bffb710abb44e3503ac930982a9d4adfd85c6e3a
[deliverable/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2 Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003
3 Free Software Foundation, Inc.
4 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
5 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_print_array (struct type *, char *, CORE_ADDR,
46 struct ui_file *, int, int, int,
47 enum val_prettyprint);
48 static void f77_print_array_1 (int, int, struct type *, char *,
49 CORE_ADDR, struct ui_file *, int, int, int,
50 enum val_prettyprint,
51 int *elts);
52 static void f77_create_arrayprint_offset_tbl (struct type *,
53 struct ui_file *);
54 static void f77_get_dynamic_length_of_aggregate (struct type *);
55
56 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
57
58 /* Array which holds offsets to be applied to get a row's elements
59 for a given array. Array also holds the size of each subarray. */
60
61 /* The following macro gives us the size of the nth dimension, Where
62 n is 1 based. */
63
64 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
65
66 /* The following gives us the offset for row n where n is 1-based. */
67
68 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
69
70 int
71 f77_get_dynamic_lowerbound (struct type *type, int *lower_bound)
72 {
73 CORE_ADDR current_frame_addr;
74 CORE_ADDR ptr_to_lower_bound;
75
76 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
77 {
78 case BOUND_BY_VALUE_ON_STACK:
79 current_frame_addr = get_frame_base (deprecated_selected_frame);
80 if (current_frame_addr > 0)
81 {
82 *lower_bound =
83 read_memory_integer (current_frame_addr +
84 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
85 4);
86 }
87 else
88 {
89 *lower_bound = DEFAULT_LOWER_BOUND;
90 return BOUND_FETCH_ERROR;
91 }
92 break;
93
94 case BOUND_SIMPLE:
95 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
96 break;
97
98 case BOUND_CANNOT_BE_DETERMINED:
99 error ("Lower bound may not be '*' in F77");
100 break;
101
102 case BOUND_BY_REF_ON_STACK:
103 current_frame_addr = get_frame_base (deprecated_selected_frame);
104 if (current_frame_addr > 0)
105 {
106 ptr_to_lower_bound =
107 read_memory_typed_address (current_frame_addr +
108 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
109 builtin_type_void_data_ptr);
110 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
111 }
112 else
113 {
114 *lower_bound = DEFAULT_LOWER_BOUND;
115 return BOUND_FETCH_ERROR;
116 }
117 break;
118
119 case BOUND_BY_REF_IN_REG:
120 case BOUND_BY_VALUE_IN_REG:
121 default:
122 error ("??? unhandled dynamic array bound type ???");
123 break;
124 }
125 return BOUND_FETCH_OK;
126 }
127
128 int
129 f77_get_dynamic_upperbound (struct type *type, int *upper_bound)
130 {
131 CORE_ADDR current_frame_addr = 0;
132 CORE_ADDR ptr_to_upper_bound;
133
134 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
135 {
136 case BOUND_BY_VALUE_ON_STACK:
137 current_frame_addr = get_frame_base (deprecated_selected_frame);
138 if (current_frame_addr > 0)
139 {
140 *upper_bound =
141 read_memory_integer (current_frame_addr +
142 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
143 4);
144 }
145 else
146 {
147 *upper_bound = DEFAULT_UPPER_BOUND;
148 return BOUND_FETCH_ERROR;
149 }
150 break;
151
152 case BOUND_SIMPLE:
153 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
154 break;
155
156 case BOUND_CANNOT_BE_DETERMINED:
157 /* we have an assumed size array on our hands. Assume that
158 upper_bound == lower_bound so that we show at least
159 1 element.If the user wants to see more elements, let
160 him manually ask for 'em and we'll subscript the
161 array and show him */
162 f77_get_dynamic_lowerbound (type, upper_bound);
163 break;
164
165 case BOUND_BY_REF_ON_STACK:
166 current_frame_addr = get_frame_base (deprecated_selected_frame);
167 if (current_frame_addr > 0)
168 {
169 ptr_to_upper_bound =
170 read_memory_typed_address (current_frame_addr +
171 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
172 builtin_type_void_data_ptr);
173 *upper_bound = read_memory_integer (ptr_to_upper_bound, 4);
174 }
175 else
176 {
177 *upper_bound = DEFAULT_UPPER_BOUND;
178 return BOUND_FETCH_ERROR;
179 }
180 break;
181
182 case BOUND_BY_REF_IN_REG:
183 case BOUND_BY_VALUE_IN_REG:
184 default:
185 error ("??? unhandled dynamic array bound type ???");
186 break;
187 }
188 return BOUND_FETCH_OK;
189 }
190
191 /* Obtain F77 adjustable array dimensions */
192
193 static void
194 f77_get_dynamic_length_of_aggregate (struct type *type)
195 {
196 int upper_bound = -1;
197 int lower_bound = 1;
198 int retcode;
199
200 /* Recursively go all the way down into a possibly multi-dimensional
201 F77 array and get the bounds. For simple arrays, this is pretty
202 easy but when the bounds are dynamic, we must be very careful
203 to add up all the lengths correctly. Not doing this right
204 will lead to horrendous-looking arrays in parameter lists.
