* m68k-tdep.c (m68k_ps_type): New.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "inferior.h" /* for inferior_ptid */
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "user-regs.h"
32 #include "gdb_obstack.h"
33 #include "dummy-frame.h"
34 #include "sentinel-frame.h"
35 #include "gdbcore.h"
36 #include "annotate.h"
37 #include "language.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "command.h"
41 #include "gdbcmd.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
47
48 /* We keep a cache of stack frames, each of which is a "struct
49 frame_info". The innermost one gets allocated (in
50 wait_for_inferior) each time the inferior stops; current_frame
51 points to it. Additional frames get allocated (in get_prev_frame)
52 as needed, and are chained through the next and prev fields. Any
53 time that the frame cache becomes invalid (most notably when we
54 execute something, but also if we change how we interpret the
55 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
56 which reads new symbols)), we should call reinit_frame_cache. */
57
58 struct frame_info
59 {
60 /* Level of this frame. The inner-most (youngest) frame is at level
61 0. As you move towards the outer-most (oldest) frame, the level
62 increases. This is a cached value. It could just as easily be
63 computed by counting back from the selected frame to the inner
64 most frame. */
65 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
66 reserved to indicate a bogus frame - one that has been created
67 just to keep GDB happy (GDB always needs a frame). For the
68 moment leave this as speculation. */
69 int level;
70
71 /* The frame's low-level unwinder and corresponding cache. The
72 low-level unwinder is responsible for unwinding register values
73 for the previous frame. The low-level unwind methods are
74 selected based on the presence, or otherwise, of register unwind
75 information such as CFI. */
76 void *prologue_cache;
77 const struct frame_unwind *unwind;
78
79 /* Cached copy of the previous frame's resume address. */
80 struct {
81 int p;
82 CORE_ADDR value;
83 } prev_pc;
84
85 /* Cached copy of the previous frame's function address. */
86 struct
87 {
88 CORE_ADDR addr;
89 int p;
90 } prev_func;
91
92 /* This frame's ID. */
93 struct
94 {
95 int p;
96 struct frame_id value;
97 } this_id;
98
99 /* The frame's high-level base methods, and corresponding cache.
100 The high level base methods are selected based on the frame's
101 debug info. */
102 const struct frame_base *base;
103 void *base_cache;
104
105 /* Pointers to the next (down, inner, younger) and previous (up,
106 outer, older) frame_info's in the frame cache. */
107 struct frame_info *next; /* down, inner, younger */
108 int prev_p;
109 struct frame_info *prev; /* up, outer, older */
110
111 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
112 could. Only valid when PREV_P is set. */
113 enum unwind_stop_reason stop_reason;
114 };
115
116 /* Flag to control debugging. */
117
118 static int frame_debug;
119 static void
120 show_frame_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
124 }
125
126 /* Flag to indicate whether backtraces should stop at main et.al. */
127
128 static int backtrace_past_main;
129 static void
130 show_backtrace_past_main (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Whether backtraces should continue past \"main\" is %s.\n"),
135 value);
136 }
137
138 static int backtrace_past_entry;
139 static void
140 show_backtrace_past_entry (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Whether backtraces should continue past the entry point of a program is %s.\n"),
145 value);
146 }
147
148 static int backtrace_limit = INT_MAX;
149 static void
150 show_backtrace_limit (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("\
154 An upper bound on the number of backtrace levels is %s.\n"),
155 value);
156 }
157
158
159 static void
160 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
161 {
162 if (p)
163 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
164 else
165 fprintf_unfiltered (file, "!%s", name);
166 }
167
168 void
169 fprint_frame_id (struct ui_file *file, struct frame_id id)
170 {
171 fprintf_unfiltered (file, "{");
172 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "code", id.code_addr_p, id.code_addr);
175 fprintf_unfiltered (file, ",");
176 fprint_field (file, "special", id.special_addr_p, id.special_addr);
177 fprintf_unfiltered (file, "}");
178 }
179
180 static void
181 fprint_frame_type (struct ui_file *file, enum frame_type type)
182 {
183 switch (type)
184 {
185 case NORMAL_FRAME:
186 fprintf_unfiltered (file, "NORMAL_FRAME");
187 return;
188 case DUMMY_FRAME:
189 fprintf_unfiltered (file, "DUMMY_FRAME");
190 return;
191 case SIGTRAMP_FRAME:
192 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
193 return;
194 default:
195 fprintf_unfiltered (file, "<unknown type>");
196 return;
197 };
198 }
199
200 static void
201 fprint_frame (struct ui_file *file, struct frame_info *fi)
202 {
203 if (fi == NULL)
204 {
205 fprintf_unfiltered (file, "<NULL frame>");
206 return;
207 }
208 fprintf_unfiltered (file, "{");
209 fprintf_unfiltered (file, "level=%d", fi->level);
210 fprintf_unfiltered (file, ",");
211 fprintf_unfiltered (file, "type=");
212 if (fi->unwind != NULL)
213 fprint_frame_type (file, fi->unwind->type);
214 else
215 fprintf_unfiltered (file, "<unknown>");
216 fprintf_unfiltered (file, ",");
217 fprintf_unfiltered (file, "unwind=");
218 if (fi->unwind != NULL)
219 gdb_print_host_address (fi->unwind, file);
220 else
221 fprintf_unfiltered (file, "<unknown>");
222 fprintf_unfiltered (file, ",");
223 fprintf_unfiltered (file, "pc=");
224 if (fi->next != NULL && fi->next->prev_pc.p)
225 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
226 else
227 fprintf_unfiltered (file, "<unknown>");
228 fprintf_unfiltered (file, ",");
229 fprintf_unfiltered (file, "id=");
230 if (fi->this_id.p)
231 fprint_frame_id (file, fi->this_id.value);
232 else
233 fprintf_unfiltered (file, "<unknown>");
234 fprintf_unfiltered (file, ",");
235 fprintf_unfiltered (file, "func=");
236 if (fi->next != NULL && fi->next->prev_func.p)
237 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
238 else
239 fprintf_unfiltered (file, "<unknown>");
240 fprintf_unfiltered (file, "}");
241 }
242
243 /* Return a frame uniq ID that can be used to, later, re-find the
244 frame. */
245
246 struct frame_id
247 get_frame_id (struct frame_info *fi)
248 {
249 if (fi == NULL)
250 {
251 return null_frame_id;
252 }
253 if (!fi->this_id.p)
254 {
255 if (frame_debug)
256 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
257 fi->level);
258 /* Find the unwinder. */
259 if (fi->unwind == NULL)
260 fi->unwind = frame_unwind_find_by_frame (fi->next,
261 &fi->prologue_cache);
262 /* Find THIS frame's ID. */
263 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
264 fi->this_id.p = 1;
265 if (frame_debug)
266 {
267 fprintf_unfiltered (gdb_stdlog, "-> ");
268 fprint_frame_id (gdb_stdlog, fi->this_id.value);
269 fprintf_unfiltered (gdb_stdlog, " }\n");
270 }
271 }
272 return fi->this_id.value;
273 }
274
275 struct frame_id
276 frame_unwind_id (struct frame_info *next_frame)
277 {
278 /* Use prev_frame, and not get_prev_frame. The latter will truncate
279 the frame chain, leading to this function unintentionally
280 returning a null_frame_id (e.g., when a caller requests the frame
281 ID of "main()"s caller. */
282 return get_frame_id (get_prev_frame_1 (next_frame));
283 }
284
285 const struct frame_id null_frame_id; /* All zeros. */
286
287 struct frame_id
288 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
289 CORE_ADDR special_addr)
290 {
291 struct frame_id id = null_frame_id;
292 id.stack_addr = stack_addr;
293 id.stack_addr_p = 1;
294 id.code_addr = code_addr;
295 id.code_addr_p = 1;
296 id.special_addr = special_addr;
297 id.special_addr_p = 1;
298 return id;
299 }
300
301 struct frame_id
302 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
303 {
304 struct frame_id id = null_frame_id;
305 id.stack_addr = stack_addr;
306 id.stack_addr_p = 1;
307 id.code_addr = code_addr;
308 id.code_addr_p = 1;
309 return id;
310 }
311
312 struct frame_id
313 frame_id_build_wild (CORE_ADDR stack_addr)
314 {
315 struct frame_id id = null_frame_id;
316 id.stack_addr = stack_addr;
317 id.stack_addr_p = 1;
318 return id;
319 }
320
321 int
322 frame_id_p (struct frame_id l)
323 {
324 int p;
325 /* The frame is valid iff it has a valid stack address. */
326 p = l.stack_addr_p;
327 if (frame_debug)
328 {
329 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
330 fprint_frame_id (gdb_stdlog, l);
331 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
332 }
333 return p;
334 }
335
336 int
337 frame_id_eq (struct frame_id l, struct frame_id r)
338 {
339 int eq;
340 if (!l.stack_addr_p || !r.stack_addr_p)
341 /* Like a NaN, if either ID is invalid, the result is false.
