gdb/
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static CORE_ADDR
623 frame_unwind_pc (struct frame_info *this_frame)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 CORE_ADDR pc;
628
629 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
630 {
631 /* The right way. The `pure' way. The one true way. This
632 method depends solely on the register-unwind code to
633 determine the value of registers in THIS frame, and hence
634 the value of this frame's PC (resume address). A typical
635 implementation is no more than:
636
637 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
638 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
639
640 Note: this method is very heavily dependent on a correct
641 register-unwind implementation, it pays to fix that
642 method first; this method is frame type agnostic, since
643 it only deals with register values, it works with any
644 frame. This is all in stark contrast to the old
645 FRAME_SAVED_PC which would try to directly handle all the
646 different ways that a PC could be unwound. */
647 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
648 }
649 else
650 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
651 this_frame->prev_pc.value = pc;
652 this_frame->prev_pc.p = 1;
653 if (frame_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "{ frame_unwind_caller_pc "
656 "(this_frame=%d) -> %s }\n",
657 this_frame->level,
658 hex_string (this_frame->prev_pc.value));
659 }
660 return this_frame->prev_pc.value;
661 }
662
663 CORE_ADDR
664 frame_unwind_caller_pc (struct frame_info *this_frame)
665 {
666 return frame_unwind_pc (skip_inlined_frames (this_frame));
667 }
668
669 CORE_ADDR
670 get_frame_func (struct frame_info *this_frame)
671 {
672 struct frame_info *next_frame = this_frame->next;
673
674 if (!next_frame->prev_func.p)
675 {
676 /* Make certain that this, and not the adjacent, function is
677 found. */
678 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
679 next_frame->prev_func.p = 1;
680 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
681 if (frame_debug)
682 fprintf_unfiltered (gdb_stdlog,
683 "{ get_frame_func (this_frame=%d) -> %s }\n",
684 this_frame->level,
685 hex_string (next_frame->prev_func.addr));
686 }
687 return next_frame->prev_func.addr;
688 }
689
690 static enum register_status
691 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
692 {
693 if (!frame_register_read (src, regnum, buf))
694 return REG_UNAVAILABLE;
695 else
696 return REG_VALID;
697 }
698
699 struct regcache *
700 frame_save_as_regcache (struct frame_info *this_frame)
701 {
702 struct address_space *aspace = get_frame_address_space (this_frame);
703 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
704 aspace);
705 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
706
707 regcache_save (regcache, do_frame_register_read, this_frame);
708 discard_cleanups (cleanups);
709 return regcache;
710 }
711
712 void
713 frame_pop (struct frame_info *this_frame)
714 {
715 struct frame_info *prev_frame;
716 struct regcache *scratch;
717 struct cleanup *cleanups;
718
719 if (get_frame_type (this_frame) == DUMMY_FRAME)
720 {
721 /* Popping a dummy frame involves restoring more than just registers.
722 dummy_frame_pop does all the work. */
723 dummy_frame_pop (get_frame_id (this_frame));
724 return;
725 }
726
727 /* Ensure that we have a frame to pop to. */
728 prev_frame = get_prev_frame_1 (this_frame);
729
730 if (!prev_frame)
731 error (_("Cannot pop the initial frame."));
732
733 /* Make a copy of all the register values unwound from this frame.
734 Save them in a scratch buffer so that there isn't a race between
735 trying to extract the old values from the current regcache while
736 at the same time writing new values into that same cache. */
737 scratch = frame_save_as_regcache (prev_frame);
738 cleanups = make_cleanup_regcache_xfree (scratch);
739
740 /* FIXME: cagney/2003-03-16: It should be possible to tell the
741 target's register cache that it is about to be hit with a burst
742 register transfer and that the sequence of register writes should
743 be batched. The pair target_prepare_to_store() and
744 target_store_registers() kind of suggest this functionality.
745 Unfortunately, they don't implement it. Their lack of a formal
746 definition can lead to targets writing back bogus values
747 (arguably a bug in the target code mind). */
748 /* Now copy those saved registers into the current regcache.
749 Here, regcache_cpy() calls regcache_restore(). */
750 regcache_cpy (get_current_regcache (), scratch);
751 do_cleanups (cleanups);
752
753 /* We've made right mess of GDB's local state, just discard
754 everything. */
755 reinit_frame_cache ();
756 }
757
758 void
759 frame_register_unwind (struct frame_info *frame, int regnum,
760 int *optimizedp, enum lval_type *lvalp,
761 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
762 {
763 struct value *value;
764
765 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
766 that the value proper does not need to be fetched. */
767 gdb_assert (optimizedp != NULL);
768 gdb_assert (lvalp != NULL);
769 gdb_assert (addrp != NULL);
770 gdb_assert (realnump != NULL);
771 /* gdb_assert (bufferp != NULL); */
772
773 value = frame_unwind_register_value (frame, regnum);
774
775 gdb_assert (value != NULL);
776
777 *optimizedp = value_optimized_out (value);
778 *lvalp = VALUE_LVAL (value);
779 *addrp = value_address (value);
780 *realnump = VALUE_REGNUM (value);
781
782 if (bufferp && !*optimizedp)
783 memcpy (bufferp, value_contents_all (value),
784 TYPE_LENGTH (value_type (value)));
785
786 /* Dispose of the new value. This prevents watchpoints from
787 trying to watch the saved frame pointer. */
788 release_value (value);
789 value_free (value);
790 }
791
792 void
793 frame_register (struct frame_info *frame, int regnum,
794 int *optimizedp, enum lval_type *lvalp,
795 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
796 {
797 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
798 that the value proper does not need to be fetched. */
799 gdb_assert (optimizedp != NULL);
800 gdb_assert (lvalp != NULL);
801 gdb_assert (addrp != NULL);
802 gdb_assert (realnump != NULL);
803 /* gdb_assert (bufferp != NULL); */
804
805 /* Obtain the register value by unwinding the register from the next
806 (more inner frame). */
807 gdb_assert (frame != NULL && frame->next != NULL);
808 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
809 realnump, bufferp);
810 }
811
812 void
813 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
814 {
815 int optimized;
816 CORE_ADDR addr;
817 int realnum;
818 enum lval_type lval;
819
820 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
821 &realnum, buf);
822 }
823
824 void
