Disambiguate info_print_options
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "symfile.h" /* for overlay functions */
29 #include "regcache.h"
30 #include "user-regs.h"
31 #include "block.h"
32 #include "objfiles.h"
33 #include "language.h"
34 #include "dwarf2loc.h"
35 #include "gdbsupport/selftest.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 template<typename T, typename>
50 T
51 extract_integer (const gdb_byte *addr, int len, enum bfd_endian byte_order)
52 {
53 typename std::make_unsigned<T>::type retval = 0;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (T))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (T));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 if (std::is_signed<T>::value)
69 {
70 /* Do the sign extension once at the start. */
71 retval = ((LONGEST) * p ^ 0x80) - 0x80;
72 ++p;
73 }
74 for (; p < endaddr; ++p)
75 retval = (retval << 8) | *p;
76 }
77 else
78 {
79 p = endaddr - 1;
80 if (std::is_signed<T>::value)
81 {
82 /* Do the sign extension once at the start. */
83 retval = ((LONGEST) * p ^ 0x80) - 0x80;
84 --p;
85 }
86 for (; p >= startaddr; --p)
87 retval = (retval << 8) | *p;
88 }
89 return retval;
90 }
91
92 /* Explicit instantiations. */
93 template LONGEST extract_integer<LONGEST> (const gdb_byte *addr, int len,
94 enum bfd_endian byte_order);
95 template ULONGEST extract_integer<ULONGEST> (const gdb_byte *addr, int len,
96 enum bfd_endian byte_order);
97
98 /* Sometimes a long long unsigned integer can be extracted as a
99 LONGEST value. This is done so that we can print these values
100 better. If this integer can be converted to a LONGEST, this
101 function returns 1 and sets *PVAL. Otherwise it returns 0. */
102
103 int
104 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
105 enum bfd_endian byte_order, LONGEST *pval)
106 {
107 const gdb_byte *p;
108 const gdb_byte *first_addr;
109 int len;
110
111 len = orig_len;
112 if (byte_order == BFD_ENDIAN_BIG)
113 {
114 for (p = addr;
115 len > (int) sizeof (LONGEST) && p < addr + orig_len;
116 p++)
117 {
118 if (*p == 0)
119 len--;
120 else
121 break;
122 }
123 first_addr = p;
124 }
125 else
126 {
127 first_addr = addr;
128 for (p = addr + orig_len - 1;
129 len > (int) sizeof (LONGEST) && p >= addr;
130 p--)
131 {
132 if (*p == 0)
133 len--;
134 else
135 break;
136 }
137 }
138
139 if (len <= (int) sizeof (LONGEST))
140 {
141 *pval = (LONGEST) extract_unsigned_integer (first_addr,
142 sizeof (LONGEST),
143 byte_order);
144 return 1;
145 }
146
147 return 0;
148 }
149
150
151 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
152 address it represents. */
153 CORE_ADDR
154 extract_typed_address (const gdb_byte *buf, struct type *type)
155 {
156 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
157 internal_error (__FILE__, __LINE__,
158 _("extract_typed_address: "
159 "type is not a pointer or reference"));
160
161 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
162 }
163
164 /* All 'store' functions accept a host-format integer and store a
165 target-format integer at ADDR which is LEN bytes long. */
166 template<typename T, typename>
167 void
168 store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
169 T val)
170 {
171 gdb_byte *p;
172 gdb_byte *startaddr = addr;
173 gdb_byte *endaddr = startaddr + len;
174
175 /* Start at the least significant end of the integer, and work towards
176 the most significant. */
177 if (byte_order == BFD_ENDIAN_BIG)
178 {
179 for (p = endaddr - 1; p >= startaddr; --p)
180 {
181 *p = val & 0xff;
182 val >>= 8;
183 }
184 }
185 else
186 {
187 for (p = startaddr; p < endaddr; ++p)
188 {
189 *p = val & 0xff;
190 val >>= 8;
191 }
192 }
193 }
194
195 /* Explicit instantiations. */
196 template void store_integer (gdb_byte *addr, int len,
197 enum bfd_endian byte_order,
198 LONGEST val);
199
200 template void store_integer (gdb_byte *addr, int len,
201 enum bfd_endian byte_order,
202 ULONGEST val);
203
204 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
205 form. */
206 void
207 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
