Need to declare nlm32_sparc_vec; oopsie.
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 /* Basic byte-swapping routines. GDB has needed these for a long time...
30 All extract a target-format integer at ADDR which is LEN bytes long. */
31
32 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
33 /* 8 bit characters are a pretty safe assumption these days, so we
34 assume it throughout all these swapping routines. If we had to deal with
35 9 bit characters, we would need to make len be in bits and would have
36 to re-write these routines... */
37 you lose
38 #endif
39
40 LONGEST
41 extract_signed_integer (addr, len)
42 PTR addr;
43 int len;
44 {
45 LONGEST retval;
46 unsigned char *p;
47 unsigned char *startaddr = (unsigned char *)addr;
48 unsigned char *endaddr = startaddr + len;
49
50 if (len > sizeof (LONGEST))
51 error ("\
52 That operation is not available on integers of more than %d bytes.",
53 sizeof (LONGEST));
54
55 /* Start at the most significant end of the integer, and work towards
56 the least significant. */
57 #if TARGET_BYTE_ORDER == BIG_ENDIAN
58 p = startaddr;
59 #else
60 p = endaddr - 1;
61 #endif
62 /* Do the sign extension once at the start. */
63 retval = ((LONGEST)*p ^ 0x80) - 0x80;
64 #if TARGET_BYTE_ORDER == BIG_ENDIAN
65 for (++p; p < endaddr; ++p)
66 #else
67 for (--p; p >= startaddr; --p)
68 #endif
69 {
70 retval = (retval << 8) | *p;
71 }
72 return retval;
73 }
74
75 unsigned LONGEST
76 extract_unsigned_integer (addr, len)
77 PTR addr;
78 int len;
79 {
80 unsigned LONGEST retval;
81 unsigned char *p;
82 unsigned char *startaddr = (unsigned char *)addr;
83 unsigned char *endaddr = startaddr + len;
84
85 if (len > sizeof (unsigned LONGEST))
86 error ("\
87 That operation is not available on integers of more than %d bytes.",
88 sizeof (unsigned LONGEST));
89
90 /* Start at the most significant end of the integer, and work towards
91 the least significant. */
92 retval = 0;
93 #if TARGET_BYTE_ORDER == BIG_ENDIAN
94 for (p = startaddr; p < endaddr; ++p)
95 #else
96 for (p = endaddr - 1; p >= startaddr; --p)
97 #endif
98 {
99 retval = (retval << 8) | *p;
100 }
101 return retval;
102 }
103
104 CORE_ADDR
105 extract_address (addr, len)
106 PTR addr;
107 int len;
108 {
109 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
110 whether we want this to be true eventually. */
111 return extract_unsigned_integer (addr, len);
112 }
113
114 void
115 store_signed_integer (addr, len, val)
116 PTR addr;
117 int len;
118 LONGEST val;
119 {
120 unsigned char *p;
121 unsigned char *startaddr = (unsigned char *)addr;
122 unsigned char *endaddr = startaddr + len;
123
124 /* Start at the least significant end of the integer, and work towards
125 the most significant. */
126 #if TARGET_BYTE_ORDER == BIG_ENDIAN
127 for (p = endaddr - 1; p >= startaddr; --p)
128 #else
129 for (p = startaddr; p < endaddr; ++p)
130 #endif
131 {
132 *p = val & 0xff;
133 val >>= 8;
134 }
135 }
136
137 void
138 store_unsigned_integer (addr, len, val)
139 PTR addr;
140 int len;
141 unsigned LONGEST val;
142 {
143 unsigned char *p;
144 unsigned char *startaddr = (unsigned char *)addr;
145 unsigned char *endaddr = startaddr + len;
146
147 /* Start at the least significant end of the integer, and work towards
148 the most significant. */
