PR exp/13907:
[deliverable/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993-1996, 1998-2000, 2003, 2005-2012 Free Software
4 Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (const char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions. */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95
96 /* Recursively go all the way down into a possibly multi-dimensional
97 F77 array and get the bounds. For simple arrays, this is pretty
98 easy but when the bounds are dynamic, we must be very careful
99 to add up all the lengths correctly. Not doing this right
100 will lead to horrendous-looking arrays in parameter lists.
101
102 This function also works for strings which behave very
103 similarly to arrays. */
104
105 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
106 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
107 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
108
109 /* Recursion ends here, start setting up lengths. */
110 lower_bound = f77_get_lowerbound (type);
111 upper_bound = f77_get_upperbound (type);
112
113 /* Patch in a valid length value. */
114
115 TYPE_LENGTH (type) =
116 (upper_bound - lower_bound + 1)
117 * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item. */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr,
167 int embedded_offset, CORE_ADDR address,
168 struct ui_file *stream, int recurse,
169 const struct value *val,
170 const struct value_print_options *options,
171 int *elts)
172 {
173 int i;
174
175 if (nss != ndimensions)
176 {
177 for (i = 0;
178 (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
179 i++)
180 {
181 fprintf_filtered (stream, "( ");
182 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
183 valaddr,
184 embedded_offset + i * F77_DIM_OFFSET (nss),
185 address,
186 stream, recurse, val, options, elts);
187 fprintf_filtered (stream, ") ");
188 }
189 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
190 fprintf_filtered (stream, "...");
191 }
192 else
193 {
194 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
195 i++, (*elts)++)
196 {
197 val_print (TYPE_TARGET_TYPE (type),
198 valaddr,
199 embedded_offset + i * F77_DIM_OFFSET (ndimensions),
200 address, stream, recurse,
201 val, options, current_language);
202
203 if (i != (F77_DIM_SIZE (nss) - 1))
204 fprintf_filtered (stream, ", ");
205
206 if ((*elts == options->print_max - 1)
207 && (i != (F77_DIM_SIZE (nss) - 1)))
208 fprintf_filtered (stream, "...");
209 }
210 }
211 }
212
213 /* This function gets called to print an F77 array, we set up some
214 stuff and then immediately call f77_print_array_1(). */
215
216 static void
217 f77_print_array (struct type *type, const gdb_byte *valaddr,
218 int embedded_offset,
219 CORE_ADDR address, struct ui_file *stream,
220 int recurse,
221 const struct value *val,
222 const struct value_print_options *options)
223 {
224 int ndimensions;
225 int elts = 0;
226
227 ndimensions = calc_f77_array_dims (type);
228
229 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
230 error (_("\
231 Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
232 ndimensions, MAX_FORTRAN_DIMS);
233
234 /* Since F77 arrays are stored column-major, we set up an
235 offset table to get at the various row's elements. The
236 offset table contains entries for both offset and subarray size. */
237
238 f77_create_arrayprint_offset_tbl (type, stream);
239
240 f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
241 address, stream, recurse, val, options, &elts);
242 }
243 \f
244
245 /* Decorations for Fortran. */
246
247 static const struct generic_val_print_decorations f_decorations =
248 {
249 "(",
250 ",",
251 ")",
252 ".TRUE.",
253 ".FALSE.",
254 "VOID",
255 };
256
257 /* See val_print for a description of the various parameters of this
258 function; they are identical. */
259
260 void
261 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
262 CORE_ADDR address, struct ui_file *stream, int recurse,
263 const struct value *original_value,
264 const struct value_print_options *options)
265 {
266 struct gdbarch *gdbarch = get_type_arch (type);
267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
268 unsigned int i = 0; /* Number of characters printed. */
269 struct type *elttype;
270 LONGEST val;
271 CORE_ADDR addr;
272 int index;
273
274 CHECK_TYPEDEF (type);
275 switch (TYPE_CODE (type))
276 {
277 case TYPE_CODE_STRING:
278 f77_get_dynamic_length_of_aggregate (type);
279 LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
280 valaddr + embedded_offset,
281 TYPE_LENGTH (type), NULL, 0, options);
282 break;
283
284 case TYPE_CODE_ARRAY:
285 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
286 {
287 fprintf_filtered (stream, "(");
288 f77_print_array (type, valaddr, embedded_offset,
289 address, stream, recurse, original_value, options);
290 fprintf_filtered (stream, ")");
291 }
292 else
293 {
294 struct type *ch_type = TYPE_TARGET_TYPE (type);
295
296 f77_get_dynamic_length_of_aggregate (type);