825 get_frame_register (struct frame_info *frame,
826 int regnum, gdb_byte *buf)
827 {
828 frame_unwind_register (frame->next, regnum, buf);
829 }
830
831 struct value *
832 frame_unwind_register_value (struct frame_info *frame, int regnum)
833 {
834 struct gdbarch *gdbarch;
835 struct value *value;
836
837 gdb_assert (frame != NULL);
838 gdbarch = frame_unwind_arch (frame);
839
840 if (frame_debug)
841 {
842 fprintf_unfiltered (gdb_stdlog,
843 "{ frame_unwind_register_value "
844 "(frame=%d,regnum=%d(%s),...) ",
845 frame->level, regnum,
846 user_reg_map_regnum_to_name (gdbarch, regnum));
847 }
848
849 /* Find the unwinder. */
850 if (frame->unwind == NULL)
851 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
852
853 /* Ask this frame to unwind its register. */
854 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
855
856 if (frame_debug)
857 {
858 fprintf_unfiltered (gdb_stdlog, "->");
859 if (value_optimized_out (value))
860 fprintf_unfiltered (gdb_stdlog, " optimized out");
861 else
862 {
863 if (VALUE_LVAL (value) == lval_register)
864 fprintf_unfiltered (gdb_stdlog, " register=%d",
865 VALUE_REGNUM (value));
866 else if (VALUE_LVAL (value) == lval_memory)
867 fprintf_unfiltered (gdb_stdlog, " address=%s",
868 paddress (gdbarch,
869 value_address (value)));
870 else
871 fprintf_unfiltered (gdb_stdlog, " computed");
872
873 if (value_lazy (value))
874 fprintf_unfiltered (gdb_stdlog, " lazy");
875 else
876 {
877 int i;
878 const gdb_byte *buf = value_contents (value);
879
880 fprintf_unfiltered (gdb_stdlog, " bytes=");
881 fprintf_unfiltered (gdb_stdlog, "[");
882 for (i = 0; i < register_size (gdbarch, regnum); i++)
883 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
884 fprintf_unfiltered (gdb_stdlog, "]");
885 }
886 }
887
888 fprintf_unfiltered (gdb_stdlog, " }\n");
889 }
890
891 return value;
892 }
893
894 struct value *
895 get_frame_register_value (struct frame_info *frame, int regnum)
896 {
897 return frame_unwind_register_value (frame->next, regnum);
898 }
899
900 LONGEST
901 frame_unwind_register_signed (struct frame_info *frame, int regnum)
902 {
903 struct gdbarch *gdbarch = frame_unwind_arch (frame);
904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905 int size = register_size (gdbarch, regnum);
906 gdb_byte buf[MAX_REGISTER_SIZE];
907
908 frame_unwind_register (frame, regnum, buf);
909 return extract_signed_integer (buf, size, byte_order);
910 }
911
912 LONGEST
913 get_frame_register_signed (struct frame_info *frame, int regnum)
914 {
915 return frame_unwind_register_signed (frame->next, regnum);
916 }
917
918 ULONGEST
919 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
920 {
921 struct gdbarch *gdbarch = frame_unwind_arch (frame);
922 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
923 int size = register_size (gdbarch, regnum);
924 gdb_byte buf[MAX_REGISTER_SIZE];
925
926 frame_unwind_register (frame, regnum, buf);
927 return extract_unsigned_integer (buf, size, byte_order);
928 }
929
930 ULONGEST
931 get_frame_register_unsigned (struct frame_info *frame, int regnum)
932 {
933 return frame_unwind_register_unsigned (frame->next, regnum);
934 }
935
936 void
937 put_frame_register (struct frame_info *frame, int regnum,
938 const gdb_byte *buf)
939 {
940 struct gdbarch *gdbarch = get_frame_arch (frame);
941 int realnum;
942 int optim;
943 enum lval_type lval;
944 CORE_ADDR addr;
945
946 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
947 if (optim)
948 error (_("Attempt to assign to a value that was optimized out."));
949 switch (lval)
950 {
951 case lval_memory:
952 {
953 /* FIXME: write_memory doesn't yet take constant buffers.
954 Arrrg! */
955 gdb_byte tmp[MAX_REGISTER_SIZE];
956
957 memcpy (tmp, buf, register_size (gdbarch, regnum));
958 write_memory (addr, tmp, register_size (gdbarch, regnum));
959 break;
960 }
961 case lval_register:
962 regcache_cooked_write (get_current_regcache (), realnum, buf);
963 break;
964 default:
965 error (_("Attempt to assign to an unmodifiable value."));
966 }
967 }
968
969 /* frame_register_read ()
970
971 Find and return the value of REGNUM for the specified stack frame.
972 The number of bytes copied is REGISTER_SIZE (REGNUM).
973
974 Returns 0 if the register value could not be found. */
975
976 int
977 frame_register_read (struct frame_info *frame, int regnum,
978 gdb_byte *myaddr)
979 {
980 int optimized;
981 enum lval_type lval;
982 CORE_ADDR addr;
983 int realnum;
984
985 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
986
987 return !optimized;
988 }
989
990 int
991 get_frame_register_bytes (struct frame_info *frame, int regnum,
992 CORE_ADDR offset, int len, gdb_byte *myaddr)
993 {
994 struct gdbarch *gdbarch = get_frame_arch (frame);
995 int i;
996 int maxsize;
997 int numregs;
998
999 /* Skip registers wholly inside of OFFSET. */
1000 while (offset >= register_size (gdbarch, regnum))
1001 {
1002 offset -= register_size (gdbarch, regnum);
1003 regnum++;
1004 }
1005
1006 /* Ensure that we will not read beyond the end of the register file.
1007 This can only ever happen if the debug information is bad. */
1008 maxsize = -offset;
1009 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1010 for (i = regnum; i < numregs; i++)
1011 {
1012 int thissize = register_size (gdbarch, i);
1013
1014 if (thissize == 0)
1015 break; /* This register is not available on this architecture. */
1016 maxsize += thissize;
1017 }
1018 if (len > maxsize)
1019 {
1020 warning (_("Bad debug information detected: "
1021 "Attempt to read %d bytes from registers."), len);
1022 return 0;
1023 }
1024
1025 /* Copy the data. */
1026 while (len > 0)
1027 {
1028 int curr_len = register_size (gdbarch, regnum) - offset;
1029
1030 if (curr_len > len)
1031 curr_len = len;
1032
1033 if (curr_len == register_size (gdbarch, regnum))
1034 {
1035 if (!frame_register_read (frame, regnum, myaddr))
1036 return 0;
1037 }
1038 else
1039 {
1040 gdb_byte buf[MAX_REGISTER_SIZE];
1041
1042 if (!frame_register_read (frame, regnum, buf))
1043 return 0;
1044 memcpy (myaddr, buf + offset, curr_len);
1045 }
1046
1047 myaddr += curr_len;
1048 len -= curr_len;
1049 offset = 0;
1050 regnum++;
1051 }
1052
1053 return 1;
1054 }
1055
1056 void
1057 put_frame_register_bytes (struct frame_info *frame, int regnum,
1058 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1059 {
1060 struct gdbarch *gdbarch = get_frame_arch (frame);
1061
1062 /* Skip registers wholly inside of OFFSET. */
1063 while (offset >= register_size (gdbarch, regnum))
1064 {
1065 offset -= register_size (gdbarch, regnum);
1066 regnum++;
1067 }
1068
1069 /* Copy the data. */
1070 while (len > 0)
1071 {
1072 int curr_len = register_size (gdbarch, regnum) - offset;
1073
1074 if (curr_len > len)
1075 curr_len = len;
1076
1077 if (curr_len == register_size (gdbarch, regnum))