208 {
209 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
210 internal_error (__FILE__, __LINE__,
211 _("store_typed_address: "
212 "type is not a pointer or reference"));
213
214 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
215 }
216
217 /* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
218 bytes. If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
219 significant bytes. If SOURCE_SIZE is less than DEST_SIZE then either sign
220 or zero extended according to IS_SIGNED. Values are stored in memory with
221 endianness BYTE_ORDER. */
222
223 void
224 copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
225 int source_size, bool is_signed,
226 enum bfd_endian byte_order)
227 {
228 signed int size_diff = dest_size - source_size;
229
230 /* Copy across everything from SOURCE that can fit into DEST. */
231
232 if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
233 memcpy (dest + size_diff, source, source_size);
234 else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
235 memcpy (dest, source - size_diff, dest_size);
236 else
237 memcpy (dest, source, std::min (source_size, dest_size));
238
239 /* Fill the remaining space in DEST by either zero extending or sign
240 extending. */
241
242 if (size_diff > 0)
243 {
244 gdb_byte extension = 0;
245 if (is_signed
246 && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
247 || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
248 extension = 0xff;
249
250 /* Extend into MSBs of SOURCE. */
251 if (byte_order == BFD_ENDIAN_BIG)
252 memset (dest, extension, size_diff);
253 else
254 memset (dest + source_size, extension, size_diff);
255 }
256 }
257
258 /* Return a `value' with the contents of (virtual or cooked) register
259 REGNUM as found in the specified FRAME. The register's type is
260 determined by register_type(). */
261
262 struct value *
263 value_of_register (int regnum, struct frame_info *frame)
264 {
265 struct gdbarch *gdbarch = get_frame_arch (frame);
266 struct value *reg_val;
267
268 /* User registers lie completely outside of the range of normal
269 registers. Catch them early so that the target never sees them. */
270 if (regnum >= gdbarch_num_cooked_regs (gdbarch))
271 return value_of_user_reg (regnum, frame);
272
273 reg_val = value_of_register_lazy (frame, regnum);
274 value_fetch_lazy (reg_val);
275 return reg_val;
276 }
277
278 /* Return a `value' with the contents of (virtual or cooked) register
279 REGNUM as found in the specified FRAME. The register's type is
280 determined by register_type(). The value is not fetched. */
281
282 struct value *
283 value_of_register_lazy (struct frame_info *frame, int regnum)
284 {
285 struct gdbarch *gdbarch = get_frame_arch (frame);
286 struct value *reg_val;
287 struct frame_info *next_frame;
288
289 gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
290
291 gdb_assert (frame != NULL);
292
293 next_frame = get_next_frame_sentinel_okay (frame);
294
295 /* We should have a valid next frame. */
296 gdb_assert (frame_id_p (get_frame_id (next_frame)));
297
298 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
299 VALUE_LVAL (reg_val) = lval_register;
300 VALUE_REGNUM (reg_val) = regnum;
301 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);
302
303 return reg_val;
304 }
305
306 /* Given a pointer of type TYPE in target form in BUF, return the
307 address it represents. */
308 CORE_ADDR
309 unsigned_pointer_to_address (struct gdbarch *gdbarch,
310 struct type *type, const gdb_byte *buf)
311 {
312 enum bfd_endian byte_order = type_byte_order (type);
313
314 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
315 }
316
317 CORE_ADDR
318 signed_pointer_to_address (struct gdbarch *gdbarch,
319 struct type *type, const gdb_byte *buf)
320 {
321 enum bfd_endian byte_order = type_byte_order (type);
322
323 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
324 }
325
326 /* Given an address, store it as a pointer of type TYPE in target
327 format in BUF. */
328 void
329 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
