Document new procedure for updating copyright years
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989-1991, 1993-1996, 2000-2012 Free Software
3 Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include "gdb_string.h"
47 #include "expression.h"
48 #include "value.h"
49 #include "parser-defs.h"
50 #include "language.h"
51 #include "f-lang.h"
52 #include "bfd.h" /* Required by objfiles.h. */
53 #include "symfile.h" /* Required by objfiles.h. */
54 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
55 #include "block.h"
56 #include <ctype.h>
57
58 #define parse_type builtin_type (parse_gdbarch)
59 #define parse_f_type builtin_f_type (parse_gdbarch)
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62 as well as gratuitiously global symbol names, so we can have multiple
63 yacc generated parsers in gdb. Note that these are only the variables
64 produced by yacc. If other parser generators (bison, byacc, etc) produce
65 additional global names that conflict at link time, then those parser
66 generators need to be fixed instead of adding those names to this list. */
67
68 #define yymaxdepth f_maxdepth
69 #define yyparse f_parse
70 #define yylex f_lex
71 #define yyerror f_error
72 #define yylval f_lval
73 #define yychar f_char
74 #define yydebug f_debug
75 #define yypact f_pact
76 #define yyr1 f_r1
77 #define yyr2 f_r2
78 #define yydef f_def
79 #define yychk f_chk
80 #define yypgo f_pgo
81 #define yyact f_act
82 #define yyexca f_exca
83 #define yyerrflag f_errflag
84 #define yynerrs f_nerrs
85 #define yyps f_ps
86 #define yypv f_pv
87 #define yys f_s
88 #define yy_yys f_yys
89 #define yystate f_state
90 #define yytmp f_tmp
91 #define yyv f_v
92 #define yy_yyv f_yyv
93 #define yyval f_val
94 #define yylloc f_lloc
95 #define yyreds f_reds /* With YYDEBUG defined */
96 #define yytoks f_toks /* With YYDEBUG defined */
97 #define yyname f_name /* With YYDEBUG defined */
98 #define yyrule f_rule /* With YYDEBUG defined */
99 #define yylhs f_yylhs
100 #define yylen f_yylen
101 #define yydefred f_yydefred
102 #define yydgoto f_yydgoto
103 #define yysindex f_yysindex
104 #define yyrindex f_yyrindex
105 #define yygindex f_yygindex
106 #define yytable f_yytable
107 #define yycheck f_yycheck
108
109 #ifndef YYDEBUG
110 #define YYDEBUG 1 /* Default to yydebug support */
111 #endif
112
113 #define YYFPRINTF parser_fprintf
114
115 int yyparse (void);
116
117 static int yylex (void);
118
119 void yyerror (char *);
120
121 static void growbuf_by_size (int);
122
123 static int match_string_literal (void);
124
125 %}
126
127 /* Although the yacc "value" of an expression is not used,
128 since the result is stored in the structure being created,
129 other node types do have values. */
130
131 %union
132 {
133 LONGEST lval;
134 struct {
135 LONGEST val;
136 struct type *type;
137 } typed_val;
138 DOUBLEST dval;
139 struct symbol *sym;
140 struct type *tval;
141 struct stoken sval;
142 struct ttype tsym;
143 struct symtoken ssym;
144 int voidval;
145 struct block *bval;
146 enum exp_opcode opcode;
147 struct internalvar *ivar;
148
149 struct type **tvec;
150 int *ivec;
151 }
152
153 %{
154 /* YYSTYPE gets defined by %union */
155 static int parse_number (char *, int, int, YYSTYPE *);
156 %}
157
158 %type <voidval> exp type_exp start variable
159 %type <tval> type typebase
160 %type <tvec> nonempty_typelist
161 /* %type <bval> block */
162
163 /* Fancy type parsing. */
164 %type <voidval> func_mod direct_abs_decl abs_decl
165 %type <tval> ptype
166
167 %token <typed_val> INT
168 %token <dval> FLOAT
169
170 /* Both NAME and TYPENAME tokens represent symbols in the input,
171 and both convey their data as strings.
172 But a TYPENAME is a string that happens to be defined as a typedef
173 or builtin type name (such as int or char)
174 and a NAME is any other symbol.