205
206 This function also works for strings which behave very
207 similarly to arrays. */
208
209 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
210 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
211 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
212
213 /* Recursion ends here, start setting up lengths. */
214 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
215 if (retcode == BOUND_FETCH_ERROR)
216 error ("Cannot obtain valid array lower bound");
217
218 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
219 if (retcode == BOUND_FETCH_ERROR)
220 error ("Cannot obtain valid array upper bound");
221
222 /* Patch in a valid length value. */
223
224 TYPE_LENGTH (type) =
225 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
226 }
227
228 /* Function that sets up the array offset,size table for the array
229 type "type". */
230
231 static void
232 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
233 {
234 struct type *tmp_type;
235 int eltlen;
236 int ndimen = 1;
237 int upper, lower, retcode;
238
239 tmp_type = type;
240
241 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
242 {
243 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
244 fprintf_filtered (stream, "<assumed size array> ");
245
246 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
247 if (retcode == BOUND_FETCH_ERROR)
248 error ("Cannot obtain dynamic upper bound");
249
250 retcode = f77_get_dynamic_lowerbound (tmp_type, &lower);
251 if (retcode == BOUND_FETCH_ERROR)
252 error ("Cannot obtain dynamic lower bound");
253
254 F77_DIM_SIZE (ndimen) = upper - lower + 1;
255
256 tmp_type = TYPE_TARGET_TYPE (tmp_type);
257 ndimen++;
258 }
259
260 /* Now we multiply eltlen by all the offsets, so that later we
261 can print out array elements correctly. Up till now we
262 know an offset to apply to get the item but we also
263 have to know how much to add to get to the next item */
264
265 ndimen--;
266 eltlen = TYPE_LENGTH (tmp_type);
267 F77_DIM_OFFSET (ndimen) = eltlen;
268 while (--ndimen > 0)
269 {
270 eltlen *= F77_DIM_SIZE (ndimen + 1);
271 F77_DIM_OFFSET (ndimen) = eltlen;
272 }
273 }
274
275
276
277 /* Actual function which prints out F77 arrays, Valaddr == address in
278 the superior. Address == the address in the inferior. */
279
280 static void
281 f77_print_array_1 (int nss, int ndimensions, struct type *type, char *valaddr,
282 CORE_ADDR address, struct ui_file *stream, int format,
283 int deref_ref, int recurse, enum val_prettyprint pretty,
284 int *elts)
285 {
286 int i;
287
288 if (nss != ndimensions)
289 {
290 for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < print_max); i++)
291 {
292 fprintf_filtered (stream, "( ");
293 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
294 valaddr + i * F77_DIM_OFFSET (nss),
295 address + i * F77_DIM_OFFSET (nss),
296 stream, format, deref_ref, recurse, pretty, elts);
297 fprintf_filtered (stream, ") ");
298 }
299 if (*elts >= print_max && i < F77_DIM_SIZE (nss))
300 fprintf_filtered (stream, "...");
301 }
302 else
303 {
304 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < print_max;
305 i++, (*elts)++)
306 {
307 val_print (TYPE_TARGET_TYPE (type),
308 valaddr + i * F77_DIM_OFFSET (ndimensions),
309 0,
310 address + i * F77_DIM_OFFSET (ndimensions),
311 stream, format, deref_ref, recurse, pretty);
312
313 if (i != (F77_DIM_SIZE (nss) - 1))
314 fprintf_filtered (stream, ", ");
315
316 if ((*elts == print_max - 1) && (i != (F77_DIM_SIZE (nss) - 1)))
317 fprintf_filtered (stream, "...");
318 }
319 }
320 }
321
322 /* This function gets called to print an F77 array, we set up some
323 stuff and then immediately call f77_print_array_1() */
324
325 static void
326 f77_print_array (struct type *type, char *valaddr, CORE_ADDR address,
327 struct ui_file *stream, int format, int deref_ref, int recurse,
328 enum val_prettyprint pretty)
329 {
330 int ndimensions;
331 int elts = 0;
332
333 ndimensions = calc_f77_array_dims (type);
334
335 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
336 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
337 ndimensions, MAX_FORTRAN_DIMS);
338
339 /* Since F77 arrays are stored column-major, we set up an
340 offset table to get at the various row's elements. The
341 offset table contains entries for both offset and subarray size. */
342
343 f77_create_arrayprint_offset_tbl (type, stream);
344
345 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
346 deref_ref, recurse, pretty, &elts);
347 }
348 \f
349
350 /* Print data of type TYPE located at VALADDR (within GDB), which came from
351 the inferior at address ADDRESS, onto stdio stream STREAM according to
352 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
353 target byte order.
