* defs.h: Incorporate param.h. All users changed.
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include "defs.h"
22 #include "symtab.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 #if !defined (GET_SAVED_REGISTER)
30
31 /* Return the address in which frame FRAME's value of register REGNUM
32 has been saved in memory. Or return zero if it has not been saved.
33 If REGNUM specifies the SP, the value we return is actually
34 the SP value, not an address where it was saved. */
35
36 CORE_ADDR
37 find_saved_register (frame, regnum)
38 FRAME frame;
39 int regnum;
40 {
41 struct frame_info *fi;
42 struct frame_saved_regs saved_regs;
43
44 register FRAME frame1 = 0;
45 register CORE_ADDR addr = 0;
46
47 if (frame == 0) /* No regs saved if want current frame */
48 return 0;
49
50 #ifdef HAVE_REGISTER_WINDOWS
51 /* We assume that a register in a register window will only be saved
52 in one place (since the name changes and/or disappears as you go
53 towards inner frames), so we only call get_frame_saved_regs on
54 the current frame. This is directly in contradiction to the
55 usage below, which assumes that registers used in a frame must be
56 saved in a lower (more interior) frame. This change is a result
57 of working on a register window machine; get_frame_saved_regs
58 always returns the registers saved within a frame, within the
59 context (register namespace) of that frame. */
60
61 /* However, note that we don't want this to return anything if
62 nothing is saved (if there's a frame inside of this one). Also,
63 callers to this routine asking for the stack pointer want the
64 stack pointer saved for *this* frame; this is returned from the
65 next frame. */
66
67
68 if (REGISTER_IN_WINDOW_P(regnum))
69 {
70 frame1 = get_next_frame (frame);
71 if (!frame1) return 0; /* Registers of this frame are
72 active. */
73
74 /* Get the SP from the next frame in; it will be this
75 current frame. */
76 if (regnum != SP_REGNUM)
77 frame1 = frame;
78
79 fi = get_frame_info (frame1);
80 get_frame_saved_regs (fi, &saved_regs);
81 return saved_regs.regs[regnum]; /* ... which might be zero */
82 }
83 #endif /* HAVE_REGISTER_WINDOWS */
84
85 /* Note that this next routine assumes that registers used in
86 frame x will be saved only in the frame that x calls and
87 frames interior to it. This is not true on the sparc, but the
88 above macro takes care of it, so we should be all right. */
89 while (1)
90 {
91 QUIT;
92 frame1 = get_prev_frame (frame1);
93 if (frame1 == 0 || frame1 == frame)
94 break;
95 fi = get_frame_info (frame1);
96 get_frame_saved_regs (fi, &saved_regs);
97 if (saved_regs.regs[regnum])
98 addr = saved_regs.regs[regnum];
99 }
100
101 return addr;
102 }
103
104 /* Find register number REGNUM relative to FRAME and put its
105 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
106 was optimized out (and thus can't be fetched). Set *LVAL to
107 lval_memory, lval_register, or not_lval, depending on whether the
108 value was fetched from memory, from a register, or in a strange
109 and non-modifiable way (e.g. a frame pointer which was calculated
110 rather than fetched). Set *ADDRP to the address, either in memory
111 on as a REGISTER_BYTE offset into the registers array.
112
113 Note that this implementation never sets *LVAL to not_lval. But
114 it can be replaced by defining GET_SAVED_REGISTER and supplying
115 your own.
