Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43
44 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
45
46 /* We keep a cache of stack frames, each of which is a "struct
47 frame_info". The innermost one gets allocated (in
48 wait_for_inferior) each time the inferior stops; current_frame
49 points to it. Additional frames get allocated (in get_prev_frame)
50 as needed, and are chained through the next and prev fields. Any
51 time that the frame cache becomes invalid (most notably when we
52 execute something, but also if we change how we interpret the
53 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
54 which reads new symbols)), we should call reinit_frame_cache. */
55
56 struct frame_info
57 {
58 /* Level of this frame. The inner-most (youngest) frame is at level
59 0. As you move towards the outer-most (oldest) frame, the level
60 increases. This is a cached value. It could just as easily be
61 computed by counting back from the selected frame to the inner
62 most frame. */
63 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
64 reserved to indicate a bogus frame - one that has been created
65 just to keep GDB happy (GDB always needs a frame). For the
66 moment leave this as speculation. */
67 int level;
68
69 /* The frame's low-level unwinder and corresponding cache. The
70 low-level unwinder is responsible for unwinding register values
71 for the previous frame. The low-level unwind methods are
72 selected based on the presence, or otherwise, of register unwind
73 information such as CFI. */
74 void *prologue_cache;
75 const struct frame_unwind *unwind;
76
77 /* Cached copy of the previous frame's resume address. */
78 struct {
79 int p;
80 CORE_ADDR value;
81 } prev_pc;
82
83 /* Cached copy of the previous frame's function address. */
84 struct
85 {
86 CORE_ADDR addr;
87 int p;
88 } prev_func;
89
90 /* This frame's ID. */
91 struct
92 {
93 int p;
94 struct frame_id value;
95 } this_id;
96
97 /* The frame's high-level base methods, and corresponding cache.
98 The high level base methods are selected based on the frame's
99 debug info. */
100 const struct frame_base *base;
101 void *base_cache;
102
103 /* Pointers to the next (down, inner, younger) and previous (up,
104 outer, older) frame_info's in the frame cache. */
105 struct frame_info *next; /* down, inner, younger */
106 int prev_p;
107 struct frame_info *prev; /* up, outer, older */
108
109 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
110 could. Only valid when PREV_P is set. */
111 enum unwind_stop_reason stop_reason;
112 };
113
114 /* Flag to control debugging. */
115
116 static int frame_debug;
117 static void
118 show_frame_debug (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
122 }
123
124 /* Flag to indicate whether backtraces should stop at main et.al. */
125
126 static int backtrace_past_main;
127 static void
128 show_backtrace_past_main (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("\
132 Whether backtraces should continue past \"main\" is %s.\n"),
133 value);
134 }
135
136 static int backtrace_past_entry;
137 static void
138 show_backtrace_past_entry (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("\
142 Whether backtraces should continue past the entry point of a program is %s.\n"),
143 value);
144 }
145
146 static int backtrace_limit = INT_MAX;
147 static void
148 show_backtrace_limit (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("\
152 An upper bound on the number of backtrace levels is %s.\n"),
153 value);
154 }
155
156
157 static void
158 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
159 {
160 if (p)
161 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
162 else
163 fprintf_unfiltered (file, "!%s", name);
164 }
165
166 void
167 fprint_frame_id (struct ui_file *file, struct frame_id id)
168 {
169 fprintf_unfiltered (file, "{");
170 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
171 fprintf_unfiltered (file, ",");
172 fprint_field (file, "code", id.code_addr_p, id.code_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "special", id.special_addr_p, id.special_addr);
175 fprintf_unfiltered (file, "}");
176 }
177
178 static void
179 fprint_frame_type (struct ui_file *file, enum frame_type type)
180 {
181 switch (type)
182 {
183 case NORMAL_FRAME:
184 fprintf_unfiltered (file, "NORMAL_FRAME");
185 return;
186 case DUMMY_FRAME:
187 fprintf_unfiltered (file, "DUMMY_FRAME");
188 return;
189 case SIGTRAMP_FRAME:
190 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
191 return;
192 default:
193 fprintf_unfiltered (file, "<unknown type>");
194 return;
195 };
196 }
197
198 static void
199 fprint_frame (struct ui_file *file, struct frame_info *fi)
200 {
201 if (fi == NULL)
202 {
203 fprintf_unfiltered (file, "<NULL frame>");
204 return;
205 }
206 fprintf_unfiltered (file, "{");
207 fprintf_unfiltered (file, "level=%d", fi->level);
208 fprintf_unfiltered (file, ",");
209 fprintf_unfiltered (file, "type=");
210 if (fi->unwind != NULL)
211 fprint_frame_type (file, fi->unwind->type);
212 else
213 fprintf_unfiltered (file, "<unknown>");
214 fprintf_unfiltered (file, ",");
215 fprintf_unfiltered (file, "unwind=");
216 if (fi->unwind != NULL)
217 gdb_print_host_address (fi->unwind, file);
218 else
219 fprintf_unfiltered (file, "<unknown>");
220 fprintf_unfiltered (file, ",");
221 fprintf_unfiltered (file, "pc=");
222 if (fi->next != NULL && fi->next->prev_pc.p)
223 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
224 else
225 fprintf_unfiltered (file, "<unknown>");
226 fprintf_unfiltered (file, ",");
227 fprintf_unfiltered (file, "id=");
228 if (fi->this_id.p)
229 fprint_frame_id (file, fi->this_id.value);
230 else
231 fprintf_unfiltered (file, "<unknown>");
232 fprintf_unfiltered (file, ",");
233 fprintf_unfiltered (file, "func=");
234 if (fi->next != NULL && fi->next->prev_func.p)
235 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
236 else
237 fprintf_unfiltered (file, "<unknown>");
238 fprintf_unfiltered (file, "}");
239 }
240
241 /* Return a frame uniq ID that can be used to, later, re-find the
242 frame. */
243
244 struct frame_id
245 get_frame_id (struct frame_info *fi)
246 {
247 if (fi == NULL)
248 {
249 return null_frame_id;
250 }
251 if (!fi->this_id.p)
252 {
253 if (frame_debug)
254 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
255 fi->level);
256 /* Find the unwinder. */
257 if (fi->unwind == NULL)
258 fi->unwind = frame_unwind_find_by_frame (fi->next,
259 &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (current_gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (this_frame->unwind == NULL)
431 this_frame->unwind
432 = frame_unwind_find_by_frame (this_frame->next,
433 &this_frame->prologue_cache);
434 if (this_frame->unwind->prev_pc != NULL)
435 /* A per-frame unwinder, prefer it. */
436 pc = this_frame->unwind->prev_pc (this_frame->next,
437 &this_frame->prologue_cache);
438 else if (gdbarch_unwind_pc_p (current_gdbarch))
439 {
440 /* The right way. The `pure' way. The one true way. This
441 method depends solely on the register-unwind code to
442 determine the value of registers in THIS frame, and hence
443 the value of this frame's PC (resume address). A typical
444 implementation is no more than:
445
446 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
447 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