354
355 If the data are a string pointer, returns the number of string characters
356 printed.
357
358 If DEREF_REF is nonzero, then dereference references, otherwise just print
359 them like pointers.
360
361 The PRETTY parameter controls prettyprinting. */
362
363 int
364 f_val_print (struct type *type, char *valaddr, int embedded_offset,
365 CORE_ADDR address, struct ui_file *stream, int format,
366 int deref_ref, int recurse, enum val_prettyprint pretty)
367 {
368 unsigned int i = 0; /* Number of characters printed */
369 struct type *elttype;
370 LONGEST val;
371 CORE_ADDR addr;
372
373 CHECK_TYPEDEF (type);
374 switch (TYPE_CODE (type))
375 {
376 case TYPE_CODE_STRING:
377 f77_get_dynamic_length_of_aggregate (type);
378 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0);
379 break;
380
381 case TYPE_CODE_ARRAY:
382 fprintf_filtered (stream, "(");
383 f77_print_array (type, valaddr, address, stream, format,
384 deref_ref, recurse, pretty);
385 fprintf_filtered (stream, ")");
386 break;
387
388 case TYPE_CODE_PTR:
389 if (format && format != 's')
390 {
391 print_scalar_formatted (valaddr, type, format, 0, stream);
392 break;
393 }
394 else
395 {
396 addr = unpack_pointer (type, valaddr);
397 elttype = check_typedef (TYPE_TARGET_TYPE (type));
398
399 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
400 {
401 /* Try to print what function it points to. */
402 print_address_demangle (addr, stream, demangle);
403 /* Return value is irrelevant except for string pointers. */
404 return 0;
405 }
406
407 if (addressprint && format != 's')
408 print_address_numeric (addr, 1, stream);
409
410 /* For a pointer to char or unsigned char, also print the string
411 pointed to, unless pointer is null. */
412 if (TYPE_LENGTH (elttype) == 1
413 && TYPE_CODE (elttype) == TYPE_CODE_INT
414 && (format == 0 || format == 's')
415 && addr != 0)
416 i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream);
417
418 /* Return number of characters printed, including the terminating
419 '\0' if we reached the end. val_print_string takes care including
420 the terminating '\0' if necessary. */
421 return i;
422 }
423 break;
424
425 case TYPE_CODE_REF:
426 elttype = check_typedef (TYPE_TARGET_TYPE (type));
427 if (addressprint)
428 {
429 CORE_ADDR addr
430 = extract_typed_address (valaddr + embedded_offset, type);
431 fprintf_filtered (stream, "@");
432 print_address_numeric (addr, 1, stream);
433 if (deref_ref)
434 fputs_filtered (": ", stream);
435 }
436 /* De-reference the reference. */
437 if (deref_ref)
438 {
439 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
440 {
441 struct value *deref_val =
442 value_at
443 (TYPE_TARGET_TYPE (type),
444 unpack_pointer (lookup_pointer_type (builtin_type_void),
445 valaddr + embedded_offset));
446 val_print (VALUE_TYPE (deref_val),
447 VALUE_CONTENTS (deref_val),
448 0,
449 VALUE_ADDRESS (deref_val),
450 stream,
451 format,
452 deref_ref,
453 recurse,
454 pretty);
455 }
456 else
457 fputs_filtered ("???", stream);
458 }
459 break;
460
461 case TYPE_CODE_FUNC:
462 if (format)
463 {
464 print_scalar_formatted (valaddr, type, format, 0, stream);
465 break;
466 }
467 /* FIXME, we should consider, at least for ANSI C language, eliminating
468 the distinction made between FUNCs and POINTERs to FUNCs. */
469 fprintf_filtered (stream, "{");
470 type_print (type, "", stream, -1);
471 fprintf_filtered (stream, "} ");
472 /* Try to print what function it points to, and its address. */
473 print_address_demangle (address, stream, demangle);
474 break;
475
476 case TYPE_CODE_INT:
477 format = format ? format : output_format;
478 if (format)
479 print_scalar_formatted (valaddr, type, format, 0, stream);
480 else
481 {
482 val_print_type_code_int (type, valaddr, stream);
483 /* C and C++ has no single byte int type, char is used instead.
