daily update
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1
2 /* YACC parser for Fortran expressions, for GDB.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include <string.h>
47 #include "expression.h"
48 #include "value.h"
49 #include "parser-defs.h"
50 #include "language.h"
51 #include "f-lang.h"
52 #include "bfd.h" /* Required by objfiles.h. */
53 #include "symfile.h" /* Required by objfiles.h. */
54 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
55 #include "block.h"
56 #include <ctype.h>
57
58 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
59 #define parse_f_type(ps) builtin_f_type (parse_gdbarch (ps))
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62 as well as gratuitiously global symbol names, so we can have multiple
63 yacc generated parsers in gdb. Note that these are only the variables
64 produced by yacc. If other parser generators (bison, byacc, etc) produce
65 additional global names that conflict at link time, then those parser
66 generators need to be fixed instead of adding those names to this list. */
67
68 #define yymaxdepth f_maxdepth
69 #define yyparse f_parse_internal
70 #define yylex f_lex
71 #define yyerror f_error
72 #define yylval f_lval
73 #define yychar f_char
74 #define yydebug f_debug
75 #define yypact f_pact
76 #define yyr1 f_r1
77 #define yyr2 f_r2
78 #define yydef f_def
79 #define yychk f_chk
80 #define yypgo f_pgo
81 #define yyact f_act
82 #define yyexca f_exca
83 #define yyerrflag f_errflag
84 #define yynerrs f_nerrs
85 #define yyps f_ps
86 #define yypv f_pv
87 #define yys f_s
88 #define yy_yys f_yys
89 #define yystate f_state
90 #define yytmp f_tmp
91 #define yyv f_v
92 #define yy_yyv f_yyv
93 #define yyval f_val
94 #define yylloc f_lloc
95 #define yyreds f_reds /* With YYDEBUG defined */
96 #define yytoks f_toks /* With YYDEBUG defined */
97 #define yyname f_name /* With YYDEBUG defined */
98 #define yyrule f_rule /* With YYDEBUG defined */
99 #define yylhs f_yylhs
100 #define yylen f_yylen
101 #define yydefred f_yydefred
102 #define yydgoto f_yydgoto
103 #define yysindex f_yysindex
104 #define yyrindex f_yyrindex
105 #define yygindex f_yygindex
106 #define yytable f_yytable
107 #define yycheck f_yycheck
108 #define yyss f_yyss
109 #define yysslim f_yysslim
110 #define yyssp f_yyssp
111 #define yystacksize f_yystacksize
112 #define yyvs f_yyvs
113 #define yyvsp f_yyvsp
114
115 #ifndef YYDEBUG
116 #define YYDEBUG 1 /* Default to yydebug support */
117 #endif
118
119 #define YYFPRINTF parser_fprintf
120
121 /* The state of the parser, used internally when we are parsing the
122 expression. */
123
124 static struct parser_state *pstate = NULL;
125
126 int yyparse (void);
127
128 static int yylex (void);
129
130 void yyerror (char *);
131
132 static void growbuf_by_size (int);
133
134 static int match_string_literal (void);
135
136 %}
137
138 /* Although the yacc "value" of an expression is not used,
139 since the result is stored in the structure being created,
140 other node types do have values. */
141
142 %union
143 {
144 LONGEST lval;
145 struct {
146 LONGEST val;
147 struct type *type;
148 } typed_val;
149 DOUBLEST dval;
150 struct symbol *sym;
151 struct type *tval;
152 struct stoken sval;
153 struct ttype tsym;
154 struct symtoken ssym;
155 int voidval;
156 struct block *bval;
157 enum exp_opcode opcode;
158 struct internalvar *ivar;
159
160 struct type **tvec;
161 int *ivec;
162 }
163
164 %{
165 /* YYSTYPE gets defined by %union */
166 static int parse_number (struct parser_state *, const char *, int,
167 int, YYSTYPE *);
168 %}
169
170 %type <voidval> exp type_exp start variable
171 %type <tval> type typebase
172 %type <tvec> nonempty_typelist
173 /* %type <bval> block */
174
175 /* Fancy type parsing. */
176 %type <voidval> func_mod direct_abs_decl abs_decl
177 %type <tval> ptype
178
179 %token <typed_val> INT
180 %token <dval> FLOAT
181
182 /* Both NAME and TYPENAME tokens represent symbols in the input,
183 and both convey their data as strings.
184 But a TYPENAME is a string that happens to be defined as a typedef
185 or builtin type name (such as int or char)
186 and a NAME is any other symbol.
187 Contexts where this distinction is not important can use the
188 nonterminal "name", which matches either NAME or TYPENAME. */
189
190 %token <sval> STRING_LITERAL
191 %token <lval> BOOLEAN_LITERAL
192 %token <ssym> NAME
193 %token <tsym> TYPENAME
194 %type <sval> name
195 %type <ssym> name_not_typename
196
197 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
198 but which would parse as a valid number in the current input radix.
