* frame.c (frame_unwind_unsigned_register): Delete.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43
44 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
45
46 /* We keep a cache of stack frames, each of which is a "struct
47 frame_info". The innermost one gets allocated (in
48 wait_for_inferior) each time the inferior stops; current_frame
49 points to it. Additional frames get allocated (in get_prev_frame)
50 as needed, and are chained through the next and prev fields. Any
51 time that the frame cache becomes invalid (most notably when we
52 execute something, but also if we change how we interpret the
53 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
54 which reads new symbols)), we should call reinit_frame_cache. */
55
56 struct frame_info
57 {
58 /* Level of this frame. The inner-most (youngest) frame is at level
59 0. As you move towards the outer-most (oldest) frame, the level
60 increases. This is a cached value. It could just as easily be
61 computed by counting back from the selected frame to the inner
62 most frame. */
63 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
64 reserved to indicate a bogus frame - one that has been created
65 just to keep GDB happy (GDB always needs a frame). For the
66 moment leave this as speculation. */
67 int level;
68
69 /* The frame's low-level unwinder and corresponding cache. The
70 low-level unwinder is responsible for unwinding register values
71 for the previous frame. The low-level unwind methods are
72 selected based on the presence, or otherwise, of register unwind
73 information such as CFI. */
74 void *prologue_cache;
75 const struct frame_unwind *unwind;
76
77 /* Cached copy of the previous frame's resume address. */
78 struct {
79 int p;
80 CORE_ADDR value;
81 } prev_pc;
82
83 /* Cached copy of the previous frame's function address. */
84 struct
85 {
86 CORE_ADDR addr;
87 int p;
88 } prev_func;
89
90 /* This frame's ID. */
91 struct
92 {
93 int p;
94 struct frame_id value;
95 } this_id;
96
97 /* The frame's high-level base methods, and corresponding cache.
98 The high level base methods are selected based on the frame's
99 debug info. */
100 const struct frame_base *base;
101 void *base_cache;
102
103 /* Pointers to the next (down, inner, younger) and previous (up,
104 outer, older) frame_info's in the frame cache. */
105 struct frame_info *next; /* down, inner, younger */
106 int prev_p;
107 struct frame_info *prev; /* up, outer, older */
108
109 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
110 could. Only valid when PREV_P is set. */
111 enum unwind_stop_reason stop_reason;
112 };
113
114 /* Flag to control debugging. */
115
116 static int frame_debug;
117 static void
118 show_frame_debug (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
122 }
123
124 /* Flag to indicate whether backtraces should stop at main et.al. */
125
126 static int backtrace_past_main;
127 static void
128 show_backtrace_past_main (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("\
132 Whether backtraces should continue past \"main\" is %s.\n"),
133 value);
134 }
135
136 static int backtrace_past_entry;
137 static void
138 show_backtrace_past_entry (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("\
142 Whether backtraces should continue past the entry point of a program is %s.\n"),
143 value);
144 }
145
146 static int backtrace_limit = INT_MAX;
147 static void
148 show_backtrace_limit (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("\
152 An upper bound on the number of backtrace levels is %s.\n"),
153 value);
154 }
155
156
157 static void
158 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
159 {
160 if (p)
161 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
162 else
163 fprintf_unfiltered (file, "!%s", name);
164 }
165
166 void
167 fprint_frame_id (struct ui_file *file, struct frame_id id)
168 {
169 fprintf_unfiltered (file, "{");
170 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
171 fprintf_unfiltered (file, ",");
172 fprint_field (file, "code", id.code_addr_p, id.code_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "special", id.special_addr_p, id.special_addr);
175 fprintf_unfiltered (file, "}");
176 }
177
178 static void
179 fprint_frame_type (struct ui_file *file, enum frame_type type)
180 {
181 switch (type)
182 {
183 case NORMAL_FRAME:
184 fprintf_unfiltered (file, "NORMAL_FRAME");
185 return;
186 case DUMMY_FRAME:
187 fprintf_unfiltered (file, "DUMMY_FRAME");
188 return;
189 case SIGTRAMP_FRAME:
190 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
191 return;
192 default:
193 fprintf_unfiltered (file, "<unknown type>");
194 return;
195 };
196 }
197
198 static void
199 fprint_frame (struct ui_file *file, struct frame_info *fi)
200 {
201 if (fi == NULL)
202 {
203 fprintf_unfiltered (file, "<NULL frame>");
204 return;
205 }
206 fprintf_unfiltered (file, "{");
207 fprintf_unfiltered (file, "level=%d", fi->level);
208 fprintf_unfiltered (file, ",");
209 fprintf_unfiltered (file, "type=");
210 if (fi->unwind != NULL)
211 fprint_frame_type (file, fi->unwind->type);
212 else
213 fprintf_unfiltered (file, "<unknown>");
214 fprintf_unfiltered (file, ",");
215 fprintf_unfiltered (file, "unwind=");
216 if (fi->unwind != NULL)
217 gdb_print_host_address (fi->unwind, file);
218 else
219 fprintf_unfiltered (file, "<unknown>");
220 fprintf_unfiltered (file, ",");
221 fprintf_unfiltered (file, "pc=");
222 if (fi->next != NULL && fi->next->prev_pc.p)
223 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
224 else
225 fprintf_unfiltered (file, "<unknown>");
226 fprintf_unfiltered (file, ",");
227 fprintf_unfiltered (file, "id=");
228 if (fi->this_id.p)
229 fprint_frame_id (file, fi->this_id.value);
230 else
231 fprintf_unfiltered (file, "<unknown>");
232 fprintf_unfiltered (file, ",");
233 fprintf_unfiltered (file, "func=");
234 if (fi->next != NULL && fi->next->prev_func.p)
235 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
236 else
237 fprintf_unfiltered (file, "<unknown>");
238 fprintf_unfiltered (file, "}");
239 }
240
241 /* Return a frame uniq ID that can be used to, later, re-find the
242 frame. */
243
244 struct frame_id
245 get_frame_id (struct frame_info *fi)
246 {
247 if (fi == NULL)
248 {
249 return null_frame_id;
250 }
251 if (!fi->this_id.p)
252 {
253 if (frame_debug)
254 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
255 fi->level);
256 /* Find the unwinder. */
257 if (fi->unwind == NULL)
258 fi->unwind = frame_unwind_find_by_frame (fi->next,
259 &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (current_gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (this_frame->unwind == NULL)
431 this_frame->unwind
432 = frame_unwind_find_by_frame (this_frame->next,
433 &this_frame->prologue_cache);
434 if (this_frame->unwind->prev_pc != NULL)
435 /* A per-frame unwinder, prefer it. */
436 pc = this_frame->unwind->prev_pc (this_frame->next,
437 &this_frame->prologue_cache);
438 else if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
439 {
440 /* The right way. The `pure' way. The one true way. This
441 method depends solely on the register-unwind code to
442 determine the value of registers in THIS frame, and hence