149 #if TARGET_BYTE_ORDER == BIG_ENDIAN
150 for (p = endaddr - 1; p >= startaddr; --p)
151 #else
152 for (p = startaddr; p < endaddr; ++p)
153 #endif
154 {
155 *p = val & 0xff;
156 val >>= 8;
157 }
158 }
159
160 void
161 store_address (addr, len, val)
162 PTR addr;
163 int len;
164 CORE_ADDR val;
165 {
166 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
167 whether we want this to be true eventually. */
168 store_unsigned_integer (addr, len, (LONGEST)val);
169 }
170 \f
171 /* Swap LEN bytes at BUFFER between target and host byte-order. This is
172 the wrong way to do byte-swapping because it assumes that you have a way
173 to have a host variable of exactly the right size. Once extract_floating
174 and store_floating have been fixed, this can go away. */
175 #if TARGET_BYTE_ORDER == HOST_BYTE_ORDER
176 #define SWAP_TARGET_AND_HOST(buffer,len)
177 #else /* Target and host byte order differ. */
178 #define SWAP_TARGET_AND_HOST(buffer,len) \
179 { \
180 char tmp; \
181 char *p = (char *)(buffer); \
182 char *q = ((char *)(buffer)) + len - 1; \
183 for (; p < q; p++, q--) \
184 { \
185 tmp = *q; \
186 *q = *p; \
187 *p = tmp; \
188 } \
189 }
190 #endif /* Target and host byte order differ. */
191
192 /* There are many problems with floating point cross-debugging.
193
194 1. These routines only handle byte-swapping, not conversion of
195 formats. So if host is IEEE floating and target is VAX floating,
196 or vice-versa, it loses. This means that we can't (yet) use these
197 routines for extendeds. Extendeds are handled by
198 REGISTER_CONVERTIBLE. What we want is a fixed version of
199 ieee-float.c (the current version can't deal with single or double,
200 and I suspect it is probably broken for some extendeds too).
201
202 2. We can't deal with it if there is more than one floating point
203 format in use. This has to be fixed at the unpack_double level.
204
205 3. We probably should have a LONGEST_DOUBLE or DOUBLEST or whatever
206 we want to call it which is long double where available. */
207
208 double
209 extract_floating (addr, len)
210 PTR addr;
211 int len;
212 {
213 if (len == sizeof (float))
214 {
215 float retval;
216 memcpy (&retval, addr, sizeof (retval));
217 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
218 return retval;
219 }
220 else if (len == sizeof (double))
221 {
222 double retval;
223 memcpy (&retval, addr, sizeof (retval));
224 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
225 return retval;
226 }
227 else
228 {
229 error ("Can't deal with a floating point number of %d bytes.", len);
230 }
231 }
232
233 void
234 store_floating (addr, len, val)
235 PTR addr;
236 int len;
237 double val;
238 {
239 if (len == sizeof (float))
240 {
241 float floatval = val;
242 SWAP_TARGET_AND_HOST (&floatval, sizeof (floatval));
243 memcpy (addr, &floatval, sizeof (floatval));
244 }
245 else if (len == sizeof (double))
246 {
247 SWAP_TARGET_AND_HOST (&val, sizeof (val));
248 memcpy (addr, &val, sizeof (val));
249 }
250 else
251 {
252 error ("Can't deal with a floating point number of %d bytes.", len);
253 }
254 }
255 \f
256 #if !defined (GET_SAVED_REGISTER)
257
258 /* Return the address in which frame FRAME's value of register REGNUM
259 has been saved in memory. Or return zero if it has not been saved.
