2000-12-19 Elena Zannoni <ezannoni@kwikemart.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / fr30-tdep.c
1 /* Target-dependent code for the Fujitsu FR30.
2 Copyright 1999, Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "obstack.h"
25 #include "target.h"
26 #include "value.h"
27 #include "bfd.h"
28 #include "gdb_string.h"
29 #include "gdbcore.h"
30 #include "symfile.h"
31
32 /* An expression that tells us whether the function invocation represented
33 by FI does not have a frame on the stack associated with it. */
34 int
35 fr30_frameless_function_invocation (struct frame_info *fi)
36 {
37 int frameless;
38 CORE_ADDR func_start, after_prologue;
39 func_start = (get_pc_function_start ((fi)->pc) +
40 FUNCTION_START_OFFSET);
41 after_prologue = func_start;
42 after_prologue = SKIP_PROLOGUE (after_prologue);
43 frameless = (after_prologue == func_start);
44 return frameless;
45 }
46
47 /* Function: pop_frame
48 This routine gets called when either the user uses the `return'
49 command, or the call dummy breakpoint gets hit. */
50
51 void
52 fr30_pop_frame (void)
53 {
54 struct frame_info *frame = get_current_frame ();
55 int regnum;
56 CORE_ADDR sp = read_register (SP_REGNUM);
57
58 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
59 generic_pop_dummy_frame ();
60 else
61 {
62 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
63
64 for (regnum = 0; regnum < NUM_REGS; regnum++)
65 if (frame->fsr.regs[regnum] != 0)
66 {
67 write_register (regnum,
68 read_memory_unsigned_integer (frame->fsr.regs[regnum],
69 REGISTER_RAW_SIZE (regnum)));
70 }
71 write_register (SP_REGNUM, sp + frame->framesize);
72 }
73 flush_cached_frames ();
74 }
75
76
77 /* Function: fr30_store_return_value
78 Put a value where a caller expects to see it. Used by the 'return'
79 command. */
80 void
81 fr30_store_return_value (struct type *type,
82 char *valbuf)
83 {
84 /* Here's how the FR30 returns values (gleaned from gcc/config/
85 fr30/fr30.h):
86
87 If the return value is 32 bits long or less, it goes in r4.
88
89 If the return value is 64 bits long or less, it goes in r4 (most
90 significant word) and r5 (least significant word.
91
92 If the function returns a structure, of any size, the caller
93 passes the function an invisible first argument where the callee
94 should store the value. But GDB doesn't let you do that anyway.
95
96 If you're returning a value smaller than a word, it's not really
97 necessary to zero the upper bytes of the register; the caller is
98 supposed to ignore them. However, the FR30 typically keeps its
99 values extended to the full register width, so we should emulate
100 that. */
101
102 /* The FR30 is big-endian, so if we return a small value (like a
103 short or a char), we need to position it correctly within the
104 register. We round the size up to a register boundary, and then
105 adjust the offset so as to place the value at the right end. */
106 int value_size = TYPE_LENGTH (type);
107 int returned_size = (value_size + FR30_REGSIZE - 1) & ~(FR30_REGSIZE - 1);
108 int offset = (REGISTER_BYTE (RETVAL_REG)
109 + (returned_size - value_size));
110 char *zeros = alloca (returned_size);
111 memset (zeros, 0, returned_size);
112
113 write_register_bytes (REGISTER_BYTE (RETVAL_REG), zeros, returned_size);
114 write_register_bytes (offset, valbuf, value_size);
115 }
116
117
118 /* Function: skip_prologue
119 Return the address of the first code past the prologue of the function. */
120
121 CORE_ADDR
122 fr30_skip_prologue (CORE_ADDR pc)
123 {
124 CORE_ADDR func_addr, func_end;
125
126 /* See what the symbol table says */
127
128 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
129 {
130 struct symtab_and_line sal;
131
132 sal = find_pc_line (func_addr, 0);
133
134 if (sal.line != 0 && sal.end < func_end)
135 {
136 return sal.end;
137 }
138 }
139
140 /* Either we didn't find the start of this function (nothing we can do),
141 or there's no line info, or the line after the prologue is after
142 the end of the function (there probably isn't a prologue). */
143
144 return pc;
145 }
146
147
148 /* Function: push_arguments
149 Setup arguments and RP for a call to the target. First four args
150 go in FIRST_ARGREG -> LAST_ARGREG, subsequent args go on stack...