116
117 The argument RAW_BUFFER must point to aligned memory. */
118 void
119 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
120 char *raw_buffer;
121 int *optimized;
122 CORE_ADDR *addrp;
123 FRAME frame;
124 int regnum;
125 enum lval_type *lval;
126 {
127 CORE_ADDR addr;
128 /* Normal systems don't optimize out things with register numbers. */
129 if (optimized != NULL)
130 *optimized = 0;
131 addr = find_saved_register (frame, regnum);
132 if (addr != NULL)
133 {
134 if (lval != NULL)
135 *lval = lval_memory;
136 if (regnum == SP_REGNUM)
137 {
138 if (raw_buffer != NULL)
139 *(CORE_ADDR *)raw_buffer = addr;
140 if (addrp != NULL)
141 *addrp = 0;
142 return;
143 }
144 if (raw_buffer != NULL)
145 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
146 }
147 else
148 {
149 if (lval != NULL)
150 *lval = lval_register;
151 addr = REGISTER_BYTE (regnum);
152 if (raw_buffer != NULL)
153 read_register_gen (regnum, raw_buffer);
154 }
155 if (addrp != NULL)
156 *addrp = addr;
157 }
158 #endif /* GET_SAVED_REGISTER. */
159
160 /* Copy the bytes of register REGNUM, relative to the current stack frame,
161 into our memory at MYADDR, in target byte order.
162 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
163
164 Returns 1 if could not be read, 0 if could. */
165
166 int
167 read_relative_register_raw_bytes (regnum, myaddr)
168 int regnum;
169 char *myaddr;
170 {
171 int optim;
172 if (regnum == FP_REGNUM && selected_frame)
173 {
174 bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
175 SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
176 return 0;
177 }
178
179 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
180 regnum, (enum lval_type *)NULL);
181 return optim;
182 }
183
184 /* Return a `value' with the contents of register REGNUM
185 in its virtual format, with the type specified by
186 REGISTER_VIRTUAL_TYPE. */
187
188 value
189 value_of_register (regnum)
190 int regnum;
191 {
192 CORE_ADDR addr;
193 int optim;
194 register value val;
195 char raw_buffer[MAX_REGISTER_RAW_SIZE];
196 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
197 enum lval_type lval;
198
199 get_saved_register (raw_buffer, &optim, &addr,
200 selected_frame, regnum, &lval);
201
202 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
203 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
204 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
205 REGISTER_VIRTUAL_SIZE (regnum));
206 VALUE_LVAL (val) = lval;
207 VALUE_ADDRESS (val) = addr;
208 VALUE_REGNO (val) = regnum;
209 VALUE_OPTIMIZED_OUT (val) = optim;
210 return val;
211 }
212 \f
213 /* Low level examining and depositing of registers.
214
215 The caller is responsible for making
216 sure that the inferior is stopped before calling the fetching routines,
217 or it will get garbage. (a change from GDB version 3, in which
218 the caller got the value from the last stop). */
219
220 /* Contents of the registers in target byte order.
221 We allocate some extra slop since we do a lot of bcopy's around `registers',
222 and failing-soft is better than failing hard. */
223 char registers[REGISTER_BYTES + /* SLOP */ 256];
224
225 /* Nonzero if that register has been fetched. */
226 char register_valid[NUM_REGS];
227
228 /* Indicate that registers may have changed, so invalidate the cache. */
229 void
230 registers_changed ()
231 {
232 int i;
233 for (i = 0; i < NUM_REGS; i++)
234 register_valid[i] = 0;
235 }
236
237 /* Indicate that all registers have been fetched, so mark them all valid. */
238 void
239 registers_fetched ()
240 {
241 int i;
242 for (i = 0; i < NUM_REGS; i++)
243 register_valid[i] = 1;
244 }
245
246 /* Copy LEN bytes of consecutive data from registers
247 starting with the REGBYTE'th byte of register data
248 into memory at MYADDR. */
249
250 void
251 read_register_bytes (regbyte, myaddr, len)
252 int regbyte;
253 char *myaddr;
254 int len;
255 {
256 /* Fetch all registers. */
257 int i;
258 for (i = 0; i < NUM_REGS; i++)
259 if (!register_valid[i])
260 {
261 target_fetch_registers (-1);
262 break;
263 }
264 if (myaddr != NULL)
265 bcopy (&registers[regbyte], myaddr, len);
266 }
267
268 /* Read register REGNO into memory at MYADDR, which must be large enough
269 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