448
449 Note: this method is very heavily dependent on a correct
450 register-unwind implementation, it pays to fix that
451 method first; this method is frame type agnostic, since
452 it only deals with register values, it works with any
453 frame. This is all in stark contrast to the old
454 FRAME_SAVED_PC which would try to directly handle all the
455 different ways that a PC could be unwound. */
456 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
457 }
458 else
459 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
460 this_frame->prev_pc.value = pc;
461 this_frame->prev_pc.p = 1;
462 if (frame_debug)
463 fprintf_unfiltered (gdb_stdlog,
464 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
465 this_frame->level,
466 paddr_nz (this_frame->prev_pc.value));
467 }
468 return this_frame->prev_pc.value;
469 }
470
471 CORE_ADDR
472 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
473 {
474 if (!fi->prev_func.p)
475 {
476 /* Make certain that this, and not the adjacent, function is
477 found. */
478 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
479 fi->prev_func.p = 1;
480 fi->prev_func.addr = get_pc_function_start (addr_in_block);
481 if (frame_debug)
482 fprintf_unfiltered (gdb_stdlog,
483 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
484 fi->level, paddr_nz (fi->prev_func.addr));
485 }
486 return fi->prev_func.addr;
487 }
488
489 CORE_ADDR
490 get_frame_func (struct frame_info *fi)
491 {
492 return frame_func_unwind (fi->next, get_frame_type (fi));
493 }
494
495 static int
496 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
497 {
498 frame_register_read (src, regnum, buf);
499 return 1;
500 }
501
502 struct regcache *
503 frame_save_as_regcache (struct frame_info *this_frame)
504 {
505 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
506 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
507 regcache_save (regcache, do_frame_register_read, this_frame);
508 discard_cleanups (cleanups);
509 return regcache;
510 }
511
512 void
513 frame_pop (struct frame_info *this_frame)
514 {
515 struct frame_info *prev_frame;
516 struct regcache *scratch;
517 struct cleanup *cleanups;
518
519 /* Ensure that we have a frame to pop to. */
520 prev_frame = get_prev_frame_1 (this_frame);
521
522 if (!prev_frame)
523 error (_("Cannot pop the initial frame."));
524
525 /* Make a copy of all the register values unwound from this frame.
526 Save them in a scratch buffer so that there isn't a race between
527 trying to extract the old values from the current regcache while
528 at the same time writing new values into that same cache. */
529 scratch = frame_save_as_regcache (prev_frame);
530 cleanups = make_cleanup_regcache_xfree (scratch);
531
532 /* FIXME: cagney/2003-03-16: It should be possible to tell the
533 target's register cache that it is about to be hit with a burst
534 register transfer and that the sequence of register writes should
535 be batched. The pair target_prepare_to_store() and
536 target_store_registers() kind of suggest this functionality.
537 Unfortunately, they don't implement it. Their lack of a formal
538 definition can lead to targets writing back bogus values
539 (arguably a bug in the target code mind). */
540 /* Now copy those saved registers into the current regcache.
541 Here, regcache_cpy() calls regcache_restore(). */
542 regcache_cpy (get_current_regcache (), scratch);
543 do_cleanups (cleanups);
544
545 /* We've made right mess of GDB's local state, just discard
546 everything. */
547 reinit_frame_cache ();
548 }
549
550 void
551 frame_register_unwind (struct frame_info *frame, int regnum,
552 int *optimizedp, enum lval_type *lvalp,
553 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
554 {
555 struct frame_unwind_cache *cache;
556
557 if (frame_debug)
558 {
559 fprintf_unfiltered (gdb_stdlog, "\
560 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
561 frame->level, regnum,
562 frame_map_regnum_to_name (frame, regnum));
563 }
564
565 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
566 that the value proper does not need to be fetched. */
567 gdb_assert (optimizedp != NULL);
568 gdb_assert (lvalp != NULL);
569 gdb_assert (addrp != NULL);
570 gdb_assert (realnump != NULL);
571 /* gdb_assert (bufferp != NULL); */
572
573 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
574 is broken. There is always a frame. If there, for some reason,
575 isn't a frame, there is some pretty busted code as it should have
576 detected the problem before calling here. */
577 gdb_assert (frame != NULL);
578
579 /* Find the unwinder. */
580 if (frame->unwind == NULL)
581 frame->unwind = frame_unwind_find_by_frame (frame->next,
582 &frame->prologue_cache);
583
584 /* Ask this frame to unwind its register. See comment in
585 "frame-unwind.h" for why NEXT frame and this unwind cache are
586 passed in. */
587 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
588 optimizedp, lvalp, addrp, realnump, bufferp);
589
590 if (frame_debug)
591 {
592 fprintf_unfiltered (gdb_stdlog, "->");
593 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
594 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
595 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
596 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
597 if (bufferp == NULL)
598 fprintf_unfiltered (gdb_stdlog, "<NULL>");
599 else
600 {
601 int i;
602 const unsigned char *buf = bufferp;
603 fprintf_unfiltered (gdb_stdlog, "[");
604 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
605 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
606 fprintf_unfiltered (gdb_stdlog, "]");
607 }
608 fprintf_unfiltered (gdb_stdlog, " }\n");
609 }
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 LONGEST
651 frame_unwind_register_signed (struct frame_info *frame, int regnum)
652 {
653 gdb_byte buf[MAX_REGISTER_SIZE];
654 frame_unwind_register (frame, regnum, buf);
655 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
656 regnum));
657 }
658
659 LONGEST
660 get_frame_register_signed (struct frame_info *frame, int regnum)
661 {
662 return frame_unwind_register_signed (frame->next, regnum);
663 }
664
665 ULONGEST
666 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
667 {
668 gdb_byte buf[MAX_REGISTER_SIZE];
669 frame_unwind_register (frame, regnum, buf);
670 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
671 regnum));
672 }
673
674 ULONGEST
675 get_frame_register_unsigned (struct frame_info *frame, int regnum)
676 {
677 return frame_unwind_register_unsigned (frame->next, regnum);
678 }
679
680 void
681 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
682 ULONGEST *val)
683 {
684 gdb_byte buf[MAX_REGISTER_SIZE];
685 frame_unwind_register (frame, regnum, buf);
686 (*val) = extract_unsigned_integer (buf,
687 register_size (get_frame_arch (frame),
688 regnum));
689 }
690
691 void
692 put_frame_register (struct frame_info *frame, int regnum,
693 const gdb_byte *buf)
694 {
695 struct gdbarch *gdbarch = get_frame_arch (frame);
696 int realnum;
697 int optim;
698 enum lval_type lval;
699 CORE_ADDR addr;
700 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
701 if (optim)
702 error (_("Attempt to assign to a value that was optimized out."));
703 switch (lval)
704 {
705 case lval_memory:
706 {
707 /* FIXME: write_memory doesn't yet take constant buffers.
