Fix the read/write flag for these registers on AArch64
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* See frame.h */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275 m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286 }
287
288 /* Flag to control debugging. */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294 {
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al. */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304 {
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
308 value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315 {
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
318 value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
329 value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336 if (p)
337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338 else
339 fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345 fprintf_unfiltered (file, "{");
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355 fprintf_unfiltered (file, ",");
356
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
359
360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365 fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371 switch (type)
372 {
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
384 return;
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425 fprintf_unfiltered (file, "<unknown>");
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
470
471 return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485 }
486
487 /* See frame.h. */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492 while (get_frame_type (frame) == TAILCALL_FRAME)
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
500
501 return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533 frame. */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538 if (fi == NULL)
539 return null_frame_id;
540
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
561 return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567 return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573 struct frame_info *this_frame;
574
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
579
580 next_frame = skip_artificial_frames (next_frame);
581 if (next_frame == NULL)
582 return null_frame_id;
583
584 this_frame = get_prev_frame_always (next_frame);
585 if (this_frame)
586 return get_frame_id (skip_artificial_frames (this_frame));
587 else
588 return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_addr = stack_addr;
602 id.stack_status = FID_STACK_VALID;
603 id.code_addr = code_addr;
604 id.code_addr_p = 1;
605 id.special_addr = special_addr;
606 id.special_addr_p = 1;
607 return id;
608 }
609
610 /* See frame.h. */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 /* See frame.h. */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628 {
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642 struct frame_id id = null_frame_id;
643
644 id.stack_addr = stack_addr;
645 id.stack_status = FID_STACK_VALID;
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654 struct frame_id id = null_frame_id;
655
656 id.stack_addr = stack_addr;
657 id.stack_status = FID_STACK_VALID;
658 return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664 int p;
665
666 /* The frame is valid iff it has a valid stack address. */
667 p = l.stack_status != FID_STACK_INVALID;
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
677 return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683 if (!frame_id_p (l))
684 return 0;
685
686 return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692 int eq;
693
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
702 else if (l.stack_status == FID_STACK_INVALID
703 || r.stack_status == FID_STACK_INVALID)
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
706 eq = 0;
707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
713 eq = 0;
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
721 eq = 0;
722 else
723 /* Frames are equal. */
724 eq = 1;
725
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
734 return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
745 IDs in certain circumstances. Assuming that NEXT is the immediate
746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
765 its maximum stack size. In this case, certain compilers implement
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772 int inner;
773
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
777 inner = 0;
778 else if (l.artificial_depth > r.artificial_depth
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
785 const struct block *lb, *rb;
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
805 different .code and/or .special address). */
806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
815 return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821 struct frame_info *frame, *prev_frame;
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
825 if (!frame_id_p (id))
826 return NULL;
827
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
844 for (frame = get_current_frame (); ; frame = prev_frame)
845 {
846 struct frame_id self = get_frame_id (frame);
847
848 if (frame_id_eq (id, self))
849 /* An exact match. */
850 return frame;
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
862 && !frame_id_inner (get_frame_arch (frame), id, self)
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
865 return NULL;
866 }
867 return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873 if (this_frame->prev_pc.status == CC_UNKNOWN)
874 {
875 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
876 {
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
900 {
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
907 {
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
915 }
916 else if (ex.error == OPTIMIZED_OUT_ERROR)
917 {
918 this_frame->prev_pc.status = CC_NOT_SAVED;
919
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
925 }
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
941 }
942 }
943 else
944 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
945 }
946
947 if (this_frame->prev_pc.status == CC_VALUE)
948 return this_frame->prev_pc.value;
949 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
950 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
951 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
952 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
953 else
954 internal_error (__FILE__, __LINE__,
955 "unexpected prev_pc status: %d",
956 (int) this_frame->prev_pc.status);
957 }
958
959 CORE_ADDR
960 frame_unwind_caller_pc (struct frame_info *this_frame)
961 {
962 this_frame = skip_artificial_frames (this_frame);
963
964 /* We must have a non-artificial frame. The caller is supposed to check
965 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
966 in this case. */
967 gdb_assert (this_frame != NULL);
968
969 return frame_unwind_pc (this_frame);
970 }
971
972 int
973 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
974 {
975 struct frame_info *next_frame = this_frame->next;
976
977 if (!next_frame->prev_func.p)
978 {
979 CORE_ADDR addr_in_block;
980
981 /* Make certain that this, and not the adjacent, function is
982 found. */
983 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
984 {
985 next_frame->prev_func.p = -1;
986 if (frame_debug)
987 fprintf_unfiltered (gdb_stdlog,
988 "{ get_frame_func (this_frame=%d)"
989 " -> unavailable }\n",
990 this_frame->level);
991 }
992 else
993 {
994 next_frame->prev_func.p = 1;
995 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
996 if (frame_debug)
997 fprintf_unfiltered (gdb_stdlog,
998 "{ get_frame_func (this_frame=%d) -> %s }\n",
999 this_frame->level,
1000 hex_string (next_frame->prev_func.addr));
1001 }
1002 }
1003
1004 if (next_frame->prev_func.p < 0)
1005 {
1006 *pc = -1;
1007 return 0;
1008 }
1009 else
1010 {
1011 *pc = next_frame->prev_func.addr;
1012 return 1;
1013 }
1014 }
1015
1016 CORE_ADDR
1017 get_frame_func (struct frame_info *this_frame)
1018 {
1019 CORE_ADDR pc;
1020
1021 if (!get_frame_func_if_available (this_frame, &pc))
1022 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1023
1024 return pc;
1025 }
1026
1027 std::unique_ptr<readonly_detached_regcache>
1028 frame_save_as_regcache (struct frame_info *this_frame)
1029 {
1030 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1031 {
1032 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1033 return REG_UNAVAILABLE;
1034 else
1035 return REG_VALID;
1036 };
1037
1038 std::unique_ptr<readonly_detached_regcache> regcache
1039 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1040
1041 return regcache;
1042 }
1043
1044 void
1045 frame_pop (struct frame_info *this_frame)
1046 {
1047 struct frame_info *prev_frame;
1048
1049 if (get_frame_type (this_frame) == DUMMY_FRAME)
1050 {
1051 /* Popping a dummy frame involves restoring more than just registers.
1052 dummy_frame_pop does all the work. */
1053 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1054 return;
1055 }
1056
1057 /* Ensure that we have a frame to pop to. */
1058 prev_frame = get_prev_frame_always (this_frame);
1059
1060 if (!prev_frame)
1061 error (_("Cannot pop the initial frame."));
1062
1063 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1064 entering THISFRAME. */
1065 prev_frame = skip_tailcall_frames (prev_frame);
1066
1067 if (prev_frame == NULL)
1068 error (_("Cannot find the caller frame."));
1069
1070 /* Make a copy of all the register values unwound from this frame.
1071 Save them in a scratch buffer so that there isn't a race between
1072 trying to extract the old values from the current regcache while
1073 at the same time writing new values into that same cache. */
1074 std::unique_ptr<readonly_detached_regcache> scratch
1075 = frame_save_as_regcache (prev_frame);
1076
1077 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1078 target's register cache that it is about to be hit with a burst
1079 register transfer and that the sequence of register writes should
1080 be batched. The pair target_prepare_to_store() and
1081 target_store_registers() kind of suggest this functionality.
