fix stabs.texinfo xref bugs
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 #if !defined (GET_SAVED_REGISTER)
30
31 /* Return the address in which frame FRAME's value of register REGNUM
32 has been saved in memory. Or return zero if it has not been saved.
33 If REGNUM specifies the SP, the value we return is actually
34 the SP value, not an address where it was saved. */
35
36 CORE_ADDR
37 find_saved_register (frame, regnum)
38 FRAME frame;
39 int regnum;
40 {
41 struct frame_info *fi;
42 struct frame_saved_regs saved_regs;
43
44 register FRAME frame1 = 0;
45 register CORE_ADDR addr = 0;
46
47 if (frame == 0) /* No regs saved if want current frame */
48 return 0;
49
50 #ifdef HAVE_REGISTER_WINDOWS
51 /* We assume that a register in a register window will only be saved
52 in one place (since the name changes and/or disappears as you go
53 towards inner frames), so we only call get_frame_saved_regs on
54 the current frame. This is directly in contradiction to the
55 usage below, which assumes that registers used in a frame must be
56 saved in a lower (more interior) frame. This change is a result
57 of working on a register window machine; get_frame_saved_regs
58 always returns the registers saved within a frame, within the
59 context (register namespace) of that frame. */
60
61 /* However, note that we don't want this to return anything if
62 nothing is saved (if there's a frame inside of this one). Also,
63 callers to this routine asking for the stack pointer want the
64 stack pointer saved for *this* frame; this is returned from the
65 next frame. */
66
67
68 if (REGISTER_IN_WINDOW_P(regnum))
69 {
70 frame1 = get_next_frame (frame);
71 if (!frame1) return 0; /* Registers of this frame are
72 active. */
73
74 /* Get the SP from the next frame in; it will be this
75 current frame. */
76 if (regnum != SP_REGNUM)
77 frame1 = frame;
78
79 fi = get_frame_info (frame1);
80 get_frame_saved_regs (fi, &saved_regs);
81 return saved_regs.regs[regnum]; /* ... which might be zero */
82 }
83 #endif /* HAVE_REGISTER_WINDOWS */
84
85 /* Note that this next routine assumes that registers used in
86 frame x will be saved only in the frame that x calls and
87 frames interior to it. This is not true on the sparc, but the
88 above macro takes care of it, so we should be all right. */
89 while (1)
90 {
91 QUIT;
92 frame1 = get_prev_frame (frame1);
93 if (frame1 == 0 || frame1 == frame)
94 break;
95 fi = get_frame_info (frame1);
96 get_frame_saved_regs (fi, &saved_regs);
97 if (saved_regs.regs[regnum])
98 addr = saved_regs.regs[regnum];
99 }
100
101 return addr;
102 }
103
104 /* Find register number REGNUM relative to FRAME and put its
105 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
106 was optimized out (and thus can't be fetched). Set *LVAL to
107 lval_memory, lval_register, or not_lval, depending on whether the
108 value was fetched from memory, from a register, or in a strange
109 and non-modifiable way (e.g. a frame pointer which was calculated
110 rather than fetched). Set *ADDRP to the address, either in memory
111 on as a REGISTER_BYTE offset into the registers array.
112
113 Note that this implementation never sets *LVAL to not_lval. But
114 it can be replaced by defining GET_SAVED_REGISTER and supplying
115 your own.