443 the value of this frame's PC (resume address). A typical
444 implementation is no more than:
445
446 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
447 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
448
449 Note: this method is very heavily dependent on a correct
450 register-unwind implementation, it pays to fix that
451 method first; this method is frame type agnostic, since
452 it only deals with register values, it works with any
453 frame. This is all in stark contrast to the old
454 FRAME_SAVED_PC which would try to directly handle all the
455 different ways that a PC could be unwound. */
456 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
457 }
458 else
459 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
460 this_frame->prev_pc.value = pc;
461 this_frame->prev_pc.p = 1;
462 if (frame_debug)
463 fprintf_unfiltered (gdb_stdlog,
464 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
465 this_frame->level,
466 paddr_nz (this_frame->prev_pc.value));
467 }
468 return this_frame->prev_pc.value;
469 }
470
471 CORE_ADDR
472 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
473 {
474 if (!fi->prev_func.p)
475 {
476 /* Make certain that this, and not the adjacent, function is
477 found. */
478 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
479 fi->prev_func.p = 1;
480 fi->prev_func.addr = get_pc_function_start (addr_in_block);
481 if (frame_debug)
482 fprintf_unfiltered (gdb_stdlog,
483 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
484 fi->level, paddr_nz (fi->prev_func.addr));
485 }
486 return fi->prev_func.addr;
487 }
488
489 CORE_ADDR
490 get_frame_func (struct frame_info *fi)
491 {
492 return frame_func_unwind (fi->next, get_frame_type (fi));
493 }
494
495 static int
496 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
497 {
498 frame_register_read (src, regnum, buf);
499 return 1;
500 }
501
502 struct regcache *
503 frame_save_as_regcache (struct frame_info *this_frame)
504 {
505 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
506 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
507 regcache_save (regcache, do_frame_register_read, this_frame);
508 discard_cleanups (cleanups);
509 return regcache;
510 }
511
512 void
513 frame_pop (struct frame_info *this_frame)
514 {
515 struct frame_info *prev_frame;
516 struct regcache *scratch;
517 struct cleanup *cleanups;
518
519 /* Ensure that we have a frame to pop to. */
520 prev_frame = get_prev_frame_1 (this_frame);
521
522 if (!prev_frame)
523 error (_("Cannot pop the initial frame."));
524
525 /* Make a copy of all the register values unwound from this frame.
526 Save them in a scratch buffer so that there isn't a race between
527 trying to extract the old values from the current regcache while
528 at the same time writing new values into that same cache. */
529 scratch = frame_save_as_regcache (prev_frame);
530 cleanups = make_cleanup_regcache_xfree (scratch);
531
532 /* FIXME: cagney/2003-03-16: It should be possible to tell the
533 target's register cache that it is about to be hit with a burst
534 register transfer and that the sequence of register writes should
535 be batched. The pair target_prepare_to_store() and
536 target_store_registers() kind of suggest this functionality.
537 Unfortunately, they don't implement it. Their lack of a formal
538 definition can lead to targets writing back bogus values
539 (arguably a bug in the target code mind). */
540 /* Now copy those saved registers into the current regcache.
541 Here, regcache_cpy() calls regcache_restore(). */
542 regcache_cpy (get_current_regcache (), scratch);
543 do_cleanups (cleanups);
544
545 /* We've made right mess of GDB's local state, just discard
546 everything. */
547 reinit_frame_cache ();
548 }
549
550 void
551 frame_register_unwind (struct frame_info *frame, int regnum,
552 int *optimizedp, enum lval_type *lvalp,
553 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
554 {
555 struct frame_unwind_cache *cache;
556
557 if (frame_debug)
558 {
559 fprintf_unfiltered (gdb_stdlog, "\
560 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
561 frame->level, regnum,
562 frame_map_regnum_to_name (frame, regnum));
563 }
564
565 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
566 that the value proper does not need to be fetched. */
567 gdb_assert (optimizedp != NULL);
568 gdb_assert (lvalp != NULL);
569 gdb_assert (addrp != NULL);
570 gdb_assert (realnump != NULL);
571 /* gdb_assert (bufferp != NULL); */
572
573 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
574 is broken. There is always a frame. If there, for some reason,
575 isn't a frame, there is some pretty busted code as it should have
576 detected the problem before calling here. */
577 gdb_assert (frame != NULL);
578
579 /* Find the unwinder. */
580 if (frame->unwind == NULL)
581 frame->unwind = frame_unwind_find_by_frame (frame->next,
582 &frame->prologue_cache);
583
584 /* Ask this frame to unwind its register. See comment in
585 "frame-unwind.h" for why NEXT frame and this unwind cache are
586 passed in. */
587 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
588 optimizedp, lvalp, addrp, realnump, bufferp);
589
590 if (frame_debug)
591 {
592 fprintf_unfiltered (gdb_stdlog, "->");
593 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
594 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
595 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
596 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
597 if (bufferp == NULL)
598 fprintf_unfiltered (gdb_stdlog, "<NULL>");
599 else
600 {
601 int i;
602 const unsigned char *buf = bufferp;
603 fprintf_unfiltered (gdb_stdlog, "[");
604 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
605 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
606 fprintf_unfiltered (gdb_stdlog, "]");
607 }
608 fprintf_unfiltered (gdb_stdlog, " }\n");
609 }
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 LONGEST
651 frame_unwind_register_signed (struct frame_info *frame, int regnum)
652 {
653 gdb_byte buf[MAX_REGISTER_SIZE];
654 frame_unwind_register (frame, regnum, buf);
655 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
656 regnum));
657 }
658
659 LONGEST
660 get_frame_register_signed (struct frame_info *frame, int regnum)
661 {
662 return frame_unwind_register_signed (frame->next, regnum);
663 }
664
665 ULONGEST
666 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
667 {
668 gdb_byte buf[MAX_REGISTER_SIZE];
669 frame_unwind_register (frame, regnum, buf);
670 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
671 regnum));
672 }
673
674 ULONGEST
675 get_frame_register_unsigned (struct frame_info *frame, int regnum)
676 {
677 return frame_unwind_register_unsigned (frame->next, regnum);
678 }
679
680 void
681 put_frame_register (struct frame_info *frame, int regnum,
682 const gdb_byte *buf)
683 {
684 struct gdbarch *gdbarch = get_frame_arch (frame);
685 int realnum;
686 int optim;
687 enum lval_type lval;
688 CORE_ADDR addr;
689 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
690 if (optim)
691 error (_("Attempt to assign to a value that was optimized out."));
692 switch (lval)
693 {
694 case lval_memory:
695 {
696 /* FIXME: write_memory doesn't yet take constant buffers.