342 Note that a frame ID is invalid iff it is the null frame ID. */
343 eq = 0;
344 else if (l.stack_addr != r.stack_addr)
345 /* If .stack addresses are different, the frames are different. */
346 eq = 0;
347 else if (!l.code_addr_p || !r.code_addr_p)
348 /* An invalid code addr is a wild card, always succeed. */
349 eq = 1;
350 else if (l.code_addr != r.code_addr)
351 /* If .code addresses are different, the frames are different. */
352 eq = 0;
353 else if (!l.special_addr_p || !r.special_addr_p)
354 /* An invalid special addr is a wild card (or unused), always succeed. */
355 eq = 1;
356 else if (l.special_addr == r.special_addr)
357 /* Frames are equal. */
358 eq = 1;
359 else
360 /* No luck. */
361 eq = 0;
362 if (frame_debug)
363 {
364 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
365 fprint_frame_id (gdb_stdlog, l);
366 fprintf_unfiltered (gdb_stdlog, ",r=");
367 fprint_frame_id (gdb_stdlog, r);
368 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
369 }
370 return eq;
371 }
372
373 int
374 frame_id_inner (struct frame_id l, struct frame_id r)
375 {
376 int inner;
377 if (!l.stack_addr_p || !r.stack_addr_p)
378 /* Like NaN, any operation involving an invalid ID always fails. */
379 inner = 0;
380 else
381 /* Only return non-zero when strictly inner than. Note that, per
382 comment in "frame.h", there is some fuzz here. Frameless
383 functions are not strictly inner than (same .stack but
384 different .code and/or .special address). */
385 inner = gdbarch_inner_than (current_gdbarch, l.stack_addr, r.stack_addr);
386 if (frame_debug)
387 {
388 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
389 fprint_frame_id (gdb_stdlog, l);
390 fprintf_unfiltered (gdb_stdlog, ",r=");
391 fprint_frame_id (gdb_stdlog, r);
392 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
393 }
394 return inner;
395 }
396
397 struct frame_info *
398 frame_find_by_id (struct frame_id id)
399 {
400 struct frame_info *frame;
401
402 /* ZERO denotes the null frame, let the caller decide what to do
403 about it. Should it instead return get_current_frame()? */
404 if (!frame_id_p (id))
405 return NULL;
406
407 for (frame = get_current_frame ();
408 frame != NULL;
409 frame = get_prev_frame (frame))
410 {
411 struct frame_id this = get_frame_id (frame);
412 if (frame_id_eq (id, this))
413 /* An exact match. */
414 return frame;
415 if (frame_id_inner (id, this))
416 /* Gone to far. */
417 return NULL;
418 /* Either we're not yet gone far enough out along the frame
419 chain (inner(this,id)), or we're comparing frameless functions
420 (same .base, different .func, no test available). Struggle
421 on until we've definitly gone to far. */
422 }
423 return NULL;
424 }
425
426 CORE_ADDR
427 frame_pc_unwind (struct frame_info *this_frame)
428 {
429 if (!this_frame->prev_pc.p)
430 {
431 CORE_ADDR pc;
432 if (this_frame->unwind == NULL)
433 this_frame->unwind
434 = frame_unwind_find_by_frame (this_frame->next,
435 &this_frame->prologue_cache);
436 if (this_frame->unwind->prev_pc != NULL)
437 /* A per-frame unwinder, prefer it. */
438 pc = this_frame->unwind->prev_pc (this_frame->next,
439 &this_frame->prologue_cache);
440 else if (gdbarch_unwind_pc_p (current_gdbarch))
441 {
442 /* The right way. The `pure' way. The one true way. This
443 method depends solely on the register-unwind code to
444 determine the value of registers in THIS frame, and hence
445 the value of this frame's PC (resume address). A typical
446 implementation is no more than:
447
448 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
449 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
450
451 Note: this method is very heavily dependent on a correct
452 register-unwind implementation, it pays to fix that
453 method first; this method is frame type agnostic, since
454 it only deals with register values, it works with any
455 frame. This is all in stark contrast to the old
456 FRAME_SAVED_PC which would try to directly handle all the
457 different ways that a PC could be unwound. */
458 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
459 }
460 else
461 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
462 this_frame->prev_pc.value = pc;
463 this_frame->prev_pc.p = 1;
464 if (frame_debug)
465 fprintf_unfiltered (gdb_stdlog,
466 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
467 this_frame->level,
468 paddr_nz (this_frame->prev_pc.value));
469 }
470 return this_frame->prev_pc.value;
471 }
472
473 CORE_ADDR
474 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
475 {
476 if (!fi->prev_func.p)
477 {
478 /* Make certain that this, and not the adjacent, function is
479 found. */
480 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
481 fi->prev_func.p = 1;
482 fi->prev_func.addr = get_pc_function_start (addr_in_block);
483 if (frame_debug)
484 fprintf_unfiltered (gdb_stdlog,
485 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
486 fi->level, paddr_nz (fi->prev_func.addr));
487 }
488 return fi->prev_func.addr;
489 }
490
491 CORE_ADDR
492 get_frame_func (struct frame_info *fi)
493 {
494 return frame_func_unwind (fi->next, get_frame_type (fi));
495 }
496
497 static int
498 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
499 {
500 frame_register_read (src, regnum, buf);
501 return 1;
502 }
503
504 struct regcache *
505 frame_save_as_regcache (struct frame_info *this_frame)
506 {
507 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
508 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
509 regcache_save (regcache, do_frame_register_read, this_frame);
510 discard_cleanups (cleanups);
511 return regcache;
512 }
513
514 void
515 frame_pop (struct frame_info *this_frame)
516 {
517 struct frame_info *prev_frame;
518 struct regcache *scratch;
519 struct cleanup *cleanups;
520
521 /* Ensure that we have a frame to pop to. */
522 prev_frame = get_prev_frame_1 (this_frame);
523
524 if (!prev_frame)
525 error (_("Cannot pop the initial frame."));
526
527 /* Make a copy of all the register values unwound from this frame.