1082 Unfortunately, they don't implement it. Their lack of a formal
1083 definition can lead to targets writing back bogus values
1084 (arguably a bug in the target code mind). */
1085 /* Now copy those saved registers into the current regcache. */
1086 get_current_regcache ()->restore (scratch.get ());
1087
1088 /* We've made right mess of GDB's local state, just discard
1089 everything. */
1090 reinit_frame_cache ();
1091 }
1092
1093 void
1094 frame_register_unwind (struct frame_info *frame, int regnum,
1095 int *optimizedp, int *unavailablep,
1096 enum lval_type *lvalp, CORE_ADDR *addrp,
1097 int *realnump, gdb_byte *bufferp)
1098 {
1099 struct value *value;
1100
1101 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1102 that the value proper does not need to be fetched. */
1103 gdb_assert (optimizedp != NULL);
1104 gdb_assert (lvalp != NULL);
1105 gdb_assert (addrp != NULL);
1106 gdb_assert (realnump != NULL);
1107 /* gdb_assert (bufferp != NULL); */
1108
1109 value = frame_unwind_register_value (frame, regnum);
1110
1111 gdb_assert (value != NULL);
1112
1113 *optimizedp = value_optimized_out (value);
1114 *unavailablep = !value_entirely_available (value);
1115 *lvalp = VALUE_LVAL (value);
1116 *addrp = value_address (value);
1117 if (*lvalp == lval_register)
1118 *realnump = VALUE_REGNUM (value);
1119 else
1120 *realnump = -1;
1121
1122 if (bufferp)
1123 {
1124 if (!*optimizedp && !*unavailablep)
1125 memcpy (bufferp, value_contents_all (value),
1126 TYPE_LENGTH (value_type (value)));
1127 else
1128 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1129 }
1130
1131 /* Dispose of the new value. This prevents watchpoints from
1132 trying to watch the saved frame pointer. */
1133 release_value (value);
1134 }
1135
1136 void
1137 frame_register (struct frame_info *frame, int regnum,
1138 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1139 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1140 {
1141 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1142 that the value proper does not need to be fetched. */
1143 gdb_assert (optimizedp != NULL);
1144 gdb_assert (lvalp != NULL);
1145 gdb_assert (addrp != NULL);
1146 gdb_assert (realnump != NULL);
1147 /* gdb_assert (bufferp != NULL); */
1148
1149 /* Obtain the register value by unwinding the register from the next
1150 (more inner frame). */
1151 gdb_assert (frame != NULL && frame->next != NULL);
1152 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1153 lvalp, addrp, realnump, bufferp);
1154 }
1155
1156 void
1157 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1158 {
1159 int optimized;
1160 int unavailable;
1161 CORE_ADDR addr;
1162 int realnum;
1163 enum lval_type lval;
1164
1165 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1166 &lval, &addr, &realnum, buf);
1167
1168 if (optimized)
1169 throw_error (OPTIMIZED_OUT_ERROR,
1170 _("Register %d was not saved"), regnum);
1171 if (unavailable)
1172 throw_error (NOT_AVAILABLE_ERROR,
1173 _("Register %d is not available"), regnum);
1174 }
1175
1176 void
1177 get_frame_register (struct frame_info *frame,
1178 int regnum, gdb_byte *buf)
1179 {
1180 frame_unwind_register (frame->next, regnum, buf);
1181 }
1182
1183 struct value *
1184 frame_unwind_register_value (struct frame_info *frame, int regnum)
1185 {
1186 struct gdbarch *gdbarch;
1187 struct value *value;
1188
1189 gdb_assert (frame != NULL);
1190 gdbarch = frame_unwind_arch (frame);
1191
1192 if (frame_debug)
1193 {
1194 fprintf_unfiltered (gdb_stdlog,
1195 "{ frame_unwind_register_value "
1196 "(frame=%d,regnum=%d(%s),...) ",
1197 frame->level, regnum,
1198 user_reg_map_regnum_to_name (gdbarch, regnum));
1199 }
1200
1201 /* Find the unwinder. */
1202 if (frame->unwind == NULL)
1203 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1204
1205 /* Ask this frame to unwind its register. */
1206 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1207
1208 if (frame_debug)
1209 {
1210 fprintf_unfiltered (gdb_stdlog, "->");
1211 if (value_optimized_out (value))
1212 {
1213 fprintf_unfiltered (gdb_stdlog, " ");
1214 val_print_optimized_out (value, gdb_stdlog);
1215 }
1216 else
1217 {
1218 if (VALUE_LVAL (value) == lval_register)
1219 fprintf_unfiltered (gdb_stdlog, " register=%d",
1220 VALUE_REGNUM (value));
1221 else if (VALUE_LVAL (value) == lval_memory)
1222 fprintf_unfiltered (gdb_stdlog, " address=%s",
1223 paddress (gdbarch,
1224 value_address (value)));
1225 else
1226 fprintf_unfiltered (gdb_stdlog, " computed");
1227
1228 if (value_lazy (value))
1229 fprintf_unfiltered (gdb_stdlog, " lazy");
1230 else
1231 {
1232 int i;
1233 const gdb_byte *buf = value_contents (value);
1234
1235 fprintf_unfiltered (gdb_stdlog, " bytes=");
1236 fprintf_unfiltered (gdb_stdlog, "[");
1237 for (i = 0; i < register_size (gdbarch, regnum); i++)
1238 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1239 fprintf_unfiltered (gdb_stdlog, "]");
1240 }
1241 }
1242
1243 fprintf_unfiltered (gdb_stdlog, " }\n");
1244 }
1245
1246 return value;
1247 }
1248
1249 struct value *
1250 get_frame_register_value (struct frame_info *frame, int regnum)
1251 {
1252 return frame_unwind_register_value (frame->next, regnum);
1253 }
1254
1255 LONGEST
1256 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1257 {
1258 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1259 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1260 int size = register_size (gdbarch, regnum);
1261 struct value *value = frame_unwind_register_value (frame, regnum);
1262
1263 gdb_assert (value != NULL);
1264
1265 if (value_optimized_out (value))
1266 {
1267 throw_error (OPTIMIZED_OUT_ERROR,
1268 _("Register %d was not saved"), regnum);
1269 }
1270 if (!value_entirely_available (value))
1271 {
1272 throw_error (NOT_AVAILABLE_ERROR,
1273 _("Register %d is not available"), regnum);
1274 }
1275
1276 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1277 byte_order);
1278
1279 release_value (value);
1280 return r;
1281 }
1282
1283 LONGEST
1284 get_frame_register_signed (struct frame_info *frame, int regnum)
1285 {
1286 return frame_unwind_register_signed (frame->next, regnum);
1287 }
1288
1289 ULONGEST
1290 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1291 {
1292 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1293 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1294 int size = register_size (gdbarch, regnum);
1295 struct value *value = frame_unwind_register_value (frame, regnum);
1296
1297 gdb_assert (value != NULL);
1298
1299 if (value_optimized_out (value))
1300 {
1301 throw_error (OPTIMIZED_OUT_ERROR,
1302 _("Register %d was not saved"), regnum);
1303 }
1304 if (!value_entirely_available (value))
1305 {
1306 throw_error (NOT_AVAILABLE_ERROR,
1307 _("Register %d is not available"), regnum);
1308 }
1309
1310 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1311 byte_order);
1312
1313 release_value (value);
1314 return r;
1315 }
1316
1317 ULONGEST
1318 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1319 {
1320 return frame_unwind_register_unsigned (frame->next, regnum);
1321 }
1322
1323 int
1324 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1325 ULONGEST *val)
1326 {
1327 struct value *regval = get_frame_register_value (frame, regnum);
1328
1329 if (!value_optimized_out (regval)
1330 && value_entirely_available (regval))
1331 {
1332 struct gdbarch *gdbarch = get_frame_arch (frame);
1333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1334 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1335
1336 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1337 return 1;
1338 }
1339
1340 return 0;
1341 }
1342
1343 void
1344 put_frame_register (struct frame_info *frame, int regnum,
1345 const gdb_byte *buf)
1346 {
1347 struct gdbarch *gdbarch = get_frame_arch (frame);
1348 int realnum;
1349 int optim;
1350 int unavail;
1351 enum lval_type lval;
1352 CORE_ADDR addr;
1353
1354 frame_register (frame, regnum, &optim, &unavail,
1355 &lval, &addr, &realnum, NULL);
1356 if (optim)
1357 error (_("Attempt to assign to a register that was not saved."));
1358 switch (lval)
1359 {
1360 case lval_memory:
1361 {
1362 write_memory (addr, buf, register_size (gdbarch, regnum));
1363 break;
1364 }
1365 case lval_register:
1366 get_current_regcache ()->cooked_write (realnum, buf);
1367 break;
1368 default:
1369 error (_("Attempt to assign to an unmodifiable value."));
1370 }
1371 }
1372
1373 /* This function is deprecated. Use get_frame_register_value instead,
1374 which provides more accurate information.
1375
1376 Find and return the value of REGNUM for the specified stack frame.
1377 The number of bytes copied is REGISTER_SIZE (REGNUM).
1378
1379 Returns 0 if the register value could not be found. */
1380
1381 int
1382 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1383 gdb_byte *myaddr)
1384 {
1385 int optimized;
1386 int unavailable;
1387 enum lval_type lval;
1388 CORE_ADDR addr;
1389 int realnum;
1390
1391 frame_register (frame, regnum, &optimized, &unavailable,
1392 &lval, &addr, &realnum, myaddr);
1393
1394 return !optimized && !unavailable;
1395 }
1396
1397 int
1398 get_frame_register_bytes (struct frame_info *frame, int regnum,
1399 CORE_ADDR offset, int len, gdb_byte *myaddr,
1400 int *optimizedp, int *unavailablep)
1401 {
1402 struct gdbarch *gdbarch = get_frame_arch (frame);
1403 int i;
1404 int maxsize;
1405 int numregs;
1406
1407 /* Skip registers wholly inside of OFFSET. */
1408 while (offset >= register_size (gdbarch, regnum))
1409 {
1410 offset -= register_size (gdbarch, regnum);
1411 regnum++;
1412 }
1413
1414 /* Ensure that we will not read beyond the end of the register file.