270 If the register is known to be the size of a CORE_ADDR or smaller,
271 read_register can be used instead. */
272 void
273 read_register_gen (regno, myaddr)
274 int regno;
275 char *myaddr;
276 {
277 if (!register_valid[regno])
278 target_fetch_registers (regno);
279 bcopy (&registers[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
280 }
281
282 /* Copy LEN bytes of consecutive data from memory at MYADDR
283 into registers starting with the REGBYTE'th byte of register data. */
284
285 void
286 write_register_bytes (regbyte, myaddr, len)
287 int regbyte;
288 char *myaddr;
289 int len;
290 {
291 /* Make sure the entire registers array is valid. */
292 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
293 bcopy (myaddr, &registers[regbyte], len);
294 target_store_registers (-1);
295 }
296
297 /* Return the contents of register REGNO, regarding it as an integer. */
298
299 CORE_ADDR
300 read_register (regno)
301 int regno;
302 {
303 int reg;
304 if (!register_valid[regno])
305 target_fetch_registers (regno);
306 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
307 reg = *(int *) &registers[REGISTER_BYTE (regno)];
308 SWAP_TARGET_AND_HOST (&reg, sizeof (int));
309 return reg;
310 }
311
312 /* Registers we shouldn't try to store. */
313 #if !defined (CANNOT_STORE_REGISTER)
314 #define CANNOT_STORE_REGISTER(regno) 0
315 #endif
316
317 /* Store VALUE in the register number REGNO, regarded as an integer. */
318
319 void
320 write_register (regno, val)
321 int regno, val;
322 {
323 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
324 the registers array if something writes to this register. */
325 if (CANNOT_STORE_REGISTER (regno))
326 return;
327
328 SWAP_TARGET_AND_HOST (&val, sizeof (int));
329
330 target_prepare_to_store ();
331
332 register_valid [regno] = 1;
333 /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
334 /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
335 *(int *) &registers[REGISTER_BYTE (regno)] = val;
336
337 target_store_registers (regno);
338 }
339
340 /* Record that register REGNO contains VAL.
341 This is used when the value is obtained from the inferior or core dump,
342 so there is no need to store the value there. */
343
344 void
345 supply_register (regno, val)
346 int regno;
347 char *val;
348 {
349 register_valid[regno] = 1;
350 bcopy (val, &registers[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
351 }
352 \f
353 /* Given a struct symbol for a variable,
354 and a stack frame id, read the value of the variable
355 and return a (pointer to a) struct value containing the value.
356 If the variable cannot be found, return a zero pointer.
357 If FRAME is NULL, use the selected_frame. */
358
359 value
360 read_var_value (var, frame)
361 register struct symbol *var;
362 FRAME frame;
363 {
364 register value v;
365 struct frame_info *fi;
366 struct type *type = SYMBOL_TYPE (var);
367 CORE_ADDR addr;
368 register int len;
369
370 v = allocate_value (type);
371 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
372 len = TYPE_LENGTH (type);
373
374 if (frame == 0) frame = selected_frame;
375
376 switch (SYMBOL_CLASS (var))
377 {
378 case LOC_CONST:
379 bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len);
380 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
381 VALUE_LVAL (v) = not_lval;
382 return v;
383
384 case LOC_LABEL:
385 addr = SYMBOL_VALUE_ADDRESS (var);
386 bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
387 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
388 VALUE_LVAL (v) = not_lval;
389 return v;
390
391 case LOC_CONST_BYTES:
392 {
393 char *bytes_addr;
394 bytes_addr = SYMBOL_VALUE_BYTES (var);
395 bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len);
396 VALUE_LVAL (v) = not_lval;
397 return v;
398 }
399
400 case LOC_STATIC:
401 addr = SYMBOL_VALUE_ADDRESS (var);
402 break;
403
404 /* Nonzero if a struct which is located in a register or a LOC_ARG
405 really contains
406 the address of the struct, not the struct itself. GCC_P is nonzero
407 if the function was compiled with GCC. */
408 #if !defined (REG_STRUCT_HAS_ADDR)
409 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
410 #endif
411
412 case LOC_ARG:
413 fi = get_frame_info (frame);
414 if (fi == NULL)
415 return 0;
416 addr = FRAME_ARGS_ADDRESS (fi);
417 if (!addr) {