528 Save them in a scratch buffer so that there isn't a race between
529 trying to extract the old values from the current regcache while
530 at the same time writing new values into that same cache. */
531 scratch = frame_save_as_regcache (prev_frame);
532 cleanups = make_cleanup_regcache_xfree (scratch);
533
534 /* FIXME: cagney/2003-03-16: It should be possible to tell the
535 target's register cache that it is about to be hit with a burst
536 register transfer and that the sequence of register writes should
537 be batched. The pair target_prepare_to_store() and
538 target_store_registers() kind of suggest this functionality.
539 Unfortunately, they don't implement it. Their lack of a formal
540 definition can lead to targets writing back bogus values
541 (arguably a bug in the target code mind). */
542 /* Now copy those saved registers into the current regcache.
543 Here, regcache_cpy() calls regcache_restore(). */
544 regcache_cpy (get_current_regcache (), scratch);
545 do_cleanups (cleanups);
546
547 /* We've made right mess of GDB's local state, just discard
548 everything. */
549 reinit_frame_cache ();
550 }
551
552 void
553 frame_register_unwind (struct frame_info *frame, int regnum,
554 int *optimizedp, enum lval_type *lvalp,
555 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
556 {
557 struct frame_unwind_cache *cache;
558
559 if (frame_debug)
560 {
561 fprintf_unfiltered (gdb_stdlog, "\
562 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
563 frame->level, regnum,
564 frame_map_regnum_to_name (frame, regnum));
565 }
566
567 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
568 that the value proper does not need to be fetched. */
569 gdb_assert (optimizedp != NULL);
570 gdb_assert (lvalp != NULL);
571 gdb_assert (addrp != NULL);
572 gdb_assert (realnump != NULL);
573 /* gdb_assert (bufferp != NULL); */
574
575 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
576 is broken. There is always a frame. If there, for some reason,
577 isn't a frame, there is some pretty busted code as it should have
578 detected the problem before calling here. */
579 gdb_assert (frame != NULL);
580
581 /* Find the unwinder. */
582 if (frame->unwind == NULL)
583 frame->unwind = frame_unwind_find_by_frame (frame->next,
584 &frame->prologue_cache);
585
586 /* Ask this frame to unwind its register. See comment in
587 "frame-unwind.h" for why NEXT frame and this unwind cache are
588 passed in. */
589 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
590 optimizedp, lvalp, addrp, realnump, bufferp);
591
592 if (frame_debug)
593 {
594 fprintf_unfiltered (gdb_stdlog, "->");
595 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
596 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
597 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
598 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
599 if (bufferp == NULL)
600 fprintf_unfiltered (gdb_stdlog, "<NULL>");
601 else
602 {
603 int i;
604 const unsigned char *buf = bufferp;
605 fprintf_unfiltered (gdb_stdlog, "[");
606 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
607 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
608 fprintf_unfiltered (gdb_stdlog, "]");
609 }
610 fprintf_unfiltered (gdb_stdlog, " }\n");
611 }
612 }
613
614 void
615 frame_register (struct frame_info *frame, int regnum,
616 int *optimizedp, enum lval_type *lvalp,
617 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
618 {
619 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
620 that the value proper does not need to be fetched. */
621 gdb_assert (optimizedp != NULL);
622 gdb_assert (lvalp != NULL);
623 gdb_assert (addrp != NULL);
624 gdb_assert (realnump != NULL);
625 /* gdb_assert (bufferp != NULL); */
626
627 /* Obtain the register value by unwinding the register from the next
628 (more inner frame). */
629 gdb_assert (frame != NULL && frame->next != NULL);
630 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
631 realnump, bufferp);
632 }
633
634 void
635 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
636 {
637 int optimized;
638 CORE_ADDR addr;
639 int realnum;
640 enum lval_type lval;
641 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
642 &realnum, buf);
643 }
644
645 void
646 get_frame_register (struct frame_info *frame,
647 int regnum, gdb_byte *buf)
648 {
649 frame_unwind_register (frame->next, regnum, buf);
650 }
651
652 LONGEST
653 frame_unwind_register_signed (struct frame_info *frame, int regnum)
654 {
655 gdb_byte buf[MAX_REGISTER_SIZE];
656 frame_unwind_register (frame, regnum, buf);
657 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
658 regnum));
659 }
660
661 LONGEST
662 get_frame_register_signed (struct frame_info *frame, int regnum)
663 {
664 return frame_unwind_register_signed (frame->next, regnum);
665 }
666
667 ULONGEST
668 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
669 {
670 gdb_byte buf[MAX_REGISTER_SIZE];
671 frame_unwind_register (frame, regnum, buf);
672 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
673 regnum));
674 }
675
676 ULONGEST
677 get_frame_register_unsigned (struct frame_info *frame, int regnum)
678 {
679 return frame_unwind_register_unsigned (frame->next, regnum);
680 }
681
682 void
683 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
684 ULONGEST *val)
685 {
686 gdb_byte buf[MAX_REGISTER_SIZE];
687 frame_unwind_register (frame, regnum, buf);
688 (*val) = extract_unsigned_integer (buf,
689 register_size (get_frame_arch (frame),
690 regnum));
691 }
692
693 void
694 put_frame_register (struct frame_info *frame, int regnum,
695 const gdb_byte *buf)
696 {
697 struct gdbarch *gdbarch = get_frame_arch (frame);
698 int realnum;
699 int optim;
700 enum lval_type lval;
701 CORE_ADDR addr;
702 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
703 if (optim)
704 error (_("Attempt to assign to a value that was optimized out."));
705 switch (lval)
706 {
707 case lval_memory:
708 {
709 /* FIXME: write_memory doesn't yet take constant buffers.
710 Arrrg! */
711 gdb_byte tmp[MAX_REGISTER_SIZE];
712 memcpy (tmp, buf, register_size (gdbarch, regnum));
713 write_memory (addr, tmp, register_size (gdbarch, regnum));
714 break;
715 }
716 case lval_register:
717 regcache_cooked_write (get_current_regcache (), realnum, buf);
718 break;
719 default:
720 error (_("Attempt to assign to an unmodifiable value."));
721 }
722 }
723
724 /* frame_register_read ()