1078 {
1079 put_frame_register (frame, regnum, myaddr);
1080 }
1081 else
1082 {
1083 gdb_byte buf[MAX_REGISTER_SIZE];
1084
1085 frame_register_read (frame, regnum, buf);
1086 memcpy (buf + offset, myaddr, curr_len);
1087 put_frame_register (frame, regnum, buf);
1088 }
1089
1090 myaddr += curr_len;
1091 len -= curr_len;
1092 offset = 0;
1093 regnum++;
1094 }
1095 }
1096
1097 /* Create a sentinel frame. */
1098
1099 static struct frame_info *
1100 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1101 {
1102 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1103
1104 frame->level = -1;
1105 frame->pspace = pspace;
1106 frame->aspace = get_regcache_aspace (regcache);
1107 /* Explicitly initialize the sentinel frame's cache. Provide it
1108 with the underlying regcache. In the future additional
1109 information, such as the frame's thread will be added. */
1110 frame->prologue_cache = sentinel_frame_cache (regcache);
1111 /* For the moment there is only one sentinel frame implementation. */
1112 frame->unwind = &sentinel_frame_unwind;
1113 /* Link this frame back to itself. The frame is self referential
1114 (the unwound PC is the same as the pc), so make it so. */
1115 frame->next = frame;
1116 /* Make the sentinel frame's ID valid, but invalid. That way all
1117 comparisons with it should fail. */
1118 frame->this_id.p = 1;
1119 frame->this_id.value = null_frame_id;
1120 if (frame_debug)
1121 {
1122 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1123 fprint_frame (gdb_stdlog, frame);
1124 fprintf_unfiltered (gdb_stdlog, " }\n");
1125 }
1126 return frame;
1127 }
1128
1129 /* Info about the innermost stack frame (contents of FP register). */
1130
1131 static struct frame_info *current_frame;
1132
1133 /* Cache for frame addresses already read by gdb. Valid only while
1134 inferior is stopped. Control variables for the frame cache should
1135 be local to this module. */
1136
1137 static struct obstack frame_cache_obstack;
1138
1139 void *
1140 frame_obstack_zalloc (unsigned long size)
1141 {
1142 void *data = obstack_alloc (&frame_cache_obstack, size);
1143
1144 memset (data, 0, size);
1145 return data;
1146 }
1147
1148 /* Return the innermost (currently executing) stack frame. This is
1149 split into two functions. The function unwind_to_current_frame()
1150 is wrapped in catch exceptions so that, even when the unwind of the
1151 sentinel frame fails, the function still returns a stack frame. */
1152
1153 static int
1154 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1155 {
1156 struct frame_info *frame = get_prev_frame (args);
1157
1158 /* A sentinel frame can fail to unwind, e.g., because its PC value
1159 lands in somewhere like start. */
1160 if (frame == NULL)
1161 return 1;
1162 current_frame = frame;
1163 return 0;
1164 }
1165
1166 struct frame_info *
1167 get_current_frame (void)
1168 {
1169 /* First check, and report, the lack of registers. Having GDB
1170 report "No stack!" or "No memory" when the target doesn't even
1171 have registers is very confusing. Besides, "printcmd.exp"
1172 explicitly checks that ``print $pc'' with no registers prints "No
1173 registers". */
1174 if (!target_has_registers)
1175 error (_("No registers."));
1176 if (!target_has_stack)
1177 error (_("No stack."));
1178 if (!target_has_memory)
1179 error (_("No memory."));
1180 /* Traceframes are effectively a substitute for the live inferior. */
1181 if (get_traceframe_number () < 0)
1182 {
1183 if (ptid_equal (inferior_ptid, null_ptid))
1184 error (_("No selected thread."));
1185 if (is_exited (inferior_ptid))
1186 error (_("Invalid selected thread."));
1187 if (is_executing (inferior_ptid))
1188 error (_("Target is executing."));
1189 }
1190
1191 if (current_frame == NULL)
1192 {
1193 struct frame_info *sentinel_frame =
1194 create_sentinel_frame (current_program_space, get_current_regcache ());
1195 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1196 RETURN_MASK_ERROR) != 0)
1197 {
1198 /* Oops! Fake a current frame? Is this useful? It has a PC
1199 of zero, for instance. */
1200 current_frame = sentinel_frame;
1201 }
1202 }
1203 return current_frame;
1204 }
1205
1206 /* The "selected" stack frame is used by default for local and arg
1207 access. May be zero, for no selected frame. */
1208
1209 static struct frame_info *selected_frame;
1210
1211 int
1212 has_stack_frames (void)
1213 {
1214 if (!target_has_registers || !target_has_stack || !target_has_memory)
1215 return 0;
1216
1217 /* No current inferior, no frame. */
1218 if (ptid_equal (inferior_ptid, null_ptid))
1219 return 0;
1220
1221 /* Don't try to read from a dead thread. */
1222 if (is_exited (inferior_ptid))
1223 return 0;
1224
1225 /* ... or from a spinning thread. */
1226 if (is_executing (inferior_ptid))
1227 return 0;
1228
1229 return 1;
1230 }
1231
1232 /* Return the selected frame. Always non-NULL (unless there isn't an
1233 inferior sufficient for creating a frame) in which case an error is
1234 thrown. */
1235
1236 struct frame_info *
1237 get_selected_frame (const char *message)
1238 {
1239 if (selected_frame == NULL)
1240 {
1241 if (message != NULL && !has_stack_frames ())
1242 error (("%s"), message);
1243 /* Hey! Don't trust this. It should really be re-finding the
1244 last selected frame of the currently selected thread. This,
1245 though, is better than nothing. */
1246 select_frame (get_current_frame ());
1247 }
1248 /* There is always a frame. */
1249 gdb_assert (selected_frame != NULL);
1250 return selected_frame;
1251 }
1252
1253 /* If there is a selected frame, return it. Otherwise, return NULL. */
1254
1255 struct frame_info *
1256 get_selected_frame_if_set (void)
1257 {
1258 return selected_frame;
1259 }
1260
1261 /* This is a variant of get_selected_frame() which can be called when
1262 the inferior does not have a frame; in that case it will return
1263 NULL instead of calling error(). */
1264
1265 struct frame_info *
1266 deprecated_safe_get_selected_frame (void)
1267 {
1268 if (!has_stack_frames ())
1269 return NULL;
1270 return get_selected_frame (NULL);
1271 }
1272
1273 /* Select frame FI (or NULL - to invalidate the current frame). */
1274
1275 void
1276 select_frame (struct frame_info *fi)
1277 {
1278 struct symtab *s;
1279
1280 selected_frame = fi;
1281 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1282 frame is being invalidated. */
1283 if (deprecated_selected_frame_level_changed_hook)
1284 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1285
1286 /* FIXME: kseitz/2002-08-28: It would be nice to call
1287 selected_frame_level_changed_event() right here, but due to limitations
1288 in the current interfaces, we would end up flooding UIs with events
1289 because select_frame() is used extensively internally.