260 If REGNUM specifies the SP, the value we return is actually
261 the SP value, not an address where it was saved. */
262
263 CORE_ADDR
264 find_saved_register (frame, regnum)
265 FRAME frame;
266 int regnum;
267 {
268 struct frame_info *fi;
269 struct frame_saved_regs saved_regs;
270
271 register FRAME frame1 = 0;
272 register CORE_ADDR addr = 0;
273
274 if (frame == 0) /* No regs saved if want current frame */
275 return 0;
276
277 #ifdef HAVE_REGISTER_WINDOWS
278 /* We assume that a register in a register window will only be saved
279 in one place (since the name changes and/or disappears as you go
280 towards inner frames), so we only call get_frame_saved_regs on
281 the current frame. This is directly in contradiction to the
282 usage below, which assumes that registers used in a frame must be
283 saved in a lower (more interior) frame. This change is a result
284 of working on a register window machine; get_frame_saved_regs
285 always returns the registers saved within a frame, within the
286 context (register namespace) of that frame. */
287
288 /* However, note that we don't want this to return anything if
289 nothing is saved (if there's a frame inside of this one). Also,
290 callers to this routine asking for the stack pointer want the
291 stack pointer saved for *this* frame; this is returned from the
292 next frame. */
293
294
295 if (REGISTER_IN_WINDOW_P(regnum))
296 {
297 frame1 = get_next_frame (frame);
298 if (!frame1) return 0; /* Registers of this frame are
299 active. */
300
301 /* Get the SP from the next frame in; it will be this
302 current frame. */
303 if (regnum != SP_REGNUM)
304 frame1 = frame;
305
306 fi = get_frame_info (frame1);
307 get_frame_saved_regs (fi, &saved_regs);
308 return saved_regs.regs[regnum]; /* ... which might be zero */
309 }
310 #endif /* HAVE_REGISTER_WINDOWS */
311
312 /* Note that this next routine assumes that registers used in
313 frame x will be saved only in the frame that x calls and
314 frames interior to it. This is not true on the sparc, but the
315 above macro takes care of it, so we should be all right. */
316 while (1)
317 {
318 QUIT;
319 frame1 = get_prev_frame (frame1);
320 if (frame1 == 0 || frame1 == frame)
321 break;
322 fi = get_frame_info (frame1);
323 get_frame_saved_regs (fi, &saved_regs);
324 if (saved_regs.regs[regnum])
325 addr = saved_regs.regs[regnum];
326 }
327
328 return addr;
329 }
330
331 /* Find register number REGNUM relative to FRAME and put its (raw,
332 target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
333 variable was optimized out (and thus can't be fetched). Set *LVAL
334 to lval_memory, lval_register, or not_lval, depending on whether
335 the value was fetched from memory, from a register, or in a strange
336 and non-modifiable way (e.g. a frame pointer which was calculated
337 rather than fetched). Set *ADDRP to the address, either in memory
338 on as a REGISTER_BYTE offset into the registers array.
339
340 Note that this implementation never sets *LVAL to not_lval. But
341 it can be replaced by defining GET_SAVED_REGISTER and supplying
342 your own.
343
344 The argument RAW_BUFFER must point to aligned memory. */
345
346 void
347 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
348 char *raw_buffer;
349 int *optimized;
350 CORE_ADDR *addrp;
351 FRAME frame;
352 int regnum;
353 enum lval_type *lval;
354 {
355 CORE_ADDR addr;
356 /* Normal systems don't optimize out things with register numbers. */
357 if (optimized != NULL)
358 *optimized = 0;
359 addr = find_saved_register (frame, regnum);
360 if (addr != 0)
361 {
362 if (lval != NULL)
363 *lval = lval_memory;
364 if (regnum == SP_REGNUM)
365 {
366 if (raw_buffer != NULL)
367 {
368 /* Put it back in target format. */
369 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
370 }
371 if (addrp != NULL)
372 *addrp = 0;
373 return;
374 }
375 if (raw_buffer != NULL)
376 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
377 }
378 else
379 {
380 if (lval != NULL)
381 *lval = lval_register;
382 addr = REGISTER_BYTE (regnum);
383 if (raw_buffer != NULL)
384 read_register_gen (regnum, raw_buffer);
385 }
386 if (addrp != NULL)
387 *addrp = addr;
388 }
389 #endif /* GET_SAVED_REGISTER. */
390
391 /* Copy the bytes of register REGNUM, relative to the current stack frame,
392 into our memory at MYADDR, in target byte order.
