* config/tc-xtensa.c (xg_assembly_relax): Increment steps_taken for
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 /* This was blantantly ripped off the C expression parser, please
26 be aware of that as you look at its basic structure -FMB */
27
28 /* Parse a F77 expression from text in a string,
29 and return the result as a struct expression pointer.
30 That structure contains arithmetic operations in reverse polish,
31 with constants represented by operations that are followed by special data.
32 See expression.h for the details of the format.
33 What is important here is that it can be built up sequentially
34 during the process of parsing; the lower levels of the tree always
35 come first in the result.
36
37 Note that malloc's and realloc's in this file are transformed to
38 xmalloc and xrealloc respectively by the same sed command in the
39 makefile that remaps any other malloc/realloc inserted by the parser
40 generator. Doing this with #defines and trying to control the interaction
41 with include files (<malloc.h> and <stdlib.h> for example) just became
42 too messy, particularly when such includes can be inserted at random
43 times by the parser generator. */
44
45 %{
46
47 #include "defs.h"
48 #include "gdb_string.h"
49 #include "expression.h"
50 #include "value.h"
51 #include "parser-defs.h"
52 #include "language.h"
53 #include "f-lang.h"
54 #include "bfd.h" /* Required by objfiles.h. */
55 #include "symfile.h" /* Required by objfiles.h. */
56 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
57 #include "block.h"
58 #include <ctype.h>
59
60 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
61 as well as gratuitiously global symbol names, so we can have multiple
62 yacc generated parsers in gdb. Note that these are only the variables
63 produced by yacc. If other parser generators (bison, byacc, etc) produce
64 additional global names that conflict at link time, then those parser
65 generators need to be fixed instead of adding those names to this list. */
66
67 #define yymaxdepth f_maxdepth
68 #define yyparse f_parse
69 #define yylex f_lex
70 #define yyerror f_error
71 #define yylval f_lval
72 #define yychar f_char
73 #define yydebug f_debug
74 #define yypact f_pact
75 #define yyr1 f_r1
76 #define yyr2 f_r2
77 #define yydef f_def
78 #define yychk f_chk
79 #define yypgo f_pgo
80 #define yyact f_act
81 #define yyexca f_exca
82 #define yyerrflag f_errflag
83 #define yynerrs f_nerrs
84 #define yyps f_ps
85 #define yypv f_pv
86 #define yys f_s
87 #define yy_yys f_yys
88 #define yystate f_state
89 #define yytmp f_tmp
90 #define yyv f_v
91 #define yy_yyv f_yyv
92 #define yyval f_val
93 #define yylloc f_lloc
94 #define yyreds f_reds /* With YYDEBUG defined */
95 #define yytoks f_toks /* With YYDEBUG defined */
96 #define yyname f_name /* With YYDEBUG defined */
97 #define yyrule f_rule /* With YYDEBUG defined */
98 #define yylhs f_yylhs
99 #define yylen f_yylen
100 #define yydefred f_yydefred
101 #define yydgoto f_yydgoto
102 #define yysindex f_yysindex
103 #define yyrindex f_yyrindex
104 #define yygindex f_yygindex
105 #define yytable f_yytable
106 #define yycheck f_yycheck
107
108 #ifndef YYDEBUG
109 #define YYDEBUG 1 /* Default to yydebug support */
110 #endif
111
112 #define YYFPRINTF parser_fprintf
113
114 int yyparse (void);
115
116 static int yylex (void);
117
118 void yyerror (char *);
119
120 static void growbuf_by_size (int);
121
122 static int match_string_literal (void);
123
124 %}
125
126 /* Although the yacc "value" of an expression is not used,
127 since the result is stored in the structure being created,
128 other node types do have values. */
129
130 %union
131 {
132 LONGEST lval;
133 struct {
134 LONGEST val;
135 struct type *type;
136 } typed_val;
137 DOUBLEST dval;
138 struct symbol *sym;
139 struct type *tval;
140 struct stoken sval;
141 struct ttype tsym;
142 struct symtoken ssym;
143 int voidval;
144 struct block *bval;
145 enum exp_opcode opcode;
146 struct internalvar *ivar;
147
148 struct type **tvec;
149 int *ivec;
150 }
151
152 %{
153 /* YYSTYPE gets defined by %union */
154 static int parse_number (char *, int, int, YYSTYPE *);
155 %}
156
157 %type <voidval> exp type_exp start variable
158 %type <tval> type typebase
159 %type <tvec> nonempty_typelist
160 /* %type <bval> block */
161
162 /* Fancy type parsing. */
163 %type <voidval> func_mod direct_abs_decl abs_decl
164 %type <tval> ptype
165
166 %token <typed_val> INT
167 %token <dval> FLOAT
168
169 /* Both NAME and TYPENAME tokens represent symbols in the input,
170 and both convey their data as strings.