1290
1291 Once we have frame-parameterized frame (and frame-related) commands,
1292 the event notification can be moved here, since this function will only
1293 be called when the user's selected frame is being changed. */
1294
1295 /* Ensure that symbols for this frame are read in. Also, determine the
1296 source language of this frame, and switch to it if desired. */
1297 if (fi)
1298 {
1299 /* We retrieve the frame's symtab by using the frame PC. However
1300 we cannot use the frame PC as-is, because it usually points to
1301 the instruction following the "call", which is sometimes the
1302 first instruction of another function. So we rely on
1303 get_frame_address_in_block() which provides us with a PC which
1304 is guaranteed to be inside the frame's code block. */
1305 s = find_pc_symtab (get_frame_address_in_block (fi));
1306 if (s
1307 && s->language != current_language->la_language
1308 && s->language != language_unknown
1309 && language_mode == language_mode_auto)
1310 {
1311 set_language (s->language);
1312 }
1313 }
1314 }
1315
1316 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1317 Always returns a non-NULL value. */
1318
1319 struct frame_info *
1320 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1321 {
1322 struct frame_info *fi;
1323
1324 if (frame_debug)
1325 {
1326 fprintf_unfiltered (gdb_stdlog,
1327 "{ create_new_frame (addr=%s, pc=%s) ",
1328 hex_string (addr), hex_string (pc));
1329 }
1330
1331 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1332
1333 fi->next = create_sentinel_frame (current_program_space,
1334 get_current_regcache ());
1335
1336 /* Set/update this frame's cached PC value, found in the next frame.
1337 Do this before looking for this frame's unwinder. A sniffer is
1338 very likely to read this, and the corresponding unwinder is
1339 entitled to rely that the PC doesn't magically change. */
1340 fi->next->prev_pc.value = pc;
1341 fi->next->prev_pc.p = 1;
1342
1343 /* We currently assume that frame chain's can't cross spaces. */
1344 fi->pspace = fi->next->pspace;
1345 fi->aspace = fi->next->aspace;
1346
1347 /* Select/initialize both the unwind function and the frame's type
1348 based on the PC. */
1349 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1350
1351 fi->this_id.p = 1;
1352 fi->this_id.value = frame_id_build (addr, pc);
1353
1354 if (frame_debug)
1355 {
1356 fprintf_unfiltered (gdb_stdlog, "-> ");
1357 fprint_frame (gdb_stdlog, fi);
1358 fprintf_unfiltered (gdb_stdlog, " }\n");
1359 }
1360
1361 return fi;
1362 }
1363
1364 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1365 innermost frame). Be careful to not fall off the bottom of the
1366 frame chain and onto the sentinel frame. */
1367
1368 struct frame_info *
1369 get_next_frame (struct frame_info *this_frame)
1370 {
1371 if (this_frame->level > 0)
1372 return this_frame->next;
1373 else
1374 return NULL;
1375 }
1376
1377 /* Observer for the target_changed event. */
1378
1379 static void
1380 frame_observer_target_changed (struct target_ops *target)
1381 {
1382 reinit_frame_cache ();
1383 }
1384
1385 /* Flush the entire frame cache. */
1386
1387 void
1388 reinit_frame_cache (void)
1389 {
1390 struct frame_info *fi;
1391
1392 /* Tear down all frame caches. */
1393 for (fi = current_frame; fi != NULL; fi = fi->prev)
1394 {
1395 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1396 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1397 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1398 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1399 }
1400
1401 /* Since we can't really be sure what the first object allocated was. */
1402 obstack_free (&frame_cache_obstack, 0);
1403 obstack_init (&frame_cache_obstack);
1404
1405 if (current_frame != NULL)
1406 annotate_frames_invalid ();
1407
1408 current_frame = NULL; /* Invalidate cache */
1409 select_frame (NULL);
1410 frame_stash_invalidate ();
1411 if (frame_debug)
1412 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1413 }
1414
1415 /* Find where a register is saved (in memory or another register).
1416 The result of frame_register_unwind is just where it is saved
1417 relative to this particular frame. */
1418
1419 static void
1420 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1421 int *optimizedp, enum lval_type *lvalp,
1422 CORE_ADDR *addrp, int *realnump)
1423 {
1424 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1425
1426 while (this_frame != NULL)
1427 {
1428 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1429 addrp, realnump, NULL);
1430
1431 if (*optimizedp)
1432 break;
1433
1434 if (*lvalp != lval_register)
1435 break;
1436
1437 regnum = *realnump;
1438 this_frame = get_next_frame (this_frame);
1439 }
1440 }
1441
1442 /* Return a "struct frame_info" corresponding to the frame that called
1443 THIS_FRAME. Returns NULL if there is no such frame.
1444
1445 Unlike get_prev_frame, this function always tries to unwind the
1446 frame. */
1447
1448 static struct frame_info *
1449 get_prev_frame_1 (struct frame_info *this_frame)
1450 {
1451 struct frame_id this_id;
1452 struct gdbarch *gdbarch;
1453
1454 gdb_assert (this_frame != NULL);
1455 gdbarch = get_frame_arch (this_frame);
1456
1457 if (frame_debug)
1458 {
1459 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1460 if (this_frame != NULL)
1461 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1462 else
1463 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1464 fprintf_unfiltered (gdb_stdlog, ") ");
1465 }
1466
1467 /* Only try to do the unwind once. */
1468 if (this_frame->prev_p)
1469 {
1470 if (frame_debug)
1471 {
1472 fprintf_unfiltered (gdb_stdlog, "-> ");
1473 fprint_frame (gdb_stdlog, this_frame->prev);
1474 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1475 }
1476 return this_frame->prev;
1477 }
1478
1479 /* If the frame unwinder hasn't been selected yet, we must do so
1480 before setting prev_p; otherwise the check for misbehaved
1481 sniffers will think that this frame's sniffer tried to unwind
1482 further (see frame_cleanup_after_sniffer). */
1483 if (this_frame->unwind == NULL)
1484 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1485
1486 this_frame->prev_p = 1;
1487 this_frame->stop_reason = UNWIND_NO_REASON;
1488
1489 /* If we are unwinding from an inline frame, all of the below tests
1490 were already performed when we unwound from the next non-inline
1491 frame. We must skip them, since we can not get THIS_FRAME's ID
1492 until we have unwound all the way down to the previous non-inline
1493 frame. */
1494 if (get_frame_type (this_frame) == INLINE_FRAME)
1495 return get_prev_frame_raw (this_frame);
1496
1497 /* Check that this frame's ID was valid. If it wasn't, don't try to
1498 unwind to the prev frame. Be careful to not apply this test to
1499 the sentinel frame. */
1500 this_id = get_frame_id (this_frame);
1501 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1502 {
1503 if (frame_debug)
1504 {
1505 fprintf_unfiltered (gdb_stdlog, "-> ");
1506 fprint_frame (gdb_stdlog, NULL);
1507 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1508 }
1509 this_frame->stop_reason = UNWIND_NULL_ID;
1510 return NULL;
1511 }
1512
1513 /* Check that this frame's ID isn't inner to (younger, below, next)
1514 the next frame. This happens when a frame unwind goes backwards.