708 Arrrg! */
709 gdb_byte tmp[MAX_REGISTER_SIZE];
710 memcpy (tmp, buf, register_size (gdbarch, regnum));
711 write_memory (addr, tmp, register_size (gdbarch, regnum));
712 break;
713 }
714 case lval_register:
715 regcache_cooked_write (get_current_regcache (), realnum, buf);
716 break;
717 default:
718 error (_("Attempt to assign to an unmodifiable value."));
719 }
720 }
721
722 /* frame_register_read ()
723
724 Find and return the value of REGNUM for the specified stack frame.
725 The number of bytes copied is REGISTER_SIZE (REGNUM).
726
727 Returns 0 if the register value could not be found. */
728
729 int
730 frame_register_read (struct frame_info *frame, int regnum,
731 gdb_byte *myaddr)
732 {
733 int optimized;
734 enum lval_type lval;
735 CORE_ADDR addr;
736 int realnum;
737 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
738
739 return !optimized;
740 }
741
742 int
743 get_frame_register_bytes (struct frame_info *frame, int regnum,
744 CORE_ADDR offset, int len, gdb_byte *myaddr)
745 {
746 struct gdbarch *gdbarch = get_frame_arch (frame);
747
748 /* Skip registers wholly inside of OFFSET. */
749 while (offset >= register_size (gdbarch, regnum))
750 {
751 offset -= register_size (gdbarch, regnum);
752 regnum++;
753 }
754
755 /* Copy the data. */
756 while (len > 0)
757 {
758 int curr_len = register_size (gdbarch, regnum) - offset;
759 if (curr_len > len)
760 curr_len = len;
761
762 if (curr_len == register_size (gdbarch, regnum))
763 {
764 if (!frame_register_read (frame, regnum, myaddr))
765 return 0;
766 }
767 else
768 {
769 gdb_byte buf[MAX_REGISTER_SIZE];
770 if (!frame_register_read (frame, regnum, buf))
771 return 0;
772 memcpy (myaddr, buf + offset, curr_len);
773 }
774
775 myaddr += curr_len;
776 len -= curr_len;
777 offset = 0;
778 regnum++;
779 }
780
781 return 1;
782 }
783
784 void
785 put_frame_register_bytes (struct frame_info *frame, int regnum,
786 CORE_ADDR offset, int len, const gdb_byte *myaddr)
787 {
788 struct gdbarch *gdbarch = get_frame_arch (frame);
789
790 /* Skip registers wholly inside of OFFSET. */
791 while (offset >= register_size (gdbarch, regnum))
792 {
793 offset -= register_size (gdbarch, regnum);
794 regnum++;
795 }
796
797 /* Copy the data. */
798 while (len > 0)
799 {
800 int curr_len = register_size (gdbarch, regnum) - offset;
801 if (curr_len > len)
802 curr_len = len;
803
804 if (curr_len == register_size (gdbarch, regnum))
805 {
806 put_frame_register (frame, regnum, myaddr);
807 }
808 else
809 {
810 gdb_byte buf[MAX_REGISTER_SIZE];
811 frame_register_read (frame, regnum, buf);
812 memcpy (buf + offset, myaddr, curr_len);
813 put_frame_register (frame, regnum, buf);
814 }
815
816 myaddr += curr_len;
817 len -= curr_len;
818 offset = 0;
819 regnum++;
820 }
821 }
822
823 /* Map between a frame register number and its name. A frame register
824 space is a superset of the cooked register space --- it also
825 includes builtin registers. */
826
827 int
828 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
829 {
830 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
831 }
832
833 const char *
834 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
835 {
836 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
837 }
838
839 /* Create a sentinel frame. */
840
841 static struct frame_info *
842 create_sentinel_frame (struct regcache *regcache)
843 {
844 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
845 frame->level = -1;
846 /* Explicitly initialize the sentinel frame's cache. Provide it
847 with the underlying regcache. In the future additional
848 information, such as the frame's thread will be added. */
849 frame->prologue_cache = sentinel_frame_cache (regcache);
850 /* For the moment there is only one sentinel frame implementation. */
851 frame->unwind = sentinel_frame_unwind;
852 /* Link this frame back to itself. The frame is self referential
853 (the unwound PC is the same as the pc), so make it so. */
854 frame->next = frame;
855 /* Make the sentinel frame's ID valid, but invalid. That way all
856 comparisons with it should fail. */
857 frame->this_id.p = 1;
858 frame->this_id.value = null_frame_id;
859 if (frame_debug)
860 {
861 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
862 fprint_frame (gdb_stdlog, frame);
863 fprintf_unfiltered (gdb_stdlog, " }\n");
864 }
865 return frame;
866 }
867
868 /* Info about the innermost stack frame (contents of FP register) */
869
870 static struct frame_info *current_frame;
871
872 /* Cache for frame addresses already read by gdb. Valid only while
873 inferior is stopped. Control variables for the frame cache should
874 be local to this module. */
875
876 static struct obstack frame_cache_obstack;
877
878 void *
879 frame_obstack_zalloc (unsigned long size)
880 {
881 void *data = obstack_alloc (&frame_cache_obstack, size);
882 memset (data, 0, size);
883 return data;
884 }
885
886 /* Return the innermost (currently executing) stack frame. This is
887 split into two functions. The function unwind_to_current_frame()
888 is wrapped in catch exceptions so that, even when the unwind of the
889 sentinel frame fails, the function still returns a stack frame. */
890
891 static int
892 unwind_to_current_frame (struct ui_out *ui_out, void *args)
893 {
894 struct frame_info *frame = get_prev_frame (args);
895 /* A sentinel frame can fail to unwind, e.g., because its PC value
896 lands in somewhere like start. */
897 if (frame == NULL)
898 return 1;
899 current_frame = frame;
900 return 0;
901 }
902
903 struct frame_info *
904 get_current_frame (void)
905 {
906 /* First check, and report, the lack of registers. Having GDB
907 report "No stack!" or "No memory" when the target doesn't even
908 have registers is very confusing. Besides, "printcmd.exp"
909 explicitly checks that ``print $pc'' with no registers prints "No
910 registers". */
911 if (!target_has_registers)
912 error (_("No registers."));
913 if (!target_has_stack)
914 error (_("No stack."));
