a40bbb219c31f2b6dfd73dad0e908dac7256e32e
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "inferior.h" /* for inferior_ptid */
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "gdb_string.h"
31 #include "user-regs.h"
32 #include "gdb_obstack.h"
33 #include "dummy-frame.h"
34 #include "sentinel-frame.h"
35 #include "gdbcore.h"
36 #include "annotate.h"
37 #include "language.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "command.h"
41 #include "gdbcmd.h"
42 #include "observer.h"
43 #include "objfiles.h"
44 #include "exceptions.h"
45
46 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
47
48 /* We keep a cache of stack frames, each of which is a "struct
49 frame_info". The innermost one gets allocated (in
50 wait_for_inferior) each time the inferior stops; current_frame
51 points to it. Additional frames get allocated (in get_prev_frame)
52 as needed, and are chained through the next and prev fields. Any
53 time that the frame cache becomes invalid (most notably when we
54 execute something, but also if we change how we interpret the
55 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
56 which reads new symbols)), we should call reinit_frame_cache. */
57
58 struct frame_info
59 {
60 /* Level of this frame. The inner-most (youngest) frame is at level
61 0. As you move towards the outer-most (oldest) frame, the level
62 increases. This is a cached value. It could just as easily be
63 computed by counting back from the selected frame to the inner
64 most frame. */
65 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
66 reserved to indicate a bogus frame - one that has been created
67 just to keep GDB happy (GDB always needs a frame). For the
68 moment leave this as speculation. */
69 int level;
70
71 /* The frame's low-level unwinder and corresponding cache. The
72 low-level unwinder is responsible for unwinding register values
73 for the previous frame. The low-level unwind methods are
74 selected based on the presence, or otherwise, of register unwind
75 information such as CFI. */
76 void *prologue_cache;
77 const struct frame_unwind *unwind;
78
79 /* Cached copy of the previous frame's resume address. */
80 struct {
81 int p;
82 CORE_ADDR value;
83 } prev_pc;
84
85 /* Cached copy of the previous frame's function address. */
86 struct
87 {
88 CORE_ADDR addr;
89 int p;
90 } prev_func;
91
92 /* This frame's ID. */
93 struct
94 {
95 int p;
96 struct frame_id value;
97 } this_id;
98
99 /* The frame's high-level base methods, and corresponding cache.
100 The high level base methods are selected based on the frame's
101 debug info. */
102 const struct frame_base *base;
103 void *base_cache;
104
105 /* Pointers to the next (down, inner, younger) and previous (up,
106 outer, older) frame_info's in the frame cache. */
107 struct frame_info *next; /* down, inner, younger */
108 int prev_p;
109 struct frame_info *prev; /* up, outer, older */
110
111 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
112 could. Only valid when PREV_P is set. */
113 enum unwind_stop_reason stop_reason;
114 };
115
116 /* Flag to control debugging. */
117
118 static int frame_debug;
119 static void
120 show_frame_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
124 }
125
126 /* Flag to indicate whether backtraces should stop at main et.al. */
127
128 static int backtrace_past_main;
129 static void
130 show_backtrace_past_main (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("\
134 Whether backtraces should continue past \"main\" is %s.\n"),
135 value);
136 }
137
138 static int backtrace_past_entry;
139 static void
140 show_backtrace_past_entry (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142 {
143 fprintf_filtered (file, _("\
144 Whether backtraces should continue past the entry point of a program is %s.\n"),
145 value);
146 }
147
148 static int backtrace_limit = INT_MAX;
149 static void
150 show_backtrace_limit (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("\
154 An upper bound on the number of backtrace levels is %s.\n"),
155 value);
156 }
157
158
159 static void
160 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
161 {
162 if (p)
163 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
164 else
165 fprintf_unfiltered (file, "!%s", name);
166 }
167
168 void
169 fprint_frame_id (struct ui_file *file, struct frame_id id)
170 {
171 fprintf_unfiltered (file, "{");
172 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "code", id.code_addr_p, id.code_addr);
175 fprintf_unfiltered (file, ",");