330 gdb_byte *buf, CORE_ADDR addr)
331 {
332 enum bfd_endian byte_order = type_byte_order (type);
333
334 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
335 }
336
337 void
338 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
339 gdb_byte *buf, CORE_ADDR addr)
340 {
341 enum bfd_endian byte_order = type_byte_order (type);
342
343 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
344 }
345 \f
346 /* See value.h. */
347
348 enum symbol_needs_kind
349 symbol_read_needs (struct symbol *sym)
350 {
351 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
352 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);
353
354 switch (SYMBOL_CLASS (sym))
355 {
356 /* All cases listed explicitly so that gcc -Wall will detect it if
357 we failed to consider one. */
358 case LOC_COMPUTED:
359 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
360
361 case LOC_REGISTER:
362 case LOC_ARG:
363 case LOC_REF_ARG:
364 case LOC_REGPARM_ADDR:
365 case LOC_LOCAL:
366 return SYMBOL_NEEDS_FRAME;
367
368 case LOC_UNDEF:
369 case LOC_CONST:
370 case LOC_STATIC:
371 case LOC_TYPEDEF:
372
373 case LOC_LABEL:
374 /* Getting the address of a label can be done independently of the block,
375 even if some *uses* of that address wouldn't work so well without
376 the right frame. */
377
378 case LOC_BLOCK:
379 case LOC_CONST_BYTES:
380 case LOC_UNRESOLVED:
381 case LOC_OPTIMIZED_OUT:
382 return SYMBOL_NEEDS_NONE;
383 }
384 return SYMBOL_NEEDS_FRAME;
385 }
386
387 /* See value.h. */
388
389 int
390 symbol_read_needs_frame (struct symbol *sym)
391 {
392 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
393 }
394
395 /* Private data to be used with minsym_lookup_iterator_cb. */
396
397 struct minsym_lookup_data
398 {
399 /* The name of the minimal symbol we are searching for. */
400 const char *name;
401
402 /* The field where the callback should store the minimal symbol
403 if found. It should be initialized to NULL before the search
404 is started. */
405 struct bound_minimal_symbol result;
406 };
407
408 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
409 It searches by name for a minimal symbol within the given OBJFILE.
410 The arguments are passed via CB_DATA, which in reality is a pointer
411 to struct minsym_lookup_data. */
412
413 static int
414 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
415 {
416 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
417
418 gdb_assert (data->result.minsym == NULL);
419
420 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
421
422 /* The iterator should stop iff a match was found. */
423 return (data->result.minsym != NULL);
424 }
425
426 /* Given static link expression and the frame it lives in, look for the frame
427 the static links points to and return it. Return NULL if we could not find
428 such a frame. */
429
430 static struct frame_info *
431 follow_static_link (struct frame_info *frame,
432 const struct dynamic_prop *static_link)
433 {
434 CORE_ADDR upper_frame_base;
435
436 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
437 return NULL;
438
439 /* Now climb up the stack frame until we reach the frame we are interested
440 in. */
441 for (; frame != NULL; frame = get_prev_frame (frame))
442 {
443 struct symbol *framefunc = get_frame_function (frame);
444
445 /* Stacks can be quite deep: give the user a chance to stop this. */
446 QUIT;
447
448 /* If we don't know how to compute FRAME's base address, don't give up:
449 maybe the frame we are looking for is upper in the stack frame. */
450 if (framefunc != NULL
451 && SYMBOL_BLOCK_OPS (framefunc) != NULL
452 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
453 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
454 == upper_frame_base))
455 break;
456 }
457
458 return frame;
459 }
460
461 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
462 rules, look for the frame that is actually hosting VAR and return it. If,
463 for some reason, we found no such frame, return NULL.
464
465 This kind of computation is necessary to correctly handle lexically nested
466 functions.