171 But a TYPENAME is a string that happens to be defined as a typedef
172 or builtin type name (such as int or char)
173 and a NAME is any other symbol.
174 Contexts where this distinction is not important can use the
175 nonterminal "name", which matches either NAME or TYPENAME. */
176
177 %token <sval> STRING_LITERAL
178 %token <lval> BOOLEAN_LITERAL
179 %token <ssym> NAME
180 %token <tsym> TYPENAME
181 %type <ssym> name_not_typename
182
183 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
184 but which would parse as a valid number in the current input radix.
185 E.g. "c" when input_radix==16. Depending on the parse, it will be
186 turned into a name or into a number. */
187
188 %token <ssym> NAME_OR_INT
189
190 %token SIZEOF
191 %token ERROR
192
193 /* Special type cases, put in to allow the parser to distinguish different
194 legal basetypes. */
195 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
196 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
197 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
198 %token BOOL_AND BOOL_OR BOOL_NOT
199 %token <lval> CHARACTER
200
201 %token <voidval> VARIABLE
202
203 %token <opcode> ASSIGN_MODIFY
204
205 %left ','
206 %left ABOVE_COMMA
207 %right '=' ASSIGN_MODIFY
208 %right '?'
209 %left BOOL_OR
210 %right BOOL_NOT
211 %left BOOL_AND
212 %left '|'
213 %left '^'
214 %left '&'
215 %left EQUAL NOTEQUAL
216 %left LESSTHAN GREATERTHAN LEQ GEQ
217 %left LSH RSH
218 %left '@'
219 %left '+' '-'
220 %left '*' '/' '%'
221 %right STARSTAR
222 %right UNARY
223 %right '('
224
225 \f
226 %%
227
228 start : exp
229 | type_exp
230 ;
231
232 type_exp: type
233 { write_exp_elt_opcode(OP_TYPE);
234 write_exp_elt_type($1);
235 write_exp_elt_opcode(OP_TYPE); }
236 ;
237
238 exp : '(' exp ')'
239 { }
240 ;
241
242 /* Expressions, not including the comma operator. */
243 exp : '*' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_IND); }
245 ;
246
247 exp : '&' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_ADDR); }
249 ;
250
251 exp : '-' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_NEG); }
253 ;
254
255 exp : BOOL_NOT exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
257 ;
258
259 exp : '~' exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
261 ;
262
263 exp : SIZEOF exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_SIZEOF); }
265 ;
266
267 /* No more explicit array operators, we treat everything in F77 as
268 a function call. The disambiguation as to whether we are
269 doing a subscript operation or a function call is done
270 later in eval.c. */
271
272 exp : exp '('
273 { start_arglist (); }
274 arglist ')'
275 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
276 write_exp_elt_longcst ((LONGEST) end_arglist ());
277 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
278 ;
279
280 arglist :
281 ;
282
283 arglist : exp
284 { arglist_len = 1; }
285 ;
286
287 arglist : subrange
288 { arglist_len = 1; }
289 ;
290
291 arglist : arglist ',' exp %prec ABOVE_COMMA
292 { arglist_len++; }
293 ;
294
295 /* There are four sorts of subrange types in F90. */
296
297 subrange: exp ':' exp %prec ABOVE_COMMA
298 { write_exp_elt_opcode (OP_F90_RANGE);
299 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
300 write_exp_elt_opcode (OP_F90_RANGE); }
301 ;
302
303 subrange: exp ':' %prec ABOVE_COMMA
304 { write_exp_elt_opcode (OP_F90_RANGE);
305 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
306 write_exp_elt_opcode (OP_F90_RANGE); }
307 ;
308
309 subrange: ':' exp %prec ABOVE_COMMA
310 { write_exp_elt_opcode (OP_F90_RANGE);
311 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
312 write_exp_elt_opcode (OP_F90_RANGE); }
313 ;
314
315 subrange: ':' %prec ABOVE_COMMA
316 { write_exp_elt_opcode (OP_F90_RANGE);
317 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
318 write_exp_elt_opcode (OP_F90_RANGE); }