697 Arrrg! */
698 gdb_byte tmp[MAX_REGISTER_SIZE];
699 memcpy (tmp, buf, register_size (gdbarch, regnum));
700 write_memory (addr, tmp, register_size (gdbarch, regnum));
701 break;
702 }
703 case lval_register:
704 regcache_cooked_write (get_current_regcache (), realnum, buf);
705 break;
706 default:
707 error (_("Attempt to assign to an unmodifiable value."));
708 }
709 }
710
711 /* frame_register_read ()
712
713 Find and return the value of REGNUM for the specified stack frame.
714 The number of bytes copied is REGISTER_SIZE (REGNUM).
715
716 Returns 0 if the register value could not be found. */
717
718 int
719 frame_register_read (struct frame_info *frame, int regnum,
720 gdb_byte *myaddr)
721 {
722 int optimized;
723 enum lval_type lval;
724 CORE_ADDR addr;
725 int realnum;
726 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
727
728 return !optimized;
729 }
730
731 int
732 get_frame_register_bytes (struct frame_info *frame, int regnum,
733 CORE_ADDR offset, int len, gdb_byte *myaddr)
734 {
735 struct gdbarch *gdbarch = get_frame_arch (frame);
736
737 /* Skip registers wholly inside of OFFSET. */
738 while (offset >= register_size (gdbarch, regnum))
739 {
740 offset -= register_size (gdbarch, regnum);
741 regnum++;
742 }
743
744 /* Copy the data. */
745 while (len > 0)
746 {
747 int curr_len = register_size (gdbarch, regnum) - offset;
748 if (curr_len > len)
749 curr_len = len;
750
751 if (curr_len == register_size (gdbarch, regnum))
752 {
753 if (!frame_register_read (frame, regnum, myaddr))
754 return 0;
755 }
756 else
757 {
758 gdb_byte buf[MAX_REGISTER_SIZE];
759 if (!frame_register_read (frame, regnum, buf))
760 return 0;
761 memcpy (myaddr, buf + offset, curr_len);
762 }
763
764 myaddr += curr_len;
765 len -= curr_len;
766 offset = 0;
767 regnum++;
768 }
769
770 return 1;
771 }
772
773 void
774 put_frame_register_bytes (struct frame_info *frame, int regnum,
775 CORE_ADDR offset, int len, const gdb_byte *myaddr)
776 {
777 struct gdbarch *gdbarch = get_frame_arch (frame);
778
779 /* Skip registers wholly inside of OFFSET. */
780 while (offset >= register_size (gdbarch, regnum))
781 {
782 offset -= register_size (gdbarch, regnum);
783 regnum++;
784 }
785
786 /* Copy the data. */
787 while (len > 0)
788 {
789 int curr_len = register_size (gdbarch, regnum) - offset;
790 if (curr_len > len)
791 curr_len = len;
792
793 if (curr_len == register_size (gdbarch, regnum))
794 {
795 put_frame_register (frame, regnum, myaddr);
796 }
797 else
798 {
799 gdb_byte buf[MAX_REGISTER_SIZE];
800 frame_register_read (frame, regnum, buf);
801 memcpy (buf + offset, myaddr, curr_len);
802 put_frame_register (frame, regnum, buf);
803 }
804
805 myaddr += curr_len;
806 len -= curr_len;
807 offset = 0;
808 regnum++;
809 }
810 }
811
812 /* Map between a frame register number and its name. A frame register
813 space is a superset of the cooked register space --- it also
814 includes builtin registers. */
815
816 int
817 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
818 {
819 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
820 }
821
822 const char *
823 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
824 {
825 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
826 }
827
828 /* Create a sentinel frame. */
829
830 static struct frame_info *
831 create_sentinel_frame (struct regcache *regcache)
832 {
833 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
834 frame->level = -1;
835 /* Explicitly initialize the sentinel frame's cache. Provide it
836 with the underlying regcache. In the future additional
837 information, such as the frame's thread will be added. */
838 frame->prologue_cache = sentinel_frame_cache (regcache);
839 /* For the moment there is only one sentinel frame implementation. */
840 frame->unwind = sentinel_frame_unwind;
841 /* Link this frame back to itself. The frame is self referential
842 (the unwound PC is the same as the pc), so make it so. */
843 frame->next = frame;
844 /* Make the sentinel frame's ID valid, but invalid. That way all
845 comparisons with it should fail. */
846 frame->this_id.p = 1;
847 frame->this_id.value = null_frame_id;
848 if (frame_debug)
849 {
850 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
851 fprint_frame (gdb_stdlog, frame);
852 fprintf_unfiltered (gdb_stdlog, " }\n");
853 }
854 return frame;
855 }
856
857 /* Info about the innermost stack frame (contents of FP register) */
858
859 static struct frame_info *current_frame;
860
861 /* Cache for frame addresses already read by gdb. Valid only while
862 inferior is stopped. Control variables for the frame cache should
863 be local to this module. */
864
865 static struct obstack frame_cache_obstack;
866
867 void *
868 frame_obstack_zalloc (unsigned long size)
869 {
870 void *data = obstack_alloc (&frame_cache_obstack, size);
871 memset (data, 0, size);
872 return data;
873 }
874
875 /* Return the innermost (currently executing) stack frame. This is
876 split into two functions. The function unwind_to_current_frame()
877 is wrapped in catch exceptions so that, even when the unwind of the
878 sentinel frame fails, the function still returns a stack frame. */
879
880 static int
881 unwind_to_current_frame (struct ui_out *ui_out, void *args)
882 {
883 struct frame_info *frame = get_prev_frame (args);
884 /* A sentinel frame can fail to unwind, e.g., because its PC value
885 lands in somewhere like start. */
886 if (frame == NULL)
887 return 1;
888 current_frame = frame;
889 return 0;
890 }
891
892 struct frame_info *
893 get_current_frame (void)
894 {
895 /* First check, and report, the lack of registers. Having GDB
896 report "No stack!" or "No memory" when the target doesn't even
897 have registers is very confusing. Besides, "printcmd.exp"
898 explicitly checks that ``print $pc'' with no registers prints "No
899 registers". */
900 if (!target_has_registers)
901 error (_("No registers."));
902 if (!target_has_stack)