1515 This check is valid only if this frame and the next frame are NORMAL.
1516 See the comment at frame_id_inner for details. */
1517 if (get_frame_type (this_frame) == NORMAL_FRAME
1518 && this_frame->next->unwind->type == NORMAL_FRAME
1519 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1520 get_frame_id (this_frame->next)))
1521 {
1522 CORE_ADDR this_pc_in_block;
1523 struct minimal_symbol *morestack_msym;
1524 const char *morestack_name = NULL;
1525
1526 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1527 this_pc_in_block = get_frame_address_in_block (this_frame);
1528 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1529 if (morestack_msym)
1530 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1531 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1532 {
1533 if (frame_debug)
1534 {
1535 fprintf_unfiltered (gdb_stdlog, "-> ");
1536 fprint_frame (gdb_stdlog, NULL);
1537 fprintf_unfiltered (gdb_stdlog,
1538 " // this frame ID is inner }\n");
1539 }
1540 this_frame->stop_reason = UNWIND_INNER_ID;
1541 return NULL;
1542 }
1543 }
1544
1545 /* Check that this and the next frame are not identical. If they
1546 are, there is most likely a stack cycle. As with the inner-than
1547 test above, avoid comparing the inner-most and sentinel frames. */
1548 if (this_frame->level > 0
1549 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1550 {
1551 if (frame_debug)
1552 {
1553 fprintf_unfiltered (gdb_stdlog, "-> ");
1554 fprint_frame (gdb_stdlog, NULL);
1555 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1556 }
1557 this_frame->stop_reason = UNWIND_SAME_ID;
1558 return NULL;
1559 }
1560
1561 /* Check that this and the next frame do not unwind the PC register
1562 to the same memory location. If they do, then even though they
1563 have different frame IDs, the new frame will be bogus; two
1564 functions can't share a register save slot for the PC. This can
1565 happen when the prologue analyzer finds a stack adjustment, but
1566 no PC save.
1567
1568 This check does assume that the "PC register" is roughly a
1569 traditional PC, even if the gdbarch_unwind_pc method adjusts
1570 it (we do not rely on the value, only on the unwound PC being
1571 dependent on this value). A potential improvement would be
1572 to have the frame prev_pc method and the gdbarch unwind_pc
1573 method set the same lval and location information as
1574 frame_register_unwind. */
1575 if (this_frame->level > 0
1576 && gdbarch_pc_regnum (gdbarch) >= 0
1577 && get_frame_type (this_frame) == NORMAL_FRAME
1578 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1579 || get_frame_type (this_frame->next) == INLINE_FRAME))
1580 {
1581 int optimized, realnum, nrealnum;
1582 enum lval_type lval, nlval;
1583 CORE_ADDR addr, naddr;
1584
1585 frame_register_unwind_location (this_frame,
1586 gdbarch_pc_regnum (gdbarch),
1587 &optimized, &lval, &addr, &realnum);
1588 frame_register_unwind_location (get_next_frame (this_frame),
1589 gdbarch_pc_regnum (gdbarch),
1590 &optimized, &nlval, &naddr, &nrealnum);
1591
1592 if ((lval == lval_memory && lval == nlval && addr == naddr)
1593 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1594 {
1595 if (frame_debug)
1596 {
1597 fprintf_unfiltered (gdb_stdlog, "-> ");
1598 fprint_frame (gdb_stdlog, NULL);
1599 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1600 }
1601
1602 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1603 this_frame->prev = NULL;
1604 return NULL;
1605 }
1606 }
1607
1608 return get_prev_frame_raw (this_frame);
1609 }
1610
1611 /* Construct a new "struct frame_info" and link it previous to
1612 this_frame. */
1613
1614 static struct frame_info *
1615 get_prev_frame_raw (struct frame_info *this_frame)
1616 {
1617 struct frame_info *prev_frame;
1618
1619 /* Allocate the new frame but do not wire it in to the frame chain.
1620 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1621 frame->next to pull some fancy tricks (of course such code is, by
1622 definition, recursive). Try to prevent it.
1623
1624 There is no reason to worry about memory leaks, should the
1625 remainder of the function fail. The allocated memory will be
1626 quickly reclaimed when the frame cache is flushed, and the `we've
1627 been here before' check above will stop repeated memory
1628 allocation calls. */
1629 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1630 prev_frame->level = this_frame->level + 1;
1631
1632 /* For now, assume we don't have frame chains crossing address
1633 spaces. */
1634 prev_frame->pspace = this_frame->pspace;
1635 prev_frame->aspace = this_frame->aspace;
1636
1637 /* Don't yet compute ->unwind (and hence ->type). It is computed
1638 on-demand in get_frame_type, frame_register_unwind, and
1639 get_frame_id. */
1640
1641 /* Don't yet compute the frame's ID. It is computed on-demand by
1642 get_frame_id(). */
1643
1644 /* The unwound frame ID is validate at the start of this function,
1645 as part of the logic to decide if that frame should be further
1646 unwound, and not here while the prev frame is being created.
1647 Doing this makes it possible for the user to examine a frame that
1648 has an invalid frame ID.
1649
1650 Some very old VAX code noted: [...] For the sake of argument,
1651 suppose that the stack is somewhat trashed (which is one reason
1652 that "info frame" exists). So, return 0 (indicating we don't
1653 know the address of the arglist) if we don't know what frame this
1654 frame calls. */
1655
1656 /* Link it in. */
1657 this_frame->prev = prev_frame;
1658 prev_frame->next = this_frame;
1659
1660 if (frame_debug)
1661 {
1662 fprintf_unfiltered (gdb_stdlog, "-> ");
1663 fprint_frame (gdb_stdlog, prev_frame);
1664 fprintf_unfiltered (gdb_stdlog, " }\n");
1665 }
1666
1667 return prev_frame;
1668 }
1669
1670 /* Debug routine to print a NULL frame being returned. */
1671
1672 static void
1673 frame_debug_got_null_frame (struct frame_info *this_frame,
1674 const char *reason)
1675 {
1676 if (frame_debug)
1677 {
1678 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1679 if (this_frame != NULL)
1680 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1681 else
1682 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1683 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1684 }
1685 }
1686
1687 /* Is this (non-sentinel) frame in the "main"() function? */
1688
1689 static int
1690 inside_main_func (struct frame_info *this_frame)
1691 {
1692 struct minimal_symbol *msymbol;
1693 CORE_ADDR maddr;
1694
1695 if (symfile_objfile == 0)
1696 return 0;
1697 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1698 if (msymbol == NULL)
1699 return 0;
1700 /* Make certain that the code, and not descriptor, address is
1701 returned. */
1702 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1703 SYMBOL_VALUE_ADDRESS (msymbol),
1704 &current_target);
1705 return maddr == get_frame_func (this_frame);
1706 }
1707
1708 /* Test whether THIS_FRAME is inside the process entry point function. */
1709
1710 static int
1711 inside_entry_func (struct frame_info *this_frame)
1712 {
1713 CORE_ADDR entry_point;
1714
1715 if (!entry_point_address_query (&entry_point))
1716 return 0;
1717
1718 return get_frame_func (this_frame) == entry_point;
1719 }
1720
1721 /* Return a structure containing various interesting information about
1722 the frame that called THIS_FRAME. Returns NULL if there is entier
1723 no such frame or the frame fails any of a set of target-independent
1724 condition that should terminate the frame chain (e.g., as unwinding
1725 past main()).
