /* This is the sign of the exponent, not the end of the
1079 number. */
1080 continue;
1081 /* We will take any letters or digits. parse_number will
1082 complain if past the radix, or if L or U are not final. */
1083 else if ((*p < '0' || *p > '9')
1084 && ((*p < 'a' || *p > 'z')
1085 && (*p < 'A' || *p > 'Z')))
1086 break;
1087 }
1088 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1089 &yylval);
1090 if (toktype == ERROR)
1091 {
1092 char *err_copy = (char *) alloca (p - tokstart + 1);
1093
1094 memcpy (err_copy, tokstart, p - tokstart);
1095 err_copy[p - tokstart] = 0;
1096 error (_("Invalid number \"%s\"."), err_copy);
1097 }
1098 lexptr = p;
1099 return toktype;
1100 }
1101
1102 case '+':
1103 case '-':
1104 case '*':
1105 case '/':
1106 case '%':
1107 case '|':
1108 case '&':
1109 case '^':
1110 case '~':
1111 case '!':
1112 case '@':
1113 case '<':
1114 case '>':
1115 case '[':
1116 case ']':
1117 case '?':
1118 case ':':
1119 case '=':
1120 case '{':
1121 case '}':
1122 symbol:
1123 lexptr++;
1124 return c;
1125 }
1126
1127 if (!(c == '_' || c == '$' || c ==':'
1128 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1129 /* We must have come across a bad character (e.g. ';'). */
1130 error (_("Invalid character '%c' in expression."), c);
1131
1132 namelen = 0;
1133 for (c = tokstart[namelen];
1134 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1135 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1136 c = tokstart[++namelen]);
1137
1138 /* The token "if" terminates the expression and is NOT
1139 removed from the input stream. */
1140
1141 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1142 return 0;
1143
1144 lexptr += namelen;
1145
1146 /* Catch specific keywords. */
1147
1148 for (i = 0; f77_keywords[i].operator != NULL; i++)
1149 if (strlen (f77_keywords[i].operator) == namelen
1150 && strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1151 {
1152 /* lexptr += strlen(f77_keywords[i].operator); */
1153 yylval.opcode = f77_keywords[i].opcode;
1154 return f77_keywords[i].token;
1155 }
1156
1157 yylval.sval.ptr = tokstart;
1158 yylval.sval.length = namelen;
1159
1160 if (*tokstart == '$')
1161 {
1162 write_dollar_variable (yylval.sval);
1163 return VARIABLE;
1164 }
1165
1166 /* Use token-type TYPENAME for symbols that happen to be defined
1167 currently as names of types; NAME for other symbols.
1168 The caller is not constrained to care about the distinction. */
1169 {
1170 char *tmp = copy_name (yylval.sval);
1171 struct symbol *sym;
1172 int is_a_field_of_this = 0;
1173 int hextype;
1174
1175 sym = lookup_symbol (tmp, expression_context_block,
1176 VAR_DOMAIN,
1177 parse_language->la_language == language_cplus
1178 ? &is_a_field_of_this : NULL);
1179 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1180 {
1181 yylval.tsym.type = SYMBOL_TYPE (sym);
1182 return TYPENAME;
1183 }
1184 yylval.tsym.type
1185 = language_lookup_primitive_type_by_name (parse_language,
1186 parse_gdbarch, tmp);
1187 if (yylval.tsym.type != NULL)
1188 return TYPENAME;
1189
1190 /* Input names that aren't symbols but ARE valid hex numbers,
1191 when the input radix permits them, can be names or numbers
1192 depending on the parse. Note we support radixes > 16 here. */
1193 if (!sym
1194 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1195 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1196 {
1197 YYSTYPE newlval; /* Its value is ignored. */
1198 hextype = parse_number (tokstart, namelen, 0, &newlval);
1199 if (hextype == INT)
1200 {
1201 yylval.ssym.sym = sym;
1202 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1203 return NAME_OR_INT;
1204 }
1205 }
1206
1207 /* Any other kind of symbol */
1208 yylval.ssym.sym = sym;
1209 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1210 return NAME;
1211 }
1212 }
1213
1214 void
1215 yyerror (char *msg)
1216 {
1217 if (prev_lexptr)
1218 lexptr = prev_lexptr;
1219
1220 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1221 }
This page took 0.08146 seconds and 4 git commands to generate.