176 fprint_field (file, "special", id.special_addr_p, id.special_addr);
177 fprintf_unfiltered (file, "}");
178 }
179
180 static void
181 fprint_frame_type (struct ui_file *file, enum frame_type type)
182 {
183 switch (type)
184 {
185 case NORMAL_FRAME:
186 fprintf_unfiltered (file, "NORMAL_FRAME");
187 return;
188 case DUMMY_FRAME:
189 fprintf_unfiltered (file, "DUMMY_FRAME");
190 return;
191 case SIGTRAMP_FRAME:
192 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
193 return;
194 default:
195 fprintf_unfiltered (file, "<unknown type>");
196 return;
197 };
198 }
199
200 static void
201 fprint_frame (struct ui_file *file, struct frame_info *fi)
202 {
203 if (fi == NULL)
204 {
205 fprintf_unfiltered (file, "<NULL frame>");
206 return;
207 }
208 fprintf_unfiltered (file, "{");
209 fprintf_unfiltered (file, "level=%d", fi->level);
210 fprintf_unfiltered (file, ",");
211 fprintf_unfiltered (file, "type=");
212 if (fi->unwind != NULL)
213 fprint_frame_type (file, fi->unwind->type);
214 else
215 fprintf_unfiltered (file, "<unknown>");
216 fprintf_unfiltered (file, ",");
217 fprintf_unfiltered (file, "unwind=");
218 if (fi->unwind != NULL)
219 gdb_print_host_address (fi->unwind, file);
220 else
221 fprintf_unfiltered (file, "<unknown>");
222 fprintf_unfiltered (file, ",");
223 fprintf_unfiltered (file, "pc=");
224 if (fi->next != NULL && fi->next->prev_pc.p)
225 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
226 else
227 fprintf_unfiltered (file, "<unknown>");
228 fprintf_unfiltered (file, ",");
229 fprintf_unfiltered (file, "id=");
230 if (fi->this_id.p)
231 fprint_frame_id (file, fi->this_id.value);
232 else
233 fprintf_unfiltered (file, "<unknown>");
234 fprintf_unfiltered (file, ",");
235 fprintf_unfiltered (file, "func=");
236 if (fi->next != NULL && fi->next->prev_func.p)
237 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
238 else
239 fprintf_unfiltered (file, "<unknown>");
240 fprintf_unfiltered (file, "}");
241 }
242
243 /* Return a frame uniq ID that can be used to, later, re-find the
244 frame. */
245
246 struct frame_id
247 get_frame_id (struct frame_info *fi)
248 {
249 if (fi == NULL)
250 {
251 return null_frame_id;
252 }
253 if (!fi->this_id.p)
254 {
255 if (frame_debug)
256 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
257 fi->level);
258 /* Find the unwinder. */
259 if (fi->unwind == NULL)
260 fi->unwind = frame_unwind_find_by_frame (fi->next,
261 &fi->prologue_cache);
262 /* Find THIS frame's ID. */
263 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
264 fi->this_id.p = 1;
265 if (frame_debug)
266 {
267 fprintf_unfiltered (gdb_stdlog, "-> ");
268 fprint_frame_id (gdb_stdlog, fi->this_id.value);
269 fprintf_unfiltered (gdb_stdlog, " }\n");
270 }
271 }
272 return fi->this_id.value;
273 }
274
275 struct frame_id
276 frame_unwind_id (struct frame_info *next_frame)
277 {
278 /* Use prev_frame, and not get_prev_frame. The latter will truncate
279 the frame chain, leading to this function unintentionally
280 returning a null_frame_id (e.g., when a caller requests the frame
281 ID of "main()"s caller. */
282 return get_frame_id (get_prev_frame_1 (next_frame));
283 }
284
285 const struct frame_id null_frame_id; /* All zeros. */
286
287 struct frame_id
288 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
289 CORE_ADDR special_addr)
290 {
291 struct frame_id id = null_frame_id;
292 id.stack_addr = stack_addr;
293 id.stack_addr_p = 1;
294 id.code_addr = code_addr;
295 id.code_addr_p = 1;
296 id.special_addr = special_addr;
297 id.special_addr_p = 1;
298 return id;
299 }
300
301 struct frame_id
302 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
303 {
304 struct frame_id id = null_frame_id;
305 id.stack_addr = stack_addr;
306 id.stack_addr_p = 1;
307 id.code_addr = code_addr;
308 id.code_addr_p = 1;
309 return id;
310 }
311
312 struct frame_id
313 frame_id_build_wild (CORE_ADDR stack_addr)
314 {
315 struct frame_id id = null_frame_id;
316 id.stack_addr = stack_addr;
317 id.stack_addr_p = 1;
318 return id;
319 }
320
321 int
322 frame_id_p (struct frame_id l)
323 {
324 int p;
325 /* The frame is valid iff it has a valid stack address. */
326 p = l.stack_addr_p;
327 if (frame_debug)
328 {
329 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
330 fprint_frame_id (gdb_stdlog, l);
331 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
332 }
333 return p;
334 }
335
336 int
337 frame_id_eq (struct frame_id l, struct frame_id r)
338 {
339 int eq;
340 if (!l.stack_addr_p || !r.stack_addr_p)
341 /* Like a NaN, if either ID is invalid, the result is false.
