* i386bsd-nat.c: Do not include <sys/sysctl.h>.
[deliverable/binutils-gdb.git] / gdb / fr30-tdep.c
1 /* Target-dependent code for the Fujitsu FR30.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "obstack.h"
25 #include "target.h"
26 #include "value.h"
27 #include "bfd.h"
28 #include "gdb_string.h"
29 #include "gdbcore.h"
30 #include "symfile.h"
31 #include "regcache.h"
32
33 /* An expression that tells us whether the function invocation represented
34 by FI does not have a frame on the stack associated with it. */
35 int
36 fr30_frameless_function_invocation (struct frame_info *fi)
37 {
38 int frameless;
39 CORE_ADDR func_start, after_prologue;
40 func_start = (get_pc_function_start ((fi)->pc) +
41 FUNCTION_START_OFFSET);
42 after_prologue = func_start;
43 after_prologue = SKIP_PROLOGUE (after_prologue);
44 frameless = (after_prologue == func_start);
45 return frameless;
46 }
47
48 /* Function: pop_frame
49 This routine gets called when either the user uses the `return'
50 command, or the call dummy breakpoint gets hit. */
51
52 void
53 fr30_pop_frame (void)
54 {
55 struct frame_info *frame = get_current_frame ();
56 int regnum;
57 CORE_ADDR sp = read_register (SP_REGNUM);
58
59 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
60 generic_pop_dummy_frame ();
61 else
62 {
63 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
64
65 for (regnum = 0; regnum < NUM_REGS; regnum++)
66 if (frame->fsr.regs[regnum] != 0)
67 {
68 write_register (regnum,
69 read_memory_unsigned_integer (frame->fsr.regs[regnum],
70 REGISTER_RAW_SIZE (regnum)));
71 }
72 write_register (SP_REGNUM, sp + frame->framesize);
73 }
74 flush_cached_frames ();
75 }
76
77
78 /* Function: fr30_store_return_value
79 Put a value where a caller expects to see it. Used by the 'return'
80 command. */
81 void
82 fr30_store_return_value (struct type *type,
83 char *valbuf)
84 {
85 /* Here's how the FR30 returns values (gleaned from gcc/config/
86 fr30/fr30.h):
87
88 If the return value is 32 bits long or less, it goes in r4.
89
90 If the return value is 64 bits long or less, it goes in r4 (most
91 significant word) and r5 (least significant word.
92
93 If the function returns a structure, of any size, the caller
94 passes the function an invisible first argument where the callee
95 should store the value. But GDB doesn't let you do that anyway.
96
97 If you're returning a value smaller than a word, it's not really
98 necessary to zero the upper bytes of the register; the caller is
99 supposed to ignore them. However, the FR30 typically keeps its
100 values extended to the full register width, so we should emulate
101 that. */
102
103 /* The FR30 is big-endian, so if we return a small value (like a
104 short or a char), we need to position it correctly within the
105 register. We round the size up to a register boundary, and then
106 adjust the offset so as to place the value at the right end. */
107 int value_size = TYPE_LENGTH (type);
108 int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1);
109 int offset = (REGISTER_BYTE (RETVAL_REG)
110 + (returned_size - value_size));
111 char *zeros = alloca (returned_size);
112 memset (zeros, 0, returned_size);
113
114 write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size);
115 write_register_bytes (offset, valbuf, value_size);
116 }
117
118
119 /* Function: skip_prologue
120 Return the address of the first code past the prologue of the function. */
121
122 CORE_ADDR
123 fr30_skip_prologue (CORE_ADDR pc)
124 {
125 CORE_ADDR func_addr, func_end;
126
127 /* See what the symbol table says */
128
129 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
130 {
131 struct symtab_and_line sal;
132
133 sal = find_pc_line (func_addr, 0);
134
135 if (sal.line != 0 && sal.end < func_end)
136 {
137 return sal.end;
138 }
139 }
140
141 /* Either we didn't find the start of this function (nothing we can do),
142 or there's no line info, or the line after the prologue is after
143 the end of the function (there probably isn't a prologue). */
144
145 return pc;
146 }
147
148
149 /* Function: push_arguments
150 Setup arguments and RP for a call to the target. First four args
151 go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
152 Structs are passed by reference. XXX not right now Z.R.
153 64 bit quantities (doubles and long longs) may be split between
154 the regs and the stack.
155 When calling a function that returns a struct, a pointer to the struct
156 is passed in as a secret first argument (always in FIRST_ARGREG).