116
117 The argument RAW_BUFFER must point to aligned memory. */
118 void
119 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
120 char *raw_buffer;
121 int *optimized;
122 CORE_ADDR *addrp;
123 FRAME frame;
124 int regnum;
125 enum lval_type *lval;
126 {
127 CORE_ADDR addr;
128 /* Normal systems don't optimize out things with register numbers. */
129 if (optimized != NULL)
130 *optimized = 0;
131 addr = find_saved_register (frame, regnum);
132 if (addr != 0)
133 {
134 if (lval != NULL)
135 *lval = lval_memory;
136 if (regnum == SP_REGNUM)
137 {
138 if (raw_buffer != NULL)
139 *(CORE_ADDR *)raw_buffer = addr;
140 if (addrp != NULL)
141 *addrp = 0;
142 return;
143 }
144 if (raw_buffer != NULL)
145 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
146 }
147 else
148 {
149 if (lval != NULL)
150 *lval = lval_register;
151 addr = REGISTER_BYTE (regnum);
152 if (raw_buffer != NULL)
153 read_register_gen (regnum, raw_buffer);
154 }
155 if (addrp != NULL)
156 *addrp = addr;
157 }
158 #endif /* GET_SAVED_REGISTER. */
159
160 /* Copy the bytes of register REGNUM, relative to the current stack frame,
161 into our memory at MYADDR, in target byte order.
162 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
163
164 Returns 1 if could not be read, 0 if could. */
165
166 int
167 read_relative_register_raw_bytes (regnum, myaddr)
168 int regnum;
169 char *myaddr;
170 {
171 int optim;
172 if (regnum == FP_REGNUM && selected_frame)
173 {
174 memcpy (myaddr, &FRAME_FP(selected_frame), REGISTER_RAW_SIZE(FP_REGNUM));
175 SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */
176 return 0;
177 }
178
179 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
180 regnum, (enum lval_type *)NULL);
181 return optim;
182 }
183
184 /* Return a `value' with the contents of register REGNUM
185 in its virtual format, with the type specified by
186 REGISTER_VIRTUAL_TYPE. */
187
188 value
189 value_of_register (regnum)
190 int regnum;
191 {
192 CORE_ADDR addr;
193 int optim;
194 register value val;
195 char raw_buffer[MAX_REGISTER_RAW_SIZE];
196 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
197 enum lval_type lval;
198
199 get_saved_register (raw_buffer, &optim, &addr,
200 selected_frame, regnum, &lval);
201
202 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
203 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
204 memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
205 REGISTER_VIRTUAL_SIZE (regnum));
206 VALUE_LVAL (val) = lval;
207 VALUE_ADDRESS (val) = addr;
208 VALUE_REGNO (val) = regnum;
209 VALUE_OPTIMIZED_OUT (val) = optim;
210 return val;
211 }
212 \f
213 /* Low level examining and depositing of registers.
214
215 The caller is responsible for making
216 sure that the inferior is stopped before calling the fetching routines,
217 or it will get garbage. (a change from GDB version 3, in which
218 the caller got the value from the last stop). */
219
220 /* Contents of the registers in target byte order.
221 We allocate some extra slop since we do a lot of bcopy's around `registers',
222 and failing-soft is better than failing hard. */
223 char registers[REGISTER_BYTES + /* SLOP */ 256];
224
225 /* Nonzero if that register has been fetched. */
226 char register_valid[NUM_REGS];
227
228 /* Indicate that registers may have changed, so invalidate the cache. */
229 void
230 registers_changed ()
231 {
232 int i;
233 for (i = 0; i < NUM_REGS; i++)
234 register_valid[i] = 0;
235 }
236
237 /* Indicate that all registers have been fetched, so mark them all valid. */
238 void
239 registers_fetched ()
240 {
241 int i;
242 for (i = 0; i < NUM_REGS; i++)
243 register_valid[i] = 1;
244 }
245
246 /* Copy LEN bytes of consecutive data from registers
247 starting with the REGBYTE'th byte of register data
248 into memory at MYADDR. */
249
250 void
251 read_register_bytes (regbyte, myaddr, len)
252 int regbyte;
253 char *myaddr;
254 int len;
255 {
256 /* Fetch all registers. */
257 int i;
258 for (i = 0; i < NUM_REGS; i++)
259 if (!register_valid[i])
260 {
261 target_fetch_registers (-1);
262 break;