467
468 Note that in some cases, we know what scope VAR comes from but we cannot
469 reach the specific frame that hosts the instance of VAR we are looking for.
470 For backward compatibility purposes (with old compilers), we then look for
471 the first frame that can host it. */
472
473 static struct frame_info *
474 get_hosting_frame (struct symbol *var, const struct block *var_block,
475 struct frame_info *frame)
476 {
477 const struct block *frame_block = NULL;
478
479 if (!symbol_read_needs_frame (var))
480 return NULL;
481
482 /* Some symbols for local variables have no block: this happens when they are
483 not produced by a debug information reader, for instance when GDB creates
484 synthetic symbols. Without block information, we must assume they are
485 local to FRAME. In this case, there is nothing to do. */
486 else if (var_block == NULL)
487 return frame;
488
489 /* We currently assume that all symbols with a location list need a frame.
490 This is true in practice because selecting the location description
491 requires to compute the CFA, hence requires a frame. However we have
492 tests that embed global/static symbols with null location lists.
493 We want to get <optimized out> instead of <frame required> when evaluating
494 them so return a frame instead of raising an error. */
495 else if (var_block == block_global_block (var_block)
496 || var_block == block_static_block (var_block))
497 return frame;
498
499 /* We have to handle the "my_func::my_local_var" notation. This requires us
500 to look for upper frames when we find no block for the current frame: here
501 and below, handle when frame_block == NULL. */
502 if (frame != NULL)
503 frame_block = get_frame_block (frame, NULL);
504
505 /* Climb up the call stack until reaching the frame we are looking for. */
506 while (frame != NULL && frame_block != var_block)
507 {
508 /* Stacks can be quite deep: give the user a chance to stop this. */
509 QUIT;
510
511 if (frame_block == NULL)
512 {
513 frame = get_prev_frame (frame);
514 if (frame == NULL)
515 break;
516 frame_block = get_frame_block (frame, NULL);
517 }
518
519 /* If we failed to find the proper frame, fallback to the heuristic
520 method below. */
521 else if (frame_block == block_global_block (frame_block))
522 {
523 frame = NULL;
524 break;
525 }
526
527 /* Assuming we have a block for this frame: if we are at the function
528 level, the immediate upper lexical block is in an outer function:
529 follow the static link. */
530 else if (BLOCK_FUNCTION (frame_block))
531 {
532 const struct dynamic_prop *static_link
533 = block_static_link (frame_block);
534 int could_climb_up = 0;
535
536 if (static_link != NULL)
537 {
538 frame = follow_static_link (frame, static_link);
539 if (frame != NULL)
540 {
541 frame_block = get_frame_block (frame, NULL);
542 could_climb_up = frame_block != NULL;
543 }
544 }
545 if (!could_climb_up)
546 {
547 frame = NULL;
548 break;
549 }
550 }
551
552 else
553 /* We must be in some function nested lexical block. Just get the
554 outer block: both must share the same frame. */
555 frame_block = BLOCK_SUPERBLOCK (frame_block);
556 }
557
558 /* Old compilers may not provide a static link, or they may provide an
559 invalid one. For such cases, fallback on the old way to evaluate
560 non-local references: just climb up the call stack and pick the first
561 frame that contains the variable we are looking for. */
562 if (frame == NULL)
563 {
564 frame = block_innermost_frame (var_block);
565 if (frame == NULL)
566 {
567 if (BLOCK_FUNCTION (var_block)
568 && !block_inlined_p (var_block)
569 && BLOCK_FUNCTION (var_block)->print_name ())
570 error (_("No frame is currently executing in block %s."),
571 BLOCK_FUNCTION (var_block)->print_name ());
572 else
573 error (_("No frame is currently executing in specified"
574 " block"));
575 }
576 }
577
578 return frame;
579 }
580
581 /* A default implementation for the "la_read_var_value" hook in
582 the language vector which should work in most situations. */
583
584 struct value *
585 default_read_var_value (struct symbol *var, const struct block *var_block,