151 Structs are passed by reference. XXX not right now Z.R.
152 64 bit quantities (doubles and long longs) may be split between
153 the regs and the stack.
154 When calling a function that returns a struct, a pointer to the struct
155 is passed in as a secret first argument (always in FIRST_ARGREG).
156
157 Stack space for the args has NOT been allocated: that job is up to us.
158 */
159
160 CORE_ADDR
161 fr30_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
162 int struct_return, CORE_ADDR struct_addr)
163 {
164 int argreg;
165 int argnum;
166 int stack_offset;
167 struct stack_arg
168 {
169 char *val;
170 int len;
171 int offset;
172 };
173 struct stack_arg *stack_args =
174 (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
175 int nstack_args = 0;
176
177 argreg = FIRST_ARGREG;
178
179 /* the struct_return pointer occupies the first parameter-passing reg */
180 if (struct_return)
181 write_register (argreg++, struct_addr);
182
183 stack_offset = 0;
184
185 /* Process args from left to right. Store as many as allowed in
186 registers, save the rest to be pushed on the stack */
187 for (argnum = 0; argnum < nargs; argnum++)
188 {
189 char *val;
190 value_ptr arg = args[argnum];
191 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
192 struct type *target_type = TYPE_TARGET_TYPE (arg_type);
193 int len = TYPE_LENGTH (arg_type);
194 enum type_code typecode = TYPE_CODE (arg_type);
195 CORE_ADDR regval;
196 int newarg;
197
198 val = (char *) VALUE_CONTENTS (arg);
199
200 {
201 /* Copy the argument to general registers or the stack in
202 register-sized pieces. Large arguments are split between
203 registers and stack. */
204 while (len > 0)
205 {
206 if (argreg <= LAST_ARGREG)
207 {
208 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
209 regval = extract_address (val, partial_len);
210
211 /* It's a simple argument being passed in a general
212 register. */
213 write_register (argreg, regval);
214 argreg++;
215 len -= partial_len;
216 val += partial_len;
217 }
218 else
219 {
220 /* keep for later pushing */
221 stack_args[nstack_args].val = val;
222 stack_args[nstack_args++].len = len;
223 break;
224 }
225 }
226 }
227 }
228 /* now do the real stack pushing, process args right to left */
229 while (nstack_args--)
230 {
231 sp -= stack_args[nstack_args].len;
232 write_memory (sp, stack_args[nstack_args].val,
233 stack_args[nstack_args].len);
234 }
235
236 /* Return adjusted stack pointer. */
237 return sp;
238 }
239
240 void _initialize_fr30_tdep (void);
241
242 void
243 _initialize_fr30_tdep (void)
244 {
245 extern int print_insn_fr30 (bfd_vma, disassemble_info *);
246 tm_print_insn = print_insn_fr30;
247 }
248
249 /* Function: check_prologue_cache
250 Check if prologue for this frame's PC has already been scanned.
251 If it has, copy the relevant information about that prologue and
252 return non-zero. Otherwise do not copy anything and return zero.
253
254 The information saved in the cache includes:
255 * the frame register number;
256 * the size of the stack frame;
257 * the offsets of saved regs (relative to the old SP); and
258 * the offset from the stack pointer to the frame pointer
259
260 The cache contains only one entry, since this is adequate
261 for the typical sequence of prologue scan requests we get.