157
158 Stack space for the args has NOT been allocated: that job is up to us.
159 */
160
161 CORE_ADDR
162 fr30_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
163 int struct_return, CORE_ADDR struct_addr)
164 {
165 int argreg;
166 int argnum;
167 int stack_offset;
168 struct stack_arg
169 {
170 char *val;
171 int len;
172 int offset;
173 };
174 struct stack_arg *stack_args =
175 (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
176 int nstack_args = 0;
177
178 argreg = FIRST_ARGREG;
179
180 /* the struct_return pointer occupies the first parameter-passing reg */
181 if (struct_return)
182 write_register (argreg++, struct_addr);
183
184 stack_offset = 0;
185
186 /* Process args from left to right. Store as many as allowed in
187 registers, save the rest to be pushed on the stack */
188 for (argnum = 0; argnum < nargs; argnum++)
189 {
190 char *val;
191 struct value *arg = args[argnum];
192 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
193 struct type *target_type = TYPE_TARGET_TYPE (arg_type);
194 int len = TYPE_LENGTH (arg_type);
195 enum type_code typecode = TYPE_CODE (arg_type);
196 CORE_ADDR regval;
197 int newarg;
198
199 val = (char *) VALUE_CONTENTS (arg);
200
201 {
202 /* Copy the argument to general registers or the stack in
203 register-sized pieces. Large arguments are split between
204 registers and stack. */
205 while (len > 0)
206 {
207 if (argreg <= LAST_ARGREG)
208 {
209 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
210 regval = extract_address (val, partial_len);
211
212 /* It's a simple argument being passed in a general
213 register. */
214 write_register (argreg, regval);
215 argreg++;
216 len -= partial_len;
217 val += partial_len;
218 }
219 else
220 {
221 /* keep for later pushing */
222 stack_args[nstack_args].val = val;
223 stack_args[nstack_args++].len = len;
224 break;
225 }
226 }
227 }
228 }
229 /* now do the real stack pushing, process args right to left */
230 while (nstack_args--)
231 {
232 sp -= stack_args[nstack_args].len;
233 write_memory (sp, stack_args[nstack_args].val,
234 stack_args[nstack_args].len);
235 }
236
237 /* Return adjusted stack pointer. */
238 return sp;
239 }
240
241 void _initialize_fr30_tdep (void);
242
243 void
244 _initialize_fr30_tdep (void)
245 {
246 extern int print_insn_fr30 (bfd_vma, disassemble_info *);
247 tm_print_insn = print_insn_fr30;
248 }
249
250 /* Function: check_prologue_cache
251 Check if prologue for this frame's PC has already been scanned.
252 If it has, copy the relevant information about that prologue and
253 return non-zero. Otherwise do not copy anything and return zero.
254
255 The information saved in the cache includes:
256 * the frame register number;
257 * the size of the stack frame;
258 * the offsets of saved regs (relative to the old SP); and
259 * the offset from the stack pointer to the frame pointer
260
261 The cache contains only one entry, since this is adequate
262 for the typical sequence of prologue scan requests we get.
263 When performing a backtrace, GDB will usually ask to scan
264 the same function twice in a row (once to get the frame chain,
265 and once to fill in the extra frame information).
266 */
267
268 static struct frame_info prologue_cache;
269
270 static int
271 check_prologue_cache (struct frame_info *fi)
272 {
273 int i;
274
275 if (fi->pc == prologue_cache.pc)
276 {
277 fi->framereg = prologue_cache.framereg;
278 fi->framesize = prologue_cache.framesize;
279 fi->frameoffset = prologue_cache.frameoffset;
280 for (i = 0; i <= NUM_REGS; i++)
281 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
282 return 1;
283 }
284 else
285 return 0;