915 if (!target_has_memory)
916 error (_("No memory."));
917 if (current_frame == NULL)
918 {
919 struct frame_info *sentinel_frame =
920 create_sentinel_frame (get_current_regcache ());
921 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
922 RETURN_MASK_ERROR) != 0)
923 {
924 /* Oops! Fake a current frame? Is this useful? It has a PC
925 of zero, for instance. */
926 current_frame = sentinel_frame;
927 }
928 }
929 return current_frame;
930 }
931
932 /* The "selected" stack frame is used by default for local and arg
933 access. May be zero, for no selected frame. */
934
935 static struct frame_info *selected_frame;
936
937 /* Return the selected frame. Always non-NULL (unless there isn't an
938 inferior sufficient for creating a frame) in which case an error is
939 thrown. */
940
941 struct frame_info *
942 get_selected_frame (const char *message)
943 {
944 if (selected_frame == NULL)
945 {
946 if (message != NULL && (!target_has_registers
947 || !target_has_stack
948 || !target_has_memory))
949 error (("%s"), message);
950 /* Hey! Don't trust this. It should really be re-finding the
951 last selected frame of the currently selected thread. This,
952 though, is better than nothing. */
953 select_frame (get_current_frame ());
954 }
955 /* There is always a frame. */
956 gdb_assert (selected_frame != NULL);
957 return selected_frame;
958 }
959
960 /* This is a variant of get_selected_frame() which can be called when
961 the inferior does not have a frame; in that case it will return
962 NULL instead of calling error(). */
963
964 struct frame_info *
965 deprecated_safe_get_selected_frame (void)
966 {
967 if (!target_has_registers || !target_has_stack || !target_has_memory)
968 return NULL;
969 return get_selected_frame (NULL);
970 }
971
972 /* Select frame FI (or NULL - to invalidate the current frame). */
973
974 void
975 select_frame (struct frame_info *fi)
976 {
977 struct symtab *s;
978
979 selected_frame = fi;
980 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
981 frame is being invalidated. */
982 if (deprecated_selected_frame_level_changed_hook)
983 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
984
985 /* FIXME: kseitz/2002-08-28: It would be nice to call
986 selected_frame_level_changed_event() right here, but due to limitations
987 in the current interfaces, we would end up flooding UIs with events
988 because select_frame() is used extensively internally.
989
990 Once we have frame-parameterized frame (and frame-related) commands,
991 the event notification can be moved here, since this function will only
992 be called when the user's selected frame is being changed. */
993
994 /* Ensure that symbols for this frame are read in. Also, determine the
995 source language of this frame, and switch to it if desired. */
996 if (fi)
997 {
998 /* We retrieve the frame's symtab by using the frame PC. However
999 we cannot use the frame PC as-is, because it usually points to
1000 the instruction following the "call", which is sometimes the
1001 first instruction of another function. So we rely on
1002 get_frame_address_in_block() which provides us with a PC which
1003 is guaranteed to be inside the frame's code block. */
1004 s = find_pc_symtab (get_frame_address_in_block (fi));
1005 if (s
1006 && s->language != current_language->la_language
1007 && s->language != language_unknown
1008 && language_mode == language_mode_auto)
1009 {
1010 set_language (s->language);
1011 }
1012 }
1013 }
1014
1015 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1016 Always returns a non-NULL value. */
1017
1018 struct frame_info *
1019 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1020 {
1021 struct frame_info *fi;
1022
1023 if (frame_debug)
1024 {
1025 fprintf_unfiltered (gdb_stdlog,
1026 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1027 paddr_nz (addr), paddr_nz (pc));
1028 }
1029
1030 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1031
1032 fi->next = create_sentinel_frame (get_current_regcache ());
1033
1034 /* Select/initialize both the unwind function and the frame's type
1035 based on the PC. */
1036 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1037
1038 fi->this_id.p = 1;
1039 deprecated_update_frame_base_hack (fi, addr);
1040 deprecated_update_frame_pc_hack (fi, pc);
1041
1042 if (frame_debug)
1043 {
1044 fprintf_unfiltered (gdb_stdlog, "-> ");
1045 fprint_frame (gdb_stdlog, fi);
1046 fprintf_unfiltered (gdb_stdlog, " }\n");
1047 }
1048
1049 return fi;
1050 }
1051
1052 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1053 innermost frame). Be careful to not fall off the bottom of the
1054 frame chain and onto the sentinel frame. */
1055
1056 struct frame_info *
1057 get_next_frame (struct frame_info *this_frame)
1058 {
1059 if (this_frame->level > 0)
1060 return this_frame->next;
1061 else
1062 return NULL;
1063 }
1064
1065 /* Observer for the target_changed event. */
1066
1067 void
1068 frame_observer_target_changed (struct target_ops *target)
1069 {
1070 reinit_frame_cache ();
1071 }
1072
1073 /* Flush the entire frame cache. */
1074
1075 void
1076 reinit_frame_cache (void)
1077 {
1078 struct frame_info *fi;
1079
1080 /* Tear down all frame caches. */
1081 for (fi = current_frame; fi != NULL; fi = fi->prev)
1082 {
1083 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1084 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1085 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1086 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1087 }
1088
1089 /* Since we can't really be sure what the first object allocated was */
1090 obstack_free (&frame_cache_obstack, 0);
1091 obstack_init (&frame_cache_obstack);
1092
1093 current_frame = NULL; /* Invalidate cache */
1094 select_frame (NULL);
1095 annotate_frames_invalid ();
1096 if (frame_debug)
1097 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1098 }
1099
1100 /* Find where a register is saved (in memory or another register).
