* doc/gdb.texinfo (appendix "Installing GDB"): changes in configure.
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include "defs.h"
22 #include "param.h"
23 #include "symtab.h"
24 #include "frame.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "inferior.h"
28 #include "target.h"
29
30 #if !defined (GET_SAVED_REGISTER)
31
32 /* Return the address in which frame FRAME's value of register REGNUM
33 has been saved in memory. Or return zero if it has not been saved.
34 If REGNUM specifies the SP, the value we return is actually
35 the SP value, not an address where it was saved. */
36
37 CORE_ADDR
38 find_saved_register (frame, regnum)
39 FRAME frame;
40 int regnum;
41 {
42 struct frame_info *fi;
43 struct frame_saved_regs saved_regs;
44
45 register FRAME frame1 = 0;
46 register CORE_ADDR addr = 0;
47
48 if (frame == 0) /* No regs saved if want current frame */
49 return 0;
50
51 #ifdef HAVE_REGISTER_WINDOWS
52 /* We assume that a register in a register window will only be saved
53 in one place (since the name changes and/or disappears as you go
54 towards inner frames), so we only call get_frame_saved_regs on
55 the current frame. This is directly in contradiction to the
56 usage below, which assumes that registers used in a frame must be
57 saved in a lower (more interior) frame. This change is a result
58 of working on a register window machine; get_frame_saved_regs
59 always returns the registers saved within a frame, within the
60 context (register namespace) of that frame. */
61
62 /* However, note that we don't want this to return anything if
63 nothing is saved (if there's a frame inside of this one). Also,
64 callers to this routine asking for the stack pointer want the
65 stack pointer saved for *this* frame; this is returned from the
66 next frame. */
67
68
69 if (REGISTER_IN_WINDOW_P(regnum))
70 {
71 frame1 = get_next_frame (frame);
72 if (!frame1) return 0; /* Registers of this frame are
73 active. */
74
75 /* Get the SP from the next frame in; it will be this
76 current frame. */
77 if (regnum != SP_REGNUM)
78 frame1 = frame;
79
80 fi = get_frame_info (frame1);
81 get_frame_saved_regs (fi, &saved_regs);
82 return saved_regs.regs[regnum]; /* ... which might be zero */
83 }
84 #endif /* HAVE_REGISTER_WINDOWS */
85
86 /* Note that this next routine assumes that registers used in
87 frame x will be saved only in the frame that x calls and
88 frames interior to it. This is not true on the sparc, but the
89 above macro takes care of it, so we should be all right. */
90 while (1)
91 {
92 QUIT;
93 frame1 = get_prev_frame (frame1);
94 if (frame1 == 0 || frame1 == frame)
95 break;
96 fi = get_frame_info (frame1);
97 get_frame_saved_regs (fi, &saved_regs);
98 if (saved_regs.regs[regnum])
99 addr = saved_regs.regs[regnum];
100 }
101
102 return addr;
103 }
104
105 /* Find register number REGNUM relative to FRAME and put its
106 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
107 was optimized out (and thus can't be fetched). Set *LVAL to
108 lval_memory, lval_register, or not_lval, depending on whether the
109 value was fetched from memory, from a register, or in a strange
110 and non-modifiable way (e.g. a frame pointer which was calculated
111 rather than fetched). Set *ADDRP to the address, either in memory
112 on as a REGISTER_BYTE offset into the registers array.
113
114 Note that this implementation never sets *LVAL to not_lval. But
115 it can be replaced by defining GET_SAVED_REGISTER and supplying
116 your own.