725
726 Find and return the value of REGNUM for the specified stack frame.
727 The number of bytes copied is REGISTER_SIZE (REGNUM).
728
729 Returns 0 if the register value could not be found. */
730
731 int
732 frame_register_read (struct frame_info *frame, int regnum,
733 gdb_byte *myaddr)
734 {
735 int optimized;
736 enum lval_type lval;
737 CORE_ADDR addr;
738 int realnum;
739 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
740
741 return !optimized;
742 }
743
744 int
745 get_frame_register_bytes (struct frame_info *frame, int regnum,
746 CORE_ADDR offset, int len, gdb_byte *myaddr)
747 {
748 struct gdbarch *gdbarch = get_frame_arch (frame);
749
750 /* Skip registers wholly inside of OFFSET. */
751 while (offset >= register_size (gdbarch, regnum))
752 {
753 offset -= register_size (gdbarch, regnum);
754 regnum++;
755 }
756
757 /* Copy the data. */
758 while (len > 0)
759 {
760 int curr_len = register_size (gdbarch, regnum) - offset;
761 if (curr_len > len)
762 curr_len = len;
763
764 if (curr_len == register_size (gdbarch, regnum))
765 {
766 if (!frame_register_read (frame, regnum, myaddr))
767 return 0;
768 }
769 else
770 {
771 gdb_byte buf[MAX_REGISTER_SIZE];
772 if (!frame_register_read (frame, regnum, buf))
773 return 0;
774 memcpy (myaddr, buf + offset, curr_len);
775 }
776
777 myaddr += curr_len;
778 len -= curr_len;
779 offset = 0;
780 regnum++;
781 }
782
783 return 1;
784 }
785
786 void
787 put_frame_register_bytes (struct frame_info *frame, int regnum,
788 CORE_ADDR offset, int len, const gdb_byte *myaddr)
789 {
790 struct gdbarch *gdbarch = get_frame_arch (frame);
791
792 /* Skip registers wholly inside of OFFSET. */
793 while (offset >= register_size (gdbarch, regnum))
794 {
795 offset -= register_size (gdbarch, regnum);
796 regnum++;
797 }
798
799 /* Copy the data. */
800 while (len > 0)
801 {
802 int curr_len = register_size (gdbarch, regnum) - offset;
803 if (curr_len > len)
804 curr_len = len;
805
806 if (curr_len == register_size (gdbarch, regnum))
807 {
808 put_frame_register (frame, regnum, myaddr);
809 }
810 else
811 {
812 gdb_byte buf[MAX_REGISTER_SIZE];
813 frame_register_read (frame, regnum, buf);
814 memcpy (buf + offset, myaddr, curr_len);
815 put_frame_register (frame, regnum, buf);
816 }
817
818 myaddr += curr_len;
819 len -= curr_len;
820 offset = 0;
821 regnum++;
822 }
823 }
824
825 /* Map between a frame register number and its name. A frame register
826 space is a superset of the cooked register space --- it also
827 includes builtin registers. */
828
829 int
830 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
831 {
832 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
833 }
834
835 const char *
836 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
837 {
838 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
839 }
840
841 /* Create a sentinel frame. */
842
843 static struct frame_info *
844 create_sentinel_frame (struct regcache *regcache)
845 {
846 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
847 frame->level = -1;
848 /* Explicitly initialize the sentinel frame's cache. Provide it
849 with the underlying regcache. In the future additional
850 information, such as the frame's thread will be added. */
851 frame->prologue_cache = sentinel_frame_cache (regcache);
852 /* For the moment there is only one sentinel frame implementation. */
853 frame->unwind = sentinel_frame_unwind;
854 /* Link this frame back to itself. The frame is self referential
855 (the unwound PC is the same as the pc), so make it so. */
856 frame->next = frame;
857 /* Make the sentinel frame's ID valid, but invalid. That way all
858 comparisons with it should fail. */
859 frame->this_id.p = 1;
860 frame->this_id.value = null_frame_id;
861 if (frame_debug)
862 {
863 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
864 fprint_frame (gdb_stdlog, frame);
865 fprintf_unfiltered (gdb_stdlog, " }\n");
866 }
867 return frame;
868 }
869
870 /* Info about the innermost stack frame (contents of FP register) */
871
872 static struct frame_info *current_frame;
873
874 /* Cache for frame addresses already read by gdb. Valid only while
875 inferior is stopped. Control variables for the frame cache should
876 be local to this module. */
877
878 static struct obstack frame_cache_obstack;
879
880 void *
881 frame_obstack_zalloc (unsigned long size)
882 {
883 void *data = obstack_alloc (&frame_cache_obstack, size);
884 memset (data, 0, size);
885 return data;
886 }
887
888 /* Return the innermost (currently executing) stack frame. This is
889 split into two functions. The function unwind_to_current_frame()
890 is wrapped in catch exceptions so that, even when the unwind of the
891 sentinel frame fails, the function still returns a stack frame. */
892
893 static int
894 unwind_to_current_frame (struct ui_out *ui_out, void *args)
895 {
896 struct frame_info *frame = get_prev_frame (args);
897 /* A sentinel frame can fail to unwind, e.g., because its PC value
898 lands in somewhere like start. */
899 if (frame == NULL)
900 return 1;
901 current_frame = frame;
902 return 0;
903 }
904
905 struct frame_info *
906 get_current_frame (void)
907 {
908 /* First check, and report, the lack of registers. Having GDB
909 report "No stack!" or "No memory" when the target doesn't even
910 have registers is very confusing. Besides, "printcmd.exp"
911 explicitly checks that ``print $pc'' with no registers prints "No
912 registers". */
913 if (!target_has_registers)
914 error (_("No registers."));
915 if (!target_has_stack)
916 error (_("No stack."));
917 if (!target_has_memory)
918 error (_("No memory."));
919 if (current_frame == NULL)
920 {
921 struct frame_info *sentinel_frame =
922 create_sentinel_frame (get_current_regcache ());
923 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
924 RETURN_MASK_ERROR) != 0)
925 {
926 /* Oops! Fake a current frame? Is this useful? It has a PC
927 of zero, for instance. */
928 current_frame = sentinel_frame;
929 }
930 }
931 return current_frame;
932 }
933
934 /* The "selected" stack frame is used by default for local and arg
935 access. May be zero, for no selected frame. */
936
937 static struct frame_info *selected_frame;
938
939 /* Return the selected frame. Always non-NULL (unless there isn't an
940 inferior sufficient for creating a frame) in which case an error is
941 thrown. */
942
943 struct frame_info *
944 get_selected_frame (const char *message)
945 {
946 if (selected_frame == NULL)
947 {
948 if (message != NULL && (!target_has_registers
949 || !target_has_stack
950 || !target_has_memory))
951 error (("%s"), message);
952 /* Hey! Don't trust this. It should really be re-finding the
953 last selected frame of the currently selected thread. This,
954 though, is better than nothing. */
955 select_frame (get_current_frame ());
956 }
957 /* There is always a frame. */
958 gdb_assert (selected_frame != NULL);
959 return selected_frame;
960 }
961
962 /* This is a variant of get_selected_frame() which can be called when
963 the inferior does not have a frame; in that case it will return
964 NULL instead of calling error(). */
965
966 struct frame_info *
967 deprecated_safe_get_selected_frame (void)
968 {
969 if (!target_has_registers || !target_has_stack || !target_has_memory)
970 return NULL;
971 return get_selected_frame (NULL);
972 }
973
974 /* Select frame FI (or NULL - to invalidate the current frame). */
975
976 void
977 select_frame (struct frame_info *fi)
978 {
979 struct symtab *s;
980
981 selected_frame = fi;
982 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
983 frame is being invalidated. */
984 if (deprecated_selected_frame_level_changed_hook)
985 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
986
987 /* FIXME: kseitz/2002-08-28: It would be nice to call
988 selected_frame_level_changed_event() right here, but due to limitations
989 in the current interfaces, we would end up flooding UIs with events
990 because select_frame() is used extensively internally.