199 E.g. "c" when input_radix==16. Depending on the parse, it will be
200 turned into a name or into a number. */
201
202 %token <ssym> NAME_OR_INT
203
204 %token SIZEOF
205 %token ERROR
206
207 /* Special type cases, put in to allow the parser to distinguish different
208 legal basetypes. */
209 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
210 %token LOGICAL_S8_KEYWORD
211 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
212 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
213 %token BOOL_AND BOOL_OR BOOL_NOT
214 %token <lval> CHARACTER
215
216 %token <voidval> VARIABLE
217
218 %token <opcode> ASSIGN_MODIFY
219
220 %left ','
221 %left ABOVE_COMMA
222 %right '=' ASSIGN_MODIFY
223 %right '?'
224 %left BOOL_OR
225 %right BOOL_NOT
226 %left BOOL_AND
227 %left '|'
228 %left '^'
229 %left '&'
230 %left EQUAL NOTEQUAL
231 %left LESSTHAN GREATERTHAN LEQ GEQ
232 %left LSH RSH
233 %left '@'
234 %left '+' '-'
235 %left '*' '/'
236 %right STARSTAR
237 %right '%'
238 %right UNARY
239 %right '('
240
241 \f
242 %%
243
244 start : exp
245 | type_exp
246 ;
247
248 type_exp: type
249 { write_exp_elt_opcode (pstate, OP_TYPE);
250 write_exp_elt_type (pstate, $1);
251 write_exp_elt_opcode (pstate, OP_TYPE); }
252 ;
253
254 exp : '(' exp ')'
255 { }
256 ;
257
258 /* Expressions, not including the comma operator. */
259 exp : '*' exp %prec UNARY
260 { write_exp_elt_opcode (pstate, UNOP_IND); }
261 ;
262
263 exp : '&' exp %prec UNARY
264 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
265 ;
266
267 exp : '-' exp %prec UNARY
268 { write_exp_elt_opcode (pstate, UNOP_NEG); }
269 ;
270
271 exp : BOOL_NOT exp %prec UNARY
272 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
273 ;
274
275 exp : '~' exp %prec UNARY
276 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
277 ;
278
279 exp : SIZEOF exp %prec UNARY
280 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
281 ;
282
283 /* No more explicit array operators, we treat everything in F77 as
284 a function call. The disambiguation as to whether we are
285 doing a subscript operation or a function call is done
286 later in eval.c. */
287
288 exp : exp '('
289 { start_arglist (); }
290 arglist ')'
291 { write_exp_elt_opcode (pstate,
292 OP_F77_UNDETERMINED_ARGLIST);
293 write_exp_elt_longcst (pstate,
294 (LONGEST) end_arglist ());
295 write_exp_elt_opcode (pstate,
296 OP_F77_UNDETERMINED_ARGLIST); }
297 ;
298
299 arglist :
300 ;
301
302 arglist : exp
303 { arglist_len = 1; }
304 ;
305
306 arglist : subrange
307 { arglist_len = 1; }
308 ;
309
310 arglist : arglist ',' exp %prec ABOVE_COMMA
311 { arglist_len++; }
312 ;
313
314 /* There are four sorts of subrange types in F90. */
315
316 subrange: exp ':' exp %prec ABOVE_COMMA
317 { write_exp_elt_opcode (pstate, OP_F90_RANGE);
318 write_exp_elt_longcst (pstate, NONE_BOUND_DEFAULT);
319 write_exp_elt_opcode (pstate, OP_F90_RANGE); }
320 ;
321
322 subrange: exp ':' %prec ABOVE_COMMA
323 { write_exp_elt_opcode (pstate, OP_F90_RANGE);
324 write_exp_elt_longcst (pstate, HIGH_BOUND_DEFAULT);
325 write_exp_elt_opcode (pstate, OP_F90_RANGE); }
326 ;
327
328 subrange: ':' exp %prec ABOVE_COMMA
329 { write_exp_elt_opcode (pstate, OP_F90_RANGE);
330 write_exp_elt_longcst (pstate, LOW_BOUND_DEFAULT);
331 write_exp_elt_opcode (pstate, OP_F90_RANGE); }
332 ;
333
334 subrange: ':' %prec ABOVE_COMMA
335 { write_exp_elt_opcode (pstate, OP_F90_RANGE);
336 write_exp_elt_longcst (pstate, BOTH_BOUND_DEFAULT);
337 write_exp_elt_opcode (pstate, OP_F90_RANGE); }
338 ;
339
340 complexnum: exp ',' exp
341 { }
342 ;
343
344 exp : '(' complexnum ')'
345 { write_exp_elt_opcode (pstate, OP_COMPLEX);
346 write_exp_elt_type (pstate,
347 parse_f_type (pstate)
348 ->builtin_complex_s16);
349 write_exp_elt_opcode (pstate, OP_COMPLEX); }
350 ;
351
352 exp : '(' type ')' exp %prec UNARY
353 { write_exp_elt_opcode (pstate, UNOP_CAST);
354 write_exp_elt_type (pstate, $2);
355 write_exp_elt_opcode (pstate, UNOP_CAST); }
356 ;
357
358 exp : exp '%' name
359 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
360 write_exp_string (pstate, $3);