342 Note that a frame ID is invalid iff it is the null frame ID. */
343 eq = 0;
344 else if (l.stack_addr != r.stack_addr)
345 /* If .stack addresses are different, the frames are different. */
346 eq = 0;
347 else if (!l.code_addr_p || !r.code_addr_p)
348 /* An invalid code addr is a wild card, always succeed. */
349 eq = 1;
350 else if (l.code_addr != r.code_addr)
351 /* If .code addresses are different, the frames are different. */
352 eq = 0;
353 else if (!l.special_addr_p || !r.special_addr_p)
354 /* An invalid special addr is a wild card (or unused), always succeed. */
355 eq = 1;
356 else if (l.special_addr == r.special_addr)
357 /* Frames are equal. */
358 eq = 1;
359 else
360 /* No luck. */
361 eq = 0;
362 if (frame_debug)
363 {
364 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
365 fprint_frame_id (gdb_stdlog, l);
366 fprintf_unfiltered (gdb_stdlog, ",r=");
367 fprint_frame_id (gdb_stdlog, r);
368 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
369 }
370 return eq;
371 }
372
373 int
374 frame_id_inner (struct frame_id l, struct frame_id r)
375 {
376 int inner;
377 if (!l.stack_addr_p || !r.stack_addr_p)
378 /* Like NaN, any operation involving an invalid ID always fails. */
379 inner = 0;
380 else
381 /* Only return non-zero when strictly inner than. Note that, per
382 comment in "frame.h", there is some fuzz here. Frameless
383 functions are not strictly inner than (same .stack but
384 different .code and/or .special address). */
385 inner = INNER_THAN (l.stack_addr, r.stack_addr);
386 if (frame_debug)
387 {
388 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
389 fprint_frame_id (gdb_stdlog, l);
390 fprintf_unfiltered (gdb_stdlog, ",r=");
391 fprint_frame_id (gdb_stdlog, r);
392 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
393 }
394 return inner;
395 }
396
397 struct frame_info *
398 frame_find_by_id (struct frame_id id)
399 {
400 struct frame_info *frame;
401
402 /* ZERO denotes the null frame, let the caller decide what to do
403 about it. Should it instead return get_current_frame()? */
404 if (!frame_id_p (id))
405 return NULL;
406
407 for (frame = get_current_frame ();
408 frame != NULL;
409 frame = get_prev_frame (frame))
410 {
411 struct frame_id this = get_frame_id (frame);
412 if (frame_id_eq (id, this))
413 /* An exact match. */
414 return frame;
415 if (frame_id_inner (id, this))
416 /* Gone to far. */
417 return NULL;
418 /* Either we're not yet gone far enough out along the frame
419 chain (inner(this,id)), or we're comparing frameless functions
420 (same .base, different .func, no test available). Struggle
421 on until we've definitly gone to far. */
422 }
423 return NULL;
424 }
425
426 CORE_ADDR
427 frame_pc_unwind (struct frame_info *this_frame)
428 {
429 if (!this_frame->prev_pc.p)
430 {
431 CORE_ADDR pc;
432 if (this_frame->unwind == NULL)
433 this_frame->unwind
434 = frame_unwind_find_by_frame (this_frame->next,
435 &this_frame->prologue_cache);
436 if (this_frame->unwind->prev_pc != NULL)
437 /* A per-frame unwinder, prefer it. */
438 pc = this_frame->unwind->prev_pc (this_frame->next,
439 &this_frame->prologue_cache);
440 else if (gdbarch_unwind_pc_p (current_gdbarch))
441 {
442 /* The right way. The `pure' way. The one true way. This
443 method depends solely on the register-unwind code to