484 Since we don't know whether the value is really intended to
485 be used as an integer or a character, print the character
486 equivalent as well. */
487 if (TYPE_LENGTH (type) == 1)
488 {
489 fputs_filtered (" ", stream);
490 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
491 stream);
492 }
493 }
494 break;
495
496 case TYPE_CODE_FLT:
497 if (format)
498 print_scalar_formatted (valaddr, type, format, 0, stream);
499 else
500 print_floating (valaddr, type, stream);
501 break;
502
503 case TYPE_CODE_VOID:
504 fprintf_filtered (stream, "VOID");
505 break;
506
507 case TYPE_CODE_ERROR:
508 fprintf_filtered (stream, "<error type>");
509 break;
510
511 case TYPE_CODE_RANGE:
512 /* FIXME, we should not ever have to print one of these yet. */
513 fprintf_filtered (stream, "<range type>");
514 break;
515
516 case TYPE_CODE_BOOL:
517 format = format ? format : output_format;
518 if (format)
519 print_scalar_formatted (valaddr, type, format, 0, stream);
520 else
521 {
522 val = 0;
523 switch (TYPE_LENGTH (type))
524 {
525 case 1:
526 val = unpack_long (builtin_type_f_logical_s1, valaddr);
527 break;
528
529 case 2:
530 val = unpack_long (builtin_type_f_logical_s2, valaddr);
531 break;
532
533 case 4:
534 val = unpack_long (builtin_type_f_logical, valaddr);
535 break;
536
537 default:
538 error ("Logicals of length %d bytes not supported",
539 TYPE_LENGTH (type));
540
541 }
542
543 if (val == 0)
544 fprintf_filtered (stream, ".FALSE.");
545 else if (val == 1)
546 fprintf_filtered (stream, ".TRUE.");
547 else
548 /* Not a legitimate logical type, print as an integer. */
549 {
550 /* Bash the type code temporarily. */
551 TYPE_CODE (type) = TYPE_CODE_INT;
552 f_val_print (type, valaddr, 0, address, stream, format,
553 deref_ref, recurse, pretty);
554 /* Restore the type code so later uses work as intended. */
555 TYPE_CODE (type) = TYPE_CODE_BOOL;
556 }
557 }
558 break;
559
560 case TYPE_CODE_COMPLEX:
561 switch (TYPE_LENGTH (type))
562 {
563 case 8:
564 type = builtin_type_f_real;
565 break;
566 case 16:
567 type = builtin_type_f_real_s8;
568 break;
569 case 32:
570 type = builtin_type_f_real_s16;
571 break;
572 default:
573 error ("Cannot print out complex*%d variables", TYPE_LENGTH (type));
574 }
575 fputs_filtered ("(", stream);
576 print_floating (valaddr, type, stream);
577 fputs_filtered (",", stream);
578 print_floating (valaddr + TYPE_LENGTH (type), type, stream);
579 fputs_filtered (")", stream);
580 break;
581
582 case TYPE_CODE_UNDEF:
583 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
584 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
585 and no complete type for struct foo in that file. */
586 fprintf_filtered (stream, "<incomplete type>");
587 break;
588
589 default:
590 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
591 }
592 gdb_flush (stream);
593 return 0;
594 }
595
596 static void
597 list_all_visible_commons (char *funname)
598 {
599 SAVED_F77_COMMON_PTR tmp;
600
601 tmp = head_common_list;
602
603 printf_filtered ("All COMMON blocks visible at this level:\n\n");
604
605 while (tmp != NULL)
606 {
607 if (strcmp (tmp->owning_function, funname) == 0)
608 printf_filtered ("%s\n", tmp->name);
609
610 tmp = tmp->next;
611 }
612 }
613
614 /* This function is used to print out the values in a given COMMON
615 block. It will always use the most local common block of the
616 given name */
617
618 static void
619 info_common_command (char *comname, int from_tty)
620 {
621 SAVED_F77_COMMON_PTR the_common;
622 COMMON_ENTRY_PTR entry;
623 struct frame_info *fi;
624 char *funname = 0;
625 struct symbol *func;
626
627 /* We have been told to display the contents of F77 COMMON
628 block supposedly visible in this function. Let us
629 first make sure that it is visible and if so, let
630 us display its contents */
631
632 fi = deprecated_selected_frame;
633
634 if (fi == NULL)
635 error ("No frame selected");
636
637 /* The following is generally ripped off from stack.c's routine
638 print_frame_info() */
639
640 func = find_pc_function (get_frame_pc (fi));
641 if (func)
642 {
643 /* In certain pathological cases, the symtabs give the wrong
644 function (when we are in the first function in a file which
645 is compiled without debugging symbols, the previous function
646 is compiled with debugging symbols, and the "foo.o" symbol
647 that is supposed to tell us where the file with debugging symbols
648 ends has been truncated by ar because it is longer than 15
649 characters).