361 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
362 ;
363
364 /* Binary operators in order of decreasing precedence. */
365
366 exp : exp '@' exp
367 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
368 ;
369
370 exp : exp STARSTAR exp
371 { write_exp_elt_opcode (pstate, BINOP_EXP); }
372 ;
373
374 exp : exp '*' exp
375 { write_exp_elt_opcode (pstate, BINOP_MUL); }
376 ;
377
378 exp : exp '/' exp
379 { write_exp_elt_opcode (pstate, BINOP_DIV); }
380 ;
381
382 exp : exp '+' exp
383 { write_exp_elt_opcode (pstate, BINOP_ADD); }
384 ;
385
386 exp : exp '-' exp
387 { write_exp_elt_opcode (pstate, BINOP_SUB); }
388 ;
389
390 exp : exp LSH exp
391 { write_exp_elt_opcode (pstate, BINOP_LSH); }
392 ;
393
394 exp : exp RSH exp
395 { write_exp_elt_opcode (pstate, BINOP_RSH); }
396 ;
397
398 exp : exp EQUAL exp
399 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
400 ;
401
402 exp : exp NOTEQUAL exp
403 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
404 ;
405
406 exp : exp LEQ exp
407 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
408 ;
409
410 exp : exp GEQ exp
411 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
412 ;
413
414 exp : exp LESSTHAN exp
415 { write_exp_elt_opcode (pstate, BINOP_LESS); }
416 ;
417
418 exp : exp GREATERTHAN exp
419 { write_exp_elt_opcode (pstate, BINOP_GTR); }
420 ;
421
422 exp : exp '&' exp
423 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
424 ;
425
426 exp : exp '^' exp
427 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
428 ;
429
430 exp : exp '|' exp
431 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
432 ;
433
434 exp : exp BOOL_AND exp
435 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
436 ;
437
438
439 exp : exp BOOL_OR exp
440 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
441 ;
442
443 exp : exp '=' exp
444 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
445 ;
446
447 exp : exp ASSIGN_MODIFY exp
448 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
449 write_exp_elt_opcode (pstate, $2);
450 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
451 ;
452
453 exp : INT
454 { write_exp_elt_opcode (pstate, OP_LONG);
455 write_exp_elt_type (pstate, $1.type);
456 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
457 write_exp_elt_opcode (pstate, OP_LONG); }
458 ;
459
460 exp : NAME_OR_INT
461 { YYSTYPE val;
462 parse_number (pstate, $1.stoken.ptr,
463 $1.stoken.length, 0, &val);
464 write_exp_elt_opcode (pstate, OP_LONG);
465 write_exp_elt_type (pstate, val.typed_val.type);
466 write_exp_elt_longcst (pstate,
467 (LONGEST)val.typed_val.val);
468 write_exp_elt_opcode (pstate, OP_LONG); }
469 ;
470
471 exp : FLOAT
472 { write_exp_elt_opcode (pstate, OP_DOUBLE);
473 write_exp_elt_type (pstate,
474 parse_f_type (pstate)
475 ->builtin_real_s8);
476 write_exp_elt_dblcst (pstate, $1);
477 write_exp_elt_opcode (pstate, OP_DOUBLE); }
478 ;
479
480 exp : variable
481 ;
482
483 exp : VARIABLE
484 ;
485
486 exp : SIZEOF '(' type ')' %prec UNARY
487 { write_exp_elt_opcode (pstate, OP_LONG);
488 write_exp_elt_type (pstate,
489 parse_f_type (pstate)
490 ->builtin_integer);
491 CHECK_TYPEDEF ($3);
492 write_exp_elt_longcst (pstate,
493 (LONGEST) TYPE_LENGTH ($3));
494 write_exp_elt_opcode (pstate, OP_LONG); }
495 ;
496
497 exp : BOOLEAN_LITERAL
498 { write_exp_elt_opcode (pstate, OP_BOOL);
499 write_exp_elt_longcst (pstate, (LONGEST) $1);
500 write_exp_elt_opcode (pstate, OP_BOOL);
501 }
502 ;
503
504 exp : STRING_LITERAL
505 {
506 write_exp_elt_opcode (pstate, OP_STRING);
507 write_exp_string (pstate, $1);
508 write_exp_elt_opcode (pstate, OP_STRING);
509 }
510 ;
511
512 variable: name_not_typename
513 { struct symbol *sym = $1.sym;
514
515 if (sym)
516 {
517 if (symbol_read_needs_frame (sym))
518 {
519 if (innermost_block == 0
520 || contained_in (block_found,
521 innermost_block))
522 innermost_block = block_found;
523 }
524 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
525 /* We want to use the selected frame, not
526 another more inner frame which happens to
527 be in the same block. */