262 When performing a backtrace, GDB will usually ask to scan
263 the same function twice in a row (once to get the frame chain,
264 and once to fill in the extra frame information).
265 */
266
267 static struct frame_info prologue_cache;
268
269 static int
270 check_prologue_cache (struct frame_info *fi)
271 {
272 int i;
273
274 if (fi->pc == prologue_cache.pc)
275 {
276 fi->framereg = prologue_cache.framereg;
277 fi->framesize = prologue_cache.framesize;
278 fi->frameoffset = prologue_cache.frameoffset;
279 for (i = 0; i <= NUM_REGS; i++)
280 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
281 return 1;
282 }
283 else
284 return 0;
285 }
286
287
288 /* Function: save_prologue_cache
289 Copy the prologue information from fi to the prologue cache.
290 */
291
292 static void
293 save_prologue_cache (struct frame_info *fi)
294 {
295 int i;
296
297 prologue_cache.pc = fi->pc;
298 prologue_cache.framereg = fi->framereg;
299 prologue_cache.framesize = fi->framesize;
300 prologue_cache.frameoffset = fi->frameoffset;
301
302 for (i = 0; i <= NUM_REGS; i++)
303 {
304 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
305 }
306 }
307
308
309 /* Function: scan_prologue
310 Scan the prologue of the function that contains PC, and record what
311 we find in PI. PI->fsr must be zeroed by the called. Returns the
312 pc after the prologue. Note that the addresses saved in pi->fsr
313 are actually just frame relative (negative offsets from the frame
314 pointer). This is because we don't know the actual value of the
315 frame pointer yet. In some circumstances, the frame pointer can't
316 be determined till after we have scanned the prologue. */
317
318 static void
319 fr30_scan_prologue (struct frame_info *fi)
320 {
321 int sp_offset, fp_offset;
322 CORE_ADDR prologue_start, prologue_end, current_pc;
323
324 /* Check if this function is already in the cache of frame information. */
325 if (check_prologue_cache (fi))
326 return;
327
328 /* Assume there is no frame until proven otherwise. */
329 fi->framereg = SP_REGNUM;
330 fi->framesize = 0;
331 fi->frameoffset = 0;
332
333 /* Find the function prologue. If we can't find the function in
334 the symbol table, peek in the stack frame to find the PC. */
335 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
336 {
337 /* Assume the prologue is everything between the first instruction
338 in the function and the first source line. */
339 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
340
341 if (sal.line == 0) /* no line info, use current PC */
342 prologue_end = fi->pc;
343 else if (sal.end < prologue_end) /* next line begins after fn end */
344 prologue_end = sal.end; /* (probably means no prologue) */
345 }
346 else
347 {
348 /* XXX Z.R. What now??? The following is entirely bogus */
349 prologue_start = (read_memory_integer (fi->frame, 4) & 0x03fffffc) - 12;
350 prologue_end = prologue_start + 40;
351 }
352
353 /* Now search the prologue looking for instructions that set up the
354 frame pointer, adjust the stack pointer, and save registers. */
355
356 sp_offset = fp_offset = 0;
357 for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
358 {
359 unsigned int insn;
360
361 insn = read_memory_unsigned_integer (current_pc, 2);
362
363 if ((insn & 0xfe00) == 0x8e00) /* stm0 or stm1 */
364 {
365 int reg, mask = insn & 0xff;
366
367 /* scan in one sweep - create virtual 16-bit mask from either insn's mask */
368 if ((insn & 0x0100) == 0)
369 {
370 mask <<= 8; /* stm0 - move to upper byte in virtual mask */
371 }
372
373 /* Calculate offsets of saved registers (to be turned later into addresses). */