1101 The result of frame_register_unwind is just where it is saved
1102 relative to this particular frame. */
1103
1104 static void
1105 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1106 int *optimizedp, enum lval_type *lvalp,
1107 CORE_ADDR *addrp, int *realnump)
1108 {
1109 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1110
1111 while (this_frame != NULL)
1112 {
1113 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1114 addrp, realnump, NULL);
1115
1116 if (*optimizedp)
1117 break;
1118
1119 if (*lvalp != lval_register)
1120 break;
1121
1122 regnum = *realnump;
1123 this_frame = get_next_frame (this_frame);
1124 }
1125 }
1126
1127 /* Return a "struct frame_info" corresponding to the frame that called
1128 THIS_FRAME. Returns NULL if there is no such frame.
1129
1130 Unlike get_prev_frame, this function always tries to unwind the
1131 frame. */
1132
1133 static struct frame_info *
1134 get_prev_frame_1 (struct frame_info *this_frame)
1135 {
1136 struct frame_info *prev_frame;
1137 struct frame_id this_id;
1138
1139 gdb_assert (this_frame != NULL);
1140
1141 if (frame_debug)
1142 {
1143 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1144 if (this_frame != NULL)
1145 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1146 else
1147 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1148 fprintf_unfiltered (gdb_stdlog, ") ");
1149 }
1150
1151 /* Only try to do the unwind once. */
1152 if (this_frame->prev_p)
1153 {
1154 if (frame_debug)
1155 {
1156 fprintf_unfiltered (gdb_stdlog, "-> ");
1157 fprint_frame (gdb_stdlog, this_frame->prev);
1158 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1159 }
1160 return this_frame->prev;
1161 }
1162 this_frame->prev_p = 1;
1163 this_frame->stop_reason = UNWIND_NO_REASON;
1164
1165 /* Check that this frame's ID was valid. If it wasn't, don't try to
1166 unwind to the prev frame. Be careful to not apply this test to
1167 the sentinel frame. */
1168 this_id = get_frame_id (this_frame);
1169 if (this_frame->level >= 0 && !frame_id_p (this_id))
1170 {
1171 if (frame_debug)
1172 {
1173 fprintf_unfiltered (gdb_stdlog, "-> ");
1174 fprint_frame (gdb_stdlog, NULL);
1175 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1176 }
1177 this_frame->stop_reason = UNWIND_NULL_ID;
1178 return NULL;
1179 }
1180
1181 /* Check that this frame's ID isn't inner to (younger, below, next)
1182 the next frame. This happens when a frame unwind goes backwards.
1183 Exclude signal trampolines (due to sigaltstack the frame ID can
1184 go backwards) and sentinel frames (the test is meaningless). */
1185 if (this_frame->next->level >= 0
1186 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1187 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1188 {
1189 if (frame_debug)
1190 {
1191 fprintf_unfiltered (gdb_stdlog, "-> ");
1192 fprint_frame (gdb_stdlog, NULL);
1193 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1194 }
1195 this_frame->stop_reason = UNWIND_INNER_ID;
1196 return NULL;
1197 }
1198
1199 /* Check that this and the next frame are not identical. If they
1200 are, there is most likely a stack cycle. As with the inner-than
1201 test above, avoid comparing the inner-most and sentinel frames. */
1202 if (this_frame->level > 0
1203 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1204 {
1205 if (frame_debug)
1206 {
1207 fprintf_unfiltered (gdb_stdlog, "-> ");
1208 fprint_frame (gdb_stdlog, NULL);
1209 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1210 }
1211 this_frame->stop_reason = UNWIND_SAME_ID;
1212 return NULL;
1213 }
1214
1215 /* Check that this and the next frame do not unwind the PC register
1216 to the same memory location. If they do, then even though they
1217 have different frame IDs, the new frame will be bogus; two
1218 functions can't share a register save slot for the PC. This can
1219 happen when the prologue analyzer finds a stack adjustment, but
1220 no PC save.
1221
1222 This check does assume that the "PC register" is roughly a
1223 traditional PC, even if the gdbarch_unwind_pc method adjusts
1224 it (we do not rely on the value, only on the unwound PC being
1225 dependent on this value). A potential improvement would be
1226 to have the frame prev_pc method and the gdbarch unwind_pc
1227 method set the same lval and location information as
1228 frame_register_unwind. */
1229 if (this_frame->level > 0
1230 && gdbarch_pc_regnum (current_gdbarch) >= 0
1231 && get_frame_type (this_frame) == NORMAL_FRAME
1232 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1233 {
1234 int optimized, realnum;
1235 enum lval_type lval, nlval;
1236 CORE_ADDR addr, naddr;
1237
1238 frame_register_unwind_location (this_frame,
1239 gdbarch_pc_regnum (current_gdbarch),
1240 &optimized, &lval, &addr, &realnum);
1241 frame_register_unwind_location (get_next_frame (this_frame),
1242 gdbarch_pc_regnum (current_gdbarch),
1243 &optimized, &nlval, &naddr, &realnum);
1244
1245 if (lval == lval_memory && lval == nlval && addr == naddr)
1246 {
1247 if (frame_debug)
1248 {
1249 fprintf_unfiltered (gdb_stdlog, "-> ");
1250 fprint_frame (gdb_stdlog, NULL);
1251 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1252 }
1253
1254 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1255 this_frame->prev = NULL;
1256 return NULL;
1257 }
1258 }
1259
1260 /* Allocate the new frame but do not wire it in to the frame chain.
1261 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1262 frame->next to pull some fancy tricks (of course such code is, by
1263 definition, recursive). Try to prevent it.
1264
1265 There is no reason to worry about memory leaks, should the
1266 remainder of the function fail. The allocated memory will be
1267 quickly reclaimed when the frame cache is flushed, and the `we've
1268 been here before' check above will stop repeated memory
1269 allocation calls. */
1270 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1271 prev_frame->level = this_frame->level + 1;
1272
1273 /* Don't yet compute ->unwind (and hence ->type). It is computed
1274 on-demand in get_frame_type, frame_register_unwind, and
1275 get_frame_id. */
1276
1277 /* Don't yet compute the frame's ID. It is computed on-demand by
1278 get_frame_id(). */
1279
1280 /* The unwound frame ID is validate at the start of this function,
1281 as part of the logic to decide if that frame should be further
1282 unwound, and not here while the prev frame is being created.
1283 Doing this makes it possible for the user to examine a frame that
1284 has an invalid frame ID.