444 determine the value of registers in THIS frame, and hence
445 the value of this frame's PC (resume address). A typical
446 implementation is no more than:
447
448 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
449 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
450
451 Note: this method is very heavily dependent on a correct
452 register-unwind implementation, it pays to fix that
453 method first; this method is frame type agnostic, since
454 it only deals with register values, it works with any
455 frame. This is all in stark contrast to the old
456 FRAME_SAVED_PC which would try to directly handle all the
457 different ways that a PC could be unwound. */
458 pc = gdbarch_unwind_pc (current_gdbarch, this_frame);
459 }
460 else
461 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
462 this_frame->prev_pc.value = pc;
463 this_frame->prev_pc.p = 1;
464 if (frame_debug)
465 fprintf_unfiltered (gdb_stdlog,
466 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
467 this_frame->level,
468 paddr_nz (this_frame->prev_pc.value));
469 }
470 return this_frame->prev_pc.value;
471 }
472
473 CORE_ADDR
474 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
475 {
476 if (!fi->prev_func.p)
477 {
478 /* Make certain that this, and not the adjacent, function is
479 found. */
480 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
481 fi->prev_func.p = 1;
482 fi->prev_func.addr = get_pc_function_start (addr_in_block);
483 if (frame_debug)
484 fprintf_unfiltered (gdb_stdlog,
485 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
486 fi->level, paddr_nz (fi->prev_func.addr));
487 }
488 return fi->prev_func.addr;
489 }
490
491 CORE_ADDR
492 get_frame_func (struct frame_info *fi)
493 {
494 return frame_func_unwind (fi->next, get_frame_type (fi));
495 }
496
497 static int
498 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
499 {
500 frame_register_read (src, regnum, buf);
501 return 1;
502 }
503
504 struct regcache *
505 frame_save_as_regcache (struct frame_info *this_frame)
506 {
507 struct regcache *regcache = regcache_xmalloc (current_gdbarch);
508 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
509 regcache_save (regcache, do_frame_register_read, this_frame);
510 discard_cleanups (cleanups);
511 return regcache;
512 }
513
514 void
515 frame_pop (struct frame_info *this_frame)
516 {
517 /* Make a copy of all the register values unwound from this frame.
518 Save them in a scratch buffer so that there isn't a race between
519 trying to extract the old values from the current_regcache while
520 at the same time writing new values into that same cache. */
521 struct regcache *scratch
522 = frame_save_as_regcache (get_prev_frame_1 (this_frame));
523 struct cleanup *cleanups = make_cleanup_regcache_xfree (scratch);
524
525 /* FIXME: cagney/2003-03-16: It should be possible to tell the
526 target's register cache that it is about to be hit with a burst
527 register transfer and that the sequence of register writes should
528 be batched. The pair target_prepare_to_store() and
529 target_store_registers() kind of suggest this functionality.
530 Unfortunately, they don't implement it. Their lack of a formal
531 definition can lead to targets writing back bogus values
532 (arguably a bug in the target code mind). */
533 /* Now copy those saved registers into the current regcache.