903 error (_("No stack."));
904 if (!target_has_memory)
905 error (_("No memory."));
906 if (current_frame == NULL)
907 {
908 struct frame_info *sentinel_frame =
909 create_sentinel_frame (get_current_regcache ());
910 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
911 RETURN_MASK_ERROR) != 0)
912 {
913 /* Oops! Fake a current frame? Is this useful? It has a PC
914 of zero, for instance. */
915 current_frame = sentinel_frame;
916 }
917 }
918 return current_frame;
919 }
920
921 /* The "selected" stack frame is used by default for local and arg
922 access. May be zero, for no selected frame. */
923
924 static struct frame_info *selected_frame;
925
926 /* Return the selected frame. Always non-NULL (unless there isn't an
927 inferior sufficient for creating a frame) in which case an error is
928 thrown. */
929
930 struct frame_info *
931 get_selected_frame (const char *message)
932 {
933 if (selected_frame == NULL)
934 {
935 if (message != NULL && (!target_has_registers
936 || !target_has_stack
937 || !target_has_memory))
938 error (("%s"), message);
939 /* Hey! Don't trust this. It should really be re-finding the
940 last selected frame of the currently selected thread. This,
941 though, is better than nothing. */
942 select_frame (get_current_frame ());
943 }
944 /* There is always a frame. */
945 gdb_assert (selected_frame != NULL);
946 return selected_frame;
947 }
948
949 /* This is a variant of get_selected_frame() which can be called when
950 the inferior does not have a frame; in that case it will return
951 NULL instead of calling error(). */
952
953 struct frame_info *
954 deprecated_safe_get_selected_frame (void)
955 {
956 if (!target_has_registers || !target_has_stack || !target_has_memory)
957 return NULL;
958 return get_selected_frame (NULL);
959 }
960
961 /* Select frame FI (or NULL - to invalidate the current frame). */
962
963 void
964 select_frame (struct frame_info *fi)
965 {
966 struct symtab *s;
967
968 selected_frame = fi;
969 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
970 frame is being invalidated. */
971 if (deprecated_selected_frame_level_changed_hook)
972 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
973
974 /* FIXME: kseitz/2002-08-28: It would be nice to call
975 selected_frame_level_changed_event() right here, but due to limitations
976 in the current interfaces, we would end up flooding UIs with events
977 because select_frame() is used extensively internally.
978
979 Once we have frame-parameterized frame (and frame-related) commands,
980 the event notification can be moved here, since this function will only
981 be called when the user's selected frame is being changed. */
982
983 /* Ensure that symbols for this frame are read in. Also, determine the
984 source language of this frame, and switch to it if desired. */
985 if (fi)
986 {
987 /* We retrieve the frame's symtab by using the frame PC. However
988 we cannot use the frame PC as-is, because it usually points to
989 the instruction following the "call", which is sometimes the
990 first instruction of another function. So we rely on
991 get_frame_address_in_block() which provides us with a PC which
992 is guaranteed to be inside the frame's code block. */
993 s = find_pc_symtab (get_frame_address_in_block (fi));
994 if (s
995 && s->language != current_language->la_language
996 && s->language != language_unknown
997 && language_mode == language_mode_auto)
998 {
999 set_language (s->language);
1000 }
1001 }
1002 }
1003
1004 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1005 Always returns a non-NULL value. */
1006
1007 struct frame_info *
1008 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1009 {
1010 struct frame_info *fi;
1011
1012 if (frame_debug)
1013 {
1014 fprintf_unfiltered (gdb_stdlog,
1015 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1016 paddr_nz (addr), paddr_nz (pc));
1017 }
1018
1019 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1020
1021 fi->next = create_sentinel_frame (get_current_regcache ());
1022
1023 /* Select/initialize both the unwind function and the frame's type
1024 based on the PC. */
1025 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1026
1027 fi->this_id.p = 1;
1028 deprecated_update_frame_base_hack (fi, addr);
1029 deprecated_update_frame_pc_hack (fi, pc);
1030
1031 if (frame_debug)
1032 {
1033 fprintf_unfiltered (gdb_stdlog, "-> ");
1034 fprint_frame (gdb_stdlog, fi);
1035 fprintf_unfiltered (gdb_stdlog, " }\n");
1036 }
1037
1038 return fi;
1039 }
1040
1041 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1042 innermost frame). Be careful to not fall off the bottom of the
1043 frame chain and onto the sentinel frame. */
1044
1045 struct frame_info *
1046 get_next_frame (struct frame_info *this_frame)
1047 {
1048 if (this_frame->level > 0)
1049 return this_frame->next;
1050 else
1051 return NULL;
1052 }
1053
1054 /* Observer for the target_changed event. */
1055
1056 void
1057 frame_observer_target_changed (struct target_ops *target)
1058 {
1059 reinit_frame_cache ();
1060 }
1061
1062 /* Flush the entire frame cache. */
1063
1064 void
1065 reinit_frame_cache (void)
1066 {
1067 struct frame_info *fi;
1068
1069 /* Tear down all frame caches. */
1070 for (fi = current_frame; fi != NULL; fi = fi->prev)
1071 {
1072 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1073 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1074 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1075 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1076 }
1077
1078 /* Since we can't really be sure what the first object allocated was */
1079 obstack_free (&frame_cache_obstack, 0);
1080 obstack_init (&frame_cache_obstack);
1081
1082 current_frame = NULL; /* Invalidate cache */
1083 select_frame (NULL);
1084 annotate_frames_invalid ();
1085 if (frame_debug)
1086 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1087 }
1088
1089 /* Find where a register is saved (in memory or another register).