528 write_exp_elt_block (pstate, NULL);
529 write_exp_elt_sym (pstate, sym);
530 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
531 break;
532 }
533 else
534 {
535 struct bound_minimal_symbol msymbol;
536 char *arg = copy_name ($1.stoken);
537
538 msymbol =
539 lookup_bound_minimal_symbol (arg);
540 if (msymbol.minsym != NULL)
541 write_exp_msymbol (pstate, msymbol);
542 else if (!have_full_symbols () && !have_partial_symbols ())
543 error (_("No symbol table is loaded. Use the \"file\" command."));
544 else
545 error (_("No symbol \"%s\" in current context."),
546 copy_name ($1.stoken));
547 }
548 }
549 ;
550
551
552 type : ptype
553 ;
554
555 ptype : typebase
556 | typebase abs_decl
557 {
558 /* This is where the interesting stuff happens. */
559 int done = 0;
560 int array_size;
561 struct type *follow_type = $1;
562 struct type *range_type;
563
564 while (!done)
565 switch (pop_type ())
566 {
567 case tp_end:
568 done = 1;
569 break;
570 case tp_pointer:
571 follow_type = lookup_pointer_type (follow_type);
572 break;
573 case tp_reference:
574 follow_type = lookup_reference_type (follow_type);
575 break;
576 case tp_array:
577 array_size = pop_type_int ();
578 if (array_size != -1)
579 {
580 range_type =
581 create_static_range_type ((struct type *) NULL,
582 parse_f_type (pstate)
583 ->builtin_integer,
584 0, array_size - 1);
585 follow_type =
586 create_array_type ((struct type *) NULL,
587 follow_type, range_type);
588 }
589 else
590 follow_type = lookup_pointer_type (follow_type);
591 break;
592 case tp_function:
593 follow_type = lookup_function_type (follow_type);
594 break;
595 }
596 $$ = follow_type;
597 }
598 ;
599
600 abs_decl: '*'
601 { push_type (tp_pointer); $$ = 0; }
602 | '*' abs_decl
603 { push_type (tp_pointer); $$ = $2; }
604 | '&'
605 { push_type (tp_reference); $$ = 0; }
606 | '&' abs_decl
607 { push_type (tp_reference); $$ = $2; }
608 | direct_abs_decl
609 ;
610
611 direct_abs_decl: '(' abs_decl ')'
612 { $$ = $2; }
613 | direct_abs_decl func_mod
614 { push_type (tp_function); }
615 | func_mod
616 { push_type (tp_function); }
617 ;
618
619 func_mod: '(' ')'
620 { $$ = 0; }
621 | '(' nonempty_typelist ')'
622 { free ($2); $$ = 0; }
623 ;
624
625 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
626 : TYPENAME
627 { $$ = $1.type; }
628 | INT_KEYWORD
629 { $$ = parse_f_type (pstate)->builtin_integer; }
630 | INT_S2_KEYWORD
631 { $$ = parse_f_type (pstate)->builtin_integer_s2; }
632 | CHARACTER
633 { $$ = parse_f_type (pstate)->builtin_character; }
634 | LOGICAL_S8_KEYWORD
635 { $$ = parse_f_type (pstate)->builtin_logical_s8; }
636 | LOGICAL_KEYWORD
637 { $$ = parse_f_type (pstate)->builtin_logical; }
638 | LOGICAL_S2_KEYWORD
639 { $$ = parse_f_type (pstate)->builtin_logical_s2; }
640 | LOGICAL_S1_KEYWORD
641 { $$ = parse_f_type (pstate)->builtin_logical_s1; }
642 | REAL_KEYWORD
643 { $$ = parse_f_type (pstate)->builtin_real; }
644 | REAL_S8_KEYWORD
645 { $$ = parse_f_type (pstate)->builtin_real_s8; }
646 | REAL_S16_KEYWORD
647 { $$ = parse_f_type (pstate)->builtin_real_s16; }
648 | COMPLEX_S8_KEYWORD
649 { $$ = parse_f_type (pstate)->builtin_complex_s8; }
650 | COMPLEX_S16_KEYWORD
651 { $$ = parse_f_type (pstate)->builtin_complex_s16; }
652 | COMPLEX_S32_KEYWORD
653 { $$ = parse_f_type (pstate)->builtin_complex_s32; }
654 ;
655
656 nonempty_typelist
657 : type
658 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
659 $<ivec>$[0] = 1; /* Number of types in vector */
660 $$[1] = $1;
661 }
662 | nonempty_typelist ',' type
663 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
664 $$ = (struct type **) realloc ((char *) $1, len);
665 $$[$<ivec>$[0]] = $3;
666 }
667 ;
668
669 name : NAME
670 { $$ = $1.stoken; }
671 ;
672
673 name_not_typename : NAME
674 /* These would be useful if name_not_typename was useful, but it is just
675 a fake for "variable", so these cause reduce/reduce conflicts because
676 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
677 =exp) or just an exp. If name_not_typename was ever used in an lvalue
678 context where only a name could occur, this might be useful.