374 for (reg = R4_REGNUM; reg <= R11_REGNUM; reg++)
375 if (mask & (1 << (15 - reg)))
376 {
377 sp_offset -= 4;
378 fi->fsr.regs[reg] = sp_offset;
379 }
380 }
381 else if ((insn & 0xfff0) == 0x1700) /* st rx,@-r15 */
382 {
383 int reg = insn & 0xf;
384
385 sp_offset -= 4;
386 fi->fsr.regs[reg] = sp_offset;
387 }
388 else if ((insn & 0xff00) == 0x0f00) /* enter */
389 {
390 fp_offset = fi->fsr.regs[FP_REGNUM] = sp_offset - 4;
391 sp_offset -= 4 * (insn & 0xff);
392 fi->framereg = FP_REGNUM;
393 }
394 else if (insn == 0x1781) /* st rp,@-sp */
395 {
396 sp_offset -= 4;
397 fi->fsr.regs[RP_REGNUM] = sp_offset;
398 }
399 else if (insn == 0x170e) /* st fp,@-sp */
400 {
401 sp_offset -= 4;
402 fi->fsr.regs[FP_REGNUM] = sp_offset;
403 }
404 else if (insn == 0x8bfe) /* mov sp,fp */
405 {
406 fi->framereg = FP_REGNUM;
407 }
408 else if ((insn & 0xff00) == 0xa300) /* addsp xx */
409 {
410 sp_offset += 4 * (signed char) (insn & 0xff);
411 }
412 else if ((insn & 0xff0f) == 0x9b00 && /* ldi:20 xx,r0 */
413 read_memory_unsigned_integer (current_pc + 4, 2)
414 == 0xac0f) /* sub r0,sp */
415 {
416 /* large stack adjustment */
417 sp_offset -= (((insn & 0xf0) << 12) | read_memory_unsigned_integer (current_pc + 2, 2));
418 current_pc += 4;
419 }
420 else if (insn == 0x9f80 && /* ldi:32 xx,r0 */
421 read_memory_unsigned_integer (current_pc + 6, 2)
422 == 0xac0f) /* sub r0,sp */
423 {
424 /* large stack adjustment */
425 sp_offset -=
426 (read_memory_unsigned_integer (current_pc + 2, 2) << 16 |
427 read_memory_unsigned_integer (current_pc + 4, 2));
428 current_pc += 6;
429 }
430 }
431
432 /* The frame size is just the negative of the offset (from the original SP)
433 of the last thing thing we pushed on the stack. The frame offset is
434 [new FP] - [new SP]. */
435 fi->framesize = -sp_offset;
436 fi->frameoffset = fp_offset - sp_offset;
437
438 save_prologue_cache (fi);
439 }
440
441 /* Function: init_extra_frame_info
442 Setup the frame's frame pointer, pc, and frame addresses for saved
443 registers. Most of the work is done in scan_prologue().
444
445 Note that when we are called for the last frame (currently active frame),
446 that fi->pc and fi->frame will already be setup. However, fi->frame will
447 be valid only if this routine uses FP. For previous frames, fi-frame will
448 always be correct (since that is derived from fr30_frame_chain ()).
449
450 We can be called with the PC in the call dummy under two circumstances.
451 First, during normal backtracing, second, while figuring out the frame
452 pointer just prior to calling the target function (see run_stack_dummy). */
453
454 void
455 fr30_init_extra_frame_info (struct frame_info *fi)
456 {
457 int reg;
458
459 if (fi->next)
460 fi->pc = FRAME_SAVED_PC (fi->next);
461
462 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
463
464 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
465 {
466 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
467 by assuming it's always FP. */
468 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
469 fi->framesize = 0;
470 fi->frameoffset = 0;
471 return;
472 }
473 fr30_scan_prologue (fi);
474
475 if (!fi->next) /* this is the innermost frame? */
476 fi->frame = read_register (fi->framereg);
477 else
478 /* not the innermost frame */
479 /* If we have an FP, the callee saved it. */
480 if (fi->framereg == FP_REGNUM)
481 if (fi->next->fsr.regs[fi->framereg] != 0)
482 fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
483
484 /* Calculate actual addresses of saved registers using offsets determined
485 by fr30_scan_prologue. */
486 for (reg = 0; reg < NUM_REGS; reg++)
487 if (fi->fsr.regs[reg] != 0)