534 Here, regcache_cpy() calls regcache_restore(). */
535 regcache_cpy (current_regcache, scratch);
536 do_cleanups (cleanups);
537
538 /* We've made right mess of GDB's local state, just discard
539 everything. */
540 reinit_frame_cache ();
541 }
542
543 void
544 frame_register_unwind (struct frame_info *frame, int regnum,
545 int *optimizedp, enum lval_type *lvalp,
546 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
547 {
548 struct frame_unwind_cache *cache;
549
550 if (frame_debug)
551 {
552 fprintf_unfiltered (gdb_stdlog, "\
553 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
554 frame->level, regnum,
555 frame_map_regnum_to_name (frame, regnum));
556 }
557
558 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
559 that the value proper does not need to be fetched. */
560 gdb_assert (optimizedp != NULL);
561 gdb_assert (lvalp != NULL);
562 gdb_assert (addrp != NULL);
563 gdb_assert (realnump != NULL);
564 /* gdb_assert (bufferp != NULL); */
565
566 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
567 is broken. There is always a frame. If there, for some reason,
568 isn't a frame, there is some pretty busted code as it should have
569 detected the problem before calling here. */
570 gdb_assert (frame != NULL);
571
572 /* Find the unwinder. */
573 if (frame->unwind == NULL)
574 frame->unwind = frame_unwind_find_by_frame (frame->next,
575 &frame->prologue_cache);
576
577 /* Ask this frame to unwind its register. See comment in
578 "frame-unwind.h" for why NEXT frame and this unwind cache are
579 passed in. */
580 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
581 optimizedp, lvalp, addrp, realnump, bufferp);
582
583 if (frame_debug)
584 {
585 fprintf_unfiltered (gdb_stdlog, "->");
586 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
587 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
588 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
589 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
590 if (bufferp == NULL)
591 fprintf_unfiltered (gdb_stdlog, "<NULL>");
592 else
593 {
594 int i;
595 const unsigned char *buf = bufferp;
596 fprintf_unfiltered (gdb_stdlog, "[");
597 for (i = 0; i < register_size (current_gdbarch, regnum); i++)
598 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
599 fprintf_unfiltered (gdb_stdlog, "]");
600 }
601 fprintf_unfiltered (gdb_stdlog, " }\n");
602 }
603 }
604
605 void
606 frame_register (struct frame_info *frame, int regnum,
607 int *optimizedp, enum lval_type *lvalp,
608 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
609 {
610 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
611 that the value proper does not need to be fetched. */
612 gdb_assert (optimizedp != NULL);
613 gdb_assert (lvalp != NULL);
614 gdb_assert (addrp != NULL);
615 gdb_assert (realnump != NULL);
616 /* gdb_assert (bufferp != NULL); */
617
618 /* Obtain the register value by unwinding the register from the next
619 (more inner frame). */
620 gdb_assert (frame != NULL && frame->next != NULL);
621 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
622 realnump, bufferp);
623 }
624
625 void
626 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
627 {
628 int optimized;
629 CORE_ADDR addr;
630 int realnum;
631 enum lval_type lval;
632 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
633 &realnum, buf);
634 }
635
636 void
637 get_frame_register (struct frame_info *frame,
638 int regnum, gdb_byte *buf)
639 {
640 frame_unwind_register (frame->next, regnum, buf);
641 }
642
643 LONGEST
644 frame_unwind_register_signed (struct frame_info *frame, int regnum)
645 {
646 gdb_byte buf[MAX_REGISTER_SIZE];
647 frame_unwind_register (frame, regnum, buf);
648 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
649 regnum));
650 }
651
652 LONGEST
653 get_frame_register_signed (struct frame_info *frame, int regnum)
654 {
655 return frame_unwind_register_signed (frame->next, regnum);
656 }
657
658 ULONGEST
659 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
660 {
661 gdb_byte buf[MAX_REGISTER_SIZE];
662 frame_unwind_register (frame, regnum, buf);
663 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
664 regnum));
665 }
666
667 ULONGEST
668 get_frame_register_unsigned (struct frame_info *frame, int regnum)
669 {
670 return frame_unwind_register_unsigned (frame->next, regnum);
671 }
672
673 void
674 frame_unwind_unsigned_register (struct frame_info *frame, int regnum,
675 ULONGEST *val)
676 {
677 gdb_byte buf[MAX_REGISTER_SIZE];
678 frame_unwind_register (frame, regnum, buf);
679 (*val) = extract_unsigned_integer (buf,
680 register_size (get_frame_arch (frame),
681 regnum));
682 }
683
684 void
685 put_frame_register (struct frame_info *frame, int regnum,
686 const gdb_byte *buf)
687 {
688 struct gdbarch *gdbarch = get_frame_arch (frame);
689 int realnum;
690 int optim;
691 enum lval_type lval;
692 CORE_ADDR addr;
693 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
694 if (optim)
695 error (_("Attempt to assign to a value that was optimized out."));
696 switch (lval)
697 {
698 case lval_memory:
699 {
700 /* FIXME: write_memory doesn't yet take constant buffers.