991
992 Once we have frame-parameterized frame (and frame-related) commands,
993 the event notification can be moved here, since this function will only
994 be called when the user's selected frame is being changed. */
995
996 /* Ensure that symbols for this frame are read in. Also, determine the
997 source language of this frame, and switch to it if desired. */
998 if (fi)
999 {
1000 /* We retrieve the frame's symtab by using the frame PC. However
1001 we cannot use the frame PC as-is, because it usually points to
1002 the instruction following the "call", which is sometimes the
1003 first instruction of another function. So we rely on
1004 get_frame_address_in_block() which provides us with a PC which
1005 is guaranteed to be inside the frame's code block. */
1006 s = find_pc_symtab (get_frame_address_in_block (fi));
1007 if (s
1008 && s->language != current_language->la_language
1009 && s->language != language_unknown
1010 && language_mode == language_mode_auto)
1011 {
1012 set_language (s->language);
1013 }
1014 }
1015 }
1016
1017 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1018 Always returns a non-NULL value. */
1019
1020 struct frame_info *
1021 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1022 {
1023 struct frame_info *fi;
1024
1025 if (frame_debug)
1026 {
1027 fprintf_unfiltered (gdb_stdlog,
1028 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1029 paddr_nz (addr), paddr_nz (pc));
1030 }
1031
1032 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1033
1034 fi->next = create_sentinel_frame (get_current_regcache ());
1035
1036 /* Select/initialize both the unwind function and the frame's type
1037 based on the PC. */
1038 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1039
1040 fi->this_id.p = 1;
1041 deprecated_update_frame_base_hack (fi, addr);
1042 deprecated_update_frame_pc_hack (fi, pc);
1043
1044 if (frame_debug)
1045 {
1046 fprintf_unfiltered (gdb_stdlog, "-> ");
1047 fprint_frame (gdb_stdlog, fi);
1048 fprintf_unfiltered (gdb_stdlog, " }\n");
1049 }
1050
1051 return fi;
1052 }
1053
1054 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1055 innermost frame). Be careful to not fall off the bottom of the
1056 frame chain and onto the sentinel frame. */
1057
1058 struct frame_info *
1059 get_next_frame (struct frame_info *this_frame)
1060 {
1061 if (this_frame->level > 0)
1062 return this_frame->next;
1063 else
1064 return NULL;
1065 }
1066
1067 /* Observer for the target_changed event. */
1068
1069 void
1070 frame_observer_target_changed (struct target_ops *target)
1071 {
1072 reinit_frame_cache ();
1073 }
1074
1075 /* Flush the entire frame cache. */
1076
1077 void
1078 reinit_frame_cache (void)
1079 {
1080 struct frame_info *fi;
1081
1082 /* Tear down all frame caches. */
1083 for (fi = current_frame; fi != NULL; fi = fi->prev)
1084 {
1085 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1086 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1087 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1088 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1089 }
1090
1091 /* Since we can't really be sure what the first object allocated was */
1092 obstack_free (&frame_cache_obstack, 0);
1093 obstack_init (&frame_cache_obstack);
1094
1095 current_frame = NULL; /* Invalidate cache */
1096 select_frame (NULL);
1097 annotate_frames_invalid ();
1098 if (frame_debug)
1099 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1100 }
1101
1102 /* Find where a register is saved (in memory or another register).
1103 The result of frame_register_unwind is just where it is saved
1104 relative to this particular frame. */
1105
1106 static void
1107 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1108 int *optimizedp, enum lval_type *lvalp,
1109 CORE_ADDR *addrp, int *realnump)
1110 {
1111 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1112
1113 while (this_frame != NULL)
1114 {
1115 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1116 addrp, realnump, NULL);
1117
1118 if (*optimizedp)
1119 break;
1120
1121 if (*lvalp != lval_register)
1122 break;
1123
1124 regnum = *realnump;
1125 this_frame = get_next_frame (this_frame);
1126 }
1127 }
1128
1129 /* Return a "struct frame_info" corresponding to the frame that called
1130 THIS_FRAME. Returns NULL if there is no such frame.
1131
1132 Unlike get_prev_frame, this function always tries to unwind the
1133 frame. */
1134
1135 static struct frame_info *
1136 get_prev_frame_1 (struct frame_info *this_frame)
1137 {
1138 struct frame_info *prev_frame;
1139 struct frame_id this_id;
1140
1141 gdb_assert (this_frame != NULL);
1142
1143 if (frame_debug)
1144 {
1145 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1146 if (this_frame != NULL)
1147 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1148 else
1149 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1150 fprintf_unfiltered (gdb_stdlog, ") ");
1151 }
1152
1153 /* Only try to do the unwind once. */
1154 if (this_frame->prev_p)
1155 {
1156 if (frame_debug)
1157 {
1158 fprintf_unfiltered (gdb_stdlog, "-> ");
1159 fprint_frame (gdb_stdlog, this_frame->prev);
1160 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1161 }
1162 return this_frame->prev;
1163 }
1164 this_frame->prev_p = 1;
1165 this_frame->stop_reason = UNWIND_NO_REASON;
1166
1167 /* Check that this frame's ID was valid. If it wasn't, don't try to
1168 unwind to the prev frame. Be careful to not apply this test to
1169 the sentinel frame. */
1170 this_id = get_frame_id (this_frame);
1171 if (this_frame->level >= 0 && !frame_id_p (this_id))
1172 {
1173 if (frame_debug)
1174 {
1175 fprintf_unfiltered (gdb_stdlog, "-> ");
1176 fprint_frame (gdb_stdlog, NULL);
1177 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1178 }
1179 this_frame->stop_reason = UNWIND_NULL_ID;
1180 return NULL;
1181 }
1182
1183 /* Check that this frame's ID isn't inner to (younger, below, next)
1184 the next frame. This happens when a frame unwind goes backwards.
1185 Exclude signal trampolines (due to sigaltstack the frame ID can
1186 go backwards) and sentinel frames (the test is meaningless). */
1187 if (this_frame->next->level >= 0
1188 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1189 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1190 {
1191 if (frame_debug)
1192 {
1193 fprintf_unfiltered (gdb_stdlog, "-> ");
1194 fprint_frame (gdb_stdlog, NULL);
1195 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1196 }
1197 this_frame->stop_reason = UNWIND_INNER_ID;
1198 return NULL;
1199 }
1200
1201 /* Check that this and the next frame are not identical. If they
1202 are, there is most likely a stack cycle. As with the inner-than
1203 test above, avoid comparing the inner-most and sentinel frames. */
1204 if (this_frame->level > 0
1205 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1206 {
1207 if (frame_debug)
1208 {
1209 fprintf_unfiltered (gdb_stdlog, "-> ");
1210 fprint_frame (gdb_stdlog, NULL);
1211 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1212 }
1213 this_frame->stop_reason = UNWIND_SAME_ID;
1214 return NULL;
1215 }
1216
1217 /* Check that this and the next frame do not unwind the PC register
1218 to the same memory location. If they do, then even though they
1219 have different frame IDs, the new frame will be bogus; two
1220 functions can't share a register save slot for the PC. This can
1221 happen when the prologue analyzer finds a stack adjustment, but
1222 no PC save.