586 struct frame_info *frame)
587 {
588 struct value *v;
589 struct type *type = SYMBOL_TYPE (var);
590 CORE_ADDR addr;
591 enum symbol_needs_kind sym_need;
592
593 /* Call check_typedef on our type to make sure that, if TYPE is
594 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
595 instead of zero. However, we do not replace the typedef type by the
596 target type, because we want to keep the typedef in order to be able to
597 set the returned value type description correctly. */
598 check_typedef (type);
599
600 sym_need = symbol_read_needs (var);
601 if (sym_need == SYMBOL_NEEDS_FRAME)
602 gdb_assert (frame != NULL);
603 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers)
604 error (_("Cannot read `%s' without registers"), var->print_name ());
605
606 if (frame != NULL)
607 frame = get_hosting_frame (var, var_block, frame);
608
609 if (SYMBOL_COMPUTED_OPS (var) != NULL)
610 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
611
612 switch (SYMBOL_CLASS (var))
613 {
614 case LOC_CONST:
615 if (is_dynamic_type (type))
616 {
617 /* Value is a constant byte-sequence and needs no memory access. */
618 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
619 }
620 /* Put the constant back in target format. */
621 v = allocate_value (type);
622 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
623 type_byte_order (type),
624 (LONGEST) SYMBOL_VALUE (var));
625 VALUE_LVAL (v) = not_lval;
626 return v;
627
628 case LOC_LABEL:
629 /* Put the constant back in target format. */
630 v = allocate_value (type);
631 if (overlay_debugging)
632 {
633 addr
634 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
635 SYMBOL_OBJ_SECTION (symbol_objfile (var),
636 var));
637
638 store_typed_address (value_contents_raw (v), type, addr);
639 }
640 else
641 store_typed_address (value_contents_raw (v), type,
642 SYMBOL_VALUE_ADDRESS (var));
643 VALUE_LVAL (v) = not_lval;
644 return v;
645
646 case LOC_CONST_BYTES:
647 if (is_dynamic_type (type))
648 {
649 /* Value is a constant byte-sequence and needs no memory access. */
650 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
651 }
652 v = allocate_value (type);
653 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
654 TYPE_LENGTH (type));
655 VALUE_LVAL (v) = not_lval;
656 return v;
657
658 case LOC_STATIC:
659 if (overlay_debugging)
660 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
661 SYMBOL_OBJ_SECTION (symbol_objfile (var),
662 var));
663 else
664 addr = SYMBOL_VALUE_ADDRESS (var);
665 break;
666
667 case LOC_ARG:
668 addr = get_frame_args_address (frame);
669 if (!addr)
670 error (_("Unknown argument list address for `%s'."),
671 var->print_name ());
672 addr += SYMBOL_VALUE (var);
673 break;
674
675 case LOC_REF_ARG:
676 {
677 struct value *ref;
678 CORE_ADDR argref;
679
680 argref = get_frame_args_address (frame);
681 if (!argref)
682 error (_("Unknown argument list address for `%s'."),
683 var->print_name ());
684 argref += SYMBOL_VALUE (var);
685 ref = value_at (lookup_pointer_type (type), argref);
686 addr = value_as_address (ref);
687 break;
688 }
689
690 case LOC_LOCAL:
691 addr = get_frame_locals_address (frame);
692 addr += SYMBOL_VALUE (var);
693 break;
694
695 case LOC_TYPEDEF:
696 error (_("Cannot look up value of a typedef `%s'."),
697 var->print_name ());
698 break;
699
700 case LOC_BLOCK:
701 if (overlay_debugging)
702 addr = symbol_overlayed_address
703 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
704 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
705 else
706 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
707 break;
708
709 case LOC_REGISTER:
710 case LOC_REGPARM_ADDR:
711 {
712 int regno = SYMBOL_REGISTER_OPS (var)
713 ->register_number (var, get_frame_arch (frame));
714 struct value *regval;
715
716 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
717 {
718 regval = value_from_register (lookup_pointer_type (type),
719 regno,
720 frame);
721
722 if (regval == NULL)
723 error (_("Value of register variable not available for `%s'."),
724 var->print_name ());
725