117
118 The argument RAW_BUFFER must point to aligned memory. */
119 void
120 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
121 char *raw_buffer;
122 int *optimized;
123 CORE_ADDR *addrp;
124 FRAME frame;
125 int regnum;
126 enum lval_type *lval;
127 {
128 CORE_ADDR addr;
129 /* Normal systems don't optimize out things with register numbers. */
130 if (optimized != NULL)
131 *optimized = 0;
132 addr = find_saved_register (frame, regnum);
133 if (addr != NULL)
134 {
135 if (lval != NULL)
136 *lval = lval_memory;
137 if (regnum == SP_REGNUM)
138 {
139 if (raw_buffer != NULL)
140 *(CORE_ADDR *)raw_buffer = addr;
141 if (addrp != NULL)
142 *addrp = 0;
143 return;
144 }
145 if (raw_buffer != NULL)
146 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
147 }
148 else
149 {
150 if (lval != NULL)
151 *lval = lval_register;
152 addr = REGISTER_BYTE (regnum);
153 if (raw_buffer != NULL)
154 read_register_gen (regnum, raw_buffer);
155 }
156 if (addrp != NULL)
157 *addrp = addr;
158 }
159 #endif /* GET_SAVED_REGISTER. */
160
161 /* Copy the bytes of register REGNUM, relative to the current stack frame,
162 into our memory at MYADDR, in target byte order.
163 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
164
165 Returns 1 if could not be read, 0 if could. */
166
167 int
168 read_relative_register_raw_bytes (regnum, myaddr)
169 int regnum;
170 char *myaddr;
171 {
172 int optim;
173 if (regnum == FP_REGNUM && selected_frame)
174 {
175 bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
176 SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
177 return 0;
178 }
179
180 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
181 regnum, (enum lval_type *)NULL);
182 return optim;
183 }
184
185 /* Return a `value' with the contents of register REGNUM
186 in its virtual format, with the type specified by
187 REGISTER_VIRTUAL_TYPE. */
188
189 value
190 value_of_register (regnum)
191 int regnum;
192 {
193 CORE_ADDR addr;
194 int optim;
195 register value val;
196 char raw_buffer[MAX_REGISTER_RAW_SIZE];
197 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
198 enum lval_type lval;
199
200 get_saved_register (raw_buffer, &optim, &addr,
201 selected_frame, regnum, &lval);
202
203 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
204 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
205 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
206 REGISTER_VIRTUAL_SIZE (regnum));
207 VALUE_LVAL (val) = lval;
208 VALUE_ADDRESS (val) = addr;
209 VALUE_REGNO (val) = regnum;
210 VALUE_OPTIMIZED_OUT (val) = optim;
211 return val;
212 }
213 \f
214 /* Low level examining and depositing of registers.
215
216 The caller is responsible for making
217 sure that the inferior is stopped before calling the fetching routines,
218 or it will get garbage. (a change from GDB version 3, in which
219 the caller got the value from the last stop). */
220
221 /* Contents of the registers in target byte order.
222 We allocate some extra slop since we do a lot of bcopy's around `registers',
223 and failing-soft is better than failing hard. */
224 char registers[REGISTER_BYTES + /* SLOP */ 256];
225
226 /* Nonzero if that register has been fetched. */
227 char register_valid[NUM_REGS];
228
229 /* Indicate that registers may have changed, so invalidate the cache. */
230 void
231 registers_changed ()
232 {
233 int i;
234 for (i = 0; i < NUM_REGS; i++)
235 register_valid[i] = 0;
236 }
237
238 /* Indicate that all registers have been fetched, so mark them all valid. */
239 void
240 registers_fetched ()
241 {
242 int i;
243 for (i = 0; i < NUM_REGS; i++)
244 register_valid[i] = 1;
245 }
246
247 /* Copy LEN bytes of consecutive data from registers
248 starting with the REGBYTE'th byte of register data
249 into memory at MYADDR. */
250
251 void
252 read_register_bytes (regbyte, myaddr, len)
253 int regbyte;
254 char *myaddr;
255 int len;
256 {
257 /* Fetch all registers. */
258 int i;
259 for (i = 0; i < NUM_REGS; i++)
260 if (!register_valid[i])
261 {
262 target_fetch_registers (-1);
263 break;
264 }
265 if (myaddr != NULL)
266 bcopy (&registers[regbyte], myaddr, len);
267 }
268
269 /* Read register REGNO into memory at MYADDR, which must be large enough
270 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