1223
1224 This check does assume that the "PC register" is roughly a
1225 traditional PC, even if the gdbarch_unwind_pc method adjusts
1226 it (we do not rely on the value, only on the unwound PC being
1227 dependent on this value). A potential improvement would be
1228 to have the frame prev_pc method and the gdbarch unwind_pc
1229 method set the same lval and location information as
1230 frame_register_unwind. */
1231 if (this_frame->level > 0
1232 && gdbarch_pc_regnum (current_gdbarch) >= 0
1233 && get_frame_type (this_frame) == NORMAL_FRAME
1234 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1235 {
1236 int optimized, realnum;
1237 enum lval_type lval, nlval;
1238 CORE_ADDR addr, naddr;
1239
1240 frame_register_unwind_location (this_frame,
1241 gdbarch_pc_regnum (current_gdbarch),
1242 &optimized, &lval, &addr, &realnum);
1243 frame_register_unwind_location (get_next_frame (this_frame),
1244 gdbarch_pc_regnum (current_gdbarch),
1245 &optimized, &nlval, &naddr, &realnum);
1246
1247 if (lval == lval_memory && lval == nlval && addr == naddr)
1248 {
1249 if (frame_debug)
1250 {
1251 fprintf_unfiltered (gdb_stdlog, "-> ");
1252 fprint_frame (gdb_stdlog, NULL);
1253 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1254 }
1255
1256 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1257 this_frame->prev = NULL;
1258 return NULL;
1259 }
1260 }
1261
1262 /* Allocate the new frame but do not wire it in to the frame chain.
1263 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1264 frame->next to pull some fancy tricks (of course such code is, by
1265 definition, recursive). Try to prevent it.
1266
1267 There is no reason to worry about memory leaks, should the
1268 remainder of the function fail. The allocated memory will be
1269 quickly reclaimed when the frame cache is flushed, and the `we've
1270 been here before' check above will stop repeated memory
1271 allocation calls. */
1272 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1273 prev_frame->level = this_frame->level + 1;
1274
1275 /* Don't yet compute ->unwind (and hence ->type). It is computed
1276 on-demand in get_frame_type, frame_register_unwind, and
1277 get_frame_id. */
1278
1279 /* Don't yet compute the frame's ID. It is computed on-demand by
1280 get_frame_id(). */
1281
1282 /* The unwound frame ID is validate at the start of this function,
1283 as part of the logic to decide if that frame should be further
1284 unwound, and not here while the prev frame is being created.
1285 Doing this makes it possible for the user to examine a frame that
1286 has an invalid frame ID.
1287
1288 Some very old VAX code noted: [...] For the sake of argument,
1289 suppose that the stack is somewhat trashed (which is one reason
1290 that "info frame" exists). So, return 0 (indicating we don't
1291 know the address of the arglist) if we don't know what frame this
1292 frame calls. */
1293
1294 /* Link it in. */
1295 this_frame->prev = prev_frame;
1296 prev_frame->next = this_frame;
1297
1298 if (frame_debug)
1299 {
1300 fprintf_unfiltered (gdb_stdlog, "-> ");
1301 fprint_frame (gdb_stdlog, prev_frame);
1302 fprintf_unfiltered (gdb_stdlog, " }\n");
1303 }
1304
1305 return prev_frame;
1306 }
1307
1308 /* Debug routine to print a NULL frame being returned. */
1309
1310 static void
1311 frame_debug_got_null_frame (struct ui_file *file,
1312 struct frame_info *this_frame,
1313 const char *reason)
1314 {
1315 if (frame_debug)
1316 {
1317 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1318 if (this_frame != NULL)
1319 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1320 else
1321 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1322 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1323 }
1324 }
1325
1326 /* Is this (non-sentinel) frame in the "main"() function? */
1327
1328 static int
1329 inside_main_func (struct frame_info *this_frame)
1330 {
1331 struct minimal_symbol *msymbol;
1332 CORE_ADDR maddr;
1333
1334 if (symfile_objfile == 0)
1335 return 0;
1336 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1337 if (msymbol == NULL)
1338 return 0;
1339 /* Make certain that the code, and not descriptor, address is
1340 returned. */
1341 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1342 SYMBOL_VALUE_ADDRESS (msymbol),
1343 &current_target);
1344 return maddr == get_frame_func (this_frame);
1345 }
1346
1347 /* Test whether THIS_FRAME is inside the process entry point function. */
1348
1349 static int
1350 inside_entry_func (struct frame_info *this_frame)
1351 {
1352 return (get_frame_func (this_frame) == entry_point_address ());
1353 }
1354
1355 /* Return a structure containing various interesting information about
1356 the frame that called THIS_FRAME. Returns NULL if there is entier
1357 no such frame or the frame fails any of a set of target-independent
1358 condition that should terminate the frame chain (e.g., as unwinding
1359 past main()).
1360
1361 This function should not contain target-dependent tests, such as
1362 checking whether the program-counter is zero. */
1363
1364 struct frame_info *
1365 get_prev_frame (struct frame_info *this_frame)
1366 {
1367 struct frame_info *prev_frame;
1368
1369 /* Return the inner-most frame, when the caller passes in NULL. */
1370 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1371 caller should have previously obtained a valid frame using
1372 get_selected_frame() and then called this code - only possibility
1373 I can think of is code behaving badly.
1374
1375 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1376 block_innermost_frame(). It does the sequence: frame = NULL;
1377 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1378 it couldn't be written better, I don't know.
1379
1380 NOTE: cagney/2003-01-11: I suspect what is happening in
1381 block_innermost_frame() is, when the target has no state
1382 (registers, memory, ...), it is still calling this function. The
1383 assumption being that this function will return NULL indicating
1384 that a frame isn't possible, rather than checking that the target
1385 has state and then calling get_current_frame() and
1386 get_prev_frame(). This is a guess mind. */
1387 if (this_frame == NULL)
1388 {
1389 /* NOTE: cagney/2002-11-09: There was a code segment here that
1390 would error out when CURRENT_FRAME was NULL. The comment
1391 that went with it made the claim ...
1392
1393 ``This screws value_of_variable, which just wants a nice
1394 clean NULL return from block_innermost_frame if there are no
1395 frames. I don't think I've ever seen this message happen
1396 otherwise. And returning NULL here is a perfectly legitimate
1397 thing to do.''
1398
1399 Per the above, this code shouldn't even be called with a NULL
1400 THIS_FRAME. */
1401 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1402 return current_frame;
1403 }
1404
1405 /* There is always a frame. If this assertion fails, suspect that
1406 something should be calling get_selected_frame() or
1407 get_current_frame(). */
1408 gdb_assert (this_frame != NULL);
1409
1410 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1411 sense to stop unwinding at a dummy frame. One place where a dummy
1412 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1413 pcsqh register (space register for the instruction at the head of the
1414 instruction queue) cannot be written directly; the only way to set it
1415 is to branch to code that is in the target space. In order to implement
1416 frame dummies on HPUX, the called function is made to jump back to where
1417 the inferior was when the user function was called. If gdb was inside
1418 the main function when we created the dummy frame, the dummy frame will
1419 point inside the main function. */
1420 if (this_frame->level >= 0
1421 && get_frame_type (this_frame) != DUMMY_FRAME
1422 && !backtrace_past_main
1423 && inside_main_func (this_frame))
1424 /* Don't unwind past main(). Note, this is done _before_ the
1425 frame has been marked as previously unwound. That way if the
1426 user later decides to enable unwinds past main(), that will
1427 automatically happen. */
1428 {
1429 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1430 return NULL;
1431 }
1432
1433 /* If the user's backtrace limit has been exceeded, stop. We must
1434 add two to the current level; one of those accounts for backtrace_limit
1435 being 1-based and the level being 0-based, and the other accounts for
1436 the level of the new frame instead of the level of the current
1437 frame. */
1438 if (this_frame->level + 2 > backtrace_limit)
1439 {
1440 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1441 "backtrace limit exceeded");
1442 return NULL;
1443 }
1444
1445 /* If we're already inside the entry function for the main objfile,
1446 then it isn't valid. Don't apply this test to a dummy frame -
1447 dummy frame PCs typically land in the entry func. Don't apply
1448 this test to the sentinel frame. Sentinel frames should always
1449 be allowed to unwind. */
1450 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1451 wasn't checking for "main" in the minimal symbols. With that
1452 fixed asm-source tests now stop in "main" instead of halting the
1453 backtrace in weird and wonderful ways somewhere inside the entry
1454 file. Suspect that tests for inside the entry file/func were
1455 added to work around that (now fixed) case. */
1456 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1457 suggested having the inside_entry_func test use the
1458 inside_main_func() msymbol trick (along with entry_point_address()