1415 This can only ever happen if the debug information is bad. */
1416 maxsize = -offset;
1417 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1418 for (i = regnum; i < numregs; i++)
1419 {
1420 int thissize = register_size (gdbarch, i);
1421
1422 if (thissize == 0)
1423 break; /* This register is not available on this architecture. */
1424 maxsize += thissize;
1425 }
1426 if (len > maxsize)
1427 error (_("Bad debug information detected: "
1428 "Attempt to read %d bytes from registers."), len);
1429
1430 /* Copy the data. */
1431 while (len > 0)
1432 {
1433 int curr_len = register_size (gdbarch, regnum) - offset;
1434
1435 if (curr_len > len)
1436 curr_len = len;
1437
1438 if (curr_len == register_size (gdbarch, regnum))
1439 {
1440 enum lval_type lval;
1441 CORE_ADDR addr;
1442 int realnum;
1443
1444 frame_register (frame, regnum, optimizedp, unavailablep,
1445 &lval, &addr, &realnum, myaddr);
1446 if (*optimizedp || *unavailablep)
1447 return 0;
1448 }
1449 else
1450 {
1451 struct value *value = frame_unwind_register_value (frame->next,
1452 regnum);
1453 gdb_assert (value != NULL);
1454 *optimizedp = value_optimized_out (value);
1455 *unavailablep = !value_entirely_available (value);
1456
1457 if (*optimizedp || *unavailablep)
1458 {
1459 release_value (value);
1460 return 0;
1461 }
1462 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1463 release_value (value);
1464 }
1465
1466 myaddr += curr_len;
1467 len -= curr_len;
1468 offset = 0;
1469 regnum++;
1470 }
1471
1472 *optimizedp = 0;
1473 *unavailablep = 0;
1474 return 1;
1475 }
1476
1477 void
1478 put_frame_register_bytes (struct frame_info *frame, int regnum,
1479 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1480 {
1481 struct gdbarch *gdbarch = get_frame_arch (frame);
1482
1483 /* Skip registers wholly inside of OFFSET. */
1484 while (offset >= register_size (gdbarch, regnum))
1485 {
1486 offset -= register_size (gdbarch, regnum);
1487 regnum++;
1488 }
1489
1490 /* Copy the data. */
1491 while (len > 0)
1492 {
1493 int curr_len = register_size (gdbarch, regnum) - offset;
1494
1495 if (curr_len > len)
1496 curr_len = len;
1497
1498 if (curr_len == register_size (gdbarch, regnum))
1499 {
1500 put_frame_register (frame, regnum, myaddr);
1501 }
1502 else
1503 {
1504 struct value *value = frame_unwind_register_value (frame->next,
1505 regnum);
1506 gdb_assert (value != NULL);
1507
1508 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1509 curr_len);
1510 put_frame_register (frame, regnum, value_contents_raw (value));
1511 release_value (value);
1512 }
1513
1514 myaddr += curr_len;
1515 len -= curr_len;
1516 offset = 0;
1517 regnum++;
1518 }
1519 }
1520
1521 /* Create a sentinel frame. */
1522
1523 static struct frame_info *
1524 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1525 {
1526 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1527
1528 frame->level = -1;
1529 frame->pspace = pspace;
1530 frame->aspace = regcache->aspace ();
1531 /* Explicitly initialize the sentinel frame's cache. Provide it
1532 with the underlying regcache. In the future additional
1533 information, such as the frame's thread will be added. */
1534 frame->prologue_cache = sentinel_frame_cache (regcache);
1535 /* For the moment there is only one sentinel frame implementation. */
1536 frame->unwind = &sentinel_frame_unwind;
1537 /* Link this frame back to itself. The frame is self referential
1538 (the unwound PC is the same as the pc), so make it so. */
1539 frame->next = frame;
1540 /* The sentinel frame has a special ID. */
1541 frame->this_id.p = 1;
1542 frame->this_id.value = sentinel_frame_id;
1543 if (frame_debug)
1544 {
1545 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1546 fprint_frame (gdb_stdlog, frame);
1547 fprintf_unfiltered (gdb_stdlog, " }\n");
1548 }
1549 return frame;
1550 }
1551
1552 /* Cache for frame addresses already read by gdb. Valid only while
1553 inferior is stopped. Control variables for the frame cache should
1554 be local to this module. */
1555
1556 static struct obstack frame_cache_obstack;
1557
1558 void *
1559 frame_obstack_zalloc (unsigned long size)
1560 {
1561 void *data = obstack_alloc (&frame_cache_obstack, size);
1562
1563 memset (data, 0, size);
1564 return data;
1565 }
1566
1567 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1568
1569 struct frame_info *
1570 get_current_frame (void)
1571 {
1572 struct frame_info *current_frame;
1573
1574 /* First check, and report, the lack of registers. Having GDB
1575 report "No stack!" or "No memory" when the target doesn't even
1576 have registers is very confusing. Besides, "printcmd.exp"
1577 explicitly checks that ``print $pc'' with no registers prints "No
1578 registers". */
1579 if (!target_has_registers)
1580 error (_("No registers."));
1581 if (!target_has_stack)
1582 error (_("No stack."));
1583 if (!target_has_memory)
1584 error (_("No memory."));
1585 /* Traceframes are effectively a substitute for the live inferior. */
1586 if (get_traceframe_number () < 0)
1587 validate_registers_access ();
1588
1589 if (sentinel_frame == NULL)
1590 sentinel_frame =
1591 create_sentinel_frame (current_program_space, get_current_regcache ());
1592
1593 /* Set the current frame before computing the frame id, to avoid
1594 recursion inside compute_frame_id, in case the frame's
1595 unwinder decides to do a symbol lookup (which depends on the
1596 selected frame's block).
1597
1598 This call must always succeed. In particular, nothing inside
1599 get_prev_frame_always_1 should try to unwind from the
1600 sentinel frame, because that could fail/throw, and we always
1601 want to leave with the current frame created and linked in --
1602 we should never end up with the sentinel frame as outermost
1603 frame. */
1604 current_frame = get_prev_frame_always_1 (sentinel_frame);
1605 gdb_assert (current_frame != NULL);
1606
1607 return current_frame;
1608 }
1609
1610 /* The "selected" stack frame is used by default for local and arg
1611 access. May be zero, for no selected frame. */
1612
1613 static struct frame_info *selected_frame;
1614
1615 int
1616 has_stack_frames (void)
1617 {
1618 if (!target_has_registers || !target_has_stack || !target_has_memory)
1619 return 0;
1620
1621 /* Traceframes are effectively a substitute for the live inferior. */
1622 if (get_traceframe_number () < 0)
1623 {
1624 /* No current inferior, no frame. */
1625 if (inferior_ptid == null_ptid)
1626 return 0;
1627
1628 thread_info *tp = inferior_thread ();
1629 /* Don't try to read from a dead thread. */
1630 if (tp->state == THREAD_EXITED)
1631 return 0;
1632
1633 /* ... or from a spinning thread. */
1634 if (tp->executing)
1635 return 0;
1636 }
1637
1638 return 1;
1639 }
1640
1641 /* Return the selected frame. Always non-NULL (unless there isn't an
1642 inferior sufficient for creating a frame) in which case an error is
1643 thrown. */
1644
1645 struct frame_info *
1646 get_selected_frame (const char *message)
1647 {
1648 if (selected_frame == NULL)
1649 {
1650 if (message != NULL && !has_stack_frames ())
1651 error (("%s"), message);
1652 /* Hey! Don't trust this. It should really be re-finding the
1653 last selected frame of the currently selected thread. This,
1654 though, is better than nothing. */
1655 select_frame (get_current_frame ());
1656 }
1657 /* There is always a frame. */
1658 gdb_assert (selected_frame != NULL);
1659 return selected_frame;
1660 }
1661
1662 /* If there is a selected frame, return it. Otherwise, return NULL. */
1663
1664 struct frame_info *
1665 get_selected_frame_if_set (void)
1666 {
1667 return selected_frame;
1668 }
1669
1670 /* This is a variant of get_selected_frame() which can be called when
1671 the inferior does not have a frame; in that case it will return
1672 NULL instead of calling error(). */
1673
1674 struct frame_info *
1675 deprecated_safe_get_selected_frame (void)
1676 {
1677 if (!has_stack_frames ())
1678 return NULL;
1679 return get_selected_frame (NULL);
1680 }
1681
1682 /* Select frame FI (or NULL - to invalidate the current frame). */
1683
1684 void
1685 select_frame (struct frame_info *fi)
1686 {
1687 selected_frame = fi;
1688 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1689 frame is being invalidated. */
1690
1691 /* FIXME: kseitz/2002-08-28: It would be nice to call
1692 selected_frame_level_changed_event() right here, but due to limitations
1693 in the current interfaces, we would end up flooding UIs with events
1694 because select_frame() is used extensively internally.