263 }
264 if (myaddr != NULL)
265 memcpy (myaddr, &registers[regbyte], len);
266 }
267
268 /* Read register REGNO into memory at MYADDR, which must be large enough
269 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
270 If the register is known to be the size of a CORE_ADDR or smaller,
271 read_register can be used instead. */
272 void
273 read_register_gen (regno, myaddr)
274 int regno;
275 char *myaddr;
276 {
277 if (!register_valid[regno])
278 target_fetch_registers (regno);
279 memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
280 REGISTER_RAW_SIZE (regno));
281 }
282
283 /* Copy LEN bytes of consecutive data from memory at MYADDR
284 into registers starting with the REGBYTE'th byte of register data. */
285
286 void
287 write_register_bytes (regbyte, myaddr, len)
288 int regbyte;
289 char *myaddr;
290 int len;
291 {
292 /* Make sure the entire registers array is valid. */
293 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
294 memcpy (&registers[regbyte], myaddr, len);
295 target_store_registers (-1);
296 }
297
298 /* Return the contents of register REGNO, regarding it as an integer. */
299 /* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also,
300 why is the return type CORE_ADDR rather than some integer type? */
301
302 CORE_ADDR
303 read_register (regno)
304 int regno;
305 {
306 unsigned short sval;
307 unsigned long lval;
308
309 if (!register_valid[regno])
310 target_fetch_registers (regno);
311
312 switch (REGISTER_RAW_SIZE(regno))
313 {
314 case sizeof (unsigned char):
315 return registers[REGISTER_BYTE (regno)];
316 case sizeof (sval):
317 memcpy (&sval, &registers[REGISTER_BYTE (regno)], sizeof (sval));
318 SWAP_TARGET_AND_HOST (&sval, sizeof (sval));
319 return sval;
320 case sizeof (lval):
321 memcpy (&lval, &registers[REGISTER_BYTE (regno)], sizeof (lval));
322 SWAP_TARGET_AND_HOST (&lval, sizeof (lval));
323 return lval;
324 default:
325 error ("Can't handle register size of %d for register %d\n",
326 REGISTER_RAW_SIZE(regno), regno);
327 }
328 }
329
330 /* Registers we shouldn't try to store. */
331 #if !defined (CANNOT_STORE_REGISTER)
332 #define CANNOT_STORE_REGISTER(regno) 0
333 #endif
334
335 /* Store VALUE in the register number REGNO, regarded as an integer. */
336 /* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also,
337 shouldn't the val arg be a LONGEST or something? */
338
339 void
340 write_register (regno, val)
341 int regno, val;
342 {
343 unsigned short sval;
344 unsigned long lval;
345
346 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
347 the registers array if something writes to this register. */
348 if (CANNOT_STORE_REGISTER (regno))
349 return;
350
351 target_prepare_to_store ();
352
353 register_valid [regno] = 1;
354
355 switch (REGISTER_RAW_SIZE(regno))
356 {
357 case sizeof (unsigned char):
358 registers[REGISTER_BYTE (regno)] = val;
359 break;
360 case sizeof (sval):
361 sval = val;
362 SWAP_TARGET_AND_HOST (&sval, sizeof (sval));
363 memcpy (&registers[REGISTER_BYTE (regno)], &sval, sizeof (sval));
364 break;
365 case sizeof (lval):
366 lval = val;
367 SWAP_TARGET_AND_HOST (&lval, sizeof (lval));
368 memcpy (&registers[REGISTER_BYTE (regno)], &lval, sizeof (lval));
369 break;
370 }
371
372 target_store_registers (regno);
373 }
374
375 /* Record that register REGNO contains VAL.
376 This is used when the value is obtained from the inferior or core dump,
377 so there is no need to store the value there. */
378
379 void
380 supply_register (regno, val)
381 int regno;
382 char *val;
383 {
384 register_valid[regno] = 1;
385 memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
386
387 /* On some architectures, e.g. HPPA, there are a few stray bits in some
388 registers, that the rest of the code would like to ignore. */
389 #ifdef CLEAN_UP_REGISTER_VALUE
390 CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
391 #endif
392 }
393 \f
394 /* Given a struct symbol for a variable,
395 and a stack frame id, read the value of the variable
396 and return a (pointer to a) struct value containing the value.