1726
1727 This function should not contain target-dependent tests, such as
1728 checking whether the program-counter is zero. */
1729
1730 struct frame_info *
1731 get_prev_frame (struct frame_info *this_frame)
1732 {
1733 /* There is always a frame. If this assertion fails, suspect that
1734 something should be calling get_selected_frame() or
1735 get_current_frame(). */
1736 gdb_assert (this_frame != NULL);
1737
1738 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1739 sense to stop unwinding at a dummy frame. One place where a dummy
1740 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1741 pcsqh register (space register for the instruction at the head of the
1742 instruction queue) cannot be written directly; the only way to set it
1743 is to branch to code that is in the target space. In order to implement
1744 frame dummies on HPUX, the called function is made to jump back to where
1745 the inferior was when the user function was called. If gdb was inside
1746 the main function when we created the dummy frame, the dummy frame will
1747 point inside the main function. */
1748 if (this_frame->level >= 0
1749 && get_frame_type (this_frame) == NORMAL_FRAME
1750 && !backtrace_past_main
1751 && inside_main_func (this_frame))
1752 /* Don't unwind past main(). Note, this is done _before_ the
1753 frame has been marked as previously unwound. That way if the
1754 user later decides to enable unwinds past main(), that will
1755 automatically happen. */
1756 {
1757 frame_debug_got_null_frame (this_frame, "inside main func");
1758 return NULL;
1759 }
1760
1761 /* If the user's backtrace limit has been exceeded, stop. We must
1762 add two to the current level; one of those accounts for backtrace_limit
1763 being 1-based and the level being 0-based, and the other accounts for
1764 the level of the new frame instead of the level of the current
1765 frame. */
1766 if (this_frame->level + 2 > backtrace_limit)
1767 {
1768 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1769 return NULL;
1770 }
1771
1772 /* If we're already inside the entry function for the main objfile,
1773 then it isn't valid. Don't apply this test to a dummy frame -
1774 dummy frame PCs typically land in the entry func. Don't apply
1775 this test to the sentinel frame. Sentinel frames should always
1776 be allowed to unwind. */
1777 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1778 wasn't checking for "main" in the minimal symbols. With that
1779 fixed asm-source tests now stop in "main" instead of halting the
1780 backtrace in weird and wonderful ways somewhere inside the entry
1781 file. Suspect that tests for inside the entry file/func were
1782 added to work around that (now fixed) case. */
1783 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1784 suggested having the inside_entry_func test use the
1785 inside_main_func() msymbol trick (along with entry_point_address()
1786 I guess) to determine the address range of the start function.
1787 That should provide a far better stopper than the current
1788 heuristics. */
1789 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1790 applied tail-call optimizations to main so that a function called
1791 from main returns directly to the caller of main. Since we don't
1792 stop at main, we should at least stop at the entry point of the
1793 application. */
1794 if (this_frame->level >= 0
1795 && get_frame_type (this_frame) == NORMAL_FRAME
1796 && !backtrace_past_entry
1797 && inside_entry_func (this_frame))
1798 {
1799 frame_debug_got_null_frame (this_frame, "inside entry func");
1800 return NULL;
1801 }
1802
1803 /* Assume that the only way to get a zero PC is through something
1804 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1805 will never unwind a zero PC. */
1806 if (this_frame->level > 0
1807 && (get_frame_type (this_frame) == NORMAL_FRAME
1808 || get_frame_type (this_frame) == INLINE_FRAME)
1809 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1810 && get_frame_pc (this_frame) == 0)
1811 {
1812 frame_debug_got_null_frame (this_frame, "zero PC");
1813 return NULL;
1814 }
1815
1816 return get_prev_frame_1 (this_frame);
1817 }
1818
1819 CORE_ADDR
1820 get_frame_pc (struct frame_info *frame)
1821 {
1822 gdb_assert (frame->next != NULL);
1823 return frame_unwind_pc (frame->next);
1824 }
1825
1826 /* Return an address that falls within THIS_FRAME's code block. */
1827
1828 CORE_ADDR
1829 get_frame_address_in_block (struct frame_info *this_frame)
1830 {
1831 /* A draft address. */
1832 CORE_ADDR pc = get_frame_pc (this_frame);
1833
1834 struct frame_info *next_frame = this_frame->next;
1835
1836 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1837 Normally the resume address is inside the body of the function
1838 associated with THIS_FRAME, but there is a special case: when
1839 calling a function which the compiler knows will never return
1840 (for instance abort), the call may be the very last instruction
1841 in the calling function. The resume address will point after the
1842 call and may be at the beginning of a different function
1843 entirely.
1844
1845 If THIS_FRAME is a signal frame or dummy frame, then we should
1846 not adjust the unwound PC. For a dummy frame, GDB pushed the
1847 resume address manually onto the stack. For a signal frame, the
1848 OS may have pushed the resume address manually and invoked the
1849 handler (e.g. GNU/Linux), or invoked the trampoline which called
1850 the signal handler - but in either case the signal handler is
1851 expected to return to the trampoline. So in both of these
1852 cases we know that the resume address is executable and
1853 related. So we only need to adjust the PC if THIS_FRAME
1854 is a normal function.