1285
1286 Some very old VAX code noted: [...] For the sake of argument,
1287 suppose that the stack is somewhat trashed (which is one reason
1288 that "info frame" exists). So, return 0 (indicating we don't
1289 know the address of the arglist) if we don't know what frame this
1290 frame calls. */
1291
1292 /* Link it in. */
1293 this_frame->prev = prev_frame;
1294 prev_frame->next = this_frame;
1295
1296 if (frame_debug)
1297 {
1298 fprintf_unfiltered (gdb_stdlog, "-> ");
1299 fprint_frame (gdb_stdlog, prev_frame);
1300 fprintf_unfiltered (gdb_stdlog, " }\n");
1301 }
1302
1303 return prev_frame;
1304 }
1305
1306 /* Debug routine to print a NULL frame being returned. */
1307
1308 static void
1309 frame_debug_got_null_frame (struct ui_file *file,
1310 struct frame_info *this_frame,
1311 const char *reason)
1312 {
1313 if (frame_debug)
1314 {
1315 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1316 if (this_frame != NULL)
1317 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1318 else
1319 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1320 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1321 }
1322 }
1323
1324 /* Is this (non-sentinel) frame in the "main"() function? */
1325
1326 static int
1327 inside_main_func (struct frame_info *this_frame)
1328 {
1329 struct minimal_symbol *msymbol;
1330 CORE_ADDR maddr;
1331
1332 if (symfile_objfile == 0)
1333 return 0;
1334 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1335 if (msymbol == NULL)
1336 return 0;
1337 /* Make certain that the code, and not descriptor, address is
1338 returned. */
1339 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1340 SYMBOL_VALUE_ADDRESS (msymbol),
1341 &current_target);
1342 return maddr == get_frame_func (this_frame);
1343 }
1344
1345 /* Test whether THIS_FRAME is inside the process entry point function. */
1346
1347 static int
1348 inside_entry_func (struct frame_info *this_frame)
1349 {
1350 return (get_frame_func (this_frame) == entry_point_address ());
1351 }
1352
1353 /* Return a structure containing various interesting information about
1354 the frame that called THIS_FRAME. Returns NULL if there is entier
1355 no such frame or the frame fails any of a set of target-independent
1356 condition that should terminate the frame chain (e.g., as unwinding
1357 past main()).
1358
1359 This function should not contain target-dependent tests, such as
1360 checking whether the program-counter is zero. */
1361
1362 struct frame_info *
1363 get_prev_frame (struct frame_info *this_frame)
1364 {
1365 struct frame_info *prev_frame;
1366
1367 /* Return the inner-most frame, when the caller passes in NULL. */
1368 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1369 caller should have previously obtained a valid frame using
1370 get_selected_frame() and then called this code - only possibility
1371 I can think of is code behaving badly.
1372
1373 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1374 block_innermost_frame(). It does the sequence: frame = NULL;
1375 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1376 it couldn't be written better, I don't know.
1377
1378 NOTE: cagney/2003-01-11: I suspect what is happening in
1379 block_innermost_frame() is, when the target has no state
1380 (registers, memory, ...), it is still calling this function. The
1381 assumption being that this function will return NULL indicating
1382 that a frame isn't possible, rather than checking that the target
1383 has state and then calling get_current_frame() and
1384 get_prev_frame(). This is a guess mind. */
1385 if (this_frame == NULL)
1386 {
1387 /* NOTE: cagney/2002-11-09: There was a code segment here that
1388 would error out when CURRENT_FRAME was NULL. The comment
1389 that went with it made the claim ...
1390
1391 ``This screws value_of_variable, which just wants a nice
1392 clean NULL return from block_innermost_frame if there are no
1393 frames. I don't think I've ever seen this message happen
1394 otherwise. And returning NULL here is a perfectly legitimate
1395 thing to do.''
1396
1397 Per the above, this code shouldn't even be called with a NULL
1398 THIS_FRAME. */
1399 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1400 return current_frame;
1401 }
1402
1403 /* There is always a frame. If this assertion fails, suspect that
1404 something should be calling get_selected_frame() or
1405 get_current_frame(). */
1406 gdb_assert (this_frame != NULL);
1407
1408 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1409 sense to stop unwinding at a dummy frame. One place where a dummy
1410 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1411 pcsqh register (space register for the instruction at the head of the
1412 instruction queue) cannot be written directly; the only way to set it
1413 is to branch to code that is in the target space. In order to implement
1414 frame dummies on HPUX, the called function is made to jump back to where
1415 the inferior was when the user function was called. If gdb was inside
1416 the main function when we created the dummy frame, the dummy frame will
1417 point inside the main function. */
1418 if (this_frame->level >= 0
1419 && get_frame_type (this_frame) != DUMMY_FRAME
1420 && !backtrace_past_main
1421 && inside_main_func (this_frame))
1422 /* Don't unwind past main(). Note, this is done _before_ the
1423 frame has been marked as previously unwound. That way if the
1424 user later decides to enable unwinds past main(), that will
1425 automatically happen. */
1426 {
1427 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1428 return NULL;
1429 }
1430
1431 /* If the user's backtrace limit has been exceeded, stop. We must
1432 add two to the current level; one of those accounts for backtrace_limit
1433 being 1-based and the level being 0-based, and the other accounts for
1434 the level of the new frame instead of the level of the current
1435 frame. */
1436 if (this_frame->level + 2 > backtrace_limit)
1437 {
1438 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1439 "backtrace limit exceeded");
1440 return NULL;
1441 }
1442
1443 /* If we're already inside the entry function for the main objfile,
1444 then it isn't valid. Don't apply this test to a dummy frame -
1445 dummy frame PCs typically land in the entry func. Don't apply
1446 this test to the sentinel frame. Sentinel frames should always
1447 be allowed to unwind. */
1448 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1449 wasn't checking for "main" in the minimal symbols. With that
1450 fixed asm-source tests now stop in "main" instead of halting the
1451 backtrace in weird and wonderful ways somewhere inside the entry
1452 file. Suspect that tests for inside the entry file/func were
1453 added to work around that (now fixed) case. */
1454 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1455 suggested having the inside_entry_func test use the
1456 inside_main_func() msymbol trick (along with entry_point_address()