319 ;
320
321 complexnum: exp ',' exp
322 { }
323 ;
324
325 exp : '(' complexnum ')'
326 { write_exp_elt_opcode(OP_COMPLEX); }
327 ;
328
329 exp : '(' type ')' exp %prec UNARY
330 { write_exp_elt_opcode (UNOP_CAST);
331 write_exp_elt_type ($2);
332 write_exp_elt_opcode (UNOP_CAST); }
333 ;
334
335 /* Binary operators in order of decreasing precedence. */
336
337 exp : exp '@' exp
338 { write_exp_elt_opcode (BINOP_REPEAT); }
339 ;
340
341 exp : exp STARSTAR exp
342 { write_exp_elt_opcode (BINOP_EXP); }
343 ;
344
345 exp : exp '*' exp
346 { write_exp_elt_opcode (BINOP_MUL); }
347 ;
348
349 exp : exp '/' exp
350 { write_exp_elt_opcode (BINOP_DIV); }
351 ;
352
353 exp : exp '%' exp
354 { write_exp_elt_opcode (BINOP_REM); }
355 ;
356
357 exp : exp '+' exp
358 { write_exp_elt_opcode (BINOP_ADD); }
359 ;
360
361 exp : exp '-' exp
362 { write_exp_elt_opcode (BINOP_SUB); }
363 ;
364
365 exp : exp LSH exp
366 { write_exp_elt_opcode (BINOP_LSH); }
367 ;
368
369 exp : exp RSH exp
370 { write_exp_elt_opcode (BINOP_RSH); }
371 ;
372
373 exp : exp EQUAL exp
374 { write_exp_elt_opcode (BINOP_EQUAL); }
375 ;
376
377 exp : exp NOTEQUAL exp
378 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
379 ;
380
381 exp : exp LEQ exp
382 { write_exp_elt_opcode (BINOP_LEQ); }
383 ;
384
385 exp : exp GEQ exp
386 { write_exp_elt_opcode (BINOP_GEQ); }
387 ;
388
389 exp : exp LESSTHAN exp
390 { write_exp_elt_opcode (BINOP_LESS); }
391 ;
392
393 exp : exp GREATERTHAN exp
394 { write_exp_elt_opcode (BINOP_GTR); }
395 ;
396
397 exp : exp '&' exp
398 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
399 ;
400
401 exp : exp '^' exp
402 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
403 ;
404
405 exp : exp '|' exp
406 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
407 ;
408
409 exp : exp BOOL_AND exp
410 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
411 ;
412
413
414 exp : exp BOOL_OR exp
415 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
416 ;
417
418 exp : exp '=' exp
419 { write_exp_elt_opcode (BINOP_ASSIGN); }
420 ;
421
422 exp : exp ASSIGN_MODIFY exp
423 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
424 write_exp_elt_opcode ($2);
425 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
426 ;
427
428 exp : INT
429 { write_exp_elt_opcode (OP_LONG);
430 write_exp_elt_type ($1.type);
431 write_exp_elt_longcst ((LONGEST)($1.val));
432 write_exp_elt_opcode (OP_LONG); }
433 ;
434
435 exp : NAME_OR_INT
436 { YYSTYPE val;
437 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
438 write_exp_elt_opcode (OP_LONG);
439 write_exp_elt_type (val.typed_val.type);
440 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
441 write_exp_elt_opcode (OP_LONG); }
442 ;
443
444 exp : FLOAT
445 { write_exp_elt_opcode (OP_DOUBLE);
446 write_exp_elt_type (builtin_type_f_real_s8);
447 write_exp_elt_dblcst ($1);
448 write_exp_elt_opcode (OP_DOUBLE); }
449 ;
450
451 exp : variable
452 ;
453
454 exp : VARIABLE
455 ;
456
457 exp : SIZEOF '(' type ')' %prec UNARY
458 { write_exp_elt_opcode (OP_LONG);
459 write_exp_elt_type (builtin_type_f_integer);
460 CHECK_TYPEDEF ($3);
461 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
462 write_exp_elt_opcode (OP_LONG); }
463 ;
464
465 exp : BOOLEAN_LITERAL
466 { write_exp_elt_opcode (OP_BOOL);
467 write_exp_elt_longcst ((LONGEST) $1);
468 write_exp_elt_opcode (OP_BOOL);
469 }
470 ;
471
472 exp : STRING_LITERAL
473 {
474 write_exp_elt_opcode (OP_STRING);
475 write_exp_string ($1);
476 write_exp_elt_opcode (OP_STRING);
477 }
478 ;
479
480 variable: name_not_typename
481 { struct symbol *sym = $1.sym;
482
483 if (sym)
484 {
485 if (symbol_read_needs_frame (sym))
486 {
487 if (innermost_block == 0 ||
488 contained_in (block_found,
489 innermost_block))
490 innermost_block = block_found;
491 }
492 write_exp_elt_opcode (OP_VAR_VALUE);
493 /* We want to use the selected frame, not