701 Arrrg! */
702 gdb_byte tmp[MAX_REGISTER_SIZE];
703 memcpy (tmp, buf, register_size (gdbarch, regnum));
704 write_memory (addr, tmp, register_size (gdbarch, regnum));
705 break;
706 }
707 case lval_register:
708 regcache_cooked_write (current_regcache, realnum, buf);
709 break;
710 default:
711 error (_("Attempt to assign to an unmodifiable value."));
712 }
713 }
714
715 /* frame_register_read ()
716
717 Find and return the value of REGNUM for the specified stack frame.
718 The number of bytes copied is REGISTER_SIZE (REGNUM).
719
720 Returns 0 if the register value could not be found. */
721
722 int
723 frame_register_read (struct frame_info *frame, int regnum,
724 gdb_byte *myaddr)
725 {
726 int optimized;
727 enum lval_type lval;
728 CORE_ADDR addr;
729 int realnum;
730 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
731
732 /* FIXME: cagney/2002-05-15: This test is just bogus.
733
734 It indicates that the target failed to supply a value for a
735 register because it was "not available" at this time. Problem
736 is, the target still has the register and so get saved_register()
737 may be returning a value saved on the stack. */
738
739 if (register_cached (regnum) < 0)
740 return 0; /* register value not available */
741
742 return !optimized;
743 }
744
745 int
746 get_frame_register_bytes (struct frame_info *frame, int regnum,
747 CORE_ADDR offset, int len, gdb_byte *myaddr)
748 {
749 struct gdbarch *gdbarch = get_frame_arch (frame);
750
751 /* Skip registers wholly inside of OFFSET. */
752 while (offset >= register_size (gdbarch, regnum))
753 {
754 offset -= register_size (gdbarch, regnum);
755 regnum++;
756 }
757
758 /* Copy the data. */
759 while (len > 0)
760 {
761 int curr_len = register_size (gdbarch, regnum) - offset;
762 if (curr_len > len)
763 curr_len = len;
764
765 if (curr_len == register_size (gdbarch, regnum))
766 {
767 if (!frame_register_read (frame, regnum, myaddr))
768 return 0;
769 }
770 else
771 {
772 gdb_byte buf[MAX_REGISTER_SIZE];
773 if (!frame_register_read (frame, regnum, buf))
774 return 0;
775 memcpy (myaddr, buf + offset, curr_len);
776 }
777
778 myaddr += curr_len;
779 len -= curr_len;
780 offset = 0;
781 regnum++;
782 }
783
784 return 1;
785 }
786
787 void
788 put_frame_register_bytes (struct frame_info *frame, int regnum,
789 CORE_ADDR offset, int len, const gdb_byte *myaddr)
790 {
791 struct gdbarch *gdbarch = get_frame_arch (frame);
792
793 /* Skip registers wholly inside of OFFSET. */
794 while (offset >= register_size (gdbarch, regnum))
795 {
796 offset -= register_size (gdbarch, regnum);
797 regnum++;
798 }
799
800 /* Copy the data. */
801 while (len > 0)
802 {
803 int curr_len = register_size (gdbarch, regnum) - offset;
804 if (curr_len > len)
805 curr_len = len;
806
807 if (curr_len == register_size (gdbarch, regnum))
808 {
809 put_frame_register (frame, regnum, myaddr);
810 }
811 else
812 {
813 gdb_byte buf[MAX_REGISTER_SIZE];
814 frame_register_read (frame, regnum, buf);
815 memcpy (buf + offset, myaddr, curr_len);
816 put_frame_register (frame, regnum, buf);
817 }
818
819 myaddr += curr_len;
820 len -= curr_len;
821 offset = 0;
822 regnum++;
823 }
824 }
825
826 /* Map between a frame register number and its name. A frame register
827 space is a superset of the cooked register space --- it also
828 includes builtin registers. */
829
830 int
831 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
832 {
833 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
834 }
835
836 const char *
837 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
838 {