1457 I guess) to determine the address range of the start function.
1458 That should provide a far better stopper than the current
1459 heuristics. */
1460 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1461 applied tail-call optimizations to main so that a function called
1462 from main returns directly to the caller of main. Since we don't
1463 stop at main, we should at least stop at the entry point of the
1464 application. */
1465 if (!backtrace_past_entry
1466 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1467 && inside_entry_func (this_frame))
1468 {
1469 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1470 return NULL;
1471 }
1472
1473 /* Assume that the only way to get a zero PC is through something
1474 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1475 will never unwind a zero PC. */
1476 if (this_frame->level > 0
1477 && get_frame_type (this_frame) == NORMAL_FRAME
1478 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1479 && get_frame_pc (this_frame) == 0)
1480 {
1481 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1482 return NULL;
1483 }
1484
1485 return get_prev_frame_1 (this_frame);
1486 }
1487
1488 CORE_ADDR
1489 get_frame_pc (struct frame_info *frame)
1490 {
1491 gdb_assert (frame->next != NULL);
1492 return frame_pc_unwind (frame->next);
1493 }
1494
1495 /* Return an address that falls within NEXT_FRAME's caller's code
1496 block, assuming that the caller is a THIS_TYPE frame. */
1497
1498 CORE_ADDR
1499 frame_unwind_address_in_block (struct frame_info *next_frame,
1500 enum frame_type this_type)
1501 {
1502 /* A draft address. */
1503 CORE_ADDR pc = frame_pc_unwind (next_frame);
1504
1505 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1506 we shold not adjust the unwound PC. These frames may not call
1507 their next frame in the normal way; the operating system or GDB
1508 may have pushed their resume address manually onto the stack, so
1509 it may be the very first instruction. Even if the resume address
1510 was not manually pushed, they expect to be returned to. */
1511 if (this_type != NORMAL_FRAME)
1512 return pc;
1513
1514 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1515 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1516 frame's PC ends up pointing at the instruction fallowing the
1517 "call". Adjust that PC value so that it falls on the call
1518 instruction (which, hopefully, falls within THIS frame's code
1519 block). So far it's proved to be a very good approximation. See
1520 get_frame_type() for why ->type can't be used. */
1521 if (next_frame->level >= 0
1522 && get_frame_type (next_frame) == NORMAL_FRAME)
1523 --pc;
1524 return pc;
1525 }
1526
1527 CORE_ADDR
1528 get_frame_address_in_block (struct frame_info *this_frame)
1529 {
1530 return frame_unwind_address_in_block (this_frame->next,
1531 get_frame_type (this_frame));
1532 }
1533
1534 static int
1535 pc_notcurrent (struct frame_info *frame)
1536 {
1537 /* If FRAME is not the innermost frame, that normally means that
1538 FRAME->pc points at the return instruction (which is *after* the
1539 call instruction), and we want to get the line containing the
1540 call (because the call is where the user thinks the program is).
1541 However, if the next frame is either a SIGTRAMP_FRAME or a
1542 DUMMY_FRAME, then the next frame will contain a saved interrupt
1543 PC and such a PC indicates the current (rather than next)
1544 instruction/line, consequently, for such cases, want to get the
1545 line containing fi->pc. */
1546 struct frame_info *next = get_next_frame (frame);
1547 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1548 return notcurrent;
1549 }
1550
1551 void
1552 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1553 {
1554 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1555 }
1556
1557 /* Per "frame.h", return the ``address'' of the frame. Code should
1558 really be using get_frame_id(). */
1559 CORE_ADDR
1560 get_frame_base (struct frame_info *fi)
1561 {
1562 return get_frame_id (fi).stack_addr;
1563 }
1564
1565 /* High-level offsets into the frame. Used by the debug info. */
1566
1567 CORE_ADDR
1568 get_frame_base_address (struct frame_info *fi)
1569 {
1570 if (get_frame_type (fi) != NORMAL_FRAME)
1571 return 0;
1572 if (fi->base == NULL)
1573 fi->base = frame_base_find_by_frame (fi->next);
1574 /* Sneaky: If the low-level unwind and high-level base code share a
1575 common unwinder, let them share the prologue cache. */
1576 if (fi->base->unwind == fi->unwind)
1577 return fi->base->this_base (fi->next, &fi->prologue_cache);
1578 return fi->base->this_base (fi->next, &fi->base_cache);
1579 }
1580
1581 CORE_ADDR
1582 get_frame_locals_address (struct frame_info *fi)
1583 {
1584 void **cache;
1585 if (get_frame_type (fi) != NORMAL_FRAME)
1586 return 0;
1587 /* If there isn't a frame address method, find it. */
1588 if (fi->base == NULL)
1589 fi->base = frame_base_find_by_frame (fi->next);
1590 /* Sneaky: If the low-level unwind and high-level base code share a
1591 common unwinder, let them share the prologue cache. */
1592 if (fi->base->unwind == fi->unwind)
1593 cache = &fi->prologue_cache;
1594 else
1595 cache = &fi->base_cache;
1596 return fi->base->this_locals (fi->next, cache);
1597 }
1598
1599 CORE_ADDR
1600 get_frame_args_address (struct frame_info *fi)
1601 {
1602 void **cache;
1603 if (get_frame_type (fi) != NORMAL_FRAME)
1604 return 0;
1605 /* If there isn't a frame address method, find it. */
1606 if (fi->base == NULL)
1607 fi->base = frame_base_find_by_frame (fi->next);
1608 /* Sneaky: If the low-level unwind and high-level base code share a
1609 common unwinder, let them share the prologue cache. */
1610 if (fi->base->unwind == fi->unwind)
1611 cache = &fi->prologue_cache;
1612 else
1613 cache = &fi->base_cache;
1614 return fi->base->this_args (fi->next, cache);
1615 }
1616
1617 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1618 or -1 for a NULL frame. */
1619
1620 int
1621 frame_relative_level (struct frame_info *fi)
1622 {
1623 if (fi == NULL)
1624 return -1;
1625 else
1626 return fi->level;
1627 }
1628
1629 enum frame_type
1630 get_frame_type (struct frame_info *frame)
1631 {
1632 if (frame->unwind == NULL)
1633 /* Initialize the frame's unwinder because that's what
1634 provides the frame's type. */
1635 frame->unwind = frame_unwind_find_by_frame (frame->next,
1636 &frame->prologue_cache);
1637 return frame->unwind->type;
1638 }
1639
1640 void
1641 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1642 {
1643 if (frame_debug)
1644 fprintf_unfiltered (gdb_stdlog,
1645 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1646 frame->level, paddr_nz (pc));
