Update/correct copyright notices.
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "frame.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "inferior.h"
30 #include "target.h"
31 #include "gdb_string.h"
32 #include "floatformat.h"
33 #include "symfile.h" /* for overlay functions */
34 #include "regcache.h"
35
36 /* This is used to indicate that we don't know the format of the floating point
37 number. Typically, this is useful for native ports, where the actual format
38 is irrelevant, since no conversions will be taking place. */
39
40 const struct floatformat floatformat_unknown;
41
42 /* Basic byte-swapping routines. GDB has needed these for a long time...
43 All extract a target-format integer at ADDR which is LEN bytes long. */
44
45 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
46 /* 8 bit characters are a pretty safe assumption these days, so we
47 assume it throughout all these swapping routines. If we had to deal with
48 9 bit characters, we would need to make len be in bits and would have
49 to re-write these routines... */
50 you lose
51 #endif
52
53 LONGEST
54 extract_signed_integer (void *addr, int len)
55 {
56 LONGEST retval;
57 unsigned char *p;
58 unsigned char *startaddr = (unsigned char *) addr;
59 unsigned char *endaddr = startaddr + len;
60
61 if (len > (int) sizeof (LONGEST))
62 error ("\
63 That operation is not available on integers of more than %d bytes.",
64 sizeof (LONGEST));
65
66 /* Start at the most significant end of the integer, and work towards
67 the least significant. */
68 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
69 {
70 p = startaddr;
71 /* Do the sign extension once at the start. */
72 retval = ((LONGEST) * p ^ 0x80) - 0x80;
73 for (++p; p < endaddr; ++p)
74 retval = (retval << 8) | *p;
75 }
76 else
77 {
78 p = endaddr - 1;
79 /* Do the sign extension once at the start. */
80 retval = ((LONGEST) * p ^ 0x80) - 0x80;
81 for (--p; p >= startaddr; --p)
82 retval = (retval << 8) | *p;
83 }
84 return retval;
85 }
86
87 ULONGEST
88 extract_unsigned_integer (void *addr, int len)
89 {
90 ULONGEST retval;
91 unsigned char *p;
92 unsigned char *startaddr = (unsigned char *) addr;
93 unsigned char *endaddr = startaddr + len;
94
95 if (len > (int) sizeof (ULONGEST))
96 error ("\
97 That operation is not available on integers of more than %d bytes.",
98 sizeof (ULONGEST));
99
100 /* Start at the most significant end of the integer, and work towards
101 the least significant. */
102 retval = 0;
103 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
104 {
105 for (p = startaddr; p < endaddr; ++p)
106 retval = (retval << 8) | *p;
107 }
108 else
109 {
110 for (p = endaddr - 1; p >= startaddr; --p)
111 retval = (retval << 8) | *p;
112 }
113 return retval;
114 }
115
116 /* Sometimes a long long unsigned integer can be extracted as a
117 LONGEST value. This is done so that we can print these values
118 better. If this integer can be converted to a LONGEST, this
119 function returns 1 and sets *PVAL. Otherwise it returns 0. */
120
121 int
122 extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
123 {
124 char *p, *first_addr;
125 int len;
126
127 len = orig_len;
128 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
129 {
130 for (p = (char *) addr;
131 len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
132 p++)
133 {
134 if (*p == 0)
135 len--;
136 else
137 break;
138 }
139 first_addr = p;
140 }
141 else
142 {
143 first_addr = (char *) addr;
144 for (p = (char *) addr + orig_len - 1;
145 len > (int) sizeof (LONGEST) && p >= (char *) addr;
146 p--)
147 {
148 if (*p == 0)
149 len--;
150 else
151 break;
152 }
153 }
154
155 if (len <= (int) sizeof (LONGEST))
156 {
157 *pval = (LONGEST) extract_unsigned_integer (first_addr,
158 sizeof (LONGEST));
159 return 1;
160 }
161
162 return 0;
163 }
164
165
166 /* Treat the LEN bytes at ADDR as a target-format address, and return
167 that address. ADDR is a buffer in the GDB process, not in the
168 inferior.