297 LA_PRINT_STRING (stream, ch_type,
298 valaddr + embedded_offset,
299 TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
300 NULL, 0, options);
301 }
302 break;
303
304 case TYPE_CODE_PTR:
305 if (options->format && options->format != 's')
306 {
307 val_print_scalar_formatted (type, valaddr, embedded_offset,
308 original_value, options, 0, stream);
309 break;
310 }
311 else
312 {
313 int want_space = 0;
314
315 addr = unpack_pointer (type, valaddr + embedded_offset);
316 elttype = check_typedef (TYPE_TARGET_TYPE (type));
317
318 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
319 {
320 /* Try to print what function it points to. */
321 print_function_pointer_address (options, gdbarch, addr, stream);
322 return;
323 }
324
325 if (options->symbol_print)
326 want_space = print_address_demangle (options, gdbarch, addr,
327 stream, demangle);
328 else if (options->addressprint && options->format != 's')
329 {
330 fputs_filtered (paddress (gdbarch, addr), stream);
331 want_space = 1;
332 }
333
334 /* For a pointer to char or unsigned char, also print the string
335 pointed to, unless pointer is null. */
336 if (TYPE_LENGTH (elttype) == 1
337 && TYPE_CODE (elttype) == TYPE_CODE_INT
338 && (options->format == 0 || options->format == 's')
339 && addr != 0)
340 {
341 if (want_space)
342 fputs_filtered (" ", stream);
343 i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
344 stream, options);
345 }
346 return;
347 }
348 break;
349
350 case TYPE_CODE_INT:
351 if (options->format || options->output_format)
352 {
353 struct value_print_options opts = *options;
354
355 opts.format = (options->format ? options->format
356 : options->output_format);
357 val_print_scalar_formatted (type, valaddr, embedded_offset,
358 original_value, options, 0, stream);
359 }
360 else
361 {
362 val_print_type_code_int (type, valaddr + embedded_offset, stream);
363 /* C and C++ has no single byte int type, char is used instead.
364 Since we don't know whether the value is really intended to
365 be used as an integer or a character, print the character
366 equivalent as well. */
367 if (TYPE_LENGTH (type) == 1)
368 {
369 LONGEST c;
370
371 fputs_filtered (" ", stream);
372 c = unpack_long (type, valaddr + embedded_offset);
373 LA_PRINT_CHAR ((unsigned char) c, type, stream);
374 }
375 }
376 break;
377
378 case TYPE_CODE_STRUCT:
379 case TYPE_CODE_UNION:
380 /* Starting from the Fortran 90 standard, Fortran supports derived
381 types. */
382 fprintf_filtered (stream, "( ");
383 for (index = 0; index < TYPE_NFIELDS (type); index++)
384 {
385 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
386
387 val_print (TYPE_FIELD_TYPE (type, index), valaddr,
388 embedded_offset + offset,
389 address, stream, recurse + 1,
390 original_value, options, current_language);
391 if (index != TYPE_NFIELDS (type) - 1)
392 fputs_filtered (", ", stream);
393 }
394 fprintf_filtered (stream, " )");
395 break;
396
397 case TYPE_CODE_REF:
398 case TYPE_CODE_FUNC:
399 case TYPE_CODE_FLAGS:
400 case TYPE_CODE_FLT:
401 case TYPE_CODE_VOID:
402 case TYPE_CODE_ERROR:
403 case TYPE_CODE_RANGE:
404 case TYPE_CODE_UNDEF:
405 case TYPE_CODE_COMPLEX:
406 case TYPE_CODE_BOOL:
407 case TYPE_CODE_CHAR:
408 default:
409 generic_val_print (type, valaddr, embedded_offset, address,
410 stream, recurse, original_value, options,
411 &f_decorations);
412 break;
413 }
414 gdb_flush (stream);
415 }
416
417 static void
418 list_all_visible_commons (const char *funname)
419 {
420 SAVED_F77_COMMON_PTR tmp;
421
422 tmp = head_common_list;
423
424 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
425
426 while (tmp != NULL)
427 {
428 if (strcmp (tmp->owning_function, funname) == 0)
429 printf_filtered ("%s\n", tmp->name);
430
431 tmp = tmp->next;
432 }
433 }
434
435 /* This function is used to print out the values in a given COMMON
436 block. It will always use the most local common block of the
437 given name. */
438
439 static void
440 info_common_command (char *comname, int from_tty)
441 {
442 SAVED_F77_COMMON_PTR the_common;
443 COMMON_ENTRY_PTR entry;
444 struct frame_info *fi;
445 const char *funname = 0;
446 struct symbol *func;
447
448 /* We have been told to display the contents of F77 COMMON
449 block supposedly visible in this function. Let us
450 first make sure that it is visible and if so, let
451 us display its contents. */
452
453 fi = get_selected_frame (_("No frame selected"));
454
455 /* The following is generally ripped off from stack.c's routine
456 print_frame_info(). */
457
458 func = find_pc_function (get_frame_pc (fi));
459 if (func)
460 {
461 /* In certain pathological cases, the symtabs give the wrong
462 function (when we are in the first function in a file which
463 is compiled without debugging symbols, the previous function
464 is compiled with debugging symbols, and the "foo.o" symbol
465 that is supposed to tell us where the file with debugging symbols
466 ends has been truncated by ar because it is longer than 15
467 characters).