650
651 So look in the minimal symbol tables as well, and if it comes
652 up with a larger address for the function use that instead.
653 I don't think this can ever cause any problems; there shouldn't
654 be any minimal symbols in the middle of a function.
655 FIXME: (Not necessarily true. What about text labels) */
656
657 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (get_frame_pc (fi));
658
659 if (msymbol != NULL
660 && (SYMBOL_VALUE_ADDRESS (msymbol)
661 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
662 funname = DEPRECATED_SYMBOL_NAME (msymbol);
663 else
664 funname = DEPRECATED_SYMBOL_NAME (func);
665 }
666 else
667 {
668 struct minimal_symbol *msymbol =
669 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
670
671 if (msymbol != NULL)
672 funname = DEPRECATED_SYMBOL_NAME (msymbol);
673 }
674
675 /* If comname is NULL, we assume the user wishes to see the
676 which COMMON blocks are visible here and then return */
677
678 if (comname == 0)
679 {
680 list_all_visible_commons (funname);
681 return;
682 }
683
684 the_common = find_common_for_function (comname, funname);
685
686 if (the_common)
687 {
688 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
689 printf_filtered ("Contents of blank COMMON block:\n");
690 else
691 printf_filtered ("Contents of F77 COMMON block '%s':\n", comname);
692
693 printf_filtered ("\n");
694 entry = the_common->entries;
695
696 while (entry != NULL)
697 {
698 printf_filtered ("%s = ", DEPRECATED_SYMBOL_NAME (entry->symbol));
699 print_variable_value (entry->symbol, fi, gdb_stdout);
700 printf_filtered ("\n");
701 entry = entry->next;
702 }
703 }
704 else
705 printf_filtered ("Cannot locate the common block %s in function '%s'\n",
706 comname, funname);
707 }
708
709 /* This function is used to determine whether there is a
710 F77 common block visible at the current scope called 'comname'. */
711
712 #if 0
713 static int
714 there_is_a_visible_common_named (char *comname)
715 {
716 SAVED_F77_COMMON_PTR the_common;
717 struct frame_info *fi;
718 char *funname = 0;
719 struct symbol *func;
720
721 if (comname == NULL)
722 error ("Cannot deal with NULL common name!");
723
724 fi = deprecated_selected_frame;
725
726 if (fi == NULL)
727 error ("No frame selected");
728
729 /* The following is generally ripped off from stack.c's routine
730 print_frame_info() */
731
732 func = find_pc_function (fi->pc);
733 if (func)
734 {
735 /* In certain pathological cases, the symtabs give the wrong
736 function (when we are in the first function in a file which
737 is compiled without debugging symbols, the previous function
738 is compiled with debugging symbols, and the "foo.o" symbol
739 that is supposed to tell us where the file with debugging symbols
740 ends has been truncated by ar because it is longer than 15
741 characters).
742
743 So look in the minimal symbol tables as well, and if it comes
744 up with a larger address for the function use that instead.
745 I don't think this can ever cause any problems; there shouldn't
746 be any minimal symbols in the middle of a function.
747 FIXME: (Not necessarily true. What about text labels) */
748
749 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
750
751 if (msymbol != NULL
752 && (SYMBOL_VALUE_ADDRESS (msymbol)
753 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
754 funname = DEPRECATED_SYMBOL_NAME (msymbol);
755 else
756 funname = DEPRECATED_SYMBOL_NAME (func);
757 }
758 else
759 {
760 struct minimal_symbol *msymbol =
761 lookup_minimal_symbol_by_pc (fi->pc);
762
763 if (msymbol != NULL)
764 funname = DEPRECATED_SYMBOL_NAME (msymbol);
765 }
766
767 the_common = find_common_for_function (comname, funname);
768
769 return (the_common ? 1 : 0);
770 }
771 #endif
772
773 void
774 _initialize_f_valprint (void)
775 {
776 add_info ("common", info_common_command,
777 "Print out the values contained in a Fortran COMMON block.");
778 if (xdb_commands)
779 add_com ("lc", class_info, info_common_command,
780 "Print out the values contained in a Fortran COMMON block.");
781 }
This page took 0.065176 seconds and 3 git commands to generate.