286 }
287
288
289 /* Function: save_prologue_cache
290 Copy the prologue information from fi to the prologue cache.
291 */
292
293 static void
294 save_prologue_cache (struct frame_info *fi)
295 {
296 int i;
297
298 prologue_cache.pc = fi->pc;
299 prologue_cache.framereg = fi->framereg;
300 prologue_cache.framesize = fi->framesize;
301 prologue_cache.frameoffset = fi->frameoffset;
302
303 for (i = 0; i <= NUM_REGS; i++)
304 {
305 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
306 }
307 }
308
309
310 /* Function: scan_prologue
311 Scan the prologue of the function that contains PC, and record what
312 we find in PI. PI->fsr must be zeroed by the called. Returns the
313 pc after the prologue. Note that the addresses saved in pi->fsr
314 are actually just frame relative (negative offsets from the frame
315 pointer). This is because we don't know the actual value of the
316 frame pointer yet. In some circumstances, the frame pointer can't
317 be determined till after we have scanned the prologue. */
318
319 static void
320 fr30_scan_prologue (struct frame_info *fi)
321 {
322 int sp_offset, fp_offset;
323 CORE_ADDR prologue_start, prologue_end, current_pc;
324
325 /* Check if this function is already in the cache of frame information. */
326 if (check_prologue_cache (fi))
327 return;
328
329 /* Assume there is no frame until proven otherwise. */
330 fi->framereg = SP_REGNUM;
331 fi->framesize = 0;
332 fi->frameoffset = 0;
333
334 /* Find the function prologue. If we can't find the function in
335 the symbol table, peek in the stack frame to find the PC. */
336 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
337 {
338 /* Assume the prologue is everything between the first instruction
339 in the function and the first source line. */
340 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
341
342 if (sal.line == 0) /* no line info, use current PC */
343 prologue_end = fi->pc;
344 else if (sal.end < prologue_end) /* next line begins after fn end */
345 prologue_end = sal.end; /* (probably means no prologue) */
346 }
347 else
348 {
349 /* XXX Z.R. What now??? The following is entirely bogus */
350 prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
351 prologue_end = prologue_start + 40;
352 }
353
354 /* Now search the prologue looking for instructions that set up the
355 frame pointer, adjust the stack pointer, and save registers. */
356
357 sp_offset = fp_offset = 0;
358 for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
359 {
360 unsigned int insn;
361
362 insn = read_memory_unsigned_integer (current_pc, 2);
363
364 if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
365 {
366 int reg, mask = insn & 0xff;
367
368 /* scan in one sweep - create virtual 16-bit mask from either insn's mask */
369 if ((insn & 0x0100) == 0)
370 {
371 mask <<= 8; /* stm0 - move to upper byte in virtual mask */
372 }
373
374 /* Calculate offsets of saved registers (to be turned later into addresses). */
375 for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
376 if (mask & (1 << (15 - reg)))
377 {
378 sp_offset -= 4;
379 fi->fsr.regs[reg] = sp_offset;
380 }
381 }
382 else if ((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
383 {
384 int reg = insn & 0xf;
385
386 sp_offset -= 4;
387 fi->fsr.regs[reg] = sp_offset;
388 }
389 else if ((insn & 0xff00) == 0x0f00) /* enter */
390 {
391 fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
392 sp_offset -= 4 * (insn & 0xff);
393 fi->framereg = FP_REGNUM;
394 }
395 else if (insn == 0x1781) /* st rp,@-sp */
396 {
397 sp_offset -= 4;
398 fi->fsr.regs[RP_REGNUM] = sp_offset;
399 }
400 else if (insn == 0x170e) /* st fp,@-sp */
401 {
402 sp_offset -= 4;
403 fi->fsr.regs[FP_REGNUM] = sp_offset;
404 }
405 else if (insn == 0x8bfe) /* mov sp,fp */
406 {
407 fi->framereg = FP_REGNUM;
408 }
409 else if ((insn & 0xff00) == 0xa300) /* addsp xx */
410 {
411 sp_offset += 4 * (signed char) (insn & 0xff);
412 }
413 else if ((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
414 read_memory_unsigned_integer (current_pc + 4, 2)
415 == 0xac0f) /* sub r0,sp */
416 {
417 /* large stack adjustment */
418 sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2));
419 current_pc += 4;
420 }
421 else if (insn == 0x9f80 && /* ldi:32 xx,r0 */
422 read_memory_unsigned_integer (current_pc + 6, 2)
423 == 0xac0f) /* sub r0,sp */
424 {
425 /* large stack adjustment */
426 sp_offset -=
427 (read_memory_unsigned_integer (current_pc + 2, 2) << 16 |
428 read_memory_unsigned_integer (current_pc + 4, 2));
429 current_pc += 6;
430 }
431 }
432
433 /* The frame size is just the negative of the offset (from the original SP)
434 of the last thing thing we pushed on the stack. The frame offset is
435 [new FP] - [new SP]. */
436 fi->framesize = -sp_offset;
437 fi->frameoffset = fp_offset - sp_offset;
438
439 save_prologue_cache (fi);
440 }
441
442 /* Function: init_extra_frame_info
443 Setup the frame's frame pointer, pc, and frame addresses for saved
444 registers. Most of the work is done in scan_prologue().
445
446 Note that when we are called for the last frame (currently active frame),
447 that fi->pc and fi->frame will already be setup. However, fi->frame will
448 be valid only if this routine uses FP. For previous frames, fi-frame will
449 always be correct (since that is derived from fr30_frame_chain ()).