169
170 This function should only be used by target-specific code. It
171 assumes that a pointer has the same representation as that thing's
172 address represented as an integer. Some machines use word
173 addresses, or similarly munged things, for certain types of
174 pointers, so that assumption doesn't hold everywhere.
175
176 Common code should use extract_typed_address instead, or something
177 else based on POINTER_TO_ADDRESS. */
178
179 CORE_ADDR
180 extract_address (void *addr, int len)
181 {
182 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
183 whether we want this to be true eventually. */
184 return (CORE_ADDR) extract_unsigned_integer (addr, len);
185 }
186
187
188 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
189 address it represents. */
190 CORE_ADDR
191 extract_typed_address (void *buf, struct type *type)
192 {
193 if (TYPE_CODE (type) != TYPE_CODE_PTR
194 && TYPE_CODE (type) != TYPE_CODE_REF)
195 internal_error (__FILE__, __LINE__,
196 "extract_typed_address: "
197 "type is not a pointer or reference");
198
199 return POINTER_TO_ADDRESS (type, buf);
200 }
201
202
203 void
204 store_signed_integer (void *addr, int len, LONGEST val)
205 {
206 unsigned char *p;
207 unsigned char *startaddr = (unsigned char *) addr;
208 unsigned char *endaddr = startaddr + len;
209
210 /* Start at the least significant end of the integer, and work towards
211 the most significant. */
212 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
213 {
214 for (p = endaddr - 1; p >= startaddr; --p)
215 {
216 *p = val & 0xff;
217 val >>= 8;
218 }
219 }
220 else
221 {
222 for (p = startaddr; p < endaddr; ++p)
223 {
224 *p = val & 0xff;
225 val >>= 8;
226 }
227 }
228 }
229
230 void
231 store_unsigned_integer (void *addr, int len, ULONGEST val)
232 {
233 unsigned char *p;
234 unsigned char *startaddr = (unsigned char *) addr;
235 unsigned char *endaddr = startaddr + len;
236
237 /* Start at the least significant end of the integer, and work towards
238 the most significant. */
239 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
240 {
241 for (p = endaddr - 1; p >= startaddr; --p)
242 {
243 *p = val & 0xff;
244 val >>= 8;
245 }
246 }
247 else
248 {
249 for (p = startaddr; p < endaddr; ++p)
250 {
251 *p = val & 0xff;
252 val >>= 8;
253 }
254 }
255 }
256
257 /* Store the address VAL as a LEN-byte value in target byte order at
258 ADDR. ADDR is a buffer in the GDB process, not in the inferior.
259
260 This function should only be used by target-specific code. It
261 assumes that a pointer has the same representation as that thing's
262 address represented as an integer. Some machines use word
263 addresses, or similarly munged things, for certain types of
264 pointers, so that assumption doesn't hold everywhere.
265
266 Common code should use store_typed_address instead, or something else
267 based on ADDRESS_TO_POINTER. */
268 void
269 store_address (void *addr, int len, LONGEST val)
270 {
271 store_unsigned_integer (addr, len, val);
272 }
273
274
275 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
276 form. */
277 void
278 store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
279 {
280 if (TYPE_CODE (type) != TYPE_CODE_PTR
281 && TYPE_CODE (type) != TYPE_CODE_REF)
282 internal_error (__FILE__, __LINE__,
283 "store_typed_address: "
284 "type is not a pointer or reference");
285
286 ADDRESS_TO_POINTER (type, buf, addr);
287 }
288
289
290
291 \f
292 /* Extract a floating-point number from a target-order byte-stream at ADDR.