175 Contexts where this distinction is not important can use the
176 nonterminal "name", which matches either NAME or TYPENAME. */
177
178 %token <sval> STRING_LITERAL
179 %token <lval> BOOLEAN_LITERAL
180 %token <ssym> NAME
181 %token <tsym> TYPENAME
182 %type <sval> name
183 %type <ssym> name_not_typename
184
185 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
186 but which would parse as a valid number in the current input radix.
187 E.g. "c" when input_radix==16. Depending on the parse, it will be
188 turned into a name or into a number. */
189
190 %token <ssym> NAME_OR_INT
191
192 %token SIZEOF
193 %token ERROR
194
195 /* Special type cases, put in to allow the parser to distinguish different
196 legal basetypes. */
197 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
198 %token LOGICAL_S8_KEYWORD
199 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
200 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
201 %token BOOL_AND BOOL_OR BOOL_NOT
202 %token <lval> CHARACTER
203
204 %token <voidval> VARIABLE
205
206 %token <opcode> ASSIGN_MODIFY
207
208 %left ','
209 %left ABOVE_COMMA
210 %right '=' ASSIGN_MODIFY
211 %right '?'
212 %left BOOL_OR
213 %right BOOL_NOT
214 %left BOOL_AND
215 %left '|'
216 %left '^'
217 %left '&'
218 %left EQUAL NOTEQUAL
219 %left LESSTHAN GREATERTHAN LEQ GEQ
220 %left LSH RSH
221 %left '@'
222 %left '+' '-'
223 %left '*' '/'
224 %right STARSTAR
225 %right '%'
226 %right UNARY
227 %right '('
228
229 \f
230 %%
231
232 start : exp
233 | type_exp
234 ;
235
236 type_exp: type
237 { write_exp_elt_opcode(OP_TYPE);
238 write_exp_elt_type($1);
239 write_exp_elt_opcode(OP_TYPE); }
240 ;
241
242 exp : '(' exp ')'
243 { }
244 ;
245
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
249 ;
250
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
253 ;
254
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
257 ;
258
259 exp : BOOL_NOT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
261 ;
262
263 exp : '~' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
265 ;
266
267 exp : SIZEOF exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_SIZEOF); }
269 ;
270
271 /* No more explicit array operators, we treat everything in F77 as
272 a function call. The disambiguation as to whether we are
273 doing a subscript operation or a function call is done
274 later in eval.c. */
275
276 exp : exp '('
277 { start_arglist (); }
278 arglist ')'
279 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
280 write_exp_elt_longcst ((LONGEST) end_arglist ());
281 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
282 ;
283
284 arglist :
285 ;
286
287 arglist : exp
288 { arglist_len = 1; }
289 ;
290
291 arglist : subrange
292 { arglist_len = 1; }
293 ;
294
295 arglist : arglist ',' exp %prec ABOVE_COMMA
296 { arglist_len++; }
297 ;
298
299 /* There are four sorts of subrange types in F90. */
300
301 subrange: exp ':' exp %prec ABOVE_COMMA
302 { write_exp_elt_opcode (OP_F90_RANGE);
303 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
304 write_exp_elt_opcode (OP_F90_RANGE); }
305 ;
306
307 subrange: exp ':' %prec ABOVE_COMMA
308 { write_exp_elt_opcode (OP_F90_RANGE);
309 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
310 write_exp_elt_opcode (OP_F90_RANGE); }
311 ;
312
313 subrange: ':' exp %prec ABOVE_COMMA
314 { write_exp_elt_opcode (OP_F90_RANGE);
315 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
316 write_exp_elt_opcode (OP_F90_RANGE); }
317 ;
318
319 subrange: ':' %prec ABOVE_COMMA
320 { write_exp_elt_opcode (OP_F90_RANGE);
321 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
322 write_exp_elt_opcode (OP_F90_RANGE); }
323 ;
324
325 complexnum: exp ',' exp
326 { }
327 ;
328
329 exp : '(' complexnum ')'
330 { write_exp_elt_opcode(OP_COMPLEX);
331 write_exp_elt_type (parse_f_type->builtin_complex_s16);
332 write_exp_elt_opcode(OP_COMPLEX); }