450
451 We can be called with the PC in the call dummy under two circumstances.
452 First, during normal backtracing, second, while figuring out the frame
453 pointer just prior to calling the target function (see run_stack_dummy). */
454
455 void
456 fr30_init_extra_frame_info (struct frame_info *fi)
457 {
458 int reg;
459
460 if (fi->next)
461 fi->pc = FRAME_SAVED_PC (fi->next);
462
463 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
464
465 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
466 {
467 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
468 by assuming it's always FP. */
469 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
470 fi->framesize = 0;
471 fi->frameoffset = 0;
472 return;
473 }
474 fr30_scan_prologue (fi);
475
476 if (!fi->next) /* this is the innermost frame? */
477 fi->frame = read_register (fi->framereg);
478 else
479 /* not the innermost frame */
480 /* If we have an FP, the callee saved it. */
481 if (fi->framereg == FP_REGNUM)
482 if (fi->next->fsr.regs[fi->framereg] != 0)
483 fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
484
485 /* Calculate actual addresses of saved registers using offsets determined
486 by fr30_scan_prologue. */
487 for (reg = 0; reg < NUM_REGS; reg++)
488 if (fi->fsr.regs[reg] != 0)
489 {
490 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
491 }
492 }
493
494 /* Function: find_callers_reg
495 Find REGNUM on the stack. Otherwise, it's in an active register.
496 One thing we might want to do here is to check REGNUM against the
497 clobber mask, and somehow flag it as invalid if it isn't saved on
498 the stack somewhere. This would provide a graceful failure mode
499 when trying to get the value of caller-saves registers for an inner
500 frame. */
501
502 CORE_ADDR
503 fr30_find_callers_reg (struct frame_info *fi, int regnum)
504 {
505 for (; fi; fi = fi->next)
506 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
507 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
508 else if (fi->fsr.regs[regnum] != 0)
509 return read_memory_unsigned_integer (fi->fsr.regs[regnum],
510 REGISTER_RAW_SIZE (regnum));
511
512 return read_register (regnum);
513 }
514
515
516 /* Function: frame_chain
517 Figure out the frame prior to FI. Unfortunately, this involves
518 scanning the prologue of the caller, which will also be done
519 shortly by fr30_init_extra_frame_info. For the dummy frame, we
520 just return the stack pointer that was in use at the time the
521 function call was made. */
522
523
524 CORE_ADDR
525 fr30_frame_chain (struct frame_info *fi)
526 {
527 CORE_ADDR fn_start, callers_pc, fp;
528 struct frame_info caller_fi;
529 int framereg;
530
531 /* is this a dummy frame? */
532 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
533 return fi->frame; /* dummy frame same as caller's frame */
534
535 /* is caller-of-this a dummy frame? */
536 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
537 fp = fr30_find_callers_reg (fi, FP_REGNUM);
538 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
539 return fp; /* dummy frame's frame may bear no relation to ours */
540
541 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
542 if (fn_start == entry_point_address ())
543 return 0; /* in _start fn, don't chain further */
544
545 framereg = fi->framereg;
546
547 /* If the caller is the startup code, we're at the end of the chain. */
548 if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
549 if (fn_start == entry_point_address ())
550 return 0;
551
552 memset (&caller_fi, 0, sizeof (caller_fi));
553 caller_fi.pc = callers_pc;
554 fr30_scan_prologue (&caller_fi);
555 framereg = caller_fi.framereg;
556
557 /* If the caller used a frame register, return its value.
558 Otherwise, return the caller's stack pointer. */
559 if (framereg == FP_REGNUM)
560 return fr30_find_callers_reg (fi, framereg);
561 else
562 return fi->frame + fi->framesize;
563 }
564
565 /* Function: frame_saved_pc
566 Find the caller of this frame. We do this by seeing if RP_REGNUM
567 is saved in the stack anywhere, otherwise we get it from the
568 registers. If the inner frame is a dummy frame, return its PC
569 instead of RP, because that's where "caller" of the dummy-frame
570 will be found. */
571
572 CORE_ADDR
573 fr30_frame_saved_pc (struct frame_info *fi)
574 {
575 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
576 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
577 else
578 return fr30_find_callers_reg (fi, RP_REGNUM);
579 }
580
581 /* Function: fix_call_dummy
582 Pokes the callee function's address into the CALL_DUMMY assembly stub.
583 Assumes that the CALL_DUMMY looks like this:
584 jarl <offset24>, r31
585 trap
586 */
587
588 int
589 fr30_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
590 struct value **args, struct type *type, int gcc_p)
591 {
592 long offset24;
593
594 offset24 = (long) fun - (long) entry_point_address ();
595 offset24 &= 0x3fffff;
596 offset24 |= 0xff800000; /* jarl <offset24>, r31 */
597
598 store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
599 store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
600 return 0;
601 }
This page took 0.056939 seconds and 4 git commands to generate.