393 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
394
395 Returns 1 if could not be read, 0 if could. */
396
397 int
398 read_relative_register_raw_bytes (regnum, myaddr)
399 int regnum;
400 char *myaddr;
401 {
402 int optim;
403 if (regnum == FP_REGNUM && selected_frame)
404 {
405 /* Put it back in target format. */
406 store_address (myaddr, REGISTER_RAW_SIZE(FP_REGNUM),
407 FRAME_FP(selected_frame));
408 return 0;
409 }
410
411 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
412 regnum, (enum lval_type *)NULL);
413 return optim;
414 }
415
416 /* Return a `value' with the contents of register REGNUM
417 in its virtual format, with the type specified by
418 REGISTER_VIRTUAL_TYPE. */
419
420 value
421 value_of_register (regnum)
422 int regnum;
423 {
424 CORE_ADDR addr;
425 int optim;
426 register value val;
427 char raw_buffer[MAX_REGISTER_RAW_SIZE];
428 enum lval_type lval;
429
430 get_saved_register (raw_buffer, &optim, &addr,
431 selected_frame, regnum, &lval);
432
433 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
434
435 /* Convert raw data to virtual format if necessary. */
436
437 #ifdef REGISTER_CONVERTIBLE
438 if (REGISTER_CONVERTIBLE (regnum))
439 {
440 REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
441 raw_buffer, VALUE_CONTENTS_RAW (val));
442 }
443 else
444 #endif
445 memcpy (VALUE_CONTENTS_RAW (val), raw_buffer,
446 REGISTER_RAW_SIZE (regnum));
447 VALUE_LVAL (val) = lval;
448 VALUE_ADDRESS (val) = addr;
449 VALUE_REGNO (val) = regnum;
450 VALUE_OPTIMIZED_OUT (val) = optim;
451 return val;
452 }
453 \f
454 /* Low level examining and depositing of registers.
455
456 The caller is responsible for making
457 sure that the inferior is stopped before calling the fetching routines,
458 or it will get garbage. (a change from GDB version 3, in which
459 the caller got the value from the last stop). */
460
461 /* Contents of the registers in target byte order.
462 We allocate some extra slop since we do a lot of memcpy's around `registers',
463 and failing-soft is better than failing hard. */
464 char registers[REGISTER_BYTES + /* SLOP */ 256];
465
466 /* Nonzero if that register has been fetched. */
467 char register_valid[NUM_REGS];
468
469 /* Indicate that registers may have changed, so invalidate the cache. */
470 void
471 registers_changed ()
472 {
473 int i;
474 for (i = 0; i < NUM_REGS; i++)
475 register_valid[i] = 0;
476 }
477
478 /* Indicate that all registers have been fetched, so mark them all valid. */
479 void
480 registers_fetched ()
481 {
482 int i;
483 for (i = 0; i < NUM_REGS; i++)
484 register_valid[i] = 1;
485 }
486
487 /* Copy LEN bytes of consecutive data from registers
488 starting with the REGBYTE'th byte of register data
489 into memory at MYADDR. */
490
491 void
492 read_register_bytes (regbyte, myaddr, len)
493 int regbyte;
494 char *myaddr;
495 int len;
496 {
497 /* Fetch all registers. */
498 int i;
499 for (i = 0; i < NUM_REGS; i++)
500 if (!register_valid[i])
501 {
502 target_fetch_registers (-1);
503 break;
504 }
505 if (myaddr != NULL)
506 memcpy (myaddr, &registers[regbyte], len);
507 }
508
509 /* Read register REGNO into memory at MYADDR, which must be large enough
510 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
511 If the register is known to be the size of a CORE_ADDR or smaller,
512 read_register can be used instead. */
513 void
514 read_register_gen (regno, myaddr)
515 int regno;
516 char *myaddr;
517 {
518 if (!register_valid[regno])
519 target_fetch_registers (regno);
520 memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
521 REGISTER_RAW_SIZE (regno));
522 }
523
524 /* Copy LEN bytes of consecutive data from memory at MYADDR