333 ;
334
335 exp : '(' type ')' exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_CAST);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_CAST); }
339 ;
340
341 exp : exp '%' name
342 { write_exp_elt_opcode (STRUCTOP_STRUCT);
343 write_exp_string ($3);
344 write_exp_elt_opcode (STRUCTOP_STRUCT); }
345 ;
346
347 /* Binary operators in order of decreasing precedence. */
348
349 exp : exp '@' exp
350 { write_exp_elt_opcode (BINOP_REPEAT); }
351 ;
352
353 exp : exp STARSTAR exp
354 { write_exp_elt_opcode (BINOP_EXP); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '+' exp
366 { write_exp_elt_opcode (BINOP_ADD); }
367 ;
368
369 exp : exp '-' exp
370 { write_exp_elt_opcode (BINOP_SUB); }
371 ;
372
373 exp : exp LSH exp
374 { write_exp_elt_opcode (BINOP_LSH); }
375 ;
376
377 exp : exp RSH exp
378 { write_exp_elt_opcode (BINOP_RSH); }
379 ;
380
381 exp : exp EQUAL exp
382 { write_exp_elt_opcode (BINOP_EQUAL); }
383 ;
384
385 exp : exp NOTEQUAL exp
386 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
387 ;
388
389 exp : exp LEQ exp
390 { write_exp_elt_opcode (BINOP_LEQ); }
391 ;
392
393 exp : exp GEQ exp
394 { write_exp_elt_opcode (BINOP_GEQ); }
395 ;
396
397 exp : exp LESSTHAN exp
398 { write_exp_elt_opcode (BINOP_LESS); }
399 ;
400
401 exp : exp GREATERTHAN exp
402 { write_exp_elt_opcode (BINOP_GTR); }
403 ;
404
405 exp : exp '&' exp
406 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
407 ;
408
409 exp : exp '^' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
411 ;
412
413 exp : exp '|' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
415 ;
416
417 exp : exp BOOL_AND exp
418 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
419 ;
420
421
422 exp : exp BOOL_OR exp
423 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
424 ;
425
426 exp : exp '=' exp
427 { write_exp_elt_opcode (BINOP_ASSIGN); }
428 ;
429
430 exp : exp ASSIGN_MODIFY exp
431 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
432 write_exp_elt_opcode ($2);
433 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
434 ;
435
436 exp : INT
437 { write_exp_elt_opcode (OP_LONG);
438 write_exp_elt_type ($1.type);
439 write_exp_elt_longcst ((LONGEST)($1.val));
440 write_exp_elt_opcode (OP_LONG); }
441 ;
442
443 exp : NAME_OR_INT
444 { YYSTYPE val;
445 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
446 write_exp_elt_opcode (OP_LONG);
447 write_exp_elt_type (val.typed_val.type);
448 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
449 write_exp_elt_opcode (OP_LONG); }
450 ;
451
452 exp : FLOAT
453 { write_exp_elt_opcode (OP_DOUBLE);
454 write_exp_elt_type (parse_f_type->builtin_real_s8);
455 write_exp_elt_dblcst ($1);
456 write_exp_elt_opcode (OP_DOUBLE); }
457 ;
458
459 exp : variable
460 ;
461
462 exp : VARIABLE
463 ;
464
465 exp : SIZEOF '(' type ')' %prec UNARY
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type (parse_f_type->builtin_integer);
468 CHECK_TYPEDEF ($3);
469 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
470 write_exp_elt_opcode (OP_LONG); }
471 ;
472
473 exp : BOOLEAN_LITERAL
474 { write_exp_elt_opcode (OP_BOOL);
475 write_exp_elt_longcst ((LONGEST) $1);
476 write_exp_elt_opcode (OP_BOOL);
477 }
478 ;
479
480 exp : STRING_LITERAL
481 {
482 write_exp_elt_opcode (OP_STRING);
483 write_exp_string ($1);
484 write_exp_elt_opcode (OP_STRING);
485 }
486 ;
487
488 variable: name_not_typename
489 { struct symbol *sym = $1.sym;
490
491 if (sym)
492 {
493 if (symbol_read_needs_frame (sym))
494 {
495 if (innermost_block == 0
496 || contained_in (block_found,
497 innermost_block))
498 innermost_block = block_found;
499 }
500 write_exp_elt_opcode (OP_VAR_VALUE);
501 /* We want to use the selected frame, not
502 another more inner frame which happens to
503 be in the same block. */
504 write_exp_elt_block (NULL);
505 write_exp_elt_sym (sym);