1695
1696 Once we have frame-parameterized frame (and frame-related) commands,
1697 the event notification can be moved here, since this function will only
1698 be called when the user's selected frame is being changed. */
1699
1700 /* Ensure that symbols for this frame are read in. Also, determine the
1701 source language of this frame, and switch to it if desired. */
1702 if (fi)
1703 {
1704 CORE_ADDR pc;
1705
1706 /* We retrieve the frame's symtab by using the frame PC.
1707 However we cannot use the frame PC as-is, because it usually
1708 points to the instruction following the "call", which is
1709 sometimes the first instruction of another function. So we
1710 rely on get_frame_address_in_block() which provides us with a
1711 PC which is guaranteed to be inside the frame's code
1712 block. */
1713 if (get_frame_address_in_block_if_available (fi, &pc))
1714 {
1715 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1716
1717 if (cust != NULL
1718 && compunit_language (cust) != current_language->la_language
1719 && compunit_language (cust) != language_unknown
1720 && language_mode == language_mode_auto)
1721 set_language (compunit_language (cust));
1722 }
1723 }
1724 }
1725
1726 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1727 Always returns a non-NULL value. */
1728
1729 struct frame_info *
1730 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1731 {
1732 struct frame_info *fi;
1733
1734 if (frame_debug)
1735 {
1736 fprintf_unfiltered (gdb_stdlog,
1737 "{ create_new_frame (addr=%s, pc=%s) ",
1738 hex_string (addr), hex_string (pc));
1739 }
1740
1741 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1742
1743 fi->next = create_sentinel_frame (current_program_space,
1744 get_current_regcache ());
1745
1746 /* Set/update this frame's cached PC value, found in the next frame.
1747 Do this before looking for this frame's unwinder. A sniffer is
1748 very likely to read this, and the corresponding unwinder is
1749 entitled to rely that the PC doesn't magically change. */
1750 fi->next->prev_pc.value = pc;
1751 fi->next->prev_pc.status = CC_VALUE;
1752
1753 /* We currently assume that frame chain's can't cross spaces. */
1754 fi->pspace = fi->next->pspace;
1755 fi->aspace = fi->next->aspace;
1756
1757 /* Select/initialize both the unwind function and the frame's type
1758 based on the PC. */
1759 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1760
1761 fi->this_id.p = 1;
1762 fi->this_id.value = frame_id_build (addr, pc);
1763
1764 if (frame_debug)
1765 {
1766 fprintf_unfiltered (gdb_stdlog, "-> ");
1767 fprint_frame (gdb_stdlog, fi);
1768 fprintf_unfiltered (gdb_stdlog, " }\n");
1769 }
1770
1771 return fi;
1772 }
1773
1774 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1775 innermost frame). Be careful to not fall off the bottom of the
1776 frame chain and onto the sentinel frame. */
1777
1778 struct frame_info *
1779 get_next_frame (struct frame_info *this_frame)
1780 {
1781 if (this_frame->level > 0)
1782 return this_frame->next;
1783 else
1784 return NULL;
1785 }
1786
1787 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1788 innermost (i.e. current) frame, return the sentinel frame. Thus,
1789 unlike get_next_frame(), NULL will never be returned. */
1790
1791 struct frame_info *
1792 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1793 {
1794 gdb_assert (this_frame != NULL);
1795
1796 /* Note that, due to the manner in which the sentinel frame is
1797 constructed, this_frame->next still works even when this_frame
1798 is the sentinel frame. But we disallow it here anyway because
1799 calling get_next_frame_sentinel_okay() on the sentinel frame
1800 is likely a coding error. */
1801 gdb_assert (this_frame != sentinel_frame);
1802
1803 return this_frame->next;
1804 }
1805
1806 /* Observer for the target_changed event. */
1807
1808 static void
1809 frame_observer_target_changed (struct target_ops *target)
1810 {
1811 reinit_frame_cache ();
1812 }
1813
1814 /* Flush the entire frame cache. */
1815
1816 void
1817 reinit_frame_cache (void)
1818 {
1819 struct frame_info *fi;
1820
1821 /* Tear down all frame caches. */
1822 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1823 {
1824 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1825 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1826 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1827 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1828 }
1829
1830 /* Since we can't really be sure what the first object allocated was. */
1831 obstack_free (&frame_cache_obstack, 0);
1832 obstack_init (&frame_cache_obstack);
1833
1834 if (sentinel_frame != NULL)
1835 annotate_frames_invalid ();
1836
1837 sentinel_frame = NULL; /* Invalidate cache */
1838 select_frame (NULL);
1839 frame_stash_invalidate ();
1840 if (frame_debug)
1841 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1842 }
1843
1844 /* Find where a register is saved (in memory or another register).
1845 The result of frame_register_unwind is just where it is saved
1846 relative to this particular frame. */
1847
1848 static void
1849 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1850 int *optimizedp, enum lval_type *lvalp,
1851 CORE_ADDR *addrp, int *realnump)
1852 {
1853 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1854
1855 while (this_frame != NULL)
1856 {
1857 int unavailable;
1858
1859 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1860 lvalp, addrp, realnump, NULL);
1861
1862 if (*optimizedp)
1863 break;
1864
1865 if (*lvalp != lval_register)
1866 break;
1867
1868 regnum = *realnump;
1869 this_frame = get_next_frame (this_frame);
1870 }
1871 }
1872
1873 /* Get the previous raw frame, and check that it is not identical to
1874 same other frame frame already in the chain. If it is, there is
1875 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1876 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1877 validity tests, that compare THIS_FRAME and the next frame, we do
1878 this right after creating the previous frame, to avoid ever ending
1879 up with two frames with the same id in the frame chain. */
1880
1881 static struct frame_info *
1882 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1883 {
1884 struct frame_info *prev_frame;
1885
1886 prev_frame = get_prev_frame_raw (this_frame);
1887
1888 /* Don't compute the frame id of the current frame yet. Unwinding
1889 the sentinel frame can fail (e.g., if the thread is gone and we
1890 can't thus read its registers). If we let the cycle detection
1891 code below try to compute a frame ID, then an error thrown from
1892 within the frame ID computation would result in the sentinel
1893 frame as outermost frame, which is bogus. Instead, we'll compute
1894 the current frame's ID lazily in get_frame_id. Note that there's
1895 no point in doing cycle detection when there's only one frame, so
1896 nothing is lost here. */
1897 if (prev_frame->level == 0)
1898 return prev_frame;
1899
1900 TRY
1901 {
1902 compute_frame_id (prev_frame);
1903 if (!frame_stash_add (prev_frame))
1904 {
1905 /* Another frame with the same id was already in the stash. We just
1906 detected a cycle. */
1907 if (frame_debug)
1908 {
1909 fprintf_unfiltered (gdb_stdlog, "-> ");
1910 fprint_frame (gdb_stdlog, NULL);
1911 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1912 }
1913 this_frame->stop_reason = UNWIND_SAME_ID;
1914 /* Unlink. */
1915 prev_frame->next = NULL;
1916 this_frame->prev = NULL;
1917 prev_frame = NULL;
1918 }
1919 }
1920 CATCH (ex, RETURN_MASK_ALL)
1921 {
1922 prev_frame->next = NULL;
1923 this_frame->prev = NULL;
1924
1925 throw_exception (ex);
1926 }
1927 END_CATCH
1928
1929 return prev_frame;
1930 }
1931
1932 /* Helper function for get_prev_frame_always, this is called inside a
1933 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1934 there is no such frame. This may throw an exception. */
1935
1936 static struct frame_info *
1937 get_prev_frame_always_1 (struct frame_info *this_frame)
1938 {
1939 struct gdbarch *gdbarch;
1940
1941 gdb_assert (this_frame != NULL);
1942 gdbarch = get_frame_arch (this_frame);
1943
1944 if (frame_debug)
1945 {
1946 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1947 if (this_frame != NULL)
1948 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1949 else
1950 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1951 fprintf_unfiltered (gdb_stdlog, ") ");
1952 }
1953
1954 /* Only try to do the unwind once. */
1955 if (this_frame->prev_p)
1956 {
1957 if (frame_debug)
1958 {
1959 fprintf_unfiltered (gdb_stdlog, "-> ");
1960 fprint_frame (gdb_stdlog, this_frame->prev);
1961 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1962 }
1963 return this_frame->prev;
1964 }
1965
1966 /* If the frame unwinder hasn't been selected yet, we must do so
1967 before setting prev_p; otherwise the check for misbehaved
1968 sniffers will think that this frame's sniffer tried to unwind
1969 further (see frame_cleanup_after_sniffer). */
1970 if (this_frame->unwind == NULL)
1971 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1972
1973 this_frame->prev_p = 1;
1974 this_frame->stop_reason = UNWIND_NO_REASON;
1975
1976 /* If we are unwinding from an inline frame, all of the below tests
1977 were already performed when we unwound from the next non-inline
1978 frame. We must skip them, since we can not get THIS_FRAME's ID
1979 until we have unwound all the way down to the previous non-inline
1980 frame. */
1981 if (get_frame_type (this_frame) == INLINE_FRAME)
1982 return get_prev_frame_if_no_cycle (this_frame);
1983
1984 /* Check that this frame is unwindable. If it isn't, don't try to
1985 unwind to the prev frame. */
1986 this_frame->stop_reason
1987 = this_frame->unwind->stop_reason (this_frame,
1988 &this_frame->prologue_cache);
1989
1990 if (this_frame->stop_reason != UNWIND_NO_REASON)
1991 {
1992 if (frame_debug)
1993 {
1994 enum unwind_stop_reason reason = this_frame->stop_reason;
1995
1996 fprintf_unfiltered (gdb_stdlog, "-> ");
1997 fprint_frame (gdb_stdlog, NULL);
1998 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1999 frame_stop_reason_symbol_string (reason));
2000 }
2001 return NULL;
2002 }
2003
2004 /* Check that this frame's ID isn't inner to (younger, below, next)
2005 the next frame. This happens when a frame unwind goes backwards.