679 | NAME_OR_INT
680 */
681 ;
682
683 %%
684
685 /* Take care of parsing a number (anything that starts with a digit).
686 Set yylval and return the token type; update lexptr.
687 LEN is the number of characters in it. */
688
689 /*** Needs some error checking for the float case ***/
690
691 static int
692 parse_number (struct parser_state *par_state,
693 const char *p, int len, int parsed_float, YYSTYPE *putithere)
694 {
695 LONGEST n = 0;
696 LONGEST prevn = 0;
697 int c;
698 int base = input_radix;
699 int unsigned_p = 0;
700 int long_p = 0;
701 ULONGEST high_bit;
702 struct type *signed_type;
703 struct type *unsigned_type;
704
705 if (parsed_float)
706 {
707 /* It's a float since it contains a point or an exponent. */
708 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
709 char *tmp, *tmp2;
710
711 tmp = xstrdup (p);
712 for (tmp2 = tmp; *tmp2; ++tmp2)
713 if (*tmp2 == 'd' || *tmp2 == 'D')
714 *tmp2 = 'e';
715 putithere->dval = atof (tmp);
716 free (tmp);
717 return FLOAT;
718 }
719
720 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
721 if (p[0] == '0')
722 switch (p[1])
723 {
724 case 'x':
725 case 'X':
726 if (len >= 3)
727 {
728 p += 2;
729 base = 16;
730 len -= 2;
731 }
732 break;
733
734 case 't':
735 case 'T':
736 case 'd':
737 case 'D':
738 if (len >= 3)
739 {
740 p += 2;
741 base = 10;
742 len -= 2;
743 }
744 break;
745
746 default:
747 base = 8;
748 break;
749 }
750
751 while (len-- > 0)
752 {
753 c = *p++;
754 if (isupper (c))
755 c = tolower (c);
756 if (len == 0 && c == 'l')
757 long_p = 1;
758 else if (len == 0 && c == 'u')
759 unsigned_p = 1;
760 else
761 {
762 int i;
763 if (c >= '0' && c <= '9')
764 i = c - '0';
765 else if (c >= 'a' && c <= 'f')
766 i = c - 'a' + 10;
767 else
768 return ERROR; /* Char not a digit */
769 if (i >= base)
770 return ERROR; /* Invalid digit in this base */
771 n *= base;
772 n += i;
773 }
774 /* Portably test for overflow (only works for nonzero values, so make
775 a second check for zero). */
776 if ((prevn >= n) && n != 0)
777 unsigned_p=1; /* Try something unsigned */
778 /* If range checking enabled, portably test for unsigned overflow. */
779 if (RANGE_CHECK && n != 0)
780 {
781 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
782 range_error (_("Overflow on numeric constant."));
783 }
784 prevn = n;
785 }
786
787 /* If the number is too big to be an int, or it's got an l suffix
788 then it's a long. Work out if this has to be a long by
789 shifting right and seeing if anything remains, and the
790 target int size is different to the target long size.