271 If the register is known to be the size of a CORE_ADDR or smaller,
272 read_register can be used instead. */
273 void
274 read_register_gen (regno, myaddr)
275 int regno;
276 char *myaddr;
277 {
278 if (!register_valid[regno])
279 target_fetch_registers (regno);
280 bcopy (&registers[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
281 }
282
283 /* Copy LEN bytes of consecutive data from memory at MYADDR
284 into registers starting with the REGBYTE'th byte of register data. */
285
286 void
287 write_register_bytes (regbyte, myaddr, len)
288 int regbyte;
289 char *myaddr;
290 int len;
291 {
292 /* Make sure the entire registers array is valid. */
293 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
294 bcopy (myaddr, &registers[regbyte], len);
295 target_store_registers (-1);
296 }
297
298 /* Return the contents of register REGNO, regarding it as an integer. */
299
300 CORE_ADDR
301 read_register (regno)
302 int regno;
303 {
304 int reg;
305 if (!register_valid[regno])
306 target_fetch_registers (regno);
307 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
308 reg = *(int *) &registers[REGISTER_BYTE (regno)];
309 SWAP_TARGET_AND_HOST (&reg, sizeof (int));
310 return reg;
311 }
312
313 /* Registers we shouldn't try to store. */
314 #if !defined (CANNOT_STORE_REGISTER)
315 #define CANNOT_STORE_REGISTER(regno) 0
316 #endif
317
318 /* Store VALUE in the register number REGNO, regarded as an integer. */
319
320 void
321 write_register (regno, val)
322 int regno, val;
323 {
324 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
325 the registers array if something writes to this register. */
326 if (CANNOT_STORE_REGISTER (regno))
327 return;
328
329 SWAP_TARGET_AND_HOST (&val, sizeof (int));
330
331 target_prepare_to_store ();
332
333 register_valid [regno] = 1;
334 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
335 /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
336 *(int *) &registers[REGISTER_BYTE (regno)] = val;
337
338 target_store_registers (regno);
339 }
340
341 /* Record that register REGNO contains VAL.
342 This is used when the value is obtained from the inferior or core dump,
343 so there is no need to store the value there. */
344
345 void
346 supply_register (regno, val)
347 int regno;
348 char *val;
349 {
350 register_valid[regno] = 1;
351 bcopy (val, &registers[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
352 }
353 \f
354 /* Given a struct symbol for a variable,
355 and a stack frame id, read the value of the variable
356 and return a (pointer to a) struct value containing the value.
357 If the variable cannot be found, return a zero pointer.
358 If FRAME is NULL, use the selected_frame. */
359
360 value
361 read_var_value (var, frame)
362 register struct symbol *var;
363 FRAME frame;
364 {
365 register value v;
366 struct frame_info *fi;
367 struct type *type = SYMBOL_TYPE (var);
368 CORE_ADDR addr;
369 register int len;
370
371 v = allocate_value (type);
372 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
373 len = TYPE_LENGTH (type);
374
375 if (frame == 0) frame = selected_frame;
376
377 switch (SYMBOL_CLASS (var))
378 {
379 case LOC_CONST:
380 bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len);
381 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
382 VALUE_LVAL (v) = not_lval;
383 return v;
384
385 case LOC_LABEL:
386 addr = SYMBOL_VALUE_ADDRESS (var);
387 bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
388 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
389 VALUE_LVAL (v) = not_lval;
390 return v;
391
392 case LOC_CONST_BYTES:
393 {
394 char *bytes_addr;
395 bytes_addr = SYMBOL_VALUE_BYTES (var);
396 bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len);
397 VALUE_LVAL (v) = not_lval;
398 return v;
399 }
400
401 case LOC_STATIC:
402 case LOC_EXTERNAL:
403 addr = SYMBOL_VALUE_ADDRESS (var);
404 break;
405
406 /* Nonzero if a struct which is located in a register or a LOC_ARG
407 really contains
408 the address of the struct, not the struct itself. GCC_P is nonzero
409 if the function was compiled with GCC. */
410 #if !defined (REG_STRUCT_HAS_ADDR)
411 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
412 #endif
413
414 case LOC_ARG:
415 fi = get_frame_info (frame);
416 if (fi == NULL)
417 return 0;
418 addr = FRAME_ARGS_ADDRESS (fi);