418 return 0;
419 }
420 addr += SYMBOL_VALUE (var);
421 break;
422
423 case LOC_REF_ARG:
424 fi = get_frame_info (frame);
425 if (fi == NULL)
426 return 0;
427 addr = FRAME_ARGS_ADDRESS (fi);
428 if (!addr) {
429 return 0;
430 }
431 addr += SYMBOL_VALUE (var);
432 read_memory (addr, &addr, sizeof (CORE_ADDR));
433 break;
434
435 case LOC_LOCAL:
436 case LOC_LOCAL_ARG:
437 fi = get_frame_info (frame);
438 if (fi == NULL)
439 return 0;
440 addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
441 break;
442
443 case LOC_TYPEDEF:
444 error ("Cannot look up value of a typedef");
445 break;
446
447 case LOC_BLOCK:
448 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
449 return v;
450
451 case LOC_REGISTER:
452 case LOC_REGPARM:
453 {
454 struct block *b;
455
456 if (frame == NULL)
457 return 0;
458 b = get_frame_block (frame);
459
460 v = value_from_register (type, SYMBOL_VALUE (var), frame);
461
462 if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
463 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
464 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
465 else
466 return v;
467 }
468 break;
469
470 default:
471 error ("Cannot look up value of a botched symbol.");
472 break;
473 }
474
475 VALUE_ADDRESS (v) = addr;
476 VALUE_LAZY (v) = 1;
477 return v;
478 }
479
480 /* Return a value of type TYPE, stored in register REGNUM, in frame
481 FRAME. */
482
483 value
484 value_from_register (type, regnum, frame)
485 struct type *type;
486 int regnum;
487 FRAME frame;
488 {
489 char raw_buffer [MAX_REGISTER_RAW_SIZE];
490 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
491 CORE_ADDR addr;
492 int optim;
493 value v = allocate_value (type);
494 int len = TYPE_LENGTH (type);
495 char *value_bytes = 0;
496 int value_bytes_copied = 0;
497 int num_storage_locs;
498 enum lval_type lval;
499
500 VALUE_REGNO (v) = regnum;
501
502 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
503 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
504 1);
505
506 if (num_storage_locs > 1)
507 {
508 /* Value spread across multiple storage locations. */
509
510 int local_regnum;
511 int mem_stor = 0, reg_stor = 0;
512 int mem_tracking = 1;
513 CORE_ADDR last_addr = 0;
514 CORE_ADDR first_addr;
515
516 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
517
518 /* Copy all of the data out, whereever it may be. */
519
520 for (local_regnum = regnum;
521 value_bytes_copied < len;
522 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
523 ++local_regnum))
524 {
525 get_saved_register (value_bytes + value_bytes_copied,
526 &optim,
527 &addr,
528 frame,
529 local_regnum,
530 &lval);
531 if (lval == lval_register)
532 reg_stor++;
533 else
534 {
535 mem_stor++;
536
537 if (regnum == local_regnum)
538 first_addr = addr;
539
540 mem_tracking =
541 (mem_tracking
542 && (regnum == local_regnum
543 || addr == last_addr));
544 }
545 last_addr = addr;
546 }
547
548 if ((reg_stor && mem_stor)
549 || (mem_stor && !mem_tracking))
550 /* Mixed storage; all of the hassle we just went through was
551 for some good purpose. */
552 {
553 VALUE_LVAL (v) = lval_reg_frame_relative;
554 VALUE_FRAME (v) = FRAME_FP (frame);
555 VALUE_FRAME_REGNUM (v) = regnum;
556 }
557 else if (mem_stor)
558 {
559 VALUE_LVAL (v) = lval_memory;
560 VALUE_ADDRESS (v) = first_addr;
561 }
562 else if (reg_stor)
563 {
564 VALUE_LVAL (v) = lval_register;
565 VALUE_ADDRESS (v) = first_addr;
566 }
567 else
568 fatal ("value_from_register: Value not stored anywhere!");
569
570 VALUE_OPTIMIZED_OUT (v) = optim;
571
572 /* Any structure stored in more than one register will always be
573 an integral number of registers. Otherwise, you'd need to do
574 some fiddling with the last register copied here for little
575 endian machines. */
576
577 /* Copy into the contents section of the value. */
578 bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);
579
580 return v;
581 }
582
583 /* Data is completely contained within a single register. Locate the
584 register's contents in a real register or in core;
585 read the data in raw format. */
586
587 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
588 VALUE_OPTIMIZED_OUT (v) = optim;
589 VALUE_LVAL (v) = lval;
590 VALUE_ADDRESS (v) = addr;
591
592 /* Convert the raw contents to virtual contents.