2006 This check is valid only if this frame and the next frame are NORMAL.
2007 See the comment at frame_id_inner for details. */
2008 if (get_frame_type (this_frame) == NORMAL_FRAME
2009 && this_frame->next->unwind->type == NORMAL_FRAME
2010 && frame_id_inner (get_frame_arch (this_frame->next),
2011 get_frame_id (this_frame),
2012 get_frame_id (this_frame->next)))
2013 {
2014 CORE_ADDR this_pc_in_block;
2015 struct minimal_symbol *morestack_msym;
2016 const char *morestack_name = NULL;
2017
2018 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2019 this_pc_in_block = get_frame_address_in_block (this_frame);
2020 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2021 if (morestack_msym)
2022 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2023 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2024 {
2025 if (frame_debug)
2026 {
2027 fprintf_unfiltered (gdb_stdlog, "-> ");
2028 fprint_frame (gdb_stdlog, NULL);
2029 fprintf_unfiltered (gdb_stdlog,
2030 " // this frame ID is inner }\n");
2031 }
2032 this_frame->stop_reason = UNWIND_INNER_ID;
2033 return NULL;
2034 }
2035 }
2036
2037 /* Check that this and the next frame do not unwind the PC register
2038 to the same memory location. If they do, then even though they
2039 have different frame IDs, the new frame will be bogus; two
2040 functions can't share a register save slot for the PC. This can
2041 happen when the prologue analyzer finds a stack adjustment, but
2042 no PC save.
2043
2044 This check does assume that the "PC register" is roughly a
2045 traditional PC, even if the gdbarch_unwind_pc method adjusts
2046 it (we do not rely on the value, only on the unwound PC being
2047 dependent on this value). A potential improvement would be
2048 to have the frame prev_pc method and the gdbarch unwind_pc
2049 method set the same lval and location information as
2050 frame_register_unwind. */
2051 if (this_frame->level > 0
2052 && gdbarch_pc_regnum (gdbarch) >= 0
2053 && get_frame_type (this_frame) == NORMAL_FRAME
2054 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2055 || get_frame_type (this_frame->next) == INLINE_FRAME))
2056 {
2057 int optimized, realnum, nrealnum;
2058 enum lval_type lval, nlval;
2059 CORE_ADDR addr, naddr;
2060
2061 frame_register_unwind_location (this_frame,
2062 gdbarch_pc_regnum (gdbarch),
2063 &optimized, &lval, &addr, &realnum);
2064 frame_register_unwind_location (get_next_frame (this_frame),
2065 gdbarch_pc_regnum (gdbarch),
2066 &optimized, &nlval, &naddr, &nrealnum);
2067
2068 if ((lval == lval_memory && lval == nlval && addr == naddr)
2069 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2070 {
2071 if (frame_debug)
2072 {
2073 fprintf_unfiltered (gdb_stdlog, "-> ");
2074 fprint_frame (gdb_stdlog, NULL);
2075 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2076 }
2077
2078 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2079 this_frame->prev = NULL;
2080 return NULL;
2081 }
2082 }
2083
2084 return get_prev_frame_if_no_cycle (this_frame);
2085 }
2086
2087 /* Return a "struct frame_info" corresponding to the frame that called
2088 THIS_FRAME. Returns NULL if there is no such frame.
2089
2090 Unlike get_prev_frame, this function always tries to unwind the
2091 frame. */
2092
2093 struct frame_info *
2094 get_prev_frame_always (struct frame_info *this_frame)
2095 {
2096 struct frame_info *prev_frame = NULL;
2097
2098 TRY
2099 {
2100 prev_frame = get_prev_frame_always_1 (this_frame);
2101 }
2102 CATCH (ex, RETURN_MASK_ERROR)
2103 {
2104 if (ex.error == MEMORY_ERROR)
2105 {
2106 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2107 if (ex.message != NULL)
2108 {
2109 char *stop_string;
2110 size_t size;
2111
2112 /* The error needs to live as long as the frame does.
2113 Allocate using stack local STOP_STRING then assign the
2114 pointer to the frame, this allows the STOP_STRING on the
2115 frame to be of type 'const char *'. */
2116 size = strlen (ex.message) + 1;
2117 stop_string = (char *) frame_obstack_zalloc (size);
2118 memcpy (stop_string, ex.message, size);
2119 this_frame->stop_string = stop_string;
2120 }
2121 prev_frame = NULL;
2122 }
2123 else
2124 throw_exception (ex);
2125 }
2126 END_CATCH
2127
2128 return prev_frame;
2129 }
2130
2131 /* Construct a new "struct frame_info" and link it previous to
2132 this_frame. */
2133
2134 static struct frame_info *
2135 get_prev_frame_raw (struct frame_info *this_frame)
2136 {
2137 struct frame_info *prev_frame;
2138
2139 /* Allocate the new frame but do not wire it in to the frame chain.
2140 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2141 frame->next to pull some fancy tricks (of course such code is, by
2142 definition, recursive). Try to prevent it.
2143
2144 There is no reason to worry about memory leaks, should the
2145 remainder of the function fail. The allocated memory will be
2146 quickly reclaimed when the frame cache is flushed, and the `we've
2147 been here before' check above will stop repeated memory
2148 allocation calls. */
2149 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2150 prev_frame->level = this_frame->level + 1;
2151
2152 /* For now, assume we don't have frame chains crossing address
2153 spaces. */
2154 prev_frame->pspace = this_frame->pspace;
2155 prev_frame->aspace = this_frame->aspace;
2156
2157 /* Don't yet compute ->unwind (and hence ->type). It is computed
2158 on-demand in get_frame_type, frame_register_unwind, and
2159 get_frame_id. */
2160
2161 /* Don't yet compute the frame's ID. It is computed on-demand by
2162 get_frame_id(). */
2163
2164 /* The unwound frame ID is validate at the start of this function,
2165 as part of the logic to decide if that frame should be further
2166 unwound, and not here while the prev frame is being created.
2167 Doing this makes it possible for the user to examine a frame that
2168 has an invalid frame ID.