525 into registers starting with the REGBYTE'th byte of register data. */
526
527 void
528 write_register_bytes (regbyte, myaddr, len)
529 int regbyte;
530 char *myaddr;
531 int len;
532 {
533 /* Make sure the entire registers array is valid. */
534 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
535 memcpy (&registers[regbyte], myaddr, len);
536 target_store_registers (-1);
537 }
538
539 /* Return the raw contents of register REGNO, regarding it as an integer. */
540 /* This probably should be returning LONGEST rather than CORE_ADDR. */
541
542 CORE_ADDR
543 read_register (regno)
544 int regno;
545 {
546 if (!register_valid[regno])
547 target_fetch_registers (regno);
548
549 return extract_address (&registers[REGISTER_BYTE (regno)],
550 REGISTER_RAW_SIZE(regno));
551 }
552
553 /* Registers we shouldn't try to store. */
554 #if !defined (CANNOT_STORE_REGISTER)
555 #define CANNOT_STORE_REGISTER(regno) 0
556 #endif
557
558 /* Store VALUE, into the raw contents of register number REGNO. */
559 /* FIXME: The val arg should probably be a LONGEST. */
560
561 void
562 write_register (regno, val)
563 int regno;
564 LONGEST val;
565 {
566 PTR buf;
567 int size;
568
569 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
570 the registers array if something writes to this register. */
571 if (CANNOT_STORE_REGISTER (regno))
572 return;
573
574 size = REGISTER_RAW_SIZE(regno);
575 buf = alloca (size);
576 store_signed_integer (buf, size, (LONGEST) val);
577
578 /* If we have a valid copy of the register, and new value == old value,
579 then don't bother doing the actual store. */
580
581 if (register_valid [regno])
582 {
583 if (memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
584 return;
585 }
586
587 target_prepare_to_store ();
588
589 memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
590
591 register_valid [regno] = 1;
592
593 target_store_registers (regno);
594 }
595
596 /* Record that register REGNO contains VAL.
597 This is used when the value is obtained from the inferior or core dump,
598 so there is no need to store the value there. */
599
600 void
601 supply_register (regno, val)
602 int regno;
603 char *val;
604 {
605 register_valid[regno] = 1;
606 memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
607
608 /* On some architectures, e.g. HPPA, there are a few stray bits in some
609 registers, that the rest of the code would like to ignore. */
610 #ifdef CLEAN_UP_REGISTER_VALUE
611 CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
612 #endif
613 }
614 \f
615 /* Will calling read_var_value or locate_var_value on SYM end
616 up caring what frame it is being evaluated relative to? SYM must
617 be non-NULL. */
618 int
619 symbol_read_needs_frame (sym)
620 struct symbol *sym;
621 {
622 switch (SYMBOL_CLASS (sym))
623 {
624 /* All cases listed explicitly so that gcc -Wall will detect it if
625 we failed to consider one. */
626 case LOC_REGISTER:
627 case LOC_ARG:
628 case LOC_REF_ARG:
629 case LOC_REGPARM:
630 case LOC_REGPARM_ADDR:
631 case LOC_LOCAL:
632 case LOC_LOCAL_ARG:
633 case LOC_BASEREG:
634 case LOC_BASEREG_ARG:
635 return 1;
636
637 case LOC_UNDEF:
638 case LOC_CONST:
639 case LOC_STATIC:
640 case LOC_TYPEDEF:
641
642 case LOC_LABEL:
643 /* Getting the address of a label can be done independently of the block,
644 even if some *uses* of that address wouldn't work so well without
645 the right frame. */
646
647 case LOC_BLOCK:
648 case LOC_CONST_BYTES:
649 case LOC_OPTIMIZED_OUT:
650 return 0;
651 }
652 return 1;
653 }
654
655 /* Given a struct symbol for a variable,
656 and a stack frame id, read the value of the variable
657 and return a (pointer to a) struct value containing the value.