494 another more inner frame which happens to
495 be in the same block. */
496 write_exp_elt_block (NULL);
497 write_exp_elt_sym (sym);
498 write_exp_elt_opcode (OP_VAR_VALUE);
499 break;
500 }
501 else
502 {
503 struct minimal_symbol *msymbol;
504 char *arg = copy_name ($1.stoken);
505
506 msymbol =
507 lookup_minimal_symbol (arg, NULL, NULL);
508 if (msymbol != NULL)
509 {
510 write_exp_msymbol (msymbol,
511 lookup_function_type (builtin_type_int),
512 builtin_type_int);
513 }
514 else if (!have_full_symbols () && !have_partial_symbols ())
515 error ("No symbol table is loaded. Use the \"file\" command.");
516 else
517 error ("No symbol \"%s\" in current context.",
518 copy_name ($1.stoken));
519 }
520 }
521 ;
522
523
524 type : ptype
525 ;
526
527 ptype : typebase
528 | typebase abs_decl
529 {
530 /* This is where the interesting stuff happens. */
531 int done = 0;
532 int array_size;
533 struct type *follow_type = $1;
534 struct type *range_type;
535
536 while (!done)
537 switch (pop_type ())
538 {
539 case tp_end:
540 done = 1;
541 break;
542 case tp_pointer:
543 follow_type = lookup_pointer_type (follow_type);
544 break;
545 case tp_reference:
546 follow_type = lookup_reference_type (follow_type);
547 break;
548 case tp_array:
549 array_size = pop_type_int ();
550 if (array_size != -1)
551 {
552 range_type =
553 create_range_type ((struct type *) NULL,
554 builtin_type_f_integer, 0,
555 array_size - 1);
556 follow_type =
557 create_array_type ((struct type *) NULL,
558 follow_type, range_type);
559 }
560 else
561 follow_type = lookup_pointer_type (follow_type);
562 break;
563 case tp_function:
564 follow_type = lookup_function_type (follow_type);
565 break;
566 }
567 $$ = follow_type;
568 }
569 ;
570
571 abs_decl: '*'
572 { push_type (tp_pointer); $$ = 0; }
573 | '*' abs_decl
574 { push_type (tp_pointer); $$ = $2; }
575 | '&'
576 { push_type (tp_reference); $$ = 0; }
577 | '&' abs_decl
578 { push_type (tp_reference); $$ = $2; }
579 | direct_abs_decl
580 ;
581
582 direct_abs_decl: '(' abs_decl ')'
583 { $$ = $2; }
584 | direct_abs_decl func_mod
585 { push_type (tp_function); }
586 | func_mod
587 { push_type (tp_function); }
588 ;
589
590 func_mod: '(' ')'
591 { $$ = 0; }
592 | '(' nonempty_typelist ')'
593 { free ($2); $$ = 0; }
594 ;
595
596 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
597 : TYPENAME
598 { $$ = $1.type; }
599 | INT_KEYWORD
600 { $$ = builtin_type_f_integer; }
601 | INT_S2_KEYWORD
602 { $$ = builtin_type_f_integer_s2; }
603 | CHARACTER
604 { $$ = builtin_type_f_character; }
605 | LOGICAL_KEYWORD
606 { $$ = builtin_type_f_logical;}
607 | LOGICAL_S2_KEYWORD
608 { $$ = builtin_type_f_logical_s2;}
609 | LOGICAL_S1_KEYWORD
610 { $$ = builtin_type_f_logical_s1;}
611 | REAL_KEYWORD
612 { $$ = builtin_type_f_real;}
613 | REAL_S8_KEYWORD
614 { $$ = builtin_type_f_real_s8;}
615 | REAL_S16_KEYWORD
616 { $$ = builtin_type_f_real_s16;}
617 | COMPLEX_S8_KEYWORD
618 { $$ = builtin_type_f_complex_s8;}
619 | COMPLEX_S16_KEYWORD
620 { $$ = builtin_type_f_complex_s16;}
621 | COMPLEX_S32_KEYWORD
622 { $$ = builtin_type_f_complex_s32;}
623 ;
624
625 nonempty_typelist
626 : type
627 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
628 $<ivec>$[0] = 1; /* Number of types in vector */
629 $$[1] = $1;
630 }
631 | nonempty_typelist ',' type
632 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
633 $$ = (struct type **) realloc ((char *) $1, len);
634 $$[$<ivec>$[0]] = $3;
635 }
636 ;
637
638 name_not_typename : NAME
639 /* These would be useful if name_not_typename was useful, but it is just
640 a fake for "variable", so these cause reduce/reduce conflicts because
641 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
642 =exp) or just an exp. If name_not_typename was ever used in an lvalue
643 context where only a name could occur, this might be useful.