593 (Just copy them if the formats are the same.) */
594
595 target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
596
597 if (REGISTER_CONVERTIBLE (regnum))
598 {
599 /* When the raw and virtual formats differ, the virtual format
600 corresponds to a specific data type. If we want that type,
601 copy the data into the value.
602 Otherwise, do a type-conversion. */
603
604 if (type != REGISTER_VIRTUAL_TYPE (regnum))
605 {
606 /* eg a variable of type `float' in a 68881 register
607 with raw type `extended' and virtual type `double'.
608 Fetch it as a `double' and then convert to `float'. */
609 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
610 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
611 v = value_cast (type, v);
612 }
613 else
614 bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
615 }
616 else
617 {
618 /* Raw and virtual formats are the same for this register. */
619
620 #if TARGET_BYTE_ORDER == BIG_ENDIAN
621 if (len < REGISTER_RAW_SIZE (regnum))
622 {
623 /* Big-endian, and we want less than full size. */
624 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
625 }
626 #endif
627
628 bcopy (virtual_buffer + VALUE_OFFSET (v),
629 VALUE_CONTENTS_RAW (v), len);
630 }
631
632 return v;
633 }
634 \f
635 /* Given a struct symbol for a variable or function,
636 and a stack frame id,
637 return a (pointer to a) struct value containing the properly typed
638 address. */
639
640 value
641 locate_var_value (var, frame)
642 register struct symbol *var;
643 FRAME frame;
644 {
645 CORE_ADDR addr = 0;
646 struct type *type = SYMBOL_TYPE (var);
647 value lazy_value;
648
649 /* Evaluate it first; if the result is a memory address, we're fine.
650 Lazy evaluation pays off here. */
651
652 lazy_value = read_var_value (var, frame);
653 if (lazy_value == 0)
654 error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
655
656 if (VALUE_LAZY (lazy_value)
657 || TYPE_CODE (type) == TYPE_CODE_FUNC)
658 {
659 addr = VALUE_ADDRESS (lazy_value);
660
661 /* C++: The "address" of a reference should yield the address
662 * of the object pointed to. So force an extra de-reference. */
663
664 if (TYPE_CODE (type) == TYPE_CODE_REF)
665 {
666 char *buf = alloca (TYPE_LENGTH (type));
667 read_memory (addr, buf, TYPE_LENGTH (type));
668 addr = unpack_pointer (type, buf);
669 type = TYPE_TARGET_TYPE (type);
670 }
671
672 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
673 }
674
675 /* Not a memory address; check what the problem was. */
676 switch (VALUE_LVAL (lazy_value))
677 {
678 case lval_register:
679 case lval_reg_frame_relative:
680 error ("Address requested for identifier \"%s\" which is in a register.",
681 SYMBOL_NAME (var));
682 break;
683
684 default:
685 error ("Can't take address of \"%s\" which isn't an lvalue.",
686 SYMBOL_NAME (var));
687 break;
688 }
689 return 0; /* For lint -- never reached */
690 }
This page took 0.045018 seconds and 5 git commands to generate.