293 Returns the value as type DOUBLEST.
294
295 If the host and target formats agree, we just copy the raw data into the
296 appropriate type of variable and return, letting the host increase precision
297 as necessary. Otherwise, we call the conversion routine and let it do the
298 dirty work. */
299
300 DOUBLEST
301 extract_floating (void *addr, int len)
302 {
303 DOUBLEST dretval;
304
305 if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
306 {
307 if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
308 {
309 float retval;
310
311 memcpy (&retval, addr, sizeof (retval));
312 return retval;
313 }
314 else
315 floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
316 }
317 else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
318 {
319 if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
320 {
321 double retval;
322
323 memcpy (&retval, addr, sizeof (retval));
324 return retval;
325 }
326 else
327 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
328 }
329 else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
330 {
331 if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
332 {
333 DOUBLEST retval;
334
335 memcpy (&retval, addr, sizeof (retval));
336 return retval;
337 }
338 else
339 floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
340 }
341 else
342 {
343 error ("Can't deal with a floating point number of %d bytes.", len);
344 }
345
346 return dretval;
347 }
348
349 void
350 store_floating (void *addr, int len, DOUBLEST val)
351 {
352 if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
353 {
354 if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
355 {
356 float floatval = val;
357
358 memcpy (addr, &floatval, sizeof (floatval));
359 }
360 else
361 floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
362 }
363 else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
364 {
365 if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
366 {
367 double doubleval = val;
368
369 memcpy (addr, &doubleval, sizeof (doubleval));
370 }
371 else
372 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
373 }
374 else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
375 {
376 if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
377 memcpy (addr, &val, sizeof (val));
378 else
379 floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
380 }
381 else
382 {
383 error ("Can't deal with a floating point number of %d bytes.", len);
384 }
385 }
386
387 /* Return a `value' with the contents of register REGNUM
388 in its virtual format, with the type specified by
389 REGISTER_VIRTUAL_TYPE.
390
391 NOTE: returns NULL if register value is not available.
392 Caller will check return value or die! */
393
394 value_ptr
395 value_of_register (int regnum)
396 {
397 CORE_ADDR addr;
398 int optim;
399 register value_ptr reg_val;
400 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
401 enum lval_type lval;
402
403 get_saved_register (raw_buffer, &optim, &addr,
404 selected_frame, regnum, &lval);
405
406 if (register_cached (regnum) < 0)
407 return NULL; /* register value not available */
408
409 reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
410
411 /* Convert raw data to virtual format if necessary. */
412
413 if (REGISTER_CONVERTIBLE (regnum))
414 {
415 REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
416 raw_buffer, VALUE_CONTENTS_RAW (reg_val));
417 }
418 else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
419 memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
420 REGISTER_RAW_SIZE (regnum));
421 else
422 internal_error (__FILE__, __LINE__,
423 "Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
424 REGISTER_NAME (regnum),
425 regnum,
426 REGISTER_RAW_SIZE (regnum),