1855
1856 If the program has been interrupted while THIS_FRAME is current,
1857 then clearly the resume address is inside the associated
1858 function. There are three kinds of interruption: debugger stop
1859 (next frame will be SENTINEL_FRAME), operating system
1860 signal or exception (next frame will be SIGTRAMP_FRAME),
1861 or debugger-induced function call (next frame will be
1862 DUMMY_FRAME). So we only need to adjust the PC if
1863 NEXT_FRAME is a normal function.
1864
1865 We check the type of NEXT_FRAME first, since it is already
1866 known; frame type is determined by the unwinder, and since
1867 we have THIS_FRAME we've already selected an unwinder for
1868 NEXT_FRAME.
1869
1870 If the next frame is inlined, we need to keep going until we find
1871 the real function - for instance, if a signal handler is invoked
1872 while in an inlined function, then the code address of the
1873 "calling" normal function should not be adjusted either. */
1874
1875 while (get_frame_type (next_frame) == INLINE_FRAME)
1876 next_frame = next_frame->next;
1877
1878 if (get_frame_type (next_frame) == NORMAL_FRAME
1879 && (get_frame_type (this_frame) == NORMAL_FRAME
1880 || get_frame_type (this_frame) == INLINE_FRAME))
1881 return pc - 1;
1882
1883 return pc;
1884 }
1885
1886 void
1887 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1888 {
1889 struct frame_info *next_frame;
1890 int notcurrent;
1891
1892 /* If the next frame represents an inlined function call, this frame's
1893 sal is the "call site" of that inlined function, which can not
1894 be inferred from get_frame_pc. */
1895 next_frame = get_next_frame (frame);
1896 if (frame_inlined_callees (frame) > 0)
1897 {
1898 struct symbol *sym;
1899
1900 if (next_frame)
1901 sym = get_frame_function (next_frame);
1902 else
1903 sym = inline_skipped_symbol (inferior_ptid);
1904
1905 /* If frame is inline, it certainly has symbols. */
1906 gdb_assert (sym);
1907 init_sal (sal);
1908 if (SYMBOL_LINE (sym) != 0)
1909 {
1910 sal->symtab = SYMBOL_SYMTAB (sym);
1911 sal->line = SYMBOL_LINE (sym);
1912 }
1913 else
1914 /* If the symbol does not have a location, we don't know where
1915 the call site is. Do not pretend to. This is jarring, but
1916 we can't do much better. */
1917 sal->pc = get_frame_pc (frame);
1918
1919 return;
1920 }
1921
1922 /* If FRAME is not the innermost frame, that normally means that
1923 FRAME->pc points at the return instruction (which is *after* the
1924 call instruction), and we want to get the line containing the
1925 call (because the call is where the user thinks the program is).
1926 However, if the next frame is either a SIGTRAMP_FRAME or a
1927 DUMMY_FRAME, then the next frame will contain a saved interrupt
1928 PC and such a PC indicates the current (rather than next)
1929 instruction/line, consequently, for such cases, want to get the
1930 line containing fi->pc. */
1931 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1932 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1933 }
1934
1935 /* Per "frame.h", return the ``address'' of the frame. Code should
1936 really be using get_frame_id(). */
1937 CORE_ADDR
1938 get_frame_base (struct frame_info *fi)
1939 {
1940 return get_frame_id (fi).stack_addr;
1941 }
1942
1943 /* High-level offsets into the frame. Used by the debug info. */
1944
1945 CORE_ADDR
1946 get_frame_base_address (struct frame_info *fi)
1947 {
1948 if (get_frame_type (fi) != NORMAL_FRAME)
1949 return 0;
1950 if (fi->base == NULL)
1951 fi->base = frame_base_find_by_frame (fi);
1952 /* Sneaky: If the low-level unwind and high-level base code share a
1953 common unwinder, let them share the prologue cache. */
1954 if (fi->base->unwind == fi->unwind)
1955 return fi->base->this_base (fi, &fi->prologue_cache);
1956 return fi->base->this_base (fi, &fi->base_cache);
1957 }
1958
1959 CORE_ADDR
1960 get_frame_locals_address (struct frame_info *fi)
1961 {
1962 if (get_frame_type (fi) != NORMAL_FRAME)
1963 return 0;
1964 /* If there isn't a frame address method, find it. */
1965 if (fi->base == NULL)
1966 fi->base = frame_base_find_by_frame (fi);
1967 /* Sneaky: If the low-level unwind and high-level base code share a
1968 common unwinder, let them share the prologue cache. */
1969 if (fi->base->unwind == fi->unwind)
1970 return fi->base->this_locals (fi, &fi->prologue_cache);
1971 return fi->base->this_locals (fi, &fi->base_cache);
1972 }
1973
1974 CORE_ADDR
1975 get_frame_args_address (struct frame_info *fi)
1976 {
1977 if (get_frame_type (fi) != NORMAL_FRAME)
1978 return 0;
1979 /* If there isn't a frame address method, find it. */
1980 if (fi->base == NULL)
1981 fi->base = frame_base_find_by_frame (fi);
1982 /* Sneaky: If the low-level unwind and high-level base code share a
1983 common unwinder, let them share the prologue cache. */
1984 if (fi->base->unwind == fi->unwind)
1985 return fi->base->this_args (fi, &fi->prologue_cache);
1986 return fi->base->this_args (fi, &fi->base_cache);
1987 }
1988
1989 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1990 otherwise. */
1991
1992 int
1993 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1994 {
1995 if (fi->unwind == NULL)
1996 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1997 return fi->unwind == unwinder;
1998 }
1999
2000 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2001 or -1 for a NULL frame. */
2002
2003 int
2004 frame_relative_level (struct frame_info *fi)
2005 {
2006 if (fi == NULL)
2007 return -1;
2008 else
2009 return fi->level;
2010 }
2011
2012 enum frame_type
2013 get_frame_type (struct frame_info *frame)
2014 {
2015 if (frame->unwind == NULL)
2016 /* Initialize the frame's unwinder because that's what
2017 provides the frame's type. */
2018 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2019 return frame->unwind->type;
2020 }
2021
2022 struct program_space *
2023 get_frame_program_space (struct frame_info *frame)
2024 {
2025 return frame->pspace;
2026 }
2027
2028 struct program_space *
2029 frame_unwind_program_space (struct frame_info *this_frame)
2030 {
2031 gdb_assert (this_frame);
2032
2033 /* This is really a placeholder to keep the API consistent --- we
2034 assume for now that we don't have frame chains crossing
2035 spaces. */
2036 return this_frame->pspace;
2037 }
2038
2039 struct address_space *
2040 get_frame_address_space (struct frame_info *frame)
2041 {
2042 return frame->aspace;
2043 }
2044
2045 /* Memory access methods. */
2046
2047 void
2048 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2049 gdb_byte *buf, int len)
2050 {
2051 read_memory (addr, buf, len);
2052 }
2053
2054 LONGEST
2055 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2056 int len)
2057 {
2058 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2060
2061 return read_memory_integer (addr, len, byte_order);
2062 }
2063
2064 ULONGEST
2065 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2066 int len)
2067 {
2068 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2069 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2070
2071 return read_memory_unsigned_integer (addr, len, byte_order);
2072 }
2073
2074 int
2075 safe_frame_unwind_memory (struct frame_info *this_frame,
2076 CORE_ADDR addr, gdb_byte *buf, int len)
2077 {
2078 /* NOTE: target_read_memory returns zero on success! */
2079 return !target_read_memory (addr, buf, len);
2080 }
2081
2082 /* Architecture methods. */
2083
2084 struct gdbarch *