791
792 In the expression below, we could have tested
793 (n >> gdbarch_int_bit (parse_gdbarch))
794 to see if it was zero,
795 but too many compilers warn about that, when ints and longs
796 are the same size. So we shift it twice, with fewer bits
797 each time, for the same result. */
798
799 if ((gdbarch_int_bit (parse_gdbarch (par_state))
800 != gdbarch_long_bit (parse_gdbarch (par_state))
801 && ((n >> 2)
802 >> (gdbarch_int_bit (parse_gdbarch (par_state))-2))) /* Avoid
803 shift warning */
804 || long_p)
805 {
806 high_bit = ((ULONGEST)1)
807 << (gdbarch_long_bit (parse_gdbarch (par_state))-1);
808 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
809 signed_type = parse_type (par_state)->builtin_long;
810 }
811 else
812 {
813 high_bit =
814 ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch (par_state)) - 1);
815 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
816 signed_type = parse_type (par_state)->builtin_int;
817 }
818
819 putithere->typed_val.val = n;
820
821 /* If the high bit of the worked out type is set then this number
822 has to be unsigned. */
823
824 if (unsigned_p || (n & high_bit))
825 putithere->typed_val.type = unsigned_type;
826 else
827 putithere->typed_val.type = signed_type;
828
829 return INT;
830 }
831
832 struct token
833 {
834 char *operator;
835 int token;
836 enum exp_opcode opcode;
837 };
838
839 static const struct token dot_ops[] =
840 {
841 { ".and.", BOOL_AND, BINOP_END },
842 { ".AND.", BOOL_AND, BINOP_END },
843 { ".or.", BOOL_OR, BINOP_END },
844 { ".OR.", BOOL_OR, BINOP_END },
845 { ".not.", BOOL_NOT, BINOP_END },
846 { ".NOT.", BOOL_NOT, BINOP_END },
847 { ".eq.", EQUAL, BINOP_END },
848 { ".EQ.", EQUAL, BINOP_END },
849 { ".eqv.", EQUAL, BINOP_END },
850 { ".NEQV.", NOTEQUAL, BINOP_END },
851 { ".neqv.", NOTEQUAL, BINOP_END },
852 { ".EQV.", EQUAL, BINOP_END },
853 { ".ne.", NOTEQUAL, BINOP_END },
854 { ".NE.", NOTEQUAL, BINOP_END },
855 { ".le.", LEQ, BINOP_END },
856 { ".LE.", LEQ, BINOP_END },
857 { ".ge.", GEQ, BINOP_END },
858 { ".GE.", GEQ, BINOP_END },
859 { ".gt.", GREATERTHAN, BINOP_END },
860 { ".GT.", GREATERTHAN, BINOP_END },
861 { ".lt.", LESSTHAN, BINOP_END },
862 { ".LT.", LESSTHAN, BINOP_END },
863 { NULL, 0, 0 }
864 };
865
866 struct f77_boolean_val
867 {
868 char *name;
869 int value;
870 };
871
872 static const struct f77_boolean_val boolean_values[] =
873 {
874 { ".true.", 1 },
875 { ".TRUE.", 1 },
876 { ".false.", 0 },
877 { ".FALSE.", 0 },
878 { NULL, 0 }
879 };
880
881 static const struct token f77_keywords[] =
882 {
883 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
884 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
885 { "character", CHARACTER, BINOP_END },
886 { "integer_2", INT_S2_KEYWORD, BINOP_END },
887 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
888 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
889 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
890 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
891 { "integer", INT_KEYWORD, BINOP_END },
892 { "logical", LOGICAL_KEYWORD, BINOP_END },
893 { "real_16", REAL_S16_KEYWORD, BINOP_END },
894 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
895 { "sizeof", SIZEOF, BINOP_END },
896 { "real_8", REAL_S8_KEYWORD, BINOP_END },
897 { "real", REAL_KEYWORD, BINOP_END },
898 { NULL, 0, 0 }
899 };
900
901 /* Implementation of a dynamically expandable buffer for processing input
902 characters acquired through lexptr and building a value to return in
903 yylval. Ripped off from ch-exp.y */
904
905 static char *tempbuf; /* Current buffer contents */
906 static int tempbufsize; /* Size of allocated buffer */
907 static int tempbufindex; /* Current index into buffer */
908
909 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
910
911 #define CHECKBUF(size) \
912 do { \
913 if (tempbufindex + (size) >= tempbufsize) \
914 { \
915 growbuf_by_size (size); \
916 } \
917 } while (0);
918
919
920 /* Grow the static temp buffer if necessary, including allocating the
921 first one on demand. */
922
923 static void
924 growbuf_by_size (int count)
925 {
926 int growby;
927
928 growby = max (count, GROWBY_MIN_SIZE);
929 tempbufsize += growby;
930 if (tempbuf == NULL)
931 tempbuf = (char *) malloc (tempbufsize);
932 else
933 tempbuf = (char *) realloc (tempbuf, tempbufsize);
934 }
935
936 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
937 string-literals.