427 REGISTER_VIRTUAL_SIZE (regnum));
428 VALUE_LVAL (reg_val) = lval;
429 VALUE_ADDRESS (reg_val) = addr;
430 VALUE_REGNO (reg_val) = regnum;
431 VALUE_OPTIMIZED_OUT (reg_val) = optim;
432 return reg_val;
433 }
434
435 /* Given a pointer of type TYPE in target form in BUF, return the
436 address it represents. */
437 CORE_ADDR
438 unsigned_pointer_to_address (struct type *type, void *buf)
439 {
440 return extract_address (buf, TYPE_LENGTH (type));
441 }
442
443 CORE_ADDR
444 signed_pointer_to_address (struct type *type, void *buf)
445 {
446 return extract_signed_integer (buf, TYPE_LENGTH (type));
447 }
448
449 /* Given an address, store it as a pointer of type TYPE in target
450 format in BUF. */
451 void
452 unsigned_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
453 {
454 store_address (buf, TYPE_LENGTH (type), addr);
455 }
456
457 void
458 address_to_signed_pointer (struct type *type, void *buf, CORE_ADDR addr)
459 {
460 store_signed_integer (buf, TYPE_LENGTH (type), addr);
461 }
462 \f
463 /* Will calling read_var_value or locate_var_value on SYM end
464 up caring what frame it is being evaluated relative to? SYM must
465 be non-NULL. */
466 int
467 symbol_read_needs_frame (struct symbol *sym)
468 {
469 switch (SYMBOL_CLASS (sym))
470 {
471 /* All cases listed explicitly so that gcc -Wall will detect it if
472 we failed to consider one. */
473 case LOC_REGISTER:
474 case LOC_ARG:
475 case LOC_REF_ARG:
476 case LOC_REGPARM:
477 case LOC_REGPARM_ADDR:
478 case LOC_LOCAL:
479 case LOC_LOCAL_ARG:
480 case LOC_BASEREG:
481 case LOC_BASEREG_ARG:
482 case LOC_THREAD_LOCAL_STATIC:
483 return 1;
484
485 case LOC_UNDEF:
486 case LOC_CONST:
487 case LOC_STATIC:
488 case LOC_INDIRECT:
489 case LOC_TYPEDEF:
490
491 case LOC_LABEL:
492 /* Getting the address of a label can be done independently of the block,
493 even if some *uses* of that address wouldn't work so well without
494 the right frame. */
495
496 case LOC_BLOCK:
497 case LOC_CONST_BYTES:
498 case LOC_UNRESOLVED:
499 case LOC_OPTIMIZED_OUT:
500 return 0;
501 }
502 return 1;
503 }
504
505 /* Given a struct symbol for a variable,
506 and a stack frame id, read the value of the variable
507 and return a (pointer to a) struct value containing the value.
508 If the variable cannot be found, return a zero pointer.
509 If FRAME is NULL, use the selected_frame. */
510
511 value_ptr
512 read_var_value (register struct symbol *var, struct frame_info *frame)
513 {
514 register value_ptr v;
515 struct type *type = SYMBOL_TYPE (var);
516 CORE_ADDR addr;
517 register int len;
518
519 v = allocate_value (type);
520 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
521 VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
522
523 len = TYPE_LENGTH (type);
524
525 if (frame == NULL)
526 frame = selected_frame;
527
528 switch (SYMBOL_CLASS (var))
529 {
530 case LOC_CONST:
531 /* Put the constant back in target format. */
532 store_signed_integer (VALUE_CONTENTS_RAW (v), len,
533 (LONGEST) SYMBOL_VALUE (var));
534 VALUE_LVAL (v) = not_lval;
535 return v;
536
537 case LOC_LABEL:
538 /* Put the constant back in target format. */
539 if (overlay_debugging)
540 {
541 CORE_ADDR addr
542 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
543 SYMBOL_BFD_SECTION (var));
544 store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
545 }
546 else
547 store_typed_address (VALUE_CONTENTS_RAW (v), type,
548 SYMBOL_VALUE_ADDRESS (var));
549 VALUE_LVAL (v) = not_lval;
550 return v;
551
552 case LOC_CONST_BYTES:
553 {
554 char *bytes_addr;
555 bytes_addr = SYMBOL_VALUE_BYTES (var);
556 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
557 VALUE_LVAL (v) = not_lval;
558 return v;
559 }
560