2169
2170 Some very old VAX code noted: [...] For the sake of argument,
2171 suppose that the stack is somewhat trashed (which is one reason
2172 that "info frame" exists). So, return 0 (indicating we don't
2173 know the address of the arglist) if we don't know what frame this
2174 frame calls. */
2175
2176 /* Link it in. */
2177 this_frame->prev = prev_frame;
2178 prev_frame->next = this_frame;
2179
2180 if (frame_debug)
2181 {
2182 fprintf_unfiltered (gdb_stdlog, "-> ");
2183 fprint_frame (gdb_stdlog, prev_frame);
2184 fprintf_unfiltered (gdb_stdlog, " }\n");
2185 }
2186
2187 return prev_frame;
2188 }
2189
2190 /* Debug routine to print a NULL frame being returned. */
2191
2192 static void
2193 frame_debug_got_null_frame (struct frame_info *this_frame,
2194 const char *reason)
2195 {
2196 if (frame_debug)
2197 {
2198 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2199 if (this_frame != NULL)
2200 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2201 else
2202 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2203 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2204 }
2205 }
2206
2207 /* Is this (non-sentinel) frame in the "main"() function? */
2208
2209 static int
2210 inside_main_func (struct frame_info *this_frame)
2211 {
2212 struct bound_minimal_symbol msymbol;
2213 CORE_ADDR maddr;
2214
2215 if (symfile_objfile == 0)
2216 return 0;
2217 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2218 if (msymbol.minsym == NULL)
2219 return 0;
2220 /* Make certain that the code, and not descriptor, address is
2221 returned. */
2222 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2223 BMSYMBOL_VALUE_ADDRESS (msymbol),
2224 current_top_target ());
2225 return maddr == get_frame_func (this_frame);
2226 }
2227
2228 /* Test whether THIS_FRAME is inside the process entry point function. */
2229
2230 static int
2231 inside_entry_func (struct frame_info *this_frame)
2232 {
2233 CORE_ADDR entry_point;
2234
2235 if (!entry_point_address_query (&entry_point))
2236 return 0;
2237
2238 return get_frame_func (this_frame) == entry_point;
2239 }
2240
2241 /* Return a structure containing various interesting information about
2242 the frame that called THIS_FRAME. Returns NULL if there is entier
2243 no such frame or the frame fails any of a set of target-independent
2244 condition that should terminate the frame chain (e.g., as unwinding
2245 past main()).
2246
2247 This function should not contain target-dependent tests, such as
2248 checking whether the program-counter is zero. */
2249
2250 struct frame_info *
2251 get_prev_frame (struct frame_info *this_frame)
2252 {
2253 CORE_ADDR frame_pc;
2254 int frame_pc_p;
2255
2256 /* There is always a frame. If this assertion fails, suspect that
2257 something should be calling get_selected_frame() or
2258 get_current_frame(). */
2259 gdb_assert (this_frame != NULL);
2260
2261 /* If this_frame is the current frame, then compute and stash
2262 its frame id prior to fetching and computing the frame id of the
2263 previous frame. Otherwise, the cycle detection code in
2264 get_prev_frame_if_no_cycle() will not work correctly. When
2265 get_frame_id() is called later on, an assertion error will
2266 be triggered in the event of a cycle between the current
2267 frame and its previous frame. */
2268 if (this_frame->level == 0)
2269 get_frame_id (this_frame);
2270
2271 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2272
2273 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2274 sense to stop unwinding at a dummy frame. One place where a dummy
2275 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2276 pcsqh register (space register for the instruction at the head of the
2277 instruction queue) cannot be written directly; the only way to set it
2278 is to branch to code that is in the target space. In order to implement
2279 frame dummies on HPUX, the called function is made to jump back to where
2280 the inferior was when the user function was called. If gdb was inside
2281 the main function when we created the dummy frame, the dummy frame will
2282 point inside the main function. */
2283 if (this_frame->level >= 0
2284 && get_frame_type (this_frame) == NORMAL_FRAME
2285 && !backtrace_past_main
2286 && frame_pc_p
2287 && inside_main_func (this_frame))
2288 /* Don't unwind past main(). Note, this is done _before_ the
2289 frame has been marked as previously unwound. That way if the
2290 user later decides to enable unwinds past main(), that will
2291 automatically happen. */
2292 {
2293 frame_debug_got_null_frame (this_frame, "inside main func");
2294 return NULL;
2295 }
2296
2297 /* If the user's backtrace limit has been exceeded, stop. We must
2298 add two to the current level; one of those accounts for backtrace_limit
2299 being 1-based and the level being 0-based, and the other accounts for
2300 the level of the new frame instead of the level of the current
2301 frame. */
2302 if (this_frame->level + 2 > backtrace_limit)
2303 {
2304 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2305 return NULL;
2306 }
2307
2308 /* If we're already inside the entry function for the main objfile,
2309 then it isn't valid. Don't apply this test to a dummy frame -
2310 dummy frame PCs typically land in the entry func. Don't apply
2311 this test to the sentinel frame. Sentinel frames should always
2312 be allowed to unwind. */
2313 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2314 wasn't checking for "main" in the minimal symbols. With that
2315 fixed asm-source tests now stop in "main" instead of halting the
2316 backtrace in weird and wonderful ways somewhere inside the entry
2317 file. Suspect that tests for inside the entry file/func were
2318 added to work around that (now fixed) case. */
2319 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2320 suggested having the inside_entry_func test use the
2321 inside_main_func() msymbol trick (along with entry_point_address()
2322 I guess) to determine the address range of the start function.
2323 That should provide a far better stopper than the current
2324 heuristics. */
2325 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2326 applied tail-call optimizations to main so that a function called
2327 from main returns directly to the caller of main. Since we don't
2328 stop at main, we should at least stop at the entry point of the
2329 application. */
2330 if (this_frame->level >= 0
2331 && get_frame_type (this_frame) == NORMAL_FRAME
2332 && !backtrace_past_entry
2333 && frame_pc_p
2334 && inside_entry_func (this_frame))
2335 {
2336 frame_debug_got_null_frame (this_frame, "inside entry func");
2337 return NULL;
2338 }
2339
2340 /* Assume that the only way to get a zero PC is through something
2341 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2342 will never unwind a zero PC. */
2343 if (this_frame->level > 0
2344 && (get_frame_type (this_frame) == NORMAL_FRAME
2345 || get_frame_type (this_frame) == INLINE_FRAME)
2346 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2347 && frame_pc_p && frame_pc == 0)
2348 {
2349 frame_debug_got_null_frame (this_frame, "zero PC");
2350 return NULL;
2351 }
2352
2353 return get_prev_frame_always (this_frame);
2354 }
2355
2356 struct frame_id
2357 get_prev_frame_id_by_id (struct frame_id id)
2358 {
2359 struct frame_id prev_id;
2360 struct frame_info *frame;
2361
2362 frame = frame_find_by_id (id);
2363
2364 if (frame != NULL)
2365 prev_id = get_frame_id (get_prev_frame (frame));
2366 else
2367 prev_id = null_frame_id;
2368
2369 return prev_id;
2370 }
2371
2372 CORE_ADDR
2373 get_frame_pc (struct frame_info *frame)
2374 {
2375 gdb_assert (frame->next != NULL);
2376 return frame_unwind_pc (frame->next);
2377 }
2378
2379 int
2380 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2381 {
2382
2383 gdb_assert (frame->next != NULL);
2384
2385 TRY
2386 {
2387 *pc = frame_unwind_pc (frame->next);
2388 }
2389 CATCH (ex, RETURN_MASK_ERROR)
2390 {
2391 if (ex.error == NOT_AVAILABLE_ERROR)
2392 return 0;
2393 else
2394 throw_exception (ex);
2395 }
2396 END_CATCH
2397
2398 return 1;
2399 }
2400
2401 /* Return an address that falls within THIS_FRAME's code block. */
2402
2403 CORE_ADDR
2404 get_frame_address_in_block (struct frame_info *this_frame)
2405 {
2406 /* A draft address. */
2407 CORE_ADDR pc = get_frame_pc (this_frame);
2408
2409 struct frame_info *next_frame = this_frame->next;
2410
2411 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2412 Normally the resume address is inside the body of the function
2413 associated with THIS_FRAME, but there is a special case: when
2414 calling a function which the compiler knows will never return
2415 (for instance abort), the call may be the very last instruction
2416 in the calling function. The resume address will point after the
2417 call and may be at the beginning of a different function
2418 entirely.
2419
2420 If THIS_FRAME is a signal frame or dummy frame, then we should
2421 not adjust the unwound PC. For a dummy frame, GDB pushed the
2422 resume address manually onto the stack. For a signal frame, the
2423 OS may have pushed the resume address manually and invoked the
2424 handler (e.g. GNU/Linux), or invoked the trampoline which called
2425 the signal handler - but in either case the signal handler is
2426 expected to return to the trampoline. So in both of these
2427 cases we know that the resume address is executable and
2428 related. So we only need to adjust the PC if THIS_FRAME
2429 is a normal function.