1090 The result of frame_register_unwind is just where it is saved
1091 relative to this particular frame. */
1092
1093 static void
1094 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1095 int *optimizedp, enum lval_type *lvalp,
1096 CORE_ADDR *addrp, int *realnump)
1097 {
1098 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1099
1100 while (this_frame != NULL)
1101 {
1102 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1103 addrp, realnump, NULL);
1104
1105 if (*optimizedp)
1106 break;
1107
1108 if (*lvalp != lval_register)
1109 break;
1110
1111 regnum = *realnump;
1112 this_frame = get_next_frame (this_frame);
1113 }
1114 }
1115
1116 /* Return a "struct frame_info" corresponding to the frame that called
1117 THIS_FRAME. Returns NULL if there is no such frame.
1118
1119 Unlike get_prev_frame, this function always tries to unwind the
1120 frame. */
1121
1122 static struct frame_info *
1123 get_prev_frame_1 (struct frame_info *this_frame)
1124 {
1125 struct frame_info *prev_frame;
1126 struct frame_id this_id;
1127 struct gdbarch *gdbarch;
1128
1129 gdb_assert (this_frame != NULL);
1130 gdbarch = get_frame_arch (this_frame);
1131
1132 if (frame_debug)
1133 {
1134 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1135 if (this_frame != NULL)
1136 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1137 else
1138 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1139 fprintf_unfiltered (gdb_stdlog, ") ");
1140 }
1141
1142 /* Only try to do the unwind once. */
1143 if (this_frame->prev_p)
1144 {
1145 if (frame_debug)
1146 {
1147 fprintf_unfiltered (gdb_stdlog, "-> ");
1148 fprint_frame (gdb_stdlog, this_frame->prev);
1149 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1150 }
1151 return this_frame->prev;
1152 }
1153 this_frame->prev_p = 1;
1154 this_frame->stop_reason = UNWIND_NO_REASON;
1155
1156 /* Check that this frame's ID was valid. If it wasn't, don't try to
1157 unwind to the prev frame. Be careful to not apply this test to
1158 the sentinel frame. */
1159 this_id = get_frame_id (this_frame);
1160 if (this_frame->level >= 0 && !frame_id_p (this_id))
1161 {
1162 if (frame_debug)
1163 {
1164 fprintf_unfiltered (gdb_stdlog, "-> ");
1165 fprint_frame (gdb_stdlog, NULL);
1166 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1167 }
1168 this_frame->stop_reason = UNWIND_NULL_ID;
1169 return NULL;
1170 }
1171
1172 /* Check that this frame's ID isn't inner to (younger, below, next)
1173 the next frame. This happens when a frame unwind goes backwards.
1174 Exclude signal trampolines (due to sigaltstack the frame ID can
1175 go backwards) and sentinel frames (the test is meaningless). */
1176 if (this_frame->next->level >= 0
1177 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1178 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1179 {
1180 if (frame_debug)
1181 {
1182 fprintf_unfiltered (gdb_stdlog, "-> ");
1183 fprint_frame (gdb_stdlog, NULL);
1184 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1185 }
1186 this_frame->stop_reason = UNWIND_INNER_ID;
1187 return NULL;
1188 }
1189
1190 /* Check that this and the next frame are not identical. If they
1191 are, there is most likely a stack cycle. As with the inner-than
1192 test above, avoid comparing the inner-most and sentinel frames. */
1193 if (this_frame->level > 0
1194 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1195 {
1196 if (frame_debug)
1197 {
1198 fprintf_unfiltered (gdb_stdlog, "-> ");
1199 fprint_frame (gdb_stdlog, NULL);
1200 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1201 }
1202 this_frame->stop_reason = UNWIND_SAME_ID;
1203 return NULL;
1204 }
1205
1206 /* Check that this and the next frame do not unwind the PC register
1207 to the same memory location. If they do, then even though they
1208 have different frame IDs, the new frame will be bogus; two
1209 functions can't share a register save slot for the PC. This can
1210 happen when the prologue analyzer finds a stack adjustment, but
1211 no PC save.
1212
1213 This check does assume that the "PC register" is roughly a
1214 traditional PC, even if the gdbarch_unwind_pc method adjusts
1215 it (we do not rely on the value, only on the unwound PC being
1216 dependent on this value). A potential improvement would be
1217 to have the frame prev_pc method and the gdbarch unwind_pc
1218 method set the same lval and location information as
1219 frame_register_unwind. */
1220 if (this_frame->level > 0
1221 && gdbarch_pc_regnum (gdbarch) >= 0
1222 && get_frame_type (this_frame) == NORMAL_FRAME
1223 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1224 {
1225 int optimized, realnum, nrealnum;
1226 enum lval_type lval, nlval;
1227 CORE_ADDR addr, naddr;
1228
1229 frame_register_unwind_location (this_frame,
1230 gdbarch_pc_regnum (gdbarch),
1231 &optimized, &lval, &addr, &realnum);
1232 frame_register_unwind_location (get_next_frame (this_frame),
1233 gdbarch_pc_regnum (gdbarch),
1234 &optimized, &nlval, &naddr, &nrealnum);
1235
1236 if ((lval == lval_memory && lval == nlval && addr == naddr)
1237 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1238 {
1239 if (frame_debug)
1240 {
1241 fprintf_unfiltered (gdb_stdlog, "-> ");
1242 fprint_frame (gdb_stdlog, NULL);
1243 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1244 }
1245
1246 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1247 this_frame->prev = NULL;
1248 return NULL;
1249 }
1250 }
1251
1252 /* Allocate the new frame but do not wire it in to the frame chain.
1253 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1254 frame->next to pull some fancy tricks (of course such code is, by
1255 definition, recursive). Try to prevent it.
1256
1257 There is no reason to worry about memory leaks, should the
1258 remainder of the function fail. The allocated memory will be
1259 quickly reclaimed when the frame cache is flushed, and the `we've
1260 been here before' check above will stop repeated memory
1261 allocation calls. */
1262 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1263 prev_frame->level = this_frame->level + 1;
1264
1265 /* Don't yet compute ->unwind (and hence ->type). It is computed
1266 on-demand in get_frame_type, frame_register_unwind, and
1267 get_frame_id. */
1268
1269 /* Don't yet compute the frame's ID. It is computed on-demand by
1270 get_frame_id(). */
1271
1272 /* The unwound frame ID is validate at the start of this function,
1273 as part of the logic to decide if that frame should be further
1274 unwound, and not here while the prev frame is being created.
1275 Doing this makes it possible for the user to examine a frame that
1276 has an invalid frame ID.