561 case LOC_STATIC:
562 if (overlay_debugging)
563 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
564 SYMBOL_BFD_SECTION (var));
565 else
566 addr = SYMBOL_VALUE_ADDRESS (var);
567 break;
568
569 case LOC_INDIRECT:
570 /* The import slot does not have a real address in it from the
571 dynamic loader (dld.sl on HP-UX), if the target hasn't begun
572 execution yet, so check for that. */
573 if (!target_has_execution)
574 error ("\
575 Attempt to access variable defined in different shared object or load module when\n\
576 addresses have not been bound by the dynamic loader. Try again when executable is running.");
577
578 addr = SYMBOL_VALUE_ADDRESS (var);
579 addr = read_memory_unsigned_integer
580 (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
581 break;
582
583 case LOC_ARG:
584 if (frame == NULL)
585 return 0;
586 addr = FRAME_ARGS_ADDRESS (frame);
587 if (!addr)
588 return 0;
589 addr += SYMBOL_VALUE (var);
590 break;
591
592 case LOC_REF_ARG:
593 if (frame == NULL)
594 return 0;
595 addr = FRAME_ARGS_ADDRESS (frame);
596 if (!addr)
597 return 0;
598 addr += SYMBOL_VALUE (var);
599 addr = read_memory_unsigned_integer
600 (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
601 break;
602
603 case LOC_LOCAL:
604 case LOC_LOCAL_ARG:
605 if (frame == NULL)
606 return 0;
607 addr = FRAME_LOCALS_ADDRESS (frame);
608 addr += SYMBOL_VALUE (var);
609 break;
610
611 case LOC_BASEREG:
612 case LOC_BASEREG_ARG:
613 {
614 char *buf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
615 get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
616 NULL);
617 addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
618 addr += SYMBOL_VALUE (var);
619 break;
620 }
621
622 case LOC_THREAD_LOCAL_STATIC:
623 {
624 char *buf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
625
626 get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
627 NULL);
628 addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
629 addr += SYMBOL_VALUE (var);
630 break;
631 }
632
633 case LOC_TYPEDEF:
634 error ("Cannot look up value of a typedef");
635 break;
636
637 case LOC_BLOCK:
638 if (overlay_debugging)
639 VALUE_ADDRESS (v) = symbol_overlayed_address
640 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
641 else
642 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
643 return v;
644
645 case LOC_REGISTER:
646 case LOC_REGPARM:
647 case LOC_REGPARM_ADDR:
648 {
649 struct block *b;
650 int regno = SYMBOL_VALUE (var);
651 value_ptr regval;
652
653 if (frame == NULL)
654 return 0;
655 b = get_frame_block (frame);
656
657 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
658 {
659 regval = value_from_register (lookup_pointer_type (type),
660 regno,
661 frame);
662
663 if (regval == NULL)
664 error ("Value of register variable not available.");
665
666 addr = value_as_pointer (regval);
667 VALUE_LVAL (v) = lval_memory;
668 }
669 else
670 {
671 regval = value_from_register (type, regno, frame);
672
673 if (regval == NULL)
674 error ("Value of register variable not available.");
675 return regval;
676 }
677 }
678 break;
679
680 case LOC_UNRESOLVED:
681 {
682 struct minimal_symbol *msym;
683
684 msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
685 if (msym == NULL)
686 return 0;
687 if (overlay_debugging)
688 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
689 SYMBOL_BFD_SECTION (msym));
690 else
691 addr = SYMBOL_VALUE_ADDRESS (msym);
692 }
693 break;
694
695 case LOC_OPTIMIZED_OUT:
696 VALUE_LVAL (v) = not_lval;
697 VALUE_OPTIMIZED_OUT (v) = 1;
698 return v;
699
700 default:
701 error ("Cannot look up value of a botched symbol.");
702 break;
703 }
704
705 VALUE_ADDRESS (v) = addr;
706 VALUE_LAZY (v) = 1;
707 return v;