2430
2431 If the program has been interrupted while THIS_FRAME is current,
2432 then clearly the resume address is inside the associated
2433 function. There are three kinds of interruption: debugger stop
2434 (next frame will be SENTINEL_FRAME), operating system
2435 signal or exception (next frame will be SIGTRAMP_FRAME),
2436 or debugger-induced function call (next frame will be
2437 DUMMY_FRAME). So we only need to adjust the PC if
2438 NEXT_FRAME is a normal function.
2439
2440 We check the type of NEXT_FRAME first, since it is already
2441 known; frame type is determined by the unwinder, and since
2442 we have THIS_FRAME we've already selected an unwinder for
2443 NEXT_FRAME.
2444
2445 If the next frame is inlined, we need to keep going until we find
2446 the real function - for instance, if a signal handler is invoked
2447 while in an inlined function, then the code address of the
2448 "calling" normal function should not be adjusted either. */
2449
2450 while (get_frame_type (next_frame) == INLINE_FRAME)
2451 next_frame = next_frame->next;
2452
2453 if ((get_frame_type (next_frame) == NORMAL_FRAME
2454 || get_frame_type (next_frame) == TAILCALL_FRAME)
2455 && (get_frame_type (this_frame) == NORMAL_FRAME
2456 || get_frame_type (this_frame) == TAILCALL_FRAME
2457 || get_frame_type (this_frame) == INLINE_FRAME))
2458 return pc - 1;
2459
2460 return pc;
2461 }
2462
2463 int
2464 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2465 CORE_ADDR *pc)
2466 {
2467
2468 TRY
2469 {
2470 *pc = get_frame_address_in_block (this_frame);
2471 }
2472 CATCH (ex, RETURN_MASK_ERROR)
2473 {
2474 if (ex.error == NOT_AVAILABLE_ERROR)
2475 return 0;
2476 throw_exception (ex);
2477 }
2478 END_CATCH
2479
2480 return 1;
2481 }
2482
2483 symtab_and_line
2484 find_frame_sal (frame_info *frame)
2485 {
2486 struct frame_info *next_frame;
2487 int notcurrent;
2488 CORE_ADDR pc;
2489
2490 /* If the next frame represents an inlined function call, this frame's
2491 sal is the "call site" of that inlined function, which can not
2492 be inferred from get_frame_pc. */
2493 next_frame = get_next_frame (frame);
2494 if (frame_inlined_callees (frame) > 0)
2495 {
2496 struct symbol *sym;
2497
2498 if (next_frame)
2499 sym = get_frame_function (next_frame);
2500 else
2501 sym = inline_skipped_symbol (inferior_thread ());
2502
2503 /* If frame is inline, it certainly has symbols. */
2504 gdb_assert (sym);
2505
2506 symtab_and_line sal;
2507 if (SYMBOL_LINE (sym) != 0)
2508 {
2509 sal.symtab = symbol_symtab (sym);
2510 sal.line = SYMBOL_LINE (sym);
2511 }
2512 else
2513 /* If the symbol does not have a location, we don't know where
2514 the call site is. Do not pretend to. This is jarring, but
2515 we can't do much better. */
2516 sal.pc = get_frame_pc (frame);
2517
2518 sal.pspace = get_frame_program_space (frame);
2519 return sal;
2520 }
2521
2522 /* If FRAME is not the innermost frame, that normally means that
2523 FRAME->pc points at the return instruction (which is *after* the
2524 call instruction), and we want to get the line containing the
2525 call (because the call is where the user thinks the program is).
2526 However, if the next frame is either a SIGTRAMP_FRAME or a
2527 DUMMY_FRAME, then the next frame will contain a saved interrupt
2528 PC and such a PC indicates the current (rather than next)
2529 instruction/line, consequently, for such cases, want to get the
2530 line containing fi->pc. */
2531 if (!get_frame_pc_if_available (frame, &pc))
2532 return {};
2533
2534 notcurrent = (pc != get_frame_address_in_block (frame));
2535 return find_pc_line (pc, notcurrent);
2536 }
2537
2538 /* Per "frame.h", return the ``address'' of the frame. Code should
2539 really be using get_frame_id(). */
2540 CORE_ADDR
2541 get_frame_base (struct frame_info *fi)
2542 {
2543 return get_frame_id (fi).stack_addr;
2544 }
2545
2546 /* High-level offsets into the frame. Used by the debug info. */
2547
2548 CORE_ADDR
2549 get_frame_base_address (struct frame_info *fi)
2550 {
2551 if (get_frame_type (fi) != NORMAL_FRAME)
2552 return 0;
2553 if (fi->base == NULL)
2554 fi->base = frame_base_find_by_frame (fi);
2555 /* Sneaky: If the low-level unwind and high-level base code share a
2556 common unwinder, let them share the prologue cache. */
2557 if (fi->base->unwind == fi->unwind)
2558 return fi->base->this_base (fi, &fi->prologue_cache);
2559 return fi->base->this_base (fi, &fi->base_cache);
2560 }
2561
2562 CORE_ADDR
2563 get_frame_locals_address (struct frame_info *fi)
2564 {
2565 if (get_frame_type (fi) != NORMAL_FRAME)
2566 return 0;
2567 /* If there isn't a frame address method, find it. */
2568 if (fi->base == NULL)
2569 fi->base = frame_base_find_by_frame (fi);
2570 /* Sneaky: If the low-level unwind and high-level base code share a
2571 common unwinder, let them share the prologue cache. */
2572 if (fi->base->unwind == fi->unwind)
2573 return fi->base->this_locals (fi, &fi->prologue_cache);
2574 return fi->base->this_locals (fi, &fi->base_cache);
2575 }
2576
2577 CORE_ADDR
2578 get_frame_args_address (struct frame_info *fi)
2579 {
2580 if (get_frame_type (fi) != NORMAL_FRAME)
2581 return 0;
2582 /* If there isn't a frame address method, find it. */
2583 if (fi->base == NULL)
2584 fi->base = frame_base_find_by_frame (fi);
2585 /* Sneaky: If the low-level unwind and high-level base code share a
2586 common unwinder, let them share the prologue cache. */
2587 if (fi->base->unwind == fi->unwind)
2588 return fi->base->this_args (fi, &fi->prologue_cache);
2589 return fi->base->this_args (fi, &fi->base_cache);
2590 }
2591
2592 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2593 otherwise. */
2594
2595 int
2596 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2597 {
2598 if (fi->unwind == NULL)
2599 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2600 return fi->unwind == unwinder;
2601 }
2602
2603 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2604 or -1 for a NULL frame. */
2605
2606 int
2607 frame_relative_level (struct frame_info *fi)
2608 {
2609 if (fi == NULL)
2610 return -1;
2611 else
2612 return fi->level;
2613 }
2614
2615 enum frame_type
2616 get_frame_type (struct frame_info *frame)
2617 {
2618 if (frame->unwind == NULL)
2619 /* Initialize the frame's unwinder because that's what
2620 provides the frame's type. */
2621 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2622 return frame->unwind->type;
2623 }
2624
2625 struct program_space *
2626 get_frame_program_space (struct frame_info *frame)
2627 {
2628 return frame->pspace;
2629 }
2630
2631 struct program_space *
2632 frame_unwind_program_space (struct frame_info *this_frame)
2633 {
2634 gdb_assert (this_frame);
2635
2636 /* This is really a placeholder to keep the API consistent --- we
2637 assume for now that we don't have frame chains crossing
2638 spaces. */
2639 return this_frame->pspace;
2640 }
2641
2642 const address_space *
2643 get_frame_address_space (struct frame_info *frame)
2644 {
2645 return frame->aspace;
2646 }
2647
2648 /* Memory access methods. */
2649
2650 void
2651 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2652 gdb_byte *buf, int len)
2653 {
2654 read_memory (addr, buf, len);
2655 }
2656
2657 LONGEST
2658 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2659 int len)
2660 {
2661 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2662 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2663
2664 return read_memory_integer (addr, len, byte_order);
2665 }
2666
2667 ULONGEST
2668 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2669 int len)
2670 {
2671 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2673
2674 return read_memory_unsigned_integer (addr, len, byte_order);
2675 }
2676
2677 int
2678 safe_frame_unwind_memory (struct frame_info *this_frame,
2679 CORE_ADDR addr, gdb_byte *buf, int len)
2680 {
2681 /* NOTE: target_read_memory returns zero on success! */
2682 return !target_read_memory (addr, buf, len);
2683 }
2684
2685 /* Architecture methods. */
2686
2687 struct gdbarch *
2688 get_frame_arch (struct frame_info *this_frame)
2689 {
2690 return frame_unwind_arch (this_frame->next);
2691 }
2692
2693 struct gdbarch *
2694 frame_unwind_arch (struct frame_info *next_frame)
2695 {
2696 if (!next_frame->prev_arch.p)
2697 {
2698 struct gdbarch *arch;
2699
2700 if (next_frame->unwind == NULL)
2701 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2702
2703 if (next_frame->unwind->prev_arch != NULL)
2704 arch = next_frame->unwind->prev_arch (next_frame,
2705 &next_frame->prologue_cache);
2706 else
2707 arch = get_frame_arch (next_frame);