506 write_exp_elt_opcode (OP_VAR_VALUE);
507 break;
508 }
509 else
510 {
511 struct minimal_symbol *msymbol;
512 char *arg = copy_name ($1.stoken);
513
514 msymbol =
515 lookup_minimal_symbol (arg, NULL, NULL);
516 if (msymbol != NULL)
517 write_exp_msymbol (msymbol);
518 else if (!have_full_symbols () && !have_partial_symbols ())
519 error (_("No symbol table is loaded. Use the \"file\" command."));
520 else
521 error (_("No symbol \"%s\" in current context."),
522 copy_name ($1.stoken));
523 }
524 }
525 ;
526
527
528 type : ptype
529 ;
530
531 ptype : typebase
532 | typebase abs_decl
533 {
534 /* This is where the interesting stuff happens. */
535 int done = 0;
536 int array_size;
537 struct type *follow_type = $1;
538 struct type *range_type;
539
540 while (!done)
541 switch (pop_type ())
542 {
543 case tp_end:
544 done = 1;
545 break;
546 case tp_pointer:
547 follow_type = lookup_pointer_type (follow_type);
548 break;
549 case tp_reference:
550 follow_type = lookup_reference_type (follow_type);
551 break;
552 case tp_array:
553 array_size = pop_type_int ();
554 if (array_size != -1)
555 {
556 range_type =
557 create_range_type ((struct type *) NULL,
558 parse_f_type->builtin_integer,
559 0, array_size - 1);
560 follow_type =
561 create_array_type ((struct type *) NULL,
562 follow_type, range_type);
563 }
564 else
565 follow_type = lookup_pointer_type (follow_type);
566 break;
567 case tp_function:
568 follow_type = lookup_function_type (follow_type);
569 break;
570 }
571 $$ = follow_type;
572 }
573 ;
574
575 abs_decl: '*'
576 { push_type (tp_pointer); $$ = 0; }
577 | '*' abs_decl
578 { push_type (tp_pointer); $$ = $2; }
579 | '&'
580 { push_type (tp_reference); $$ = 0; }
581 | '&' abs_decl
582 { push_type (tp_reference); $$ = $2; }
583 | direct_abs_decl
584 ;
585
586 direct_abs_decl: '(' abs_decl ')'
587 { $$ = $2; }
588 | direct_abs_decl func_mod
589 { push_type (tp_function); }
590 | func_mod
591 { push_type (tp_function); }
592 ;
593
594 func_mod: '(' ')'
595 { $$ = 0; }
596 | '(' nonempty_typelist ')'
597 { free ($2); $$ = 0; }
598 ;
599
600 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
601 : TYPENAME
602 { $$ = $1.type; }
603 | INT_KEYWORD
604 { $$ = parse_f_type->builtin_integer; }
605 | INT_S2_KEYWORD
606 { $$ = parse_f_type->builtin_integer_s2; }
607 | CHARACTER
608 { $$ = parse_f_type->builtin_character; }
609 | LOGICAL_S8_KEYWORD
610 { $$ = parse_f_type->builtin_logical_s8; }
611 | LOGICAL_KEYWORD
612 { $$ = parse_f_type->builtin_logical; }
613 | LOGICAL_S2_KEYWORD
614 { $$ = parse_f_type->builtin_logical_s2; }
615 | LOGICAL_S1_KEYWORD
616 { $$ = parse_f_type->builtin_logical_s1; }
617 | REAL_KEYWORD
618 { $$ = parse_f_type->builtin_real; }
619 | REAL_S8_KEYWORD
620 { $$ = parse_f_type->builtin_real_s8; }
621 | REAL_S16_KEYWORD
622 { $$ = parse_f_type->builtin_real_s16; }
623 | COMPLEX_S8_KEYWORD
624 { $$ = parse_f_type->builtin_complex_s8; }
625 | COMPLEX_S16_KEYWORD
626 { $$ = parse_f_type->builtin_complex_s16; }
627 | COMPLEX_S32_KEYWORD
628 { $$ = parse_f_type->builtin_complex_s32; }
629 ;
630
631 nonempty_typelist
632 : type
633 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
634 $<ivec>$[0] = 1; /* Number of types in vector */
635 $$[1] = $1;
636 }
637 | nonempty_typelist ',' type
638 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
639 $$ = (struct type **) realloc ((char *) $1, len);
640 $$[$<ivec>$[0]] = $3;
641 }
642 ;
643
644 name : NAME
645 { $$ = $1.stoken; }
646 ;
647
648 name_not_typename : NAME
649 /* These would be useful if name_not_typename was useful, but it is just
650 a fake for "variable", so these cause reduce/reduce conflicts because
651 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
652 =exp) or just an exp. If name_not_typename was ever used in an lvalue
653 context where only a name could occur, this might be useful.