726 addr = value_as_address (regval);
727 }
728 else
729 {
730 regval = value_from_register (type, regno, frame);
731
732 if (regval == NULL)
733 error (_("Value of register variable not available for `%s'."),
734 var->print_name ());
735 return regval;
736 }
737 }
738 break;
739
740 case LOC_COMPUTED:
741 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
742
743 case LOC_UNRESOLVED:
744 {
745 struct minsym_lookup_data lookup_data;
746 struct minimal_symbol *msym;
747 struct obj_section *obj_section;
748
749 memset (&lookup_data, 0, sizeof (lookup_data));
750 lookup_data.name = var->linkage_name ();
751
752 gdbarch_iterate_over_objfiles_in_search_order
753 (symbol_arch (var),
754 minsym_lookup_iterator_cb, &lookup_data,
755 symbol_objfile (var));
756 msym = lookup_data.result.minsym;
757
758 /* If we can't find the minsym there's a problem in the symbol info.
759 The symbol exists in the debug info, but it's missing in the minsym
760 table. */
761 if (msym == NULL)
762 {
763 const char *flavour_name
764 = objfile_flavour_name (symbol_objfile (var));
765
766 /* We can't get here unless we've opened the file, so flavour_name
767 can't be NULL. */
768 gdb_assert (flavour_name != NULL);
769 error (_("Missing %s symbol \"%s\"."),
770 flavour_name, var->linkage_name ());
771 }
772 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
773 /* Relocate address, unless there is no section or the variable is
774 a TLS variable. */
775 if (obj_section == NULL
776 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
777 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
778 else
779 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
780 if (overlay_debugging)
781 addr = symbol_overlayed_address (addr, obj_section);
782 /* Determine address of TLS variable. */
783 if (obj_section
784 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
785 addr = target_translate_tls_address (obj_section->objfile, addr);
786 }
787 break;
788
789 case LOC_OPTIMIZED_OUT:
790 if (is_dynamic_type (type))
791 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
792 return allocate_optimized_out_value (type);
793
794 default:
795 error (_("Cannot look up value of a botched symbol `%s'."),
796 var->print_name ());
797 break;
798 }
799
800 v = value_at_lazy (type, addr);
801 return v;
802 }
803
804 /* Calls VAR's language la_read_var_value hook with the given arguments. */
805
806 struct value *
807 read_var_value (struct symbol *var, const struct block *var_block,
808 struct frame_info *frame)
809 {
810 const struct language_defn *lang = language_def (var->language ());
811
812 gdb_assert (lang != NULL);
813 gdb_assert (lang->la_read_var_value != NULL);
814
815 return lang->la_read_var_value (var, var_block, frame);
816 }
817
818 /* Install default attributes for register values. */
819
820 struct value *
821 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
822 int regnum, struct frame_id frame_id)
823 {
824 int len = TYPE_LENGTH (type);
825 struct value *value = allocate_value (type);
826 struct frame_info *frame;
827
828 VALUE_LVAL (value) = lval_register;
829 frame = frame_find_by_id (frame_id);
830
831 if (frame == NULL)
832 frame_id = null_frame_id;
833 else
834 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));
835
836 VALUE_NEXT_FRAME_ID (value) = frame_id;
837 VALUE_REGNUM (value) = regnum;
838
839 /* Any structure stored in more than one register will always be
840 an integral number of registers. Otherwise, you need to do
841 some fiddling with the last register copied here for little
842 endian machines. */
843 if (type_byte_order (type) == BFD_ENDIAN_BIG
844 && len < register_size (gdbarch, regnum))
845 /* Big-endian, and we want less than full size. */
846 set_value_offset (value, register_size (gdbarch, regnum) - len);
847 else
848 set_value_offset (value, 0);
849
850 return value;
851 }
852
853 /* VALUE must be an lval_register value. If regnum is the value's
854 associated register number, and len the length of the values type,
855 read one or more registers in FRAME, starting with register REGNUM,
856 until we've read LEN bytes.