419 if (!addr) {
420 return 0;
421 }
422 addr += SYMBOL_VALUE (var);
423 break;
424
425 case LOC_REF_ARG:
426 fi = get_frame_info (frame);
427 if (fi == NULL)
428 return 0;
429 addr = FRAME_ARGS_ADDRESS (fi);
430 if (!addr) {
431 return 0;
432 }
433 addr += SYMBOL_VALUE (var);
434 read_memory (addr, &addr, sizeof (CORE_ADDR));
435 break;
436
437 case LOC_LOCAL:
438 case LOC_LOCAL_ARG:
439 fi = get_frame_info (frame);
440 if (fi == NULL)
441 return 0;
442 addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
443 break;
444
445 case LOC_TYPEDEF:
446 error ("Cannot look up value of a typedef");
447 break;
448
449 case LOC_BLOCK:
450 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
451 return v;
452
453 case LOC_REGISTER:
454 case LOC_REGPARM:
455 {
456 struct block *b;
457
458 if (frame == NULL)
459 return 0;
460 b = get_frame_block (frame);
461
462 v = value_from_register (type, SYMBOL_VALUE (var), frame);
463
464 if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
465 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
466 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
467 else
468 return v;
469 }
470 break;
471
472 default:
473 error ("Cannot look up value of a botched symbol.");
474 break;
475 }
476
477 VALUE_ADDRESS (v) = addr;
478 VALUE_LAZY (v) = 1;
479 return v;
480 }
481
482 /* Return a value of type TYPE, stored in register REGNUM, in frame
483 FRAME. */
484
485 value
486 value_from_register (type, regnum, frame)
487 struct type *type;
488 int regnum;
489 FRAME frame;
490 {
491 char raw_buffer [MAX_REGISTER_RAW_SIZE];
492 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
493 CORE_ADDR addr;
494 int optim;
495 value v = allocate_value (type);
496 int len = TYPE_LENGTH (type);
497 char *value_bytes = 0;
498 int value_bytes_copied = 0;
499 int num_storage_locs;
500 enum lval_type lval;
501
502 VALUE_REGNO (v) = regnum;
503
504 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
505 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
506 1);
507
508 if (num_storage_locs > 1)
509 {
510 /* Value spread across multiple storage locations. */
511
512 int local_regnum;
513 int mem_stor = 0, reg_stor = 0;
514 int mem_tracking = 1;
515 CORE_ADDR last_addr = 0;
516 CORE_ADDR first_addr;
517
518 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
519
520 /* Copy all of the data out, whereever it may be. */
521
522 for (local_regnum = regnum;
523 value_bytes_copied < len;
524 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
525 ++local_regnum))
526 {
527 get_saved_register (value_bytes + value_bytes_copied,
528 &optim,
529 &addr,
530 frame,
531 local_regnum,
532 &lval);
533 if (lval == lval_register)
534 reg_stor++;
535 else
536 {
537 mem_stor++;
538
539 if (regnum == local_regnum)
540 first_addr = addr;
541
542 mem_tracking =
543 (mem_tracking
544 && (regnum == local_regnum
545 || addr == last_addr));
546 }
547 last_addr = addr;
548 }
549
550 if ((reg_stor && mem_stor)
551 || (mem_stor && !mem_tracking))
552 /* Mixed storage; all of the hassle we just went through was
553 for some good purpose. */
554 {
555 VALUE_LVAL (v) = lval_reg_frame_relative;
556 VALUE_FRAME (v) = FRAME_FP (frame);
557 VALUE_FRAME_REGNUM (v) = regnum;
558 }
559 else if (mem_stor)
560 {
561 VALUE_LVAL (v) = lval_memory;
562 VALUE_ADDRESS (v) = first_addr;
563 }
564 else if (reg_stor)
565 {
566 VALUE_LVAL (v) = lval_register;
567 VALUE_ADDRESS (v) = first_addr;
568 }
569 else
570 fatal ("value_from_register: Value not stored anywhere!");
571
572 VALUE_OPTIMIZED_OUT (v) = optim;
573
574 /* Any structure stored in more than one register will always be
575 an integral number of registers. Otherwise, you'd need to do
576 some fiddling with the last register copied here for little
577 endian machines. */
578
579 /* Copy into the contents section of the value. */
580 bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);
581
582 return v;
583 }
584
585 /* Data is completely contained within a single register. Locate the
586 register's contents in a real register or in core;
587 read the data in raw format. */
588
589 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
590 VALUE_OPTIMIZED_OUT (v) = optim;
591 VALUE_LVAL (v) = lval;
592 VALUE_ADDRESS (v) = addr;
593
594 /* Convert the raw contents to virtual contents.