644 | NAME_OR_INT
645 */
646 ;
647
648 %%
649
650 /* Take care of parsing a number (anything that starts with a digit).
651 Set yylval and return the token type; update lexptr.
652 LEN is the number of characters in it. */
653
654 /*** Needs some error checking for the float case ***/
655
656 static int
657 parse_number (p, len, parsed_float, putithere)
658 char *p;
659 int len;
660 int parsed_float;
661 YYSTYPE *putithere;
662 {
663 LONGEST n = 0;
664 LONGEST prevn = 0;
665 int c;
666 int base = input_radix;
667 int unsigned_p = 0;
668 int long_p = 0;
669 ULONGEST high_bit;
670 struct type *signed_type;
671 struct type *unsigned_type;
672
673 if (parsed_float)
674 {
675 /* It's a float since it contains a point or an exponent. */
676 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
677 char *tmp, *tmp2;
678
679 tmp = xstrdup (p);
680 for (tmp2 = tmp; *tmp2; ++tmp2)
681 if (*tmp2 == 'd' || *tmp2 == 'D')
682 *tmp2 = 'e';
683 putithere->dval = atof (tmp);
684 free (tmp);
685 return FLOAT;
686 }
687
688 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
689 if (p[0] == '0')
690 switch (p[1])
691 {
692 case 'x':
693 case 'X':
694 if (len >= 3)
695 {
696 p += 2;
697 base = 16;
698 len -= 2;
699 }
700 break;
701
702 case 't':
703 case 'T':
704 case 'd':
705 case 'D':
706 if (len >= 3)
707 {
708 p += 2;
709 base = 10;
710 len -= 2;
711 }
712 break;
713
714 default:
715 base = 8;
716 break;
717 }
718
719 while (len-- > 0)
720 {
721 c = *p++;
722 if (isupper (c))
723 c = tolower (c);
724 if (len == 0 && c == 'l')
725 long_p = 1;
726 else if (len == 0 && c == 'u')
727 unsigned_p = 1;
728 else
729 {
730 int i;
731 if (c >= '0' && c <= '9')
732 i = c - '0';
733 else if (c >= 'a' && c <= 'f')
734 i = c - 'a' + 10;
735 else
736 return ERROR; /* Char not a digit */
737 if (i >= base)
738 return ERROR; /* Invalid digit in this base */
739 n *= base;
740 n += i;
741 }
742 /* Portably test for overflow (only works for nonzero values, so make
743 a second check for zero). */
744 if ((prevn >= n) && n != 0)
745 unsigned_p=1; /* Try something unsigned */
746 /* If range checking enabled, portably test for unsigned overflow. */
747 if (RANGE_CHECK && n != 0)
748 {
749 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
750 range_error("Overflow on numeric constant.");
751 }
752 prevn = n;
753 }
754
755 /* If the number is too big to be an int, or it's got an l suffix
756 then it's a long. Work out if this has to be a long by
757 shifting right and and seeing if anything remains, and the
758 target int size is different to the target long size.