654 | NAME_OR_INT
655 */
656 ;
657
658 %%
659
660 /* Take care of parsing a number (anything that starts with a digit).
661 Set yylval and return the token type; update lexptr.
662 LEN is the number of characters in it. */
663
664 /*** Needs some error checking for the float case ***/
665
666 static int
667 parse_number (p, len, parsed_float, putithere)
668 char *p;
669 int len;
670 int parsed_float;
671 YYSTYPE *putithere;
672 {
673 LONGEST n = 0;
674 LONGEST prevn = 0;
675 int c;
676 int base = input_radix;
677 int unsigned_p = 0;
678 int long_p = 0;
679 ULONGEST high_bit;
680 struct type *signed_type;
681 struct type *unsigned_type;
682
683 if (parsed_float)
684 {
685 /* It's a float since it contains a point or an exponent. */
686 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
687 char *tmp, *tmp2;
688
689 tmp = xstrdup (p);
690 for (tmp2 = tmp; *tmp2; ++tmp2)
691 if (*tmp2 == 'd' || *tmp2 == 'D')
692 *tmp2 = 'e';
693 putithere->dval = atof (tmp);
694 free (tmp);
695 return FLOAT;
696 }
697
698 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
699 if (p[0] == '0')
700 switch (p[1])
701 {
702 case 'x':
703 case 'X':
704 if (len >= 3)
705 {
706 p += 2;
707 base = 16;
708 len -= 2;
709 }
710 break;
711
712 case 't':
713 case 'T':
714 case 'd':
715 case 'D':
716 if (len >= 3)
717 {
718 p += 2;
719 base = 10;
720 len -= 2;
721 }
722 break;
723
724 default:
725 base = 8;
726 break;
727 }
728
729 while (len-- > 0)
730 {
731 c = *p++;
732 if (isupper (c))
733 c = tolower (c);
734 if (len == 0 && c == 'l')
735 long_p = 1;
736 else if (len == 0 && c == 'u')
737 unsigned_p = 1;
738 else
739 {
740 int i;
741 if (c >= '0' && c <= '9')
742 i = c - '0';
743 else if (c >= 'a' && c <= 'f')
744 i = c - 'a' + 10;
745 else
746 return ERROR; /* Char not a digit */
747 if (i >= base)
748 return ERROR; /* Invalid digit in this base */
749 n *= base;
750 n += i;
751 }
752 /* Portably test for overflow (only works for nonzero values, so make
753 a second check for zero). */
754 if ((prevn >= n) && n != 0)
755 unsigned_p=1; /* Try something unsigned */
756 /* If range checking enabled, portably test for unsigned overflow. */
757 if (RANGE_CHECK && n != 0)
758 {
759 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
760 range_error (_("Overflow on numeric constant."));
761 }
762 prevn = n;
763 }
764
765 /* If the number is too big to be an int, or it's got an l suffix
766 then it's a long. Work out if this has to be a long by
767 shifting right and seeing if anything remains, and the
768 target int size is different to the target long size.