1459 I guess) to determine the address range of the start function.
1460 That should provide a far better stopper than the current
1461 heuristics. */
1462 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1463 applied tail-call optimizations to main so that a function called
1464 from main returns directly to the caller of main. Since we don't
1465 stop at main, we should at least stop at the entry point of the
1466 application. */
1467 if (!backtrace_past_entry
1468 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1469 && inside_entry_func (this_frame))
1470 {
1471 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1472 return NULL;
1473 }
1474
1475 /* Assume that the only way to get a zero PC is through something
1476 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1477 will never unwind a zero PC. */
1478 if (this_frame->level > 0
1479 && get_frame_type (this_frame) == NORMAL_FRAME
1480 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1481 && get_frame_pc (this_frame) == 0)
1482 {
1483 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1484 return NULL;
1485 }
1486
1487 return get_prev_frame_1 (this_frame);
1488 }
1489
1490 CORE_ADDR
1491 get_frame_pc (struct frame_info *frame)
1492 {
1493 gdb_assert (frame->next != NULL);
1494 return frame_pc_unwind (frame->next);
1495 }
1496
1497 /* Return an address that falls within NEXT_FRAME's caller's code
1498 block, assuming that the caller is a THIS_TYPE frame. */
1499
1500 CORE_ADDR
1501 frame_unwind_address_in_block (struct frame_info *next_frame,
1502 enum frame_type this_type)
1503 {
1504 /* A draft address. */
1505 CORE_ADDR pc = frame_pc_unwind (next_frame);
1506
1507 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1508 we shold not adjust the unwound PC. These frames may not call
1509 their next frame in the normal way; the operating system or GDB
1510 may have pushed their resume address manually onto the stack, so
1511 it may be the very first instruction. Even if the resume address
1512 was not manually pushed, they expect to be returned to. */
1513 if (this_type != NORMAL_FRAME)
1514 return pc;
1515
1516 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1517 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1518 frame's PC ends up pointing at the instruction fallowing the
1519 "call". Adjust that PC value so that it falls on the call
1520 instruction (which, hopefully, falls within THIS frame's code
1521 block). So far it's proved to be a very good approximation. See
1522 get_frame_type() for why ->type can't be used. */
1523 if (next_frame->level >= 0
1524 && get_frame_type (next_frame) == NORMAL_FRAME)
1525 --pc;
1526 return pc;
1527 }
1528
1529 CORE_ADDR
1530 get_frame_address_in_block (struct frame_info *this_frame)
1531 {
1532 return frame_unwind_address_in_block (this_frame->next,
1533 get_frame_type (this_frame));
1534 }
1535
1536 static int
1537 pc_notcurrent (struct frame_info *frame)
1538 {
1539 /* If FRAME is not the innermost frame, that normally means that
1540 FRAME->pc points at the return instruction (which is *after* the
1541 call instruction), and we want to get the line containing the
1542 call (because the call is where the user thinks the program is).
1543 However, if the next frame is either a SIGTRAMP_FRAME or a
1544 DUMMY_FRAME, then the next frame will contain a saved interrupt
1545 PC and such a PC indicates the current (rather than next)
1546 instruction/line, consequently, for such cases, want to get the
1547 line containing fi->pc. */
1548 struct frame_info *next = get_next_frame (frame);
1549 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1550 return notcurrent;
1551 }
1552
1553 void
1554 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1555 {
1556 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1557 }
1558
1559 /* Per "frame.h", return the ``address'' of the frame. Code should
1560 really be using get_frame_id(). */
1561 CORE_ADDR
1562 get_frame_base (struct frame_info *fi)
1563 {
1564 return get_frame_id (fi).stack_addr;
1565 }
1566
1567 /* High-level offsets into the frame. Used by the debug info. */
1568
1569 CORE_ADDR
1570 get_frame_base_address (struct frame_info *fi)
1571 {
1572 if (get_frame_type (fi) != NORMAL_FRAME)
1573 return 0;
1574 if (fi->base == NULL)
1575 fi->base = frame_base_find_by_frame (fi->next);
1576 /* Sneaky: If the low-level unwind and high-level base code share a
1577 common unwinder, let them share the prologue cache. */
1578 if (fi->base->unwind == fi->unwind)
1579 return fi->base->this_base (fi->next, &fi->prologue_cache);
1580 return fi->base->this_base (fi->next, &fi->base_cache);
1581 }
1582
1583 CORE_ADDR
1584 get_frame_locals_address (struct frame_info *fi)
1585 {
1586 void **cache;
1587 if (get_frame_type (fi) != NORMAL_FRAME)
1588 return 0;
1589 /* If there isn't a frame address method, find it. */
1590 if (fi->base == NULL)
1591 fi->base = frame_base_find_by_frame (fi->next);
1592 /* Sneaky: If the low-level unwind and high-level base code share a
1593 common unwinder, let them share the prologue cache. */
1594 if (fi->base->unwind == fi->unwind)
1595 cache = &fi->prologue_cache;
1596 else
1597 cache = &fi->base_cache;
1598 return fi->base->this_locals (fi->next, cache);
1599 }
1600
1601 CORE_ADDR
1602 get_frame_args_address (struct frame_info *fi)
1603 {
1604 void **cache;
1605 if (get_frame_type (fi) != NORMAL_FRAME)
1606 return 0;
1607 /* If there isn't a frame address method, find it. */
1608 if (fi->base == NULL)
1609 fi->base = frame_base_find_by_frame (fi->next);
1610 /* Sneaky: If the low-level unwind and high-level base code share a
1611 common unwinder, let them share the prologue cache. */
1612 if (fi->base->unwind == fi->unwind)
1613 cache = &fi->prologue_cache;
1614 else
1615 cache = &fi->base_cache;
1616 return fi->base->this_args (fi->next, cache);
1617 }
1618
1619 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1620 or -1 for a NULL frame. */
1621
1622 int
1623 frame_relative_level (struct frame_info *fi)
1624 {
1625 if (fi == NULL)
1626 return -1;
1627 else
1628 return fi->level;
1629 }
1630
1631 enum frame_type
1632 get_frame_type (struct frame_info *frame)
1633 {
1634 if (frame->unwind == NULL)
1635 /* Initialize the frame's unwinder because that's what
1636 provides the frame's type. */
1637 frame->unwind = frame_unwind_find_by_frame (frame->next,
1638 &frame->prologue_cache);
1639 return frame->unwind->type;
1640 }
1641
1642 void
1643 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1644 {
1645 if (frame_debug)
1646 fprintf_unfiltered (gdb_stdlog,
1647 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1648 frame->level, paddr_nz (pc));