397 If the variable cannot be found, return a zero pointer.
398 If FRAME is NULL, use the selected_frame. */
399
400 value
401 read_var_value (var, frame)
402 register struct symbol *var;
403 FRAME frame;
404 {
405 register value v;
406 struct frame_info *fi;
407 struct type *type = SYMBOL_TYPE (var);
408 CORE_ADDR addr;
409 register int len;
410
411 v = allocate_value (type);
412 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
413 len = TYPE_LENGTH (type);
414
415 if (frame == 0) frame = selected_frame;
416
417 switch (SYMBOL_CLASS (var))
418 {
419 case LOC_CONST:
420 memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len);
421 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
422 VALUE_LVAL (v) = not_lval;
423 return v;
424
425 case LOC_LABEL:
426 addr = SYMBOL_VALUE_ADDRESS (var);
427 memcpy (VALUE_CONTENTS_RAW (v), &addr, len);
428 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
429 VALUE_LVAL (v) = not_lval;
430 return v;
431
432 case LOC_CONST_BYTES:
433 {
434 char *bytes_addr;
435 bytes_addr = SYMBOL_VALUE_BYTES (var);
436 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
437 VALUE_LVAL (v) = not_lval;
438 return v;
439 }
440
441 case LOC_STATIC:
442 addr = SYMBOL_VALUE_ADDRESS (var);
443 break;
444
445 case LOC_ARG:
446 if (SYMBOL_BASEREG_VALID (var))
447 {
448 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
449 }
450 else
451 {
452 fi = get_frame_info (frame);
453 if (fi == NULL)
454 return 0;
455 addr = FRAME_ARGS_ADDRESS (fi);
456 }
457 if (!addr)
458 {
459 return 0;
460 }
461 addr += SYMBOL_VALUE (var);
462 break;
463
464 case LOC_REF_ARG:
465 if (SYMBOL_BASEREG_VALID (var))
466 {
467 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
468 }
469 else
470 {
471 fi = get_frame_info (frame);
472 if (fi == NULL)
473 return 0;
474 addr = FRAME_ARGS_ADDRESS (fi);
475 }
476 if (!addr)
477 {
478 return 0;
479 }
480 addr += SYMBOL_VALUE (var);
481 read_memory (addr, (char *) &addr, sizeof (CORE_ADDR));
482 break;
483
484 case LOC_LOCAL:
485 case LOC_LOCAL_ARG:
486 if (SYMBOL_BASEREG_VALID (var))
487 {
488 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
489 }
490 else
491 {
492 fi = get_frame_info (frame);
493 if (fi == NULL)
494 return 0;
495 addr = FRAME_LOCALS_ADDRESS (fi);
496 }
497 addr += SYMBOL_VALUE (var);
498 break;
499
500 case LOC_TYPEDEF:
501 error ("Cannot look up value of a typedef");
502 break;
503
504 case LOC_BLOCK:
505 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
506 return v;
507
508 case LOC_REGISTER:
509 case LOC_REGPARM:
510 {
511 struct block *b;
512
513 if (frame == NULL)
514 return 0;
515 b = get_frame_block (frame);
516
517 v = value_from_register (type, SYMBOL_VALUE (var), frame);
518
519 /* Nonzero if a struct which is located in a register or a LOC_ARG
520 really contains
521 the address of the struct, not the struct itself. GCC_P is nonzero
522 if the function was compiled with GCC. */
523 /* A cleaner way to do this would be to add LOC_REGISTER_ADDR
524 (register contains the address of the value) and LOC_REGPARM_ADDR,
525 and have the symbol-reading code set them -kingdon. */
526 #if !defined (REG_STRUCT_HAS_ADDR)
527 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
528 #endif
529
530 if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
531 && ( (TYPE_CODE (type) == TYPE_CODE_STRUCT)
532 || (TYPE_CODE (type) == TYPE_CODE_UNION)))
533 {
534 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
535 VALUE_LVAL (v) = lval_memory;
536 }
537 else
538 return v;
539 }
540 break;
541
542 default:
543 error ("Cannot look up value of a botched symbol.");