1277
1278 Some very old VAX code noted: [...] For the sake of argument,
1279 suppose that the stack is somewhat trashed (which is one reason
1280 that "info frame" exists). So, return 0 (indicating we don't
1281 know the address of the arglist) if we don't know what frame this
1282 frame calls. */
1283
1284 /* Link it in. */
1285 this_frame->prev = prev_frame;
1286 prev_frame->next = this_frame;
1287
1288 if (frame_debug)
1289 {
1290 fprintf_unfiltered (gdb_stdlog, "-> ");
1291 fprint_frame (gdb_stdlog, prev_frame);
1292 fprintf_unfiltered (gdb_stdlog, " }\n");
1293 }
1294
1295 return prev_frame;
1296 }
1297
1298 /* Debug routine to print a NULL frame being returned. */
1299
1300 static void
1301 frame_debug_got_null_frame (struct ui_file *file,
1302 struct frame_info *this_frame,
1303 const char *reason)
1304 {
1305 if (frame_debug)
1306 {
1307 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1308 if (this_frame != NULL)
1309 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1310 else
1311 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1312 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1313 }
1314 }
1315
1316 /* Is this (non-sentinel) frame in the "main"() function? */
1317
1318 static int
1319 inside_main_func (struct frame_info *this_frame)
1320 {
1321 struct minimal_symbol *msymbol;
1322 CORE_ADDR maddr;
1323
1324 if (symfile_objfile == 0)
1325 return 0;
1326 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1327 if (msymbol == NULL)
1328 return 0;
1329 /* Make certain that the code, and not descriptor, address is
1330 returned. */
1331 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1332 SYMBOL_VALUE_ADDRESS (msymbol),
1333 &current_target);
1334 return maddr == get_frame_func (this_frame);
1335 }
1336
1337 /* Test whether THIS_FRAME is inside the process entry point function. */
1338
1339 static int
1340 inside_entry_func (struct frame_info *this_frame)
1341 {
1342 return (get_frame_func (this_frame) == entry_point_address ());
1343 }
1344
1345 /* Return a structure containing various interesting information about
1346 the frame that called THIS_FRAME. Returns NULL if there is entier
1347 no such frame or the frame fails any of a set of target-independent
1348 condition that should terminate the frame chain (e.g., as unwinding
1349 past main()).
1350
1351 This function should not contain target-dependent tests, such as
1352 checking whether the program-counter is zero. */
1353
1354 struct frame_info *
1355 get_prev_frame (struct frame_info *this_frame)
1356 {
1357 struct frame_info *prev_frame;
1358
1359 /* Return the inner-most frame, when the caller passes in NULL. */
1360 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1361 caller should have previously obtained a valid frame using
1362 get_selected_frame() and then called this code - only possibility
1363 I can think of is code behaving badly.
1364
1365 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1366 block_innermost_frame(). It does the sequence: frame = NULL;
1367 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1368 it couldn't be written better, I don't know.
1369
1370 NOTE: cagney/2003-01-11: I suspect what is happening in
1371 block_innermost_frame() is, when the target has no state
1372 (registers, memory, ...), it is still calling this function. The
1373 assumption being that this function will return NULL indicating
1374 that a frame isn't possible, rather than checking that the target
1375 has state and then calling get_current_frame() and
1376 get_prev_frame(). This is a guess mind. */
1377 if (this_frame == NULL)
1378 {
1379 /* NOTE: cagney/2002-11-09: There was a code segment here that
1380 would error out when CURRENT_FRAME was NULL. The comment
1381 that went with it made the claim ...
1382
1383 ``This screws value_of_variable, which just wants a nice
1384 clean NULL return from block_innermost_frame if there are no
1385 frames. I don't think I've ever seen this message happen
1386 otherwise. And returning NULL here is a perfectly legitimate
1387 thing to do.''
1388
1389 Per the above, this code shouldn't even be called with a NULL
1390 THIS_FRAME. */
1391 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1392 return current_frame;
1393 }
1394
1395 /* There is always a frame. If this assertion fails, suspect that
1396 something should be calling get_selected_frame() or
1397 get_current_frame(). */
1398 gdb_assert (this_frame != NULL);
1399
1400 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1401 sense to stop unwinding at a dummy frame. One place where a dummy
1402 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1403 pcsqh register (space register for the instruction at the head of the
1404 instruction queue) cannot be written directly; the only way to set it
1405 is to branch to code that is in the target space. In order to implement
1406 frame dummies on HPUX, the called function is made to jump back to where
1407 the inferior was when the user function was called. If gdb was inside
1408 the main function when we created the dummy frame, the dummy frame will
1409 point inside the main function. */
1410 if (this_frame->level >= 0
1411 && get_frame_type (this_frame) != DUMMY_FRAME
1412 && !backtrace_past_main
1413 && inside_main_func (this_frame))
1414 /* Don't unwind past main(). Note, this is done _before_ the
1415 frame has been marked as previously unwound. That way if the
1416 user later decides to enable unwinds past main(), that will
1417 automatically happen. */
1418 {
1419 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1420 return NULL;
1421 }
1422
1423 /* If the user's backtrace limit has been exceeded, stop. We must
1424 add two to the current level; one of those accounts for backtrace_limit
1425 being 1-based and the level being 0-based, and the other accounts for
1426 the level of the new frame instead of the level of the current
1427 frame. */
1428 if (this_frame->level + 2 > backtrace_limit)
1429 {
1430 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1431 "backtrace limit exceeded");
1432 return NULL;
1433 }
1434
1435 /* If we're already inside the entry function for the main objfile,
1436 then it isn't valid. Don't apply this test to a dummy frame -
1437 dummy frame PCs typically land in the entry func. Don't apply
1438 this test to the sentinel frame. Sentinel frames should always
1439 be allowed to unwind. */
1440 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1441 wasn't checking for "main" in the minimal symbols. With that
1442 fixed asm-source tests now stop in "main" instead of halting the
1443 backtrace in weird and wonderful ways somewhere inside the entry
1444 file. Suspect that tests for inside the entry file/func were
1445 added to work around that (now fixed) case. */
1446 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1447 suggested having the inside_entry_func test use the
1448 inside_main_func() msymbol trick (along with entry_point_address()