769
770 In the expression below, we could have tested
771 (n >> gdbarch_int_bit (parse_gdbarch))
772 to see if it was zero,
773 but too many compilers warn about that, when ints and longs
774 are the same size. So we shift it twice, with fewer bits
775 each time, for the same result. */
776
777 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
778 && ((n >> 2)
779 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
780 || long_p)
781 {
782 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
783 unsigned_type = parse_type->builtin_unsigned_long;
784 signed_type = parse_type->builtin_long;
785 }
786 else
787 {
788 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
789 unsigned_type = parse_type->builtin_unsigned_int;
790 signed_type = parse_type->builtin_int;
791 }
792
793 putithere->typed_val.val = n;
794
795 /* If the high bit of the worked out type is set then this number
796 has to be unsigned. */
797
798 if (unsigned_p || (n & high_bit))
799 putithere->typed_val.type = unsigned_type;
800 else
801 putithere->typed_val.type = signed_type;
802
803 return INT;
804 }
805
806 struct token
807 {
808 char *operator;
809 int token;
810 enum exp_opcode opcode;
811 };
812
813 static const struct token dot_ops[] =
814 {
815 { ".and.", BOOL_AND, BINOP_END },
816 { ".AND.", BOOL_AND, BINOP_END },
817 { ".or.", BOOL_OR, BINOP_END },
818 { ".OR.", BOOL_OR, BINOP_END },
819 { ".not.", BOOL_NOT, BINOP_END },
820 { ".NOT.", BOOL_NOT, BINOP_END },
821 { ".eq.", EQUAL, BINOP_END },
822 { ".EQ.", EQUAL, BINOP_END },
823 { ".eqv.", EQUAL, BINOP_END },
824 { ".NEQV.", NOTEQUAL, BINOP_END },
825 { ".neqv.", NOTEQUAL, BINOP_END },
826 { ".EQV.", EQUAL, BINOP_END },
827 { ".ne.", NOTEQUAL, BINOP_END },
828 { ".NE.", NOTEQUAL, BINOP_END },
829 { ".le.", LEQ, BINOP_END },
830 { ".LE.", LEQ, BINOP_END },
831 { ".ge.", GEQ, BINOP_END },
832 { ".GE.", GEQ, BINOP_END },
833 { ".gt.", GREATERTHAN, BINOP_END },
834 { ".GT.", GREATERTHAN, BINOP_END },
835 { ".lt.", LESSTHAN, BINOP_END },
836 { ".LT.", LESSTHAN, BINOP_END },
837 { NULL, 0, 0 }
838 };
839
840 struct f77_boolean_val
841 {
842 char *name;
843 int value;
844 };
845
846 static const struct f77_boolean_val boolean_values[] =
847 {
848 { ".true.", 1 },
849 { ".TRUE.", 1 },
850 { ".false.", 0 },
851 { ".FALSE.", 0 },
852 { NULL, 0 }
853 };
854
855 static const struct token f77_keywords[] =
856 {
857 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
858 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
859 { "character", CHARACTER, BINOP_END },
860 { "integer_2", INT_S2_KEYWORD, BINOP_END },
861 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
862 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
863 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
864 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
865 { "integer", INT_KEYWORD, BINOP_END },
866 { "logical", LOGICAL_KEYWORD, BINOP_END },
867 { "real_16", REAL_S16_KEYWORD, BINOP_END },
868 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
869 { "sizeof", SIZEOF, BINOP_END },
870 { "real_8", REAL_S8_KEYWORD, BINOP_END },
871 { "real", REAL_KEYWORD, BINOP_END },
872 { NULL, 0, 0 }
873 };
874
875 /* Implementation of a dynamically expandable buffer for processing input
876 characters acquired through lexptr and building a value to return in
877 yylval. Ripped off from ch-exp.y */
878
879 static char *tempbuf; /* Current buffer contents */
880 static int tempbufsize; /* Size of allocated buffer */
881 static int tempbufindex; /* Current index into buffer */
882
883 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
884
885 #define CHECKBUF(size) \
886 do { \
887 if (tempbufindex + (size) >= tempbufsize) \
888 { \
889 growbuf_by_size (size); \
890 } \
891 } while (0);
892
893
894 /* Grow the static temp buffer if necessary, including allocating the
895 first one on demand. */
896
897 static void
898 growbuf_by_size (count)
899 int count;
900 {
901 int growby;
902
903 growby = max (count, GROWBY_MIN_SIZE);
904 tempbufsize += growby;
905 if (tempbuf == NULL)
906 tempbuf = (char *) malloc (tempbufsize);
907 else
908 tempbuf = (char *) realloc (tempbuf, tempbufsize);
909 }
910
911 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
912 string-literals.