544 break;
545 }
546
547 VALUE_ADDRESS (v) = addr;
548 VALUE_LAZY (v) = 1;
549 return v;
550 }
551
552 /* Return a value of type TYPE, stored in register REGNUM, in frame
553 FRAME. */
554
555 value
556 value_from_register (type, regnum, frame)
557 struct type *type;
558 int regnum;
559 FRAME frame;
560 {
561 char raw_buffer [MAX_REGISTER_RAW_SIZE];
562 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
563 CORE_ADDR addr;
564 int optim;
565 value v = allocate_value (type);
566 int len = TYPE_LENGTH (type);
567 char *value_bytes = 0;
568 int value_bytes_copied = 0;
569 int num_storage_locs;
570 enum lval_type lval;
571
572 VALUE_REGNO (v) = regnum;
573
574 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
575 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
576 1);
577
578 if (num_storage_locs > 1
579 #ifdef GDB_TARGET_IS_H8500
580 || TYPE_CODE (type) == TYPE_CODE_PTR
581 #endif
582 )
583 {
584 /* Value spread across multiple storage locations. */
585
586 int local_regnum;
587 int mem_stor = 0, reg_stor = 0;
588 int mem_tracking = 1;
589 CORE_ADDR last_addr = 0;
590 CORE_ADDR first_addr;
591
592 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
593
594 /* Copy all of the data out, whereever it may be. */
595
596 #ifdef GDB_TARGET_IS_H8500
597 /* This piece of hideosity is required because the H8500 treats registers
598 differently depending upon whether they are used as pointers or not. As a
599 pointer, a register needs to have a page register tacked onto the front.
600 An alternate way to do this would be to have gcc output different register
601 numbers for the pointer & non-pointer form of the register. But, it
602 doesn't, so we're stuck with this. */
603
604 if (TYPE_CODE (type) == TYPE_CODE_PTR)
605 {
606 int page_regnum;
607
608 switch (regnum)
609 {
610 case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
611 page_regnum = SEG_D_REGNUM;
612 break;
613 case R4_REGNUM: case R5_REGNUM:
614 page_regnum = SEG_E_REGNUM;
615 break;
616 case R6_REGNUM: case R7_REGNUM:
617 page_regnum = SEG_T_REGNUM;
618 break;
619 }
620
621 value_bytes[0] = 0;
622 get_saved_register (value_bytes + 1,
623 &optim,
624 &addr,
625 frame,
626 page_regnum,
627 &lval);
628
629 if (lval == lval_register)
630 reg_stor++;
631 else
632 {
633 mem_stor++;
634 first_addr = addr;
635 }
636 last_addr = addr;
637
638 get_saved_register (value_bytes + 2,
639 &optim,
640 &addr,
641 frame,
642 regnum,
643 &lval);
644
645 if (lval == lval_register)
646 reg_stor++;
647 else
648 {
649 mem_stor++;
650 mem_tracking = mem_tracking && (addr == last_addr);
651 }
652 last_addr = addr;
653 }
654 else
655 #endif /* GDB_TARGET_IS_H8500 */
656 for (local_regnum = regnum;
657 value_bytes_copied < len;
658 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
659 ++local_regnum))
660 {
661 get_saved_register (value_bytes + value_bytes_copied,
662 &optim,
663 &addr,
664 frame,
665 local_regnum,
666 &lval);
667 if (lval == lval_register)
668 reg_stor++;
669 else
670 {
671 mem_stor++;
672
673 if (regnum == local_regnum)
674 first_addr = addr;
675
676 mem_tracking =
677 (mem_tracking
678 && (regnum == local_regnum
679 || addr == last_addr));
680 }
681 last_addr = addr;
682 }
683
684 if ((reg_stor && mem_stor)
685 || (mem_stor && !mem_tracking))
686 /* Mixed storage; all of the hassle we just went through was
687 for some good purpose. */
688 {
689 VALUE_LVAL (v) = lval_reg_frame_relative;
690 VALUE_FRAME (v) = FRAME_FP (frame);
691 VALUE_FRAME_REGNUM (v) = regnum;
692 }
693 else if (mem_stor)
694 {
695 VALUE_LVAL (v) = lval_memory;