1449 I guess) to determine the address range of the start function.
1450 That should provide a far better stopper than the current
1451 heuristics. */
1452 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1453 applied tail-call optimizations to main so that a function called
1454 from main returns directly to the caller of main. Since we don't
1455 stop at main, we should at least stop at the entry point of the
1456 application. */
1457 if (!backtrace_past_entry
1458 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1459 && inside_entry_func (this_frame))
1460 {
1461 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1462 return NULL;
1463 }
1464
1465 /* Assume that the only way to get a zero PC is through something
1466 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1467 will never unwind a zero PC. */
1468 if (this_frame->level > 0
1469 && get_frame_type (this_frame) == NORMAL_FRAME
1470 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1471 && get_frame_pc (this_frame) == 0)
1472 {
1473 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1474 return NULL;
1475 }
1476
1477 return get_prev_frame_1 (this_frame);
1478 }
1479
1480 CORE_ADDR
1481 get_frame_pc (struct frame_info *frame)
1482 {
1483 gdb_assert (frame->next != NULL);
1484 return frame_pc_unwind (frame->next);
1485 }
1486
1487 /* Return an address that falls within NEXT_FRAME's caller's code
1488 block, assuming that the caller is a THIS_TYPE frame. */
1489
1490 CORE_ADDR
1491 frame_unwind_address_in_block (struct frame_info *next_frame,
1492 enum frame_type this_type)
1493 {
1494 /* A draft address. */
1495 CORE_ADDR pc = frame_pc_unwind (next_frame);
1496
1497 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1498 we shold not adjust the unwound PC. These frames may not call
1499 their next frame in the normal way; the operating system or GDB
1500 may have pushed their resume address manually onto the stack, so
1501 it may be the very first instruction. Even if the resume address
1502 was not manually pushed, they expect to be returned to. */
1503 if (this_type != NORMAL_FRAME)
1504 return pc;
1505
1506 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1507 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1508 frame's PC ends up pointing at the instruction fallowing the
1509 "call". Adjust that PC value so that it falls on the call
1510 instruction (which, hopefully, falls within THIS frame's code
1511 block). So far it's proved to be a very good approximation. See
1512 get_frame_type() for why ->type can't be used. */
1513 if (next_frame->level >= 0
1514 && get_frame_type (next_frame) == NORMAL_FRAME)
1515 --pc;
1516 return pc;
1517 }
1518
1519 CORE_ADDR
1520 get_frame_address_in_block (struct frame_info *this_frame)
1521 {
1522 return frame_unwind_address_in_block (this_frame->next,
1523 get_frame_type (this_frame));
1524 }
1525
1526 static int
1527 pc_notcurrent (struct frame_info *frame)
1528 {
1529 /* If FRAME is not the innermost frame, that normally means that
1530 FRAME->pc points at the return instruction (which is *after* the
1531 call instruction), and we want to get the line containing the
1532 call (because the call is where the user thinks the program is).
1533 However, if the next frame is either a SIGTRAMP_FRAME or a
1534 DUMMY_FRAME, then the next frame will contain a saved interrupt
1535 PC and such a PC indicates the current (rather than next)
1536 instruction/line, consequently, for such cases, want to get the
1537 line containing fi->pc. */
1538 struct frame_info *next = get_next_frame (frame);
1539 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1540 return notcurrent;
1541 }
1542
1543 void
1544 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1545 {
1546 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1547 }
1548
1549 /* Per "frame.h", return the ``address'' of the frame. Code should
1550 really be using get_frame_id(). */
1551 CORE_ADDR
1552 get_frame_base (struct frame_info *fi)
1553 {
1554 return get_frame_id (fi).stack_addr;
1555 }
1556
1557 /* High-level offsets into the frame. Used by the debug info. */
1558
1559 CORE_ADDR
1560 get_frame_base_address (struct frame_info *fi)
1561 {
1562 if (get_frame_type (fi) != NORMAL_FRAME)
1563 return 0;
1564 if (fi->base == NULL)
1565 fi->base = frame_base_find_by_frame (fi->next);
1566 /* Sneaky: If the low-level unwind and high-level base code share a
1567 common unwinder, let them share the prologue cache. */
1568 if (fi->base->unwind == fi->unwind)
1569 return fi->base->this_base (fi->next, &fi->prologue_cache);
1570 return fi->base->this_base (fi->next, &fi->base_cache);
1571 }
1572
1573 CORE_ADDR
1574 get_frame_locals_address (struct frame_info *fi)
1575 {
1576 void **cache;
1577 if (get_frame_type (fi) != NORMAL_FRAME)
1578 return 0;
1579 /* If there isn't a frame address method, find it. */
1580 if (fi->base == NULL)
1581 fi->base = frame_base_find_by_frame (fi->next);
1582 /* Sneaky: If the low-level unwind and high-level base code share a
1583 common unwinder, let them share the prologue cache. */
1584 if (fi->base->unwind == fi->unwind)
1585 cache = &fi->prologue_cache;
1586 else
1587 cache = &fi->base_cache;
1588 return fi->base->this_locals (fi->next, cache);
1589 }
1590
1591 CORE_ADDR
1592 get_frame_args_address (struct frame_info *fi)
1593 {
1594 void **cache;
1595 if (get_frame_type (fi) != NORMAL_FRAME)
1596 return 0;
1597 /* If there isn't a frame address method, find it. */
1598 if (fi->base == NULL)
1599 fi->base = frame_base_find_by_frame (fi->next);
1600 /* Sneaky: If the low-level unwind and high-level base code share a
1601 common unwinder, let them share the prologue cache. */
1602 if (fi->base->unwind == fi->unwind)
1603 cache = &fi->prologue_cache;
1604 else
1605 cache = &fi->base_cache;
1606 return fi->base->this_args (fi->next, cache);
1607 }
1608
1609 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1610 or -1 for a NULL frame. */
1611
1612 int
1613 frame_relative_level (struct frame_info *fi)
1614 {
1615 if (fi == NULL)
1616 return -1;
1617 else
1618 return fi->level;
1619 }
1620
1621 enum frame_type
1622 get_frame_type (struct frame_info *frame)
1623 {
1624 if (frame->unwind == NULL)
1625 /* Initialize the frame's unwinder because that's what
1626 provides the frame's type. */
1627 frame->unwind = frame_unwind_find_by_frame (frame->next,
1628 &frame->prologue_cache);
1629 return frame->unwind->type;
1630 }
1631
1632 void
1633 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1634 {
1635 if (frame_debug)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1638 frame->level, paddr_nz (pc));
1639 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1640 maintaining a locally allocated frame object. Since such frames