1647 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1648 maintaining a locally allocated frame object. Since such frames
1649 are not in the frame chain, it isn't possible to assume that the
1650 frame has a next. Sigh. */
1651 if (frame->next != NULL)
1652 {
1653 /* While we're at it, update this frame's cached PC value, found
1654 in the next frame. Oh for the day when "struct frame_info"
1655 is opaque and this hack on hack can just go away. */
1656 frame->next->prev_pc.value = pc;
1657 frame->next->prev_pc.p = 1;
1658 }
1659 }
1660
1661 void
1662 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1663 {
1664 if (frame_debug)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1667 frame->level, paddr_nz (base));
1668 /* See comment in "frame.h". */
1669 frame->this_id.value.stack_addr = base;
1670 }
1671
1672 /* Memory access methods. */
1673
1674 void
1675 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1676 gdb_byte *buf, int len)
1677 {
1678 read_memory (addr, buf, len);
1679 }
1680
1681 LONGEST
1682 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1683 int len)
1684 {
1685 return read_memory_integer (addr, len);
1686 }
1687
1688 ULONGEST
1689 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1690 int len)
1691 {
1692 return read_memory_unsigned_integer (addr, len);
1693 }
1694
1695 int
1696 safe_frame_unwind_memory (struct frame_info *this_frame,
1697 CORE_ADDR addr, gdb_byte *buf, int len)
1698 {
1699 /* NOTE: read_memory_nobpt returns zero on success! */
1700 return !read_memory_nobpt (addr, buf, len);
1701 }
1702
1703 /* Architecture method. */
1704
1705 struct gdbarch *
1706 get_frame_arch (struct frame_info *this_frame)
1707 {
1708 return current_gdbarch;
1709 }
1710
1711 /* Stack pointer methods. */
1712
1713 CORE_ADDR
1714 get_frame_sp (struct frame_info *this_frame)
1715 {
1716 return frame_sp_unwind (this_frame->next);
1717 }
1718
1719 CORE_ADDR
1720 frame_sp_unwind (struct frame_info *next_frame)
1721 {
1722 /* Normality - an architecture that provides a way of obtaining any
1723 frame inner-most address. */
1724 if (gdbarch_unwind_sp_p (current_gdbarch))
1725 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1726 /* Now things are really are grim. Hope that the value returned by
1727 the gdbarch_sp_regnum register is meaningful. */
1728 if (gdbarch_sp_regnum (current_gdbarch) >= 0)
1729 {
1730 ULONGEST sp;
1731 frame_unwind_unsigned_register (next_frame,
1732 gdbarch_sp_regnum (current_gdbarch), &sp);
1733 return sp;
1734 }
1735 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1736 }
1737
1738 /* Return the reason why we can't unwind past FRAME. */
1739
1740 enum unwind_stop_reason
1741 get_frame_unwind_stop_reason (struct frame_info *frame)
1742 {
1743 /* If we haven't tried to unwind past this point yet, then assume
1744 that unwinding would succeed. */
1745 if (frame->prev_p == 0)
1746 return UNWIND_NO_REASON;
1747
1748 /* Otherwise, we set a reason when we succeeded (or failed) to
1749 unwind. */
1750 return frame->stop_reason;
1751 }
1752
1753 /* Return a string explaining REASON. */
1754
1755 const char *
1756 frame_stop_reason_string (enum unwind_stop_reason reason)
1757 {
1758 switch (reason)
1759 {
1760 case UNWIND_NULL_ID:
1761 return _("unwinder did not report frame ID");
1762
1763 case UNWIND_INNER_ID:
1764 return _("previous frame inner to this frame (corrupt stack?)");
1765
1766 case UNWIND_SAME_ID:
1767 return _("previous frame identical to this frame (corrupt stack?)");
1768
1769 case UNWIND_NO_SAVED_PC:
1770 return _("frame did not save the PC");
1771
1772 case UNWIND_NO_REASON:
1773 case UNWIND_FIRST_ERROR:
1774 default:
1775 internal_error (__FILE__, __LINE__,
1776 "Invalid frame stop reason");
1777 }
1778 }
1779
1780 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1781
1782 static struct cmd_list_element *set_backtrace_cmdlist;
1783 static struct cmd_list_element *show_backtrace_cmdlist;
1784
1785 static void
1786 set_backtrace_cmd (char *args, int from_tty)
1787 {
1788 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1789 }
1790
1791 static void
1792 show_backtrace_cmd (char *args, int from_tty)
1793 {
1794 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1795 }
1796
1797 void
1798 _initialize_frame (void)
1799 {
1800 obstack_init (&frame_cache_obstack);
1801
1802 observer_attach_target_changed (frame_observer_target_changed);
1803
1804 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1805 Set backtrace specific variables.\n\
1806 Configure backtrace variables such as the backtrace limit"),
1807 &set_backtrace_cmdlist, "set backtrace ",
1808 0/*allow-unknown*/, &setlist);
1809 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1810 Show backtrace specific variables\n\
1811 Show backtrace variables such as the backtrace limit"),
1812 &show_backtrace_cmdlist, "show backtrace ",
1813 0/*allow-unknown*/, &showlist);
1814
1815 add_setshow_boolean_cmd ("past-main", class_obscure,
1816 &backtrace_past_main, _("\
1817 Set whether backtraces should continue past \"main\"."), _("\
1818 Show whether backtraces should continue past \"main\"."), _("\
1819 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1820 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1821 of the stack trace."),
1822 NULL,
1823 show_backtrace_past_main,
1824 &set_backtrace_cmdlist,
1825 &show_backtrace_cmdlist);
1826
1827 add_setshow_boolean_cmd ("past-entry", class_obscure,
1828 &backtrace_past_entry, _("\
1829 Set whether backtraces should continue past the entry point of a program."),
1830 _("\
1831 Show whether backtraces should continue past the entry point of a program."),
1832 _("\
1833 Normally there are no callers beyond the entry point of a program, so GDB\n\
1834 will terminate the backtrace there. Set this variable if you need to see \n\
1835 the rest of the stack trace."),
1836 NULL,
1837 show_backtrace_past_entry,
1838 &set_backtrace_cmdlist,
1839 &show_backtrace_cmdlist);
1840
1841 add_setshow_integer_cmd ("limit", class_obscure,
1842 &backtrace_limit, _("\
1843 Set an upper bound on the number of backtrace levels."), _("\
1844 Show the upper bound on the number of backtrace levels."), _("\
1845 No more than the specified number of frames can be displayed or examined.\n\
1846 Zero is unlimited."),
1847 NULL,
1848 show_backtrace_limit,
1849 &set_backtrace_cmdlist,
1850 &show_backtrace_cmdlist);
1851
1852 /* Debug this files internals. */
1853 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1854 Set frame debugging."), _("\
1855 Show frame debugging."), _("\
1856 When non-zero, frame specific internal debugging is enabled."),
1857 NULL,
1858 show_frame_debug,
1859 &setdebuglist, &showdebuglist);
1860 }
This page took 0.116831 seconds and 4 git commands to generate.