658 If the variable cannot be found, return a zero pointer.
659 If FRAME is NULL, use the selected_frame. */
660
661 value
662 read_var_value (var, frame)
663 register struct symbol *var;
664 FRAME frame;
665 {
666 register value v;
667 struct frame_info *fi;
668 struct type *type = SYMBOL_TYPE (var);
669 CORE_ADDR addr;
670 register int len;
671
672 v = allocate_value (type);
673 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
674 len = TYPE_LENGTH (type);
675
676 if (frame == 0) frame = selected_frame;
677
678 switch (SYMBOL_CLASS (var))
679 {
680 case LOC_CONST:
681 /* Put the constant back in target format. */
682 store_signed_integer (VALUE_CONTENTS_RAW (v), len,
683 (LONGEST) SYMBOL_VALUE (var));
684 VALUE_LVAL (v) = not_lval;
685 return v;
686
687 case LOC_LABEL:
688 /* Put the constant back in target format. */
689 store_address (VALUE_CONTENTS_RAW (v), len, SYMBOL_VALUE_ADDRESS (var));
690 VALUE_LVAL (v) = not_lval;
691 return v;
692
693 case LOC_CONST_BYTES:
694 {
695 char *bytes_addr;
696 bytes_addr = SYMBOL_VALUE_BYTES (var);
697 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
698 VALUE_LVAL (v) = not_lval;
699 return v;
700 }
701
702 case LOC_STATIC:
703 addr = SYMBOL_VALUE_ADDRESS (var);
704 break;
705
706 case LOC_ARG:
707 fi = get_frame_info (frame);
708 if (fi == NULL)
709 return 0;
710 addr = FRAME_ARGS_ADDRESS (fi);
711 if (!addr)
712 {
713 return 0;
714 }
715 addr += SYMBOL_VALUE (var);
716 break;
717
718 case LOC_REF_ARG:
719 fi = get_frame_info (frame);
720 if (fi == NULL)
721 return 0;
722 addr = FRAME_ARGS_ADDRESS (fi);
723 if (!addr)
724 {
725 return 0;
726 }
727 addr += SYMBOL_VALUE (var);
728 addr = read_memory_unsigned_integer
729 (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
730 break;
731
732 case LOC_LOCAL:
733 case LOC_LOCAL_ARG:
734 fi = get_frame_info (frame);
735 if (fi == NULL)
736 return 0;
737 addr = FRAME_LOCALS_ADDRESS (fi);
738 addr += SYMBOL_VALUE (var);
739 break;
740
741 case LOC_BASEREG:
742 case LOC_BASEREG_ARG:
743 {
744 char buf[MAX_REGISTER_RAW_SIZE];
745 get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
746 NULL);
747 addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
748 addr += SYMBOL_VALUE (var);
749 break;
750 }
751
752 case LOC_TYPEDEF:
753 error ("Cannot look up value of a typedef");
754 break;
755
756 case LOC_BLOCK:
757 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
758 return v;
759
760 case LOC_REGISTER:
761 case LOC_REGPARM:
762 case LOC_REGPARM_ADDR:
763 {
764 struct block *b;
765
766 if (frame == NULL)
767 return 0;
768 b = get_frame_block (frame);
769
770 v = value_from_register (type, SYMBOL_VALUE (var), frame);
771
772 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
773 {
774 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
775 VALUE_LVAL (v) = lval_memory;
776 }
777 else
778 return v;
779 }
780 break;
781
782 case LOC_OPTIMIZED_OUT:
783 VALUE_LVAL (v) = not_lval;
784 VALUE_OPTIMIZED_OUT (v) = 1;
785 return v;
786
787 default:
788 error ("Cannot look up value of a botched symbol.");
789 break;
790 }
791
792 VALUE_ADDRESS (v) = addr;
793 VALUE_LAZY (v) = 1;
794 return v;
795 }
796
797 /* Return a value of type TYPE, stored in register REGNUM, in frame
798 FRAME. */
799
800 value