938
939 Recognize a string literal. A string literal is a nonzero sequence
940 of characters enclosed in matching single quotes, except that
941 a single character inside single quotes is a character literal, which
942 we reject as a string literal. To embed the terminator character inside
943 a string, it is simply doubled (I.E. 'this''is''one''string') */
944
945 static int
946 match_string_literal (void)
947 {
948 const char *tokptr = lexptr;
949
950 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
951 {
952 CHECKBUF (1);
953 if (*tokptr == *lexptr)
954 {
955 if (*(tokptr + 1) == *lexptr)
956 tokptr++;
957 else
958 break;
959 }
960 tempbuf[tempbufindex++] = *tokptr;
961 }
962 if (*tokptr == '\0' /* no terminator */
963 || tempbufindex == 0) /* no string */
964 return 0;
965 else
966 {
967 tempbuf[tempbufindex] = '\0';
968 yylval.sval.ptr = tempbuf;
969 yylval.sval.length = tempbufindex;
970 lexptr = ++tokptr;
971 return STRING_LITERAL;
972 }
973 }
974
975 /* Read one token, getting characters through lexptr. */
976
977 static int
978 yylex (void)
979 {
980 int c;
981 int namelen;
982 unsigned int i,token;
983 const char *tokstart;
984
985 retry:
986
987 prev_lexptr = lexptr;
988
989 tokstart = lexptr;
990
991 /* First of all, let us make sure we are not dealing with the
992 special tokens .true. and .false. which evaluate to 1 and 0. */
993
994 if (*lexptr == '.')
995 {
996 for (i = 0; boolean_values[i].name != NULL; i++)
997 {
998 if (strncmp (tokstart, boolean_values[i].name,
999 strlen (boolean_values[i].name)) == 0)
1000 {
1001 lexptr += strlen (boolean_values[i].name);
1002 yylval.lval = boolean_values[i].value;
1003 return BOOLEAN_LITERAL;
1004 }
1005 }
1006 }
1007
1008 /* See if it is a special .foo. operator. */
1009
1010 for (i = 0; dot_ops[i].operator != NULL; i++)
1011 if (strncmp (tokstart, dot_ops[i].operator,
1012 strlen (dot_ops[i].operator)) == 0)
1013 {
1014 lexptr += strlen (dot_ops[i].operator);
1015 yylval.opcode = dot_ops[i].opcode;
1016 return dot_ops[i].token;
1017 }
1018
1019 /* See if it is an exponentiation operator. */
1020
1021 if (strncmp (tokstart, "**", 2) == 0)
1022 {
1023 lexptr += 2;
1024 yylval.opcode = BINOP_EXP;
1025 return STARSTAR;
1026 }
1027
1028 switch (c = *tokstart)
1029 {
1030 case 0:
1031 return 0;
1032
1033 case ' ':
1034 case '\t':
1035 case '\n':
1036 lexptr++;
1037 goto retry;
1038
1039 case '\'':
1040 token = match_string_literal ();
1041 if (token != 0)
1042 return (token);
1043 break;
1044
1045 case '(':
1046 paren_depth++;
1047 lexptr++;
1048 return c;
1049
1050 case ')':
1051 if (paren_depth == 0)
1052 return 0;
1053 paren_depth--;
1054 lexptr++;
1055 return c;
1056
1057 case ',':
1058 if (comma_terminates && paren_depth == 0)
1059 return 0;
1060 lexptr++;
1061 return c;
1062
1063 case '.':
1064 /* Might be a floating point number. */
1065 if (lexptr[1] < '0' || lexptr[1] > '9')
1066 goto symbol; /* Nope, must be a symbol. */
1067 /* FALL THRU into number case. */
1068
1069 case '0':
1070 case '1':
1071 case '2':
1072 case '3':
1073 case '4':
1074 case '5':
1075 case '6':
1076 case '7':
1077 case '8':
1078 case '9':
1079 {
1080 /* It's a number. */
1081 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1082 const char *p = tokstart;
1083 int hex = input_radix > 10;
1084
1085 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1086 {
1087 p += 2;
1088 hex = 1;
1089 }
1090 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1091 || p[1]=='d' || p[1]=='D'))
1092 {
1093 p += 2;
1094 hex = 0;
1095 }
1096
1097 for (;; ++p)
1098 {
1099 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1100 got_dot = got_e = 1;
1101 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1102 got_dot = got_d = 1;
1103 else if (!hex && !got_dot && *p == '.')