759
760 In the expression below, we could have tested
761 (n >> TARGET_INT_BIT)
762 to see if it was zero,
763 but too many compilers warn about that, when ints and longs
764 are the same size. So we shift it twice, with fewer bits
765 each time, for the same result. */
766
767 if ((TARGET_INT_BIT != TARGET_LONG_BIT
768 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
769 || long_p)
770 {
771 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
772 unsigned_type = builtin_type_unsigned_long;
773 signed_type = builtin_type_long;
774 }
775 else
776 {
777 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
778 unsigned_type = builtin_type_unsigned_int;
779 signed_type = builtin_type_int;
780 }
781
782 putithere->typed_val.val = n;
783
784 /* If the high bit of the worked out type is set then this number
785 has to be unsigned. */
786
787 if (unsigned_p || (n & high_bit))
788 putithere->typed_val.type = unsigned_type;
789 else
790 putithere->typed_val.type = signed_type;
791
792 return INT;
793 }
794
795 struct token
796 {
797 char *operator;
798 int token;
799 enum exp_opcode opcode;
800 };
801
802 static const struct token dot_ops[] =
803 {
804 { ".and.", BOOL_AND, BINOP_END },
805 { ".AND.", BOOL_AND, BINOP_END },
806 { ".or.", BOOL_OR, BINOP_END },
807 { ".OR.", BOOL_OR, BINOP_END },
808 { ".not.", BOOL_NOT, BINOP_END },
809 { ".NOT.", BOOL_NOT, BINOP_END },
810 { ".eq.", EQUAL, BINOP_END },
811 { ".EQ.", EQUAL, BINOP_END },
812 { ".eqv.", EQUAL, BINOP_END },
813 { ".NEQV.", NOTEQUAL, BINOP_END },
814 { ".neqv.", NOTEQUAL, BINOP_END },
815 { ".EQV.", EQUAL, BINOP_END },
816 { ".ne.", NOTEQUAL, BINOP_END },
817 { ".NE.", NOTEQUAL, BINOP_END },
818 { ".le.", LEQ, BINOP_END },
819 { ".LE.", LEQ, BINOP_END },
820 { ".ge.", GEQ, BINOP_END },
821 { ".GE.", GEQ, BINOP_END },
822 { ".gt.", GREATERTHAN, BINOP_END },
823 { ".GT.", GREATERTHAN, BINOP_END },
824 { ".lt.", LESSTHAN, BINOP_END },
825 { ".LT.", LESSTHAN, BINOP_END },
826 { NULL, 0, 0 }
827 };
828
829 struct f77_boolean_val
830 {
831 char *name;
832 int value;
833 };
834
835 static const struct f77_boolean_val boolean_values[] =
836 {
837 { ".true.", 1 },
838 { ".TRUE.", 1 },
839 { ".false.", 0 },
840 { ".FALSE.", 0 },
841 { NULL, 0 }
842 };
843
844 static const struct token f77_keywords[] =
845 {
846 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
847 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
848 { "character", CHARACTER, BINOP_END },
849 { "integer_2", INT_S2_KEYWORD, BINOP_END },
850 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
851 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
852 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
853 { "integer", INT_KEYWORD, BINOP_END },
854 { "logical", LOGICAL_KEYWORD, BINOP_END },
855 { "real_16", REAL_S16_KEYWORD, BINOP_END },
856 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
857 { "sizeof", SIZEOF, BINOP_END },
858 { "real_8", REAL_S8_KEYWORD, BINOP_END },
859 { "real", REAL_KEYWORD, BINOP_END },
860 { NULL, 0, 0 }
861 };
862
863 /* Implementation of a dynamically expandable buffer for processing input
864 characters acquired through lexptr and building a value to return in
865 yylval. Ripped off from ch-exp.y */
866
867 static char *tempbuf; /* Current buffer contents */
868 static int tempbufsize; /* Size of allocated buffer */
869 static int tempbufindex; /* Current index into buffer */
870
871 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
872
873 #define CHECKBUF(size) \
874 do { \
875 if (tempbufindex + (size) >= tempbufsize) \
876 { \
877 growbuf_by_size (size); \
878 } \
879 } while (0);
880
881
882 /* Grow the static temp buffer if necessary, including allocating the first one
883 on demand. */
884
885 static void
886 growbuf_by_size (count)
887 int count;
888 {
889 int growby;
890
891 growby = max (count, GROWBY_MIN_SIZE);
892 tempbufsize += growby;
893 if (tempbuf == NULL)
894 tempbuf = (char *) malloc (tempbufsize);
895 else
896 tempbuf = (char *) realloc (tempbuf, tempbufsize);
897 }
898
899 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
900 string-literals.