801 value_from_register (type, regnum, frame)
802 struct type *type;
803 int regnum;
804 FRAME frame;
805 {
806 char raw_buffer [MAX_REGISTER_RAW_SIZE];
807 CORE_ADDR addr;
808 int optim;
809 value v = allocate_value (type);
810 int len = TYPE_LENGTH (type);
811 char *value_bytes = 0;
812 int value_bytes_copied = 0;
813 int num_storage_locs;
814 enum lval_type lval;
815
816 VALUE_REGNO (v) = regnum;
817
818 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
819 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
820 1);
821
822 if (num_storage_locs > 1
823 #ifdef GDB_TARGET_IS_H8500
824 || TYPE_CODE (type) == TYPE_CODE_PTR
825 #endif
826 )
827 {
828 /* Value spread across multiple storage locations. */
829
830 int local_regnum;
831 int mem_stor = 0, reg_stor = 0;
832 int mem_tracking = 1;
833 CORE_ADDR last_addr = 0;
834 CORE_ADDR first_addr = 0;
835
836 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
837
838 /* Copy all of the data out, whereever it may be. */
839
840 #ifdef GDB_TARGET_IS_H8500
841 /* This piece of hideosity is required because the H8500 treats registers
842 differently depending upon whether they are used as pointers or not. As a
843 pointer, a register needs to have a page register tacked onto the front.
844 An alternate way to do this would be to have gcc output different register
845 numbers for the pointer & non-pointer form of the register. But, it
846 doesn't, so we're stuck with this. */
847
848 if (TYPE_CODE (type) == TYPE_CODE_PTR
849 && len > 2)
850 {
851 int page_regnum;
852
853 switch (regnum)
854 {
855 case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
856 page_regnum = SEG_D_REGNUM;
857 break;
858 case R4_REGNUM: case R5_REGNUM:
859 page_regnum = SEG_E_REGNUM;
860 break;
861 case R6_REGNUM: case R7_REGNUM:
862 page_regnum = SEG_T_REGNUM;
863 break;
864 }
865
866 value_bytes[0] = 0;
867 get_saved_register (value_bytes + 1,
868 &optim,
869 &addr,
870 frame,
871 page_regnum,
872 &lval);
873
874 if (lval == lval_register)
875 reg_stor++;
876 else
877 mem_stor++;
878 first_addr = addr;
879 last_addr = addr;
880
881 get_saved_register (value_bytes + 2,
882 &optim,
883 &addr,
884 frame,
885 regnum,
886 &lval);
887
888 if (lval == lval_register)
889 reg_stor++;
890 else
891 {
892 mem_stor++;
893 mem_tracking = mem_tracking && (addr == last_addr);
894 }
895 last_addr = addr;
896 }
897 else
898 #endif /* GDB_TARGET_IS_H8500 */
899 for (local_regnum = regnum;
900 value_bytes_copied < len;
901 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
902 ++local_regnum))
903 {
904 get_saved_register (value_bytes + value_bytes_copied,
905 &optim,
906 &addr,
907 frame,
908 local_regnum,
909 &lval);
910
911 if (regnum == local_regnum)
912 first_addr = addr;
913 if (lval == lval_register)
914 reg_stor++;
915 else
916 {
917 mem_stor++;
918
919 mem_tracking =
920 (mem_tracking
921 && (regnum == local_regnum
922 || addr == last_addr));
923 }
924 last_addr = addr;
925 }
926
927 if ((reg_stor && mem_stor)
928 || (mem_stor && !mem_tracking))
929 /* Mixed storage; all of the hassle we just went through was
930 for some good purpose. */
931 {
932 VALUE_LVAL (v) = lval_reg_frame_relative;
933 VALUE_FRAME (v) = FRAME_FP (frame);
934 VALUE_FRAME_REGNUM (v) = regnum;
935 }
936 else if (mem_stor)
937 {