1104 got_dot = 1;
1105 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1106 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1107 && (*p == '-' || *p == '+'))
1108 /* This is the sign of the exponent, not the end of the
1109 number. */
1110 continue;
1111 /* We will take any letters or digits. parse_number will
1112 complain if past the radix, or if L or U are not final. */
1113 else if ((*p < '0' || *p > '9')
1114 && ((*p < 'a' || *p > 'z')
1115 && (*p < 'A' || *p > 'Z')))
1116 break;
1117 }
1118 toktype = parse_number (pstate, tokstart, p - tokstart,
1119 got_dot|got_e|got_d,
1120 &yylval);
1121 if (toktype == ERROR)
1122 {
1123 char *err_copy = (char *) alloca (p - tokstart + 1);
1124
1125 memcpy (err_copy, tokstart, p - tokstart);
1126 err_copy[p - tokstart] = 0;
1127 error (_("Invalid number \"%s\"."), err_copy);
1128 }
1129 lexptr = p;
1130 return toktype;
1131 }
1132
1133 case '+':
1134 case '-':
1135 case '*':
1136 case '/':
1137 case '%':
1138 case '|':
1139 case '&':
1140 case '^':
1141 case '~':
1142 case '!':
1143 case '@':
1144 case '<':
1145 case '>':
1146 case '[':
1147 case ']':
1148 case '?':
1149 case ':':
1150 case '=':
1151 case '{':
1152 case '}':
1153 symbol:
1154 lexptr++;
1155 return c;
1156 }
1157
1158 if (!(c == '_' || c == '$' || c ==':'
1159 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1160 /* We must have come across a bad character (e.g. ';'). */
1161 error (_("Invalid character '%c' in expression."), c);
1162
1163 namelen = 0;
1164 for (c = tokstart[namelen];
1165 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1166 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1167 c = tokstart[++namelen]);
1168
1169 /* The token "if" terminates the expression and is NOT
1170 removed from the input stream. */
1171
1172 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1173 return 0;
1174
1175 lexptr += namelen;
1176
1177 /* Catch specific keywords. */
1178
1179 for (i = 0; f77_keywords[i].operator != NULL; i++)
1180 if (strlen (f77_keywords[i].operator) == namelen
1181 && strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1182 {
1183 /* lexptr += strlen(f77_keywords[i].operator); */
1184 yylval.opcode = f77_keywords[i].opcode;
1185 return f77_keywords[i].token;
1186 }
1187
1188 yylval.sval.ptr = tokstart;
1189 yylval.sval.length = namelen;
1190
1191 if (*tokstart == '$')
1192 {
1193 write_dollar_variable (pstate, yylval.sval);
1194 return VARIABLE;
1195 }
1196
1197 /* Use token-type TYPENAME for symbols that happen to be defined
1198 currently as names of types; NAME for other symbols.
1199 The caller is not constrained to care about the distinction. */
1200 {
1201 char *tmp = copy_name (yylval.sval);
1202 struct symbol *sym;
1203 struct field_of_this_result is_a_field_of_this;
1204 enum domain_enum_tag lookup_domains[] =
1205 {
1206 STRUCT_DOMAIN,
1207 VAR_DOMAIN,
1208 MODULE_DOMAIN
1209 };
1210 int i;
1211 int hextype;
1212
1213 for (i = 0; i < ARRAY_SIZE (lookup_domains); ++i)
1214 {
1215 /* Initialize this in case we *don't* use it in this call; that
1216 way we can refer to it unconditionally below. */
1217 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
1218
1219 sym = lookup_symbol (tmp, expression_context_block,
1220 lookup_domains[i],
1221 parse_language (pstate)->la_language
1222 == language_cplus ? &is_a_field_of_this : NULL);
1223 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1224 {
1225 yylval.tsym.type = SYMBOL_TYPE (sym);
1226 return TYPENAME;
1227 }
1228
1229 if (sym)
1230 break;
1231 }
1232
1233 yylval.tsym.type
1234 = language_lookup_primitive_type_by_name (parse_language (pstate),
1235 parse_gdbarch (pstate), tmp);
1236 if (yylval.tsym.type != NULL)
1237 return TYPENAME;
1238
1239 /* Input names that aren't symbols but ARE valid hex numbers,
1240 when the input radix permits them, can be names or numbers
1241 depending on the parse. Note we support radixes > 16 here. */
1242 if (!sym
1243 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1244 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1245 {
1246 YYSTYPE newlval; /* Its value is ignored. */
1247 hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
1248 if (hextype == INT)
1249 {
1250 yylval.ssym.sym = sym;
1251 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1252 return NAME_OR_INT;
1253 }
1254 }
1255
1256 /* Any other kind of symbol */
1257 yylval.ssym.sym = sym;
1258 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1259 return NAME;
1260 }
1261 }
1262
1263 int
1264 f_parse (struct parser_state *par_state)
1265 {
1266 int result;
1267 struct cleanup *c = make_cleanup_clear_parser_state (&pstate);
1268
1269 /* Setting up the parser state. */
1270 gdb_assert (par_state != NULL);
1271 pstate = par_state;
1272
1273 result = yyparse ();
1274 do_cleanups (c);
1275 return result;
1276 }
1277
1278 void
1279 yyerror (char *msg)
1280 {
1281 if (prev_lexptr)
1282 lexptr = prev_lexptr;
1283
1284 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1285 }
This page took 0.074598 seconds and 4 git commands to generate.