901
902 Recognize a string literal. A string literal is a nonzero sequence
903 of characters enclosed in matching single quotes, except that
904 a single character inside single quotes is a character literal, which
905 we reject as a string literal. To embed the terminator character inside
906 a string, it is simply doubled (I.E. 'this''is''one''string') */
907
908 static int
909 match_string_literal ()
910 {
911 char *tokptr = lexptr;
912
913 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
914 {
915 CHECKBUF (1);
916 if (*tokptr == *lexptr)
917 {
918 if (*(tokptr + 1) == *lexptr)
919 tokptr++;
920 else
921 break;
922 }
923 tempbuf[tempbufindex++] = *tokptr;
924 }
925 if (*tokptr == '\0' /* no terminator */
926 || tempbufindex == 0) /* no string */
927 return 0;
928 else
929 {
930 tempbuf[tempbufindex] = '\0';
931 yylval.sval.ptr = tempbuf;
932 yylval.sval.length = tempbufindex;
933 lexptr = ++tokptr;
934 return STRING_LITERAL;
935 }
936 }
937
938 /* Read one token, getting characters through lexptr. */
939
940 static int
941 yylex ()
942 {
943 int c;
944 int namelen;
945 unsigned int i,token;
946 char *tokstart;
947
948 retry:
949
950 prev_lexptr = lexptr;
951
952 tokstart = lexptr;
953
954 /* First of all, let us make sure we are not dealing with the
955 special tokens .true. and .false. which evaluate to 1 and 0. */
956
957 if (*lexptr == '.')
958 {
959 for (i = 0; boolean_values[i].name != NULL; i++)
960 {
961 if (strncmp (tokstart, boolean_values[i].name,
962 strlen (boolean_values[i].name)) == 0)
963 {
964 lexptr += strlen (boolean_values[i].name);
965 yylval.lval = boolean_values[i].value;
966 return BOOLEAN_LITERAL;
967 }
968 }
969 }
970
971 /* See if it is a special .foo. operator. */
972
973 for (i = 0; dot_ops[i].operator != NULL; i++)
974 if (strncmp (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)) == 0)
975 {
976 lexptr += strlen (dot_ops[i].operator);
977 yylval.opcode = dot_ops[i].opcode;
978 return dot_ops[i].token;
979 }
980
981 /* See if it is an exponentiation operator. */
982
983 if (strncmp (tokstart, "**", 2) == 0)
984 {
985 lexptr += 2;
986 yylval.opcode = BINOP_EXP;
987 return STARSTAR;
988 }
989
990 switch (c = *tokstart)
991 {
992 case 0:
993 return 0;
994
995 case ' ':
996 case '\t':
997 case '\n':
998 lexptr++;
999 goto retry;
1000
1001 case '\'':
1002 token = match_string_literal ();
1003 if (token != 0)
1004 return (token);
1005 break;
1006
1007 case '(':
1008 paren_depth++;
1009 lexptr++;
1010 return c;
1011
1012 case ')':
1013 if (paren_depth == 0)
1014 return 0;
1015 paren_depth--;
1016 lexptr++;
1017 return c;
1018
1019 case ',':
1020 if (comma_terminates && paren_depth == 0)
1021 return 0;
1022 lexptr++;
1023 return c;
1024
1025 case '.':
1026 /* Might be a floating point number. */
1027 if (lexptr[1] < '0' || lexptr[1] > '9')
1028 goto symbol; /* Nope, must be a symbol. */
1029 /* FALL THRU into number case. */
1030
1031 case '0':
1032 case '1':
1033 case '2':
1034 case '3':
1035 case '4':
1036 case '5':
1037 case '6':
1038 case '7':
1039 case '8':
1040 case '9':
1041 {
1042 /* It's a number. */
1043 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1044 char *p = tokstart;
1045 int hex = input_radix > 10;
1046
1047 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1048 {
1049 p += 2;
1050 hex = 1;
1051 }
1052 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1053 {
1054 p += 2;
1055 hex = 0;
1056 }
1057
1058 for (;; ++p)
1059 {
1060 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1061 got_dot = got_e = 1;
1062 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1063 got_dot = got_d = 1;
1064 else if (!hex && !got_dot && *p == '.')