857
858 If any of the registers we try to read are optimized out, then mark the
859 complete resulting value as optimized out. */
860
861 void
862 read_frame_register_value (struct value *value, struct frame_info *frame)
863 {
864 struct gdbarch *gdbarch = get_frame_arch (frame);
865 LONGEST offset = 0;
866 LONGEST reg_offset = value_offset (value);
867 int regnum = VALUE_REGNUM (value);
868 int len = type_length_units (check_typedef (value_type (value)));
869
870 gdb_assert (VALUE_LVAL (value) == lval_register);
871
872 /* Skip registers wholly inside of REG_OFFSET. */
873 while (reg_offset >= register_size (gdbarch, regnum))
874 {
875 reg_offset -= register_size (gdbarch, regnum);
876 regnum++;
877 }
878
879 /* Copy the data. */
880 while (len > 0)
881 {
882 struct value *regval = get_frame_register_value (frame, regnum);
883 int reg_len = type_length_units (value_type (regval)) - reg_offset;
884
885 /* If the register length is larger than the number of bytes
886 remaining to copy, then only copy the appropriate bytes. */
887 if (reg_len > len)
888 reg_len = len;
889
890 value_contents_copy (value, offset, regval, reg_offset, reg_len);
891
892 offset += reg_len;
893 len -= reg_len;
894 reg_offset = 0;
895 regnum++;
896 }
897 }
898
899 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
900
901 struct value *
902 value_from_register (struct type *type, int regnum, struct frame_info *frame)
903 {
904 struct gdbarch *gdbarch = get_frame_arch (frame);
905 struct type *type1 = check_typedef (type);
906 struct value *v;
907
908 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
909 {
910 int optim, unavail, ok;
911
912 /* The ISA/ABI need to something weird when obtaining the
913 specified value from this register. It might need to
914 re-order non-adjacent, starting with REGNUM (see MIPS and
915 i386). It might need to convert the [float] register into
916 the corresponding [integer] type (see Alpha). The assumption
917 is that gdbarch_register_to_value populates the entire value
918 including the location. */
919 v = allocate_value (type);
920 VALUE_LVAL (v) = lval_register;
921 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
922 VALUE_REGNUM (v) = regnum;
923 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
924 value_contents_raw (v), &optim,
925 &unavail);
926
927 if (!ok)
928 {
929 if (optim)
930 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
931 if (unavail)
932 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
933 }
934 }
935 else
936 {
937 /* Construct the value. */
938 v = gdbarch_value_from_register (gdbarch, type,
939 regnum, get_frame_id (frame));
940
941 /* Get the data. */
942 read_frame_register_value (v, frame);
943 }
944
945 return v;
946 }
947
948 /* Return contents of register REGNUM in frame FRAME as address.
949 Will abort if register value is not available. */
950
951 CORE_ADDR
952 address_from_register (int regnum, struct frame_info *frame)
953 {
954 struct gdbarch *gdbarch = get_frame_arch (frame);
955 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
956 struct value *value;
957 CORE_ADDR result;
958 int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);
959
960 if (regnum < 0 || regnum >= regnum_max_excl)
961 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
962 regnum_max_excl);
963
964 /* This routine may be called during early unwinding, at a time
965 where the ID of FRAME is not yet known. Calling value_from_register
966 would therefore abort in get_frame_id. However, since we only need
967 a temporary value that is never used as lvalue, we actually do not
968 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement
969 the core of value_from_register, but use the null_frame_id. */
970
971 /* Some targets require a special conversion routine even for plain
972 pointer types. Avoid constructing a value object in those cases. */
973 if (gdbarch_convert_register_p (gdbarch, regnum, type))
974 {
975 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
976 int optim, unavail, ok;
977
978 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
979 buf, &optim, &unavail);
980 if (!ok)
981 {
982 /* This function is used while computing a location expression.