913
914 Recognize a string literal. A string literal is a nonzero sequence
915 of characters enclosed in matching single quotes, except that
916 a single character inside single quotes is a character literal, which
917 we reject as a string literal. To embed the terminator character inside
918 a string, it is simply doubled (I.E. 'this''is''one''string') */
919
920 static int
921 match_string_literal (void)
922 {
923 char *tokptr = lexptr;
924
925 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
926 {
927 CHECKBUF (1);
928 if (*tokptr == *lexptr)
929 {
930 if (*(tokptr + 1) == *lexptr)
931 tokptr++;
932 else
933 break;
934 }
935 tempbuf[tempbufindex++] = *tokptr;
936 }
937 if (*tokptr == '\0' /* no terminator */
938 || tempbufindex == 0) /* no string */
939 return 0;
940 else
941 {
942 tempbuf[tempbufindex] = '\0';
943 yylval.sval.ptr = tempbuf;
944 yylval.sval.length = tempbufindex;
945 lexptr = ++tokptr;
946 return STRING_LITERAL;
947 }
948 }
949
950 /* Read one token, getting characters through lexptr. */
951
952 static int
953 yylex (void)
954 {
955 int c;
956 int namelen;
957 unsigned int i,token;
958 char *tokstart;
959
960 retry:
961
962 prev_lexptr = lexptr;
963
964 tokstart = lexptr;
965
966 /* First of all, let us make sure we are not dealing with the
967 special tokens .true. and .false. which evaluate to 1 and 0. */
968
969 if (*lexptr == '.')
970 {
971 for (i = 0; boolean_values[i].name != NULL; i++)
972 {
973 if (strncmp (tokstart, boolean_values[i].name,
974 strlen (boolean_values[i].name)) == 0)
975 {
976 lexptr += strlen (boolean_values[i].name);
977 yylval.lval = boolean_values[i].value;
978 return BOOLEAN_LITERAL;
979 }
980 }
981 }
982
983 /* See if it is a special .foo. operator. */
984
985 for (i = 0; dot_ops[i].operator != NULL; i++)
986 if (strncmp (tokstart, dot_ops[i].operator,
987 strlen (dot_ops[i].operator)) == 0)
988 {
989 lexptr += strlen (dot_ops[i].operator);
990 yylval.opcode = dot_ops[i].opcode;
991 return dot_ops[i].token;
992 }
993
994 /* See if it is an exponentiation operator. */
995
996 if (strncmp (tokstart, "**", 2) == 0)
997 {
998 lexptr += 2;
999 yylval.opcode = BINOP_EXP;
1000 return STARSTAR;
1001 }
1002
1003 switch (c = *tokstart)
1004 {
1005 case 0:
1006 return 0;
1007
1008 case ' ':
1009 case '\t':
1010 case '\n':
1011 lexptr++;
1012 goto retry;
1013
1014 case '\'':
1015 token = match_string_literal ();
1016 if (token != 0)
1017 return (token);
1018 break;
1019
1020 case '(':
1021 paren_depth++;
1022 lexptr++;
1023 return c;
1024
1025 case ')':
1026 if (paren_depth == 0)
1027 return 0;
1028 paren_depth--;
1029 lexptr++;
1030 return c;
1031
1032 case ',':
1033 if (comma_terminates && paren_depth == 0)
1034 return 0;
1035 lexptr++;
1036 return c;
1037
1038 case '.':
1039 /* Might be a floating point number. */
1040 if (lexptr[1] < '0' || lexptr[1] > '9')
1041 goto symbol; /* Nope, must be a symbol. */
1042 /* FALL THRU into number case. */
1043
1044 case '0':
1045 case '1':
1046 case '2':
1047 case '3':
1048 case '4':
1049 case '5':
1050 case '6':
1051 case '7':
1052 case '8':
1053 case '9':
1054 {
1055 /* It's a number. */
1056 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1057 char *p = tokstart;
1058 int hex = input_radix > 10;
1059
1060 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1061 {
1062 p += 2;
1063 hex = 1;
1064 }
1065 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1066 || p[1]=='d' || p[1]=='D'))
1067 {
1068 p += 2;
1069 hex = 0;
1070 }
1071
1072 for (;; ++p)
1073 {
1074 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1075 got_dot = got_e = 1;
1076 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1077 got_dot = got_d = 1;
1078 else if (!hex && !got_dot && *p == '.')