1641 are not in the frame chain, it isn't possible to assume that the
1642 frame has a next. Sigh. */
1643 if (frame->next != NULL)
1644 {
1645 /* While we're at it, update this frame's cached PC value, found
1646 in the next frame. Oh for the day when "struct frame_info"
1647 is opaque and this hack on hack can just go away. */
1648 frame->next->prev_pc.value = pc;
1649 frame->next->prev_pc.p = 1;
1650 }
1651 }
1652
1653 void
1654 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1655 {
1656 if (frame_debug)
1657 fprintf_unfiltered (gdb_stdlog,
1658 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1659 frame->level, paddr_nz (base));
1660 /* See comment in "frame.h". */
1661 frame->this_id.value.stack_addr = base;
1662 }
1663
1664 /* Memory access methods. */
1665
1666 void
1667 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1668 gdb_byte *buf, int len)
1669 {
1670 read_memory (addr, buf, len);
1671 }
1672
1673 LONGEST
1674 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1675 int len)
1676 {
1677 return read_memory_integer (addr, len);
1678 }
1679
1680 ULONGEST
1681 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1682 int len)
1683 {
1684 return read_memory_unsigned_integer (addr, len);
1685 }
1686
1687 int
1688 safe_frame_unwind_memory (struct frame_info *this_frame,
1689 CORE_ADDR addr, gdb_byte *buf, int len)
1690 {
1691 /* NOTE: read_memory_nobpt returns zero on success! */
1692 return !read_memory_nobpt (addr, buf, len);
1693 }
1694
1695 /* Architecture method. */
1696
1697 struct gdbarch *
1698 get_frame_arch (struct frame_info *this_frame)
1699 {
1700 return current_gdbarch;
1701 }
1702
1703 /* Stack pointer methods. */
1704
1705 CORE_ADDR
1706 get_frame_sp (struct frame_info *this_frame)
1707 {
1708 return frame_sp_unwind (this_frame->next);
1709 }
1710
1711 CORE_ADDR
1712 frame_sp_unwind (struct frame_info *next_frame)
1713 {
1714 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1715 /* Normality - an architecture that provides a way of obtaining any
1716 frame inner-most address. */
1717 if (gdbarch_unwind_sp_p (gdbarch))
1718 return gdbarch_unwind_sp (gdbarch, next_frame);
1719 /* Now things are really are grim. Hope that the value returned by
1720 the gdbarch_sp_regnum register is meaningful. */
1721 if (gdbarch_sp_regnum (gdbarch) >= 0)
1722 return frame_unwind_register_unsigned (next_frame,
1723 gdbarch_sp_regnum (gdbarch));
1724 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1725 }
1726
1727 /* Return the reason why we can't unwind past FRAME. */
1728
1729 enum unwind_stop_reason
1730 get_frame_unwind_stop_reason (struct frame_info *frame)
1731 {
1732 /* If we haven't tried to unwind past this point yet, then assume
1733 that unwinding would succeed. */
1734 if (frame->prev_p == 0)
1735 return UNWIND_NO_REASON;
1736
1737 /* Otherwise, we set a reason when we succeeded (or failed) to
1738 unwind. */
1739 return frame->stop_reason;
1740 }
1741
1742 /* Return a string explaining REASON. */
1743
1744 const char *
1745 frame_stop_reason_string (enum unwind_stop_reason reason)
1746 {
1747 switch (reason)
1748 {
1749 case UNWIND_NULL_ID:
1750 return _("unwinder did not report frame ID");
1751
1752 case UNWIND_INNER_ID:
1753 return _("previous frame inner to this frame (corrupt stack?)");
1754
1755 case UNWIND_SAME_ID:
1756 return _("previous frame identical to this frame (corrupt stack?)");
1757
1758 case UNWIND_NO_SAVED_PC:
1759 return _("frame did not save the PC");
1760
1761 case UNWIND_NO_REASON:
1762 case UNWIND_FIRST_ERROR:
1763 default:
1764 internal_error (__FILE__, __LINE__,
1765 "Invalid frame stop reason");
1766 }
1767 }
1768
1769 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1770
1771 static struct cmd_list_element *set_backtrace_cmdlist;
1772 static struct cmd_list_element *show_backtrace_cmdlist;
1773
1774 static void
1775 set_backtrace_cmd (char *args, int from_tty)
1776 {
1777 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1778 }
1779
1780 static void
1781 show_backtrace_cmd (char *args, int from_tty)
1782 {
1783 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1784 }
1785
1786 void
1787 _initialize_frame (void)
1788 {
1789 obstack_init (&frame_cache_obstack);
1790
1791 observer_attach_target_changed (frame_observer_target_changed);
1792
1793 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1794 Set backtrace specific variables.\n\
1795 Configure backtrace variables such as the backtrace limit"),
1796 &set_backtrace_cmdlist, "set backtrace ",
1797 0/*allow-unknown*/, &setlist);
1798 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1799 Show backtrace specific variables\n\
1800 Show backtrace variables such as the backtrace limit"),
1801 &show_backtrace_cmdlist, "show backtrace ",
1802 0/*allow-unknown*/, &showlist);
1803
1804 add_setshow_boolean_cmd ("past-main", class_obscure,
1805 &backtrace_past_main, _("\
1806 Set whether backtraces should continue past \"main\"."), _("\
1807 Show whether backtraces should continue past \"main\"."), _("\
1808 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1809 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1810 of the stack trace."),
1811 NULL,
1812 show_backtrace_past_main,
1813 &set_backtrace_cmdlist,
1814 &show_backtrace_cmdlist);
1815
1816 add_setshow_boolean_cmd ("past-entry", class_obscure,
1817 &backtrace_past_entry, _("\
1818 Set whether backtraces should continue past the entry point of a program."),
1819 _("\
1820 Show whether backtraces should continue past the entry point of a program."),
1821 _("\
1822 Normally there are no callers beyond the entry point of a program, so GDB\n\
1823 will terminate the backtrace there. Set this variable if you need to see \n\
1824 the rest of the stack trace."),
1825 NULL,
1826 show_backtrace_past_entry,
1827 &set_backtrace_cmdlist,
1828 &show_backtrace_cmdlist);
1829
1830 add_setshow_integer_cmd ("limit", class_obscure,
1831 &backtrace_limit, _("\
1832 Set an upper bound on the number of backtrace levels."), _("\
1833 Show the upper bound on the number of backtrace levels."), _("\
1834 No more than the specified number of frames can be displayed or examined.\n\
1835 Zero is unlimited."),
1836 NULL,
1837 show_backtrace_limit,
1838 &set_backtrace_cmdlist,
1839 &show_backtrace_cmdlist);
1840
1841 /* Debug this files internals. */
1842 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1843 Set frame debugging."), _("\
1844 Show frame debugging."), _("\
1845 When non-zero, frame specific internal debugging is enabled."),
1846 NULL,
1847 show_frame_debug,
1848 &setdebuglist, &showdebuglist);
1849 }
This page took 0.092022 seconds and 4 git commands to generate.