488 {
489 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
490 }
491 }
492
493 /* Function: find_callers_reg
494 Find REGNUM on the stack. Otherwise, it's in an active register.
495 One thing we might want to do here is to check REGNUM against the
496 clobber mask, and somehow flag it as invalid if it isn't saved on
497 the stack somewhere. This would provide a graceful failure mode
498 when trying to get the value of caller-saves registers for an inner
499 frame. */
500
501 CORE_ADDR
502 fr30_find_callers_reg (struct frame_info *fi, int regnum)
503 {
504 for (; fi; fi = fi->next)
505 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
506 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
507 else if (fi->fsr.regs[regnum] != 0)
508 return read_memory_unsigned_integer (fi->fsr.regs[regnum],
509 REGISTER_RAW_SIZE (regnum));
510
511 return read_register (regnum);
512 }
513
514
515 /* Function: frame_chain
516 Figure out the frame prior to FI. Unfortunately, this involves
517 scanning the prologue of the caller, which will also be done
518 shortly by fr30_init_extra_frame_info. For the dummy frame, we
519 just return the stack pointer that was in use at the time the
520 function call was made. */
521
522
523 CORE_ADDR
524 fr30_frame_chain (struct frame_info *fi)
525 {
526 CORE_ADDR fn_start, callers_pc, fp;
527 struct frame_info caller_fi;
528 int framereg;
529
530 /* is this a dummy frame? */
531 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
532 return fi->frame; /* dummy frame same as caller's frame */
533
534 /* is caller-of-this a dummy frame? */
535 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
536 fp = fr30_find_callers_reg (fi, FP_REGNUM);
537 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
538 return fp; /* dummy frame's frame may bear no relation to ours */
539
540 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
541 if (fn_start == entry_point_address ())
542 return 0; /* in _start fn, don't chain further */
543
544 framereg = fi->framereg;
545
546 /* If the caller is the startup code, we're at the end of the chain. */
547 if (find_pc_partial_function (callers_pc, 0, &fn_start, 0))
548 if (fn_start == entry_point_address ())
549 return 0;
550
551 memset (&caller_fi, 0, sizeof (caller_fi));
552 caller_fi.pc = callers_pc;
553 fr30_scan_prologue (&caller_fi);
554 framereg = caller_fi.framereg;
555
556 /* If the caller used a frame register, return its value.
557 Otherwise, return the caller's stack pointer. */
558 if (framereg == FP_REGNUM)
559 return fr30_find_callers_reg (fi, framereg);
560 else
561 return fi->frame + fi->framesize;
562 }
563
564 /* Function: frame_saved_pc
565 Find the caller of this frame. We do this by seeing if RP_REGNUM
566 is saved in the stack anywhere, otherwise we get it from the
567 registers. If the inner frame is a dummy frame, return its PC
568 instead of RP, because that's where "caller" of the dummy-frame
569 will be found. */
570
571 CORE_ADDR
572 fr30_frame_saved_pc (struct frame_info *fi)
573 {
574 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
575 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
576 else
577 return fr30_find_callers_reg (fi, RP_REGNUM);
578 }
579
580 /* Function: fix_call_dummy
581 Pokes the callee function's address into the CALL_DUMMY assembly stub.
582 Assumes that the CALL_DUMMY looks like this:
583 jarl <offset24>, r31
584 trap
585 */
586
587 int
588 fr30_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
589 value_ptr *args, struct type *type, int gcc_p)
590 {
591 long offset24;
592
593 offset24 = (long) fun - (long) entry_point_address ();
594 offset24 &= 0x3fffff;
595 offset24 |= 0xff800000; /* jarl <offset24>, r31 */
596
597 store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
598 store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
599 return 0;
600 }
This page took 0.041537 seconds and 4 git commands to generate.