708 }
709
710 /* Return a value of type TYPE, stored in register REGNUM, in frame
711 FRAME.
712
713 NOTE: returns NULL if register value is not available.
714 Caller will check return value or die! */
715
716 value_ptr
717 value_from_register (struct type *type, int regnum, struct frame_info *frame)
718 {
719 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
720 CORE_ADDR addr;
721 int optim;
722 value_ptr v = allocate_value (type);
723 char *value_bytes = 0;
724 int value_bytes_copied = 0;
725 int num_storage_locs;
726 enum lval_type lval;
727 int len;
728
729 CHECK_TYPEDEF (type);
730 len = TYPE_LENGTH (type);
731
732 /* Pointers on D10V are really only 16 bits,
733 but we lie to gdb elsewhere... */
734 if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
735 len = 2;
736
737 VALUE_REGNO (v) = regnum;
738
739 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
740 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
741 1);
742
743 if (num_storage_locs > 1
744 #ifdef GDB_TARGET_IS_H8500
745 || TYPE_CODE (type) == TYPE_CODE_PTR
746 #endif
747 )
748 {
749 /* Value spread across multiple storage locations. */
750
751 int local_regnum;
752 int mem_stor = 0, reg_stor = 0;
753 int mem_tracking = 1;
754 CORE_ADDR last_addr = 0;
755 CORE_ADDR first_addr = 0;
756
757 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
758
759 /* Copy all of the data out, whereever it may be. */
760
761 #ifdef GDB_TARGET_IS_H8500
762 /* This piece of hideosity is required because the H8500 treats registers
763 differently depending upon whether they are used as pointers or not. As a
764 pointer, a register needs to have a page register tacked onto the front.
765 An alternate way to do this would be to have gcc output different register
766 numbers for the pointer & non-pointer form of the register. But, it
767 doesn't, so we're stuck with this. */
768
769 if (TYPE_CODE (type) == TYPE_CODE_PTR
770 && len > 2)
771 {
772 int page_regnum;
773
774 switch (regnum)
775 {
776 case R0_REGNUM:
777 case R1_REGNUM:
778 case R2_REGNUM:
779 case R3_REGNUM:
780 page_regnum = SEG_D_REGNUM;
781 break;
782 case R4_REGNUM:
783 case R5_REGNUM:
784 page_regnum = SEG_E_REGNUM;
785 break;
786 case R6_REGNUM:
787 case R7_REGNUM:
788 page_regnum = SEG_T_REGNUM;
789 break;
790 }
791
792 value_bytes[0] = 0;
793 get_saved_register (value_bytes + 1,
794 &optim,
795 &addr,
796 frame,
797 page_regnum,
798 &lval);
799
800 if (register_cached (page_regnum) == -1)
801 return NULL; /* register value not available */
802
803 if (lval == lval_register)
804 reg_stor++;
805 else
806 mem_stor++;
807 first_addr = addr;
808 last_addr = addr;
809
810 get_saved_register (value_bytes + 2,
811 &optim,
812 &addr,
813 frame,
814 regnum,
815 &lval);
816
817 if (register_cached (regnum) == -1)
818 return NULL; /* register value not available */
819
820 if (lval == lval_register)
821 reg_stor++;
822 else
823 {
824 mem_stor++;
825 mem_tracking = mem_tracking && (addr == last_addr);
826 }
827 last_addr = addr;
828 }
829 else
830 #endif /* GDB_TARGET_IS_H8500 */
831 for (local_regnum = regnum;
832 value_bytes_copied < len;
833 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
834 ++local_regnum))
835 {
836 get_saved_register (value_bytes + value_bytes_copied,
837 &optim,
838 &addr,
839 frame,
840 local_regnum,
841 &lval);
842
843 if (register_cached (local_regnum) == -1)
844 return NULL; /* register value not available */
845
846 if (regnum == local_regnum)
847 first_addr = addr;
848 if (lval == lval_register)
849 reg_stor++;
850 else
851 {
852 mem_stor++;
853
854 mem_tracking =
855 (mem_tracking
856 && (regnum == local_regnum
857 || addr == last_addr));
858 }
859 last_addr = addr;
860 }
861
862 if ((reg_stor && mem_stor)
863 || (mem_stor && !mem_tracking))
864 /* Mixed storage; all of the hassle we just went through was
865 for some good purpose. */
866 {
867 VALUE_LVAL (v) = lval_reg_frame_relative;
868 VALUE_FRAME (v) = FRAME_FP (frame);