2708
2709 next_frame->prev_arch.arch = arch;
2710 next_frame->prev_arch.p = 1;
2711 if (frame_debug)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2714 next_frame->level,
2715 gdbarch_bfd_arch_info (arch)->printable_name);
2716 }
2717
2718 return next_frame->prev_arch.arch;
2719 }
2720
2721 struct gdbarch *
2722 frame_unwind_caller_arch (struct frame_info *next_frame)
2723 {
2724 next_frame = skip_artificial_frames (next_frame);
2725
2726 /* We must have a non-artificial frame. The caller is supposed to check
2727 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2728 in this case. */
2729 gdb_assert (next_frame != NULL);
2730
2731 return frame_unwind_arch (next_frame);
2732 }
2733
2734 /* Gets the language of FRAME. */
2735
2736 enum language
2737 get_frame_language (struct frame_info *frame)
2738 {
2739 CORE_ADDR pc = 0;
2740 int pc_p = 0;
2741
2742 gdb_assert (frame!= NULL);
2743
2744 /* We determine the current frame language by looking up its
2745 associated symtab. To retrieve this symtab, we use the frame
2746 PC. However we cannot use the frame PC as is, because it
2747 usually points to the instruction following the "call", which
2748 is sometimes the first instruction of another function. So
2749 we rely on get_frame_address_in_block(), it provides us with
2750 a PC that is guaranteed to be inside the frame's code
2751 block. */
2752
2753 TRY
2754 {
2755 pc = get_frame_address_in_block (frame);
2756 pc_p = 1;
2757 }
2758 CATCH (ex, RETURN_MASK_ERROR)
2759 {
2760 if (ex.error != NOT_AVAILABLE_ERROR)
2761 throw_exception (ex);
2762 }
2763 END_CATCH
2764
2765 if (pc_p)
2766 {
2767 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2768
2769 if (cust != NULL)
2770 return compunit_language (cust);
2771 }
2772
2773 return language_unknown;
2774 }
2775
2776 /* Stack pointer methods. */
2777
2778 CORE_ADDR
2779 get_frame_sp (struct frame_info *this_frame)
2780 {
2781 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2782
2783 /* Normality - an architecture that provides a way of obtaining any
2784 frame inner-most address. */
2785 if (gdbarch_unwind_sp_p (gdbarch))
2786 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2787 operate on THIS_FRAME now. */
2788 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2789 /* Now things are really are grim. Hope that the value returned by
2790 the gdbarch_sp_regnum register is meaningful. */
2791 if (gdbarch_sp_regnum (gdbarch) >= 0)
2792 return get_frame_register_unsigned (this_frame,
2793 gdbarch_sp_regnum (gdbarch));
2794 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2795 }
2796
2797 /* Return the reason why we can't unwind past FRAME. */
2798
2799 enum unwind_stop_reason
2800 get_frame_unwind_stop_reason (struct frame_info *frame)
2801 {
2802 /* Fill-in STOP_REASON. */
2803 get_prev_frame_always (frame);
2804 gdb_assert (frame->prev_p);
2805
2806 return frame->stop_reason;
2807 }
2808
2809 /* Return a string explaining REASON. */
2810
2811 const char *
2812 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2813 {
2814 switch (reason)
2815 {
2816 #define SET(name, description) \
2817 case name: return _(description);
2818 #include "unwind_stop_reasons.def"
2819 #undef SET
2820
2821 default:
2822 internal_error (__FILE__, __LINE__,
2823 "Invalid frame stop reason");
2824 }
2825 }
2826
2827 const char *
2828 frame_stop_reason_string (struct frame_info *fi)
2829 {
2830 gdb_assert (fi->prev_p);
2831 gdb_assert (fi->prev == NULL);
2832
2833 /* Return the specific string if we have one. */
2834 if (fi->stop_string != NULL)
2835 return fi->stop_string;
2836
2837 /* Return the generic string if we have nothing better. */
2838 return unwind_stop_reason_to_string (fi->stop_reason);
2839 }
2840
2841 /* Return the enum symbol name of REASON as a string, to use in debug
2842 output. */
2843
2844 static const char *
2845 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2846 {
2847 switch (reason)
2848 {
2849 #define SET(name, description) \
2850 case name: return #name;
2851 #include "unwind_stop_reasons.def"
2852 #undef SET
2853
2854 default:
2855 internal_error (__FILE__, __LINE__,
2856 "Invalid frame stop reason");
2857 }
2858 }
2859
2860 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2861 FRAME. */
2862
2863 void
2864 frame_cleanup_after_sniffer (struct frame_info *frame)
2865 {
2866 /* The sniffer should not allocate a prologue cache if it did not
2867 match this frame. */
2868 gdb_assert (frame->prologue_cache == NULL);
2869
2870 /* No sniffer should extend the frame chain; sniff based on what is
2871 already certain. */
2872 gdb_assert (!frame->prev_p);
2873
2874 /* The sniffer should not check the frame's ID; that's circular. */
2875 gdb_assert (!frame->this_id.p);
2876
2877 /* Clear cached fields dependent on the unwinder.
2878
2879 The previous PC is independent of the unwinder, but the previous
2880 function is not (see get_frame_address_in_block). */
2881 frame->prev_func.p = 0;
2882 frame->prev_func.addr = 0;
2883
2884 /* Discard the unwinder last, so that we can easily find it if an assertion
2885 in this function triggers. */
2886 frame->unwind = NULL;
2887 }
2888
2889 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2890 If sniffing fails, the caller should be sure to call
2891 frame_cleanup_after_sniffer. */
2892
2893 void
2894 frame_prepare_for_sniffer (struct frame_info *frame,
2895 const struct frame_unwind *unwind)
2896 {
2897 gdb_assert (frame->unwind == NULL);
2898 frame->unwind = unwind;
2899 }
2900
2901 static struct cmd_list_element *set_backtrace_cmdlist;
2902 static struct cmd_list_element *show_backtrace_cmdlist;
2903
2904 static void
2905 set_backtrace_cmd (const char *args, int from_tty)
2906 {
2907 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2908 gdb_stdout);
2909 }
2910
2911 static void
2912 show_backtrace_cmd (const char *args, int from_tty)
2913 {
2914 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2915 }
2916
2917 void
2918 _initialize_frame (void)
2919 {
2920 obstack_init (&frame_cache_obstack);
2921
2922 frame_stash_create ();
2923
2924 gdb::observers::target_changed.attach (frame_observer_target_changed);
2925
2926 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2927 Set backtrace specific variables.\n\
2928 Configure backtrace variables such as the backtrace limit"),
2929 &set_backtrace_cmdlist, "set backtrace ",
2930 0/*allow-unknown*/, &setlist);
2931 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2932 Show backtrace specific variables\n\
2933 Show backtrace variables such as the backtrace limit"),
2934 &show_backtrace_cmdlist, "show backtrace ",
2935 0/*allow-unknown*/, &showlist);
2936
2937 add_setshow_boolean_cmd ("past-main", class_obscure,
2938 &backtrace_past_main, _("\
2939 Set whether backtraces should continue past \"main\"."), _("\
2940 Show whether backtraces should continue past \"main\"."), _("\
2941 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2942 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2943 of the stack trace."),
2944 NULL,
2945 show_backtrace_past_main,
2946 &set_backtrace_cmdlist,
2947 &show_backtrace_cmdlist);
2948
2949 add_setshow_boolean_cmd ("past-entry", class_obscure,
2950 &backtrace_past_entry, _("\
2951 Set whether backtraces should continue past the entry point of a program."),
2952 _("\
2953 Show whether backtraces should continue past the entry point of a program."),
2954 _("\
2955 Normally there are no callers beyond the entry point of a program, so GDB\n\
2956 will terminate the backtrace there. Set this variable if you need to see\n\
2957 the rest of the stack trace."),
2958 NULL,
2959 show_backtrace_past_entry,
2960 &set_backtrace_cmdlist,
2961 &show_backtrace_cmdlist);
2962
2963 add_setshow_uinteger_cmd ("limit", class_obscure,
2964 &backtrace_limit, _("\
2965 Set an upper bound on the number of backtrace levels."), _("\
2966 Show the upper bound on the number of backtrace levels."), _("\
2967 No more than the specified number of frames can be displayed or examined.\n\
2968 Literal \"unlimited\" or zero means no limit."),
2969 NULL,
2970 show_backtrace_limit,
2971 &set_backtrace_cmdlist,
2972 &show_backtrace_cmdlist);
2973
2974 /* Debug this files internals. */
2975 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2976 Set frame debugging."), _("\
2977 Show frame debugging."), _("\
2978 When non-zero, frame specific internal debugging is enabled."),
2979 NULL,
2980 show_frame_debug,
2981 &setdebuglist, &showdebuglist);
2982 }
This page took 0.092734 seconds and 4 git commands to generate.