1649 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1650 maintaining a locally allocated frame object. Since such frames
1651 are not in the frame chain, it isn't possible to assume that the
1652 frame has a next. Sigh. */
1653 if (frame->next != NULL)
1654 {
1655 /* While we're at it, update this frame's cached PC value, found
1656 in the next frame. Oh for the day when "struct frame_info"
1657 is opaque and this hack on hack can just go away. */
1658 frame->next->prev_pc.value = pc;
1659 frame->next->prev_pc.p = 1;
1660 }
1661 }
1662
1663 void
1664 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1665 {
1666 if (frame_debug)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1669 frame->level, paddr_nz (base));
1670 /* See comment in "frame.h". */
1671 frame->this_id.value.stack_addr = base;
1672 }
1673
1674 /* Memory access methods. */
1675
1676 void
1677 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1678 gdb_byte *buf, int len)
1679 {
1680 read_memory (addr, buf, len);
1681 }
1682
1683 LONGEST
1684 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1685 int len)
1686 {
1687 return read_memory_integer (addr, len);
1688 }
1689
1690 ULONGEST
1691 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1692 int len)
1693 {
1694 return read_memory_unsigned_integer (addr, len);
1695 }
1696
1697 int
1698 safe_frame_unwind_memory (struct frame_info *this_frame,
1699 CORE_ADDR addr, gdb_byte *buf, int len)
1700 {
1701 /* NOTE: read_memory_nobpt returns zero on success! */
1702 return !read_memory_nobpt (addr, buf, len);
1703 }
1704
1705 /* Architecture method. */
1706
1707 struct gdbarch *
1708 get_frame_arch (struct frame_info *this_frame)
1709 {
1710 return current_gdbarch;
1711 }
1712
1713 /* Stack pointer methods. */
1714
1715 CORE_ADDR
1716 get_frame_sp (struct frame_info *this_frame)
1717 {
1718 return frame_sp_unwind (this_frame->next);
1719 }
1720
1721 CORE_ADDR
1722 frame_sp_unwind (struct frame_info *next_frame)
1723 {
1724 /* Normality - an architecture that provides a way of obtaining any
1725 frame inner-most address. */
1726 if (gdbarch_unwind_sp_p (current_gdbarch))
1727 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1728 /* Now things are really are grim. Hope that the value returned by
1729 the gdbarch_sp_regnum register is meaningful. */
1730 if (gdbarch_sp_regnum (current_gdbarch) >= 0)
1731 {
1732 ULONGEST sp;
1733 frame_unwind_unsigned_register (next_frame,
1734 gdbarch_sp_regnum (current_gdbarch), &sp);
1735 return sp;
1736 }
1737 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1738 }
1739
1740 /* Return the reason why we can't unwind past FRAME. */
1741
1742 enum unwind_stop_reason
1743 get_frame_unwind_stop_reason (struct frame_info *frame)
1744 {
1745 /* If we haven't tried to unwind past this point yet, then assume
1746 that unwinding would succeed. */
1747 if (frame->prev_p == 0)
1748 return UNWIND_NO_REASON;
1749
1750 /* Otherwise, we set a reason when we succeeded (or failed) to
1751 unwind. */
1752 return frame->stop_reason;
1753 }
1754
1755 /* Return a string explaining REASON. */
1756
1757 const char *
1758 frame_stop_reason_string (enum unwind_stop_reason reason)
1759 {
1760 switch (reason)
1761 {
1762 case UNWIND_NULL_ID:
1763 return _("unwinder did not report frame ID");
1764
1765 case UNWIND_INNER_ID:
1766 return _("previous frame inner to this frame (corrupt stack?)");
1767
1768 case UNWIND_SAME_ID:
1769 return _("previous frame identical to this frame (corrupt stack?)");
1770
1771 case UNWIND_NO_SAVED_PC:
1772 return _("frame did not save the PC");
1773
1774 case UNWIND_NO_REASON:
1775 case UNWIND_FIRST_ERROR:
1776 default:
1777 internal_error (__FILE__, __LINE__,
1778 "Invalid frame stop reason");
1779 }
1780 }
1781
1782 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1783
1784 static struct cmd_list_element *set_backtrace_cmdlist;
1785 static struct cmd_list_element *show_backtrace_cmdlist;
1786
1787 static void
1788 set_backtrace_cmd (char *args, int from_tty)
1789 {
1790 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1791 }
1792
1793 static void
1794 show_backtrace_cmd (char *args, int from_tty)
1795 {
1796 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1797 }
1798
1799 void
1800 _initialize_frame (void)
1801 {
1802 obstack_init (&frame_cache_obstack);
1803
1804 observer_attach_target_changed (frame_observer_target_changed);
1805
1806 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1807 Set backtrace specific variables.\n\
1808 Configure backtrace variables such as the backtrace limit"),
1809 &set_backtrace_cmdlist, "set backtrace ",
1810 0/*allow-unknown*/, &setlist);
1811 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1812 Show backtrace specific variables\n\
1813 Show backtrace variables such as the backtrace limit"),
1814 &show_backtrace_cmdlist, "show backtrace ",
1815 0/*allow-unknown*/, &showlist);
1816
1817 add_setshow_boolean_cmd ("past-main", class_obscure,
1818 &backtrace_past_main, _("\
1819 Set whether backtraces should continue past \"main\"."), _("\
1820 Show whether backtraces should continue past \"main\"."), _("\
1821 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1822 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1823 of the stack trace."),
1824 NULL,
1825 show_backtrace_past_main,
1826 &set_backtrace_cmdlist,
1827 &show_backtrace_cmdlist);
1828
1829 add_setshow_boolean_cmd ("past-entry", class_obscure,
1830 &backtrace_past_entry, _("\
1831 Set whether backtraces should continue past the entry point of a program."),
1832 _("\
1833 Show whether backtraces should continue past the entry point of a program."),
1834 _("\
1835 Normally there are no callers beyond the entry point of a program, so GDB\n\
1836 will terminate the backtrace there. Set this variable if you need to see \n\
1837 the rest of the stack trace."),
1838 NULL,
1839 show_backtrace_past_entry,
1840 &set_backtrace_cmdlist,
1841 &show_backtrace_cmdlist);
1842
1843 add_setshow_integer_cmd ("limit", class_obscure,
1844 &backtrace_limit, _("\
1845 Set an upper bound on the number of backtrace levels."), _("\
1846 Show the upper bound on the number of backtrace levels."), _("\
1847 No more than the specified number of frames can be displayed or examined.\n\
1848 Zero is unlimited."),
1849 NULL,
1850 show_backtrace_limit,
1851 &set_backtrace_cmdlist,
1852 &show_backtrace_cmdlist);
1853
1854 /* Debug this files internals. */
1855 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1856 Set frame debugging."), _("\
1857 Show frame debugging."), _("\
1858 When non-zero, frame specific internal debugging is enabled."),
1859 NULL,
1860 show_frame_debug,
1861 &setdebuglist, &showdebuglist);
1862 }
This page took 0.067917 seconds and 4 git commands to generate.