2085 get_frame_arch (struct frame_info *this_frame)
2086 {
2087 return frame_unwind_arch (this_frame->next);
2088 }
2089
2090 struct gdbarch *
2091 frame_unwind_arch (struct frame_info *next_frame)
2092 {
2093 if (!next_frame->prev_arch.p)
2094 {
2095 struct gdbarch *arch;
2096
2097 if (next_frame->unwind == NULL)
2098 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2099
2100 if (next_frame->unwind->prev_arch != NULL)
2101 arch = next_frame->unwind->prev_arch (next_frame,
2102 &next_frame->prologue_cache);
2103 else
2104 arch = get_frame_arch (next_frame);
2105
2106 next_frame->prev_arch.arch = arch;
2107 next_frame->prev_arch.p = 1;
2108 if (frame_debug)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2111 next_frame->level,
2112 gdbarch_bfd_arch_info (arch)->printable_name);
2113 }
2114
2115 return next_frame->prev_arch.arch;
2116 }
2117
2118 struct gdbarch *
2119 frame_unwind_caller_arch (struct frame_info *next_frame)
2120 {
2121 return frame_unwind_arch (skip_inlined_frames (next_frame));
2122 }
2123
2124 /* Stack pointer methods. */
2125
2126 CORE_ADDR
2127 get_frame_sp (struct frame_info *this_frame)
2128 {
2129 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2130
2131 /* Normality - an architecture that provides a way of obtaining any
2132 frame inner-most address. */
2133 if (gdbarch_unwind_sp_p (gdbarch))
2134 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2135 operate on THIS_FRAME now. */
2136 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2137 /* Now things are really are grim. Hope that the value returned by
2138 the gdbarch_sp_regnum register is meaningful. */
2139 if (gdbarch_sp_regnum (gdbarch) >= 0)
2140 return get_frame_register_unsigned (this_frame,
2141 gdbarch_sp_regnum (gdbarch));
2142 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2143 }
2144
2145 /* Return the reason why we can't unwind past FRAME. */
2146
2147 enum unwind_stop_reason
2148 get_frame_unwind_stop_reason (struct frame_info *frame)
2149 {
2150 /* If we haven't tried to unwind past this point yet, then assume
2151 that unwinding would succeed. */
2152 if (frame->prev_p == 0)
2153 return UNWIND_NO_REASON;
2154
2155 /* Otherwise, we set a reason when we succeeded (or failed) to
2156 unwind. */
2157 return frame->stop_reason;
2158 }
2159
2160 /* Return a string explaining REASON. */
2161
2162 const char *
2163 frame_stop_reason_string (enum unwind_stop_reason reason)
2164 {
2165 switch (reason)
2166 {
2167 case UNWIND_NULL_ID:
2168 return _("unwinder did not report frame ID");
2169
2170 case UNWIND_INNER_ID:
2171 return _("previous frame inner to this frame (corrupt stack?)");
2172
2173 case UNWIND_SAME_ID:
2174 return _("previous frame identical to this frame (corrupt stack?)");
2175
2176 case UNWIND_NO_SAVED_PC:
2177 return _("frame did not save the PC");
2178
2179 case UNWIND_NO_REASON:
2180 case UNWIND_FIRST_ERROR:
2181 default:
2182 internal_error (__FILE__, __LINE__,
2183 "Invalid frame stop reason");
2184 }
2185 }
2186
2187 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2188 FRAME. */
2189
2190 static void
2191 frame_cleanup_after_sniffer (void *arg)
2192 {
2193 struct frame_info *frame = arg;
2194
2195 /* The sniffer should not allocate a prologue cache if it did not
2196 match this frame. */
2197 gdb_assert (frame->prologue_cache == NULL);
2198
2199 /* No sniffer should extend the frame chain; sniff based on what is
2200 already certain. */
2201 gdb_assert (!frame->prev_p);
2202
2203 /* The sniffer should not check the frame's ID; that's circular. */
2204 gdb_assert (!frame->this_id.p);
2205
2206 /* Clear cached fields dependent on the unwinder.
2207
2208 The previous PC is independent of the unwinder, but the previous
2209 function is not (see get_frame_address_in_block). */
2210 frame->prev_func.p = 0;
2211 frame->prev_func.addr = 0;
2212
2213 /* Discard the unwinder last, so that we can easily find it if an assertion
2214 in this function triggers. */
2215 frame->unwind = NULL;
2216 }
2217
2218 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2219 Return a cleanup which should be called if unwinding fails, and
2220 discarded if it succeeds. */
2221
2222 struct cleanup *
2223 frame_prepare_for_sniffer (struct frame_info *frame,
2224 const struct frame_unwind *unwind)
2225 {
2226 gdb_assert (frame->unwind == NULL);
2227 frame->unwind = unwind;
2228 return make_cleanup (frame_cleanup_after_sniffer, frame);
2229 }
2230
2231 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2232
2233 static struct cmd_list_element *set_backtrace_cmdlist;
2234 static struct cmd_list_element *show_backtrace_cmdlist;
2235
2236 static void
2237 set_backtrace_cmd (char *args, int from_tty)
2238 {
2239 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2240 }
2241
2242 static void
2243 show_backtrace_cmd (char *args, int from_tty)
2244 {
2245 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2246 }
2247
2248 void
2249 _initialize_frame (void)
2250 {
2251 obstack_init (&frame_cache_obstack);
2252
2253 observer_attach_target_changed (frame_observer_target_changed);
2254
2255 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2256 Set backtrace specific variables.\n\
2257 Configure backtrace variables such as the backtrace limit"),
2258 &set_backtrace_cmdlist, "set backtrace ",
2259 0/*allow-unknown*/, &setlist);
2260 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2261 Show backtrace specific variables\n\
2262 Show backtrace variables such as the backtrace limit"),
2263 &show_backtrace_cmdlist, "show backtrace ",
2264 0/*allow-unknown*/, &showlist);
2265
2266 add_setshow_boolean_cmd ("past-main", class_obscure,
2267 &backtrace_past_main, _("\
2268 Set whether backtraces should continue past \"main\"."), _("\
2269 Show whether backtraces should continue past \"main\"."), _("\
2270 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2271 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2272 of the stack trace."),
2273 NULL,
2274 show_backtrace_past_main,
2275 &set_backtrace_cmdlist,
2276 &show_backtrace_cmdlist);
2277
2278 add_setshow_boolean_cmd ("past-entry", class_obscure,
2279 &backtrace_past_entry, _("\
2280 Set whether backtraces should continue past the entry point of a program."),
2281 _("\
2282 Show whether backtraces should continue past the entry point of a program."),
2283 _("\
2284 Normally there are no callers beyond the entry point of a program, so GDB\n\
2285 will terminate the backtrace there. Set this variable if you need to see\n\
2286 the rest of the stack trace."),
2287 NULL,
2288 show_backtrace_past_entry,
2289 &set_backtrace_cmdlist,
2290 &show_backtrace_cmdlist);
2291
2292 add_setshow_integer_cmd ("limit", class_obscure,
2293 &backtrace_limit, _("\
2294 Set an upper bound on the number of backtrace levels."), _("\
2295 Show the upper bound on the number of backtrace levels."), _("\
2296 No more than the specified number of frames can be displayed or examined.\n\
2297 Zero is unlimited."),
2298 NULL,
2299 show_backtrace_limit,
2300 &set_backtrace_cmdlist,
2301 &show_backtrace_cmdlist);
2302
2303 /* Debug this files internals. */
2304 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2305 Set frame debugging."), _("\
2306 Show frame debugging."), _("\
2307 When non-zero, frame specific internal debugging is enabled."),
2308 NULL,
2309 show_frame_debug,
2310 &setdebuglist, &showdebuglist);
2311 }
This page took 0.079962 seconds and 4 git commands to generate.