938 VALUE_LVAL (v) = lval_memory;
939 VALUE_ADDRESS (v) = first_addr;
940 }
941 else if (reg_stor)
942 {
943 VALUE_LVAL (v) = lval_register;
944 VALUE_ADDRESS (v) = first_addr;
945 }
946 else
947 fatal ("value_from_register: Value not stored anywhere!");
948
949 VALUE_OPTIMIZED_OUT (v) = optim;
950
951 /* Any structure stored in more than one register will always be
952 an integral number of registers. Otherwise, you'd need to do
953 some fiddling with the last register copied here for little
954 endian machines. */
955
956 /* Copy into the contents section of the value. */
957 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
958
959 /* Finally do any conversion necessary when extracting this
960 type from more than one register. */
961 #ifdef REGISTER_CONVERT_TO_TYPE
962 REGISTER_CONVERT_TO_TYPE(regnum, type, VALUE_CONTENTS_RAW(v));
963 #endif
964 return v;
965 }
966
967 /* Data is completely contained within a single register. Locate the
968 register's contents in a real register or in core;
969 read the data in raw format. */
970
971 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
972 VALUE_OPTIMIZED_OUT (v) = optim;
973 VALUE_LVAL (v) = lval;
974 VALUE_ADDRESS (v) = addr;
975
976 /* Convert raw data to virtual format if necessary. */
977
978 #ifdef REGISTER_CONVERTIBLE
979 if (REGISTER_CONVERTIBLE (regnum))
980 {
981 REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
982 raw_buffer, VALUE_CONTENTS_RAW (v));
983 }
984 else
985 #endif
986 {
987 /* Raw and virtual formats are the same for this register. */
988
989 #if TARGET_BYTE_ORDER == BIG_ENDIAN
990 if (len < REGISTER_RAW_SIZE (regnum))
991 {
992 /* Big-endian, and we want less than full size. */
993 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
994 }
995 #endif
996
997 memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
998 }
999
1000 return v;
1001 }
1002 \f
1003 /* Given a struct symbol for a variable or function,
1004 and a stack frame id,
1005 return a (pointer to a) struct value containing the properly typed
1006 address. */
1007
1008 value
1009 locate_var_value (var, frame)
1010 register struct symbol *var;
1011 FRAME frame;
1012 {
1013 CORE_ADDR addr = 0;
1014 struct type *type = SYMBOL_TYPE (var);
1015 value lazy_value;
1016
1017 /* Evaluate it first; if the result is a memory address, we're fine.
1018 Lazy evaluation pays off here. */
1019
1020 lazy_value = read_var_value (var, frame);
1021 if (lazy_value == 0)
1022 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
1023
1024 if (VALUE_LAZY (lazy_value)
1025 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1026 {
1027 addr = VALUE_ADDRESS (lazy_value);
1028 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
1029 }
1030
1031 /* Not a memory address; check what the problem was. */
1032 switch (VALUE_LVAL (lazy_value))
1033 {
1034 case lval_register:
1035 case lval_reg_frame_relative:
1036 error ("Address requested for identifier \"%s\" which is in a register.",
1037 SYMBOL_SOURCE_NAME (var));
1038 break;
1039
1040 default:
1041 error ("Can't take address of \"%s\" which isn't an lvalue.",
1042 SYMBOL_SOURCE_NAME (var));
1043 break;
1044 }
1045 return 0; /* For lint -- never reached */
1046 }
This page took 0.064707 seconds and 4 git commands to generate.