1079 got_dot = 1;
1080 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1081 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1082 && (*p == '-' || *p == '+'))
1083 /* This is the sign of the exponent, not the end of the
1084 number. */
1085 continue;
1086 /* We will take any letters or digits. parse_number will
1087 complain if past the radix, or if L or U are not final. */
1088 else if ((*p < '0' || *p > '9')
1089 && ((*p < 'a' || *p > 'z')
1090 && (*p < 'A' || *p > 'Z')))
1091 break;
1092 }
1093 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1094 &yylval);
1095 if (toktype == ERROR)
1096 {
1097 char *err_copy = (char *) alloca (p - tokstart + 1);
1098
1099 memcpy (err_copy, tokstart, p - tokstart);
1100 err_copy[p - tokstart] = 0;
1101 error (_("Invalid number \"%s\"."), err_copy);
1102 }
1103 lexptr = p;
1104 return toktype;
1105 }
1106
1107 case '+':
1108 case '-':
1109 case '*':
1110 case '/':
1111 case '%':
1112 case '|':
1113 case '&':
1114 case '^':
1115 case '~':
1116 case '!':
1117 case '@':
1118 case '<':
1119 case '>':
1120 case '[':
1121 case ']':
1122 case '?':
1123 case ':':
1124 case '=':
1125 case '{':
1126 case '}':
1127 symbol:
1128 lexptr++;
1129 return c;
1130 }
1131
1132 if (!(c == '_' || c == '$' || c ==':'
1133 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1134 /* We must have come across a bad character (e.g. ';'). */
1135 error (_("Invalid character '%c' in expression."), c);
1136
1137 namelen = 0;
1138 for (c = tokstart[namelen];
1139 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1140 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1141 c = tokstart[++namelen]);
1142
1143 /* The token "if" terminates the expression and is NOT
1144 removed from the input stream. */
1145
1146 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1147 return 0;
1148
1149 lexptr += namelen;
1150
1151 /* Catch specific keywords. */
1152
1153 for (i = 0; f77_keywords[i].operator != NULL; i++)
1154 if (strlen (f77_keywords[i].operator) == namelen
1155 && strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1156 {
1157 /* lexptr += strlen(f77_keywords[i].operator); */
1158 yylval.opcode = f77_keywords[i].opcode;
1159 return f77_keywords[i].token;
1160 }
1161
1162 yylval.sval.ptr = tokstart;
1163 yylval.sval.length = namelen;
1164
1165 if (*tokstart == '$')
1166 {
1167 write_dollar_variable (yylval.sval);
1168 return VARIABLE;
1169 }
1170
1171 /* Use token-type TYPENAME for symbols that happen to be defined
1172 currently as names of types; NAME for other symbols.
1173 The caller is not constrained to care about the distinction. */
1174 {
1175 char *tmp = copy_name (yylval.sval);
1176 struct symbol *sym;
1177 int is_a_field_of_this = 0;
1178 int hextype;
1179
1180 sym = lookup_symbol (tmp, expression_context_block,
1181 VAR_DOMAIN,
1182 parse_language->la_language == language_cplus
1183 ? &is_a_field_of_this : NULL);
1184 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1185 {
1186 yylval.tsym.type = SYMBOL_TYPE (sym);
1187 return TYPENAME;
1188 }
1189 yylval.tsym.type
1190 = language_lookup_primitive_type_by_name (parse_language,
1191 parse_gdbarch, tmp);
1192 if (yylval.tsym.type != NULL)
1193 return TYPENAME;
1194
1195 /* Input names that aren't symbols but ARE valid hex numbers,
1196 when the input radix permits them, can be names or numbers
1197 depending on the parse. Note we support radixes > 16 here. */
1198 if (!sym
1199 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1200 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1201 {
1202 YYSTYPE newlval; /* Its value is ignored. */
1203 hextype = parse_number (tokstart, namelen, 0, &newlval);
1204 if (hextype == INT)
1205 {
1206 yylval.ssym.sym = sym;
1207 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1208 return NAME_OR_INT;
1209 }
1210 }
1211
1212 /* Any other kind of symbol */
1213 yylval.ssym.sym = sym;
1214 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1215 return NAME;
1216 }
1217 }
1218
1219 void
1220 yyerror (msg)
1221 char *msg;
1222 {
1223 if (prev_lexptr)
1224 lexptr = prev_lexptr;
1225
1226 error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1227 }
This page took 0.057428 seconds and 4 git commands to generate.