869 VALUE_FRAME_REGNUM (v) = regnum;
870 }
871 else if (mem_stor)
872 {
873 VALUE_LVAL (v) = lval_memory;
874 VALUE_ADDRESS (v) = first_addr;
875 }
876 else if (reg_stor)
877 {
878 VALUE_LVAL (v) = lval_register;
879 VALUE_ADDRESS (v) = first_addr;
880 }
881 else
882 internal_error (__FILE__, __LINE__,
883 "value_from_register: Value not stored anywhere!");
884
885 VALUE_OPTIMIZED_OUT (v) = optim;
886
887 /* Any structure stored in more than one register will always be
888 an integral number of registers. Otherwise, you'd need to do
889 some fiddling with the last register copied here for little
890 endian machines. */
891
892 /* Copy into the contents section of the value. */
893 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
894
895 /* Finally do any conversion necessary when extracting this
896 type from more than one register. */
897 #ifdef REGISTER_CONVERT_TO_TYPE
898 REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
899 #endif
900 return v;
901 }
902
903 /* Data is completely contained within a single register. Locate the
904 register's contents in a real register or in core;
905 read the data in raw format. */
906
907 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
908
909 if (register_cached (regnum) == -1)
910 return NULL; /* register value not available */
911
912 VALUE_OPTIMIZED_OUT (v) = optim;
913 VALUE_LVAL (v) = lval;
914 VALUE_ADDRESS (v) = addr;
915
916 /* Convert raw data to virtual format if necessary. */
917
918 if (REGISTER_CONVERTIBLE (regnum))
919 {
920 REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
921 raw_buffer, VALUE_CONTENTS_RAW (v));
922 }
923 else
924 {
925 /* Raw and virtual formats are the same for this register. */
926
927 if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
928 {
929 /* Big-endian, and we want less than full size. */
930 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
931 }
932
933 memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
934 }
935
936 if (GDB_TARGET_IS_D10V
937 && TYPE_CODE (type) == TYPE_CODE_PTR)
938 {
939 unsigned long num;
940 unsigned short snum;
941
942 snum = (unsigned short)
943 extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
944
945 if (TYPE_TARGET_TYPE (type) /* pointer to function */
946 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
947 num = D10V_MAKE_IADDR (snum);
948 else /* pointer to data */
949 num = D10V_MAKE_DADDR (snum);
950
951 store_address (VALUE_CONTENTS_RAW (v), 4, num);
952 }
953
954 return v;
955 }
956 \f
957 /* Given a struct symbol for a variable or function,
958 and a stack frame id,
959 return a (pointer to a) struct value containing the properly typed
960 address. */
961
962 value_ptr
963 locate_var_value (register struct symbol *var, struct frame_info *frame)
964 {
965 CORE_ADDR addr = 0;
966 struct type *type = SYMBOL_TYPE (var);
967 value_ptr lazy_value;
968
969 /* Evaluate it first; if the result is a memory address, we're fine.
970 Lazy evaluation pays off here. */
971
972 lazy_value = read_var_value (var, frame);
973 if (lazy_value == 0)
974 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
975
976 if (VALUE_LAZY (lazy_value)
977 || TYPE_CODE (type) == TYPE_CODE_FUNC)
978 {
979 value_ptr val;
980
981 addr = VALUE_ADDRESS (lazy_value);
982 val = value_from_pointer (lookup_pointer_type (type), addr);
983 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
984 return val;
985 }
986
987 /* Not a memory address; check what the problem was. */
988 switch (VALUE_LVAL (lazy_value))
989 {
990 case lval_register:
991 case lval_reg_frame_relative:
992 error ("Address requested for identifier \"%s\" which is in a register.",
993 SYMBOL_SOURCE_NAME (var));
994 break;
995
996 default:
997 error ("Can't take address of \"%s\" which isn't an lvalue.",
998 SYMBOL_SOURCE_NAME (var));
999 break;
1000 }
1001 return 0; /* For lint -- never reached */
1002 }
This page took 0.143933 seconds and 4 git commands to generate.