983 Complain about the value being optimized out, rather than
984 letting value_as_address complain about some random register
985 the expression depends on not being saved. */
986 error_value_optimized_out ();
987 }
988
989 return unpack_long (type, buf);
990 }
991
992 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
993 read_frame_register_value (value, frame);
994
995 if (value_optimized_out (value))
996 {
997 /* This function is used while computing a location expression.
998 Complain about the value being optimized out, rather than
999 letting value_as_address complain about some random register
1000 the expression depends on not being saved. */
1001 error_value_optimized_out ();
1002 }
1003
1004 result = value_as_address (value);
1005 release_value (value);
1006
1007 return result;
1008 }
1009
1010 #if GDB_SELF_TEST
1011 namespace selftests {
1012 namespace findvar_tests {
1013
1014 /* Function to test copy_integer_to_size. Store SOURCE_VAL with size
1015 SOURCE_SIZE to a buffer, making sure no sign extending happens at this
1016 stage. Copy buffer to a new buffer using copy_integer_to_size. Extract
1017 copied value and compare to DEST_VALU. Copy again with a signed
1018 copy_integer_to_size and compare to DEST_VALS. Do everything for both
1019 LITTLE and BIG target endians. Use unsigned values throughout to make
1020 sure there are no implicit sign extensions. */
1021
1022 static void
1023 do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
1024 ULONGEST src_val, int src_size)
1025 {
1026 for (int i = 0; i < 2 ; i++)
1027 {
1028 gdb_byte srcbuf[sizeof (ULONGEST)] = {};
1029 gdb_byte destbuf[sizeof (ULONGEST)] = {};
1030 enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1031
1032 /* Fill the src buffer (and later the dest buffer) with non-zero junk,
1033 to ensure zero extensions aren't hidden. */
1034 memset (srcbuf, 0xaa, sizeof (srcbuf));
1035
1036 /* Store (and later extract) using unsigned to ensure there are no sign
1037 extensions. */
1038 store_unsigned_integer (srcbuf, src_size, byte_order, src_val);
1039
1040 /* Test unsigned. */
1041 memset (destbuf, 0xaa, sizeof (destbuf));
1042 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
1043 byte_order);
1044 SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
1045 byte_order));
1046
1047 /* Test signed. */
1048 memset (destbuf, 0xaa, sizeof (destbuf));
1049 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
1050 byte_order);
1051 SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
1052 byte_order));
1053 }
1054 }
1055
1056 static void
1057 copy_integer_to_size_test ()
1058 {
1059 /* Destination is bigger than the source, which has the signed bit unset. */
1060 do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
1061 do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);
1062
1063 /* Destination is bigger than the source, which has the signed bit set. */
1064 do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
1065 do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);
1066
1067 /* Destination is smaller than the source. */
1068 do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
1069 do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);
1070
1071 /* Destination and source are the same size. */
1072 do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
1073 8);
1074 do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
1075 do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
1076 8);
1077 do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);
1078
1079 /* Destination is bigger than the source. Source is bigger than 32bits. */
1080 do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
1081 do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
1082 do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
1083 do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
1084 }
1085
1086 } // namespace findvar_test
1087 } // namespace selftests
1088
1089 #endif
1090
1091 void _initialize_findvar ();
1092 void
1093 _initialize_findvar ()
1094 {
1095 #if GDB_SELF_TEST
1096 selftests::register_test
1097 ("copy_integer_to_size",
1098 selftests::findvar_tests::copy_integer_to_size_test);
1099 #endif
1100 }
This page took 0.05092 seconds and 4 git commands to generate.