1065 got_dot = 1;
1066 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1067 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1068 && (*p == '-' || *p == '+'))
1069 /* This is the sign of the exponent, not the end of the
1070 number. */
1071 continue;
1072 /* We will take any letters or digits. parse_number will
1073 complain if past the radix, or if L or U are not final. */
1074 else if ((*p < '0' || *p > '9')
1075 && ((*p < 'a' || *p > 'z')
1076 && (*p < 'A' || *p > 'Z')))
1077 break;
1078 }
1079 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1080 &yylval);
1081 if (toktype == ERROR)
1082 {
1083 char *err_copy = (char *) alloca (p - tokstart + 1);
1084
1085 memcpy (err_copy, tokstart, p - tokstart);
1086 err_copy[p - tokstart] = 0;
1087 error ("Invalid number \"%s\".", err_copy);
1088 }
1089 lexptr = p;
1090 return toktype;
1091 }
1092
1093 case '+':
1094 case '-':
1095 case '*':
1096 case '/':
1097 case '%':
1098 case '|':
1099 case '&':
1100 case '^':
1101 case '~':
1102 case '!':
1103 case '@':
1104 case '<':
1105 case '>':
1106 case '[':
1107 case ']':
1108 case '?':
1109 case ':':
1110 case '=':
1111 case '{':
1112 case '}':
1113 symbol:
1114 lexptr++;
1115 return c;
1116 }
1117
1118 if (!(c == '_' || c == '$'
1119 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1120 /* We must have come across a bad character (e.g. ';'). */
1121 error ("Invalid character '%c' in expression.", c);
1122
1123 namelen = 0;
1124 for (c = tokstart[namelen];
1125 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1126 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1127 c = tokstart[++namelen]);
1128
1129 /* The token "if" terminates the expression and is NOT
1130 removed from the input stream. */
1131
1132 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1133 return 0;
1134
1135 lexptr += namelen;
1136
1137 /* Catch specific keywords. */
1138
1139 for (i = 0; f77_keywords[i].operator != NULL; i++)
1140 if (strncmp (tokstart, f77_keywords[i].operator,
1141 strlen(f77_keywords[i].operator)) == 0)
1142 {
1143 /* lexptr += strlen(f77_keywords[i].operator); */
1144 yylval.opcode = f77_keywords[i].opcode;
1145 return f77_keywords[i].token;
1146 }
1147
1148 yylval.sval.ptr = tokstart;
1149 yylval.sval.length = namelen;
1150
1151 if (*tokstart == '$')
1152 {
1153 write_dollar_variable (yylval.sval);
1154 return VARIABLE;
1155 }
1156
1157 /* Use token-type TYPENAME for symbols that happen to be defined
1158 currently as names of types; NAME for other symbols.
1159 The caller is not constrained to care about the distinction. */
1160 {
1161 char *tmp = copy_name (yylval.sval);
1162 struct symbol *sym;
1163 int is_a_field_of_this = 0;
1164 int hextype;
1165
1166 sym = lookup_symbol (tmp, expression_context_block,
1167 VAR_DOMAIN,
1168 current_language->la_language == language_cplus
1169 ? &is_a_field_of_this : NULL,
1170 NULL);
1171 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1172 {
1173 yylval.tsym.type = SYMBOL_TYPE (sym);
1174 return TYPENAME;
1175 }
1176 yylval.tsym.type
1177 = language_lookup_primitive_type_by_name (current_language,
1178 current_gdbarch, tmp);
1179 if (yylval.tsym.type != NULL)
1180 return TYPENAME;
1181
1182 /* Input names that aren't symbols but ARE valid hex numbers,
1183 when the input radix permits them, can be names or numbers
1184 depending on the parse. Note we support radixes > 16 here. */
1185 if (!sym
1186 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1187 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1188 {
1189 YYSTYPE newlval; /* Its value is ignored. */
1190 hextype = parse_number (tokstart, namelen, 0, &newlval);
1191 if (hextype == INT)
1192 {
1193 yylval.ssym.sym = sym;
1194 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1195 return NAME_OR_INT;
1196 }
1197 }
1198
1199 /* Any other kind of symbol */
1200 yylval.ssym.sym = sym;
1201 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1202 return NAME;
1203 }
1204 }
1205
1206 void
1207 yyerror (msg)
1208 char *msg;
1209 {
1210 if (prev_lexptr)
1211 lexptr = prev_lexptr;
1212
1213 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1214 }
This page took 0.069149 seconds and 4 git commands to generate.