595 (Just copy them if the formats are the same.) */
596
597 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
598
599 if (REGISTER_CONVERTIBLE (regnum))
600 {
601 /* When the raw and virtual formats differ, the virtual format
602 corresponds to a specific data type. If we want that type,
603 copy the data into the value.
604 Otherwise, do a type-conversion. */
605
606 if (type != REGISTER_VIRTUAL_TYPE (regnum))
607 {
608 /* eg a variable of type `float' in a 68881 register
609 with raw type `extended' and virtual type `double'.
610 Fetch it as a `double' and then convert to `float'. */
611 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
612 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
613 v = value_cast (type, v);
614 }
615 else
616 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
617 }
618 else
619 {
620 /* Raw and virtual formats are the same for this register. */
621
622 #if TARGET_BYTE_ORDER == BIG_ENDIAN
623 if (len < REGISTER_RAW_SIZE (regnum))
624 {
625 /* Big-endian, and we want less than full size. */
626 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
627 }
628 #endif
629
630 bcopy (virtual_buffer + VALUE_OFFSET (v),
631 VALUE_CONTENTS_RAW (v), len);
632 }
633
634 return v;
635 }
636 \f
637 /* Given a struct symbol for a variable or function,
638 and a stack frame id,
639 return a (pointer to a) struct value containing the properly typed
640 address. */
641
642 value
643 locate_var_value (var, frame)
644 register struct symbol *var;
645 FRAME frame;
646 {
647 CORE_ADDR addr = 0;
648 struct type *type = SYMBOL_TYPE (var);
649 struct type *result_type;
650 value lazy_value;
651
652 /* Evaluate it first; if the result is a memory address, we're fine.
653 Lazy evaluation pays off here. */
654
655 lazy_value = read_var_value (var, frame);
656 if (lazy_value == 0)
657 error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
658
659 if (VALUE_LAZY (lazy_value)
660 || TYPE_CODE (type) == TYPE_CODE_FUNC)
661 {
662 addr = VALUE_ADDRESS (lazy_value);
663
664 /* C++: The "address" of a reference should yield the address
665 * of the object pointed to. So force an extra de-reference. */
666
667 if (TYPE_CODE (type) == TYPE_CODE_REF)
668 {
669 char *buf = alloca (TYPE_LENGTH (type));
670 read_memory (addr, buf, TYPE_LENGTH (type));
671 addr = unpack_pointer (type, buf);
672 type = TYPE_TARGET_TYPE (type);
673 }
674
675 /* Address of an array is of the type of address of it's elements. */
676 /* FIXME, this is probably wrong now for ANSI C. */
677 result_type =
678 lookup_pointer_type (TYPE_CODE (type) == TYPE_CODE_ARRAY ?
679 TYPE_TARGET_TYPE (type) : type);
680
681 return value_cast (result_type,
682 value_from_long (builtin_type_long, (LONGEST) addr));
683 }
684
685 /* Not a memory address; check what the problem was. */
686 switch (VALUE_LVAL (lazy_value))
687 {
688 case lval_register:
689 case lval_reg_frame_relative:
690 error ("Address requested for identifier \"%s\" which is in a register.",
691 SYMBOL_NAME (var));
692 break;
693
694 default:
695 error ("Can't take address of \"%s\" which isn't an lvalue.",
696 SYMBOL_NAME (var));
697 break;
698 }
699 return 0; /* For lint -- never reached */
700 }
This page took 0.044185 seconds and 4 git commands to generate.