468
469 So look in the minimal symbol tables as well, and if it comes
470 up with a larger address for the function use that instead.
471 I don't think this can ever cause any problems; there shouldn't
472 be any minimal symbols in the middle of a function.
473 FIXME: (Not necessarily true. What about text labels?) */
474
475 struct minimal_symbol *msymbol =
476 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
477
478 if (msymbol != NULL
479 && (SYMBOL_VALUE_ADDRESS (msymbol)
480 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
481 funname = SYMBOL_LINKAGE_NAME (msymbol);
482 else
483 funname = SYMBOL_LINKAGE_NAME (func);
484 }
485 else
486 {
487 struct minimal_symbol *msymbol =
488 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
489
490 if (msymbol != NULL)
491 funname = SYMBOL_LINKAGE_NAME (msymbol);
492 else /* Got no 'funname', code below will fail. */
493 error (_("No function found for frame."));
494 }
495
496 /* If comname is NULL, we assume the user wishes to see the
497 which COMMON blocks are visible here and then return. */
498
499 if (comname == 0)
500 {
501 list_all_visible_commons (funname);
502 return;
503 }
504
505 the_common = find_common_for_function (comname, funname);
506
507 if (the_common)
508 {
509 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
510 printf_filtered (_("Contents of blank COMMON block:\n"));
511 else
512 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
513
514 printf_filtered ("\n");
515 entry = the_common->entries;
516
517 while (entry != NULL)
518 {
519 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
520 entry = entry->next;
521 }
522 }
523 else
524 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
525 comname, funname);
526 }
527
528 /* This function is used to determine whether there is a
529 F77 common block visible at the current scope called 'comname'. */
530
531 #if 0
532 static int
533 there_is_a_visible_common_named (char *comname)
534 {
535 SAVED_F77_COMMON_PTR the_common;
536 struct frame_info *fi;
537 char *funname = 0;
538 struct symbol *func;
539
540 if (comname == NULL)
541 error (_("Cannot deal with NULL common name!"));
542
543 fi = get_selected_frame (_("No frame selected"));
544
545 /* The following is generally ripped off from stack.c's routine
546 print_frame_info(). */
547
548 func = find_pc_function (fi->pc);
549 if (func)
550 {
551 /* In certain pathological cases, the symtabs give the wrong
552 function (when we are in the first function in a file which
553 is compiled without debugging symbols, the previous function
554 is compiled with debugging symbols, and the "foo.o" symbol
555 that is supposed to tell us where the file with debugging symbols
556 ends has been truncated by ar because it is longer than 15
557 characters).
558
559 So look in the minimal symbol tables as well, and if it comes
560 up with a larger address for the function use that instead.
561 I don't think this can ever cause any problems; there shouldn't
562 be any minimal symbols in the middle of a function.
563 FIXME: (Not necessarily true. What about text labels?) */
564
565 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
566
567 if (msymbol != NULL
568 && (SYMBOL_VALUE_ADDRESS (msymbol)
569 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
570 funname = SYMBOL_LINKAGE_NAME (msymbol);
571 else
572 funname = SYMBOL_LINKAGE_NAME (func);
573 }
574 else
575 {
576 struct minimal_symbol *msymbol =
577 lookup_minimal_symbol_by_pc (fi->pc);
578
579 if (msymbol != NULL)
580 funname = SYMBOL_LINKAGE_NAME (msymbol);
581 }
582
583 the_common = find_common_for_function (comname, funname);
584
585 return (the_common ? 1 : 0);
586 }
587 #endif
588
589 void
590 _initialize_f_valprint (void)
591 {
592 add_info ("common", info_common_command,
593 _("Print out the values contained in a Fortran COMMON block."));
594 if (xdb_commands)
595 add_com ("lc", class_info, info_common_command,
596 _("Print out the values contained in a Fortran COMMON block."));
597 }
This page took 0.055115 seconds and 4 git commands to generate.