696 VALUE_ADDRESS (v) = first_addr;
697 }
698 else if (reg_stor)
699 {
700 VALUE_LVAL (v) = lval_register;
701 VALUE_ADDRESS (v) = first_addr;
702 }
703 else
704 fatal ("value_from_register: Value not stored anywhere!");
705
706 VALUE_OPTIMIZED_OUT (v) = optim;
707
708 /* Any structure stored in more than one register will always be
709 an integral number of registers. Otherwise, you'd need to do
710 some fiddling with the last register copied here for little
711 endian machines. */
712
713 /* Copy into the contents section of the value. */
714 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
715
716 return v;
717 }
718
719 /* Data is completely contained within a single register. Locate the
720 register's contents in a real register or in core;
721 read the data in raw format. */
722
723 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
724 VALUE_OPTIMIZED_OUT (v) = optim;
725 VALUE_LVAL (v) = lval;
726 VALUE_ADDRESS (v) = addr;
727
728 /* Convert the raw contents to virtual contents.
729 (Just copy them if the formats are the same.) */
730
731 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
732
733 if (REGISTER_CONVERTIBLE (regnum))
734 {
735 /* When the raw and virtual formats differ, the virtual format
736 corresponds to a specific data type. If we want that type,
737 copy the data into the value.
738 Otherwise, do a type-conversion. */
739
740 if (type != REGISTER_VIRTUAL_TYPE (regnum))
741 {
742 /* eg a variable of type `float' in a 68881 register
743 with raw type `extended' and virtual type `double'.
744 Fetch it as a `double' and then convert to `float'. */
745 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
746 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
747 v = value_cast (type, v);
748 }
749 else
750 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
751 }
752 else
753 {
754 /* Raw and virtual formats are the same for this register. */
755
756 #if TARGET_BYTE_ORDER == BIG_ENDIAN
757 if (len < REGISTER_RAW_SIZE (regnum))
758 {
759 /* Big-endian, and we want less than full size. */
760 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
761 }
762 #endif
763
764 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len);
765 }
766
767 return v;
768 }
769 \f
770 /* Given a struct symbol for a variable or function,
771 and a stack frame id,
772 return a (pointer to a) struct value containing the properly typed
773 address. */
774
775 value
776 locate_var_value (var, frame)
777 register struct symbol *var;
778 FRAME frame;
779 {
780 CORE_ADDR addr = 0;
781 struct type *type = SYMBOL_TYPE (var);
782 value lazy_value;
783
784 /* Evaluate it first; if the result is a memory address, we're fine.
785 Lazy evaluation pays off here. */
786
787 lazy_value = read_var_value (var, frame);
788 if (lazy_value == 0)
789 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
790
791 if (VALUE_LAZY (lazy_value)
792 || TYPE_CODE (type) == TYPE_CODE_FUNC)
793 {
794 addr = VALUE_ADDRESS (lazy_value);
795 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
796 }
797
798 /* Not a memory address; check what the problem was. */
799 switch (VALUE_LVAL (lazy_value))
800 {
801 case lval_register:
802 case lval_reg_frame_relative:
803 error ("Address requested for identifier \"%s\" which is in a register.",
804 SYMBOL_SOURCE_NAME (var));
805 break;
806
807 default:
808 error ("Can't take address of \"%s\" which isn't an lvalue.",
809 SYMBOL_SOURCE_NAME (var));
810 break;
811 }
812 return 0; /* For lint -- never reached */
813 }
This page took 0.064597 seconds and 4 git commands to generate.