839 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
840 }
841
842 /* Create a sentinel frame. */
843
844 static struct frame_info *
845 create_sentinel_frame (struct regcache *regcache)
846 {
847 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
848 frame->level = -1;
849 /* Explicitly initialize the sentinel frame's cache. Provide it
850 with the underlying regcache. In the future additional
851 information, such as the frame's thread will be added. */
852 frame->prologue_cache = sentinel_frame_cache (regcache);
853 /* For the moment there is only one sentinel frame implementation. */
854 frame->unwind = sentinel_frame_unwind;
855 /* Link this frame back to itself. The frame is self referential
856 (the unwound PC is the same as the pc), so make it so. */
857 frame->next = frame;
858 /* Make the sentinel frame's ID valid, but invalid. That way all
859 comparisons with it should fail. */
860 frame->this_id.p = 1;
861 frame->this_id.value = null_frame_id;
862 if (frame_debug)
863 {
864 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
865 fprint_frame (gdb_stdlog, frame);
866 fprintf_unfiltered (gdb_stdlog, " }\n");
867 }
868 return frame;
869 }
870
871 /* Info about the innermost stack frame (contents of FP register) */
872
873 static struct frame_info *current_frame;
874
875 /* Cache for frame addresses already read by gdb. Valid only while
876 inferior is stopped. Control variables for the frame cache should
877 be local to this module. */
878
879 static struct obstack frame_cache_obstack;
880
881 void *
882 frame_obstack_zalloc (unsigned long size)
883 {
884 void *data = obstack_alloc (&frame_cache_obstack, size);
885 memset (data, 0, size);
886 return data;
887 }
888
889 /* Return the innermost (currently executing) stack frame. This is
890 split into two functions. The function unwind_to_current_frame()
891 is wrapped in catch exceptions so that, even when the unwind of the
892 sentinel frame fails, the function still returns a stack frame. */
893
894 static int
895 unwind_to_current_frame (struct ui_out *ui_out, void *args)
896 {
897 struct frame_info *frame = get_prev_frame (args);
898 /* A sentinel frame can fail to unwind, e.g., because its PC value
899 lands in somewhere like start. */
900 if (frame == NULL)
901 return 1;
902 current_frame = frame;
903 return 0;
904 }
905
906 struct frame_info *
907 get_current_frame (void)
908 {
909 /* First check, and report, the lack of registers. Having GDB
910 report "No stack!" or "No memory" when the target doesn't even
911 have registers is very confusing. Besides, "printcmd.exp"
912 explicitly checks that ``print $pc'' with no registers prints "No
913 registers". */
914 if (!target_has_registers)
915 error (_("No registers."));
916 if (!target_has_stack)
917 error (_("No stack."));
918 if (!target_has_memory)
919 error (_("No memory."));
920 if (current_frame == NULL)
921 {
922 struct frame_info *sentinel_frame =
923 create_sentinel_frame (current_regcache);
924 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
925 RETURN_MASK_ERROR) != 0)
926 {
927 /* Oops! Fake a current frame? Is this useful? It has a PC
928 of zero, for instance. */
929 current_frame = sentinel_frame;
930 }
931 }
932 return current_frame;
933 }
934
935 /* The "selected" stack frame is used by default for local and arg
936 access. May be zero, for no selected frame. */
937
938 static struct frame_info *selected_frame;
939
940 /* Return the selected frame. Always non-NULL (unless there isn't an
941 inferior sufficient for creating a frame) in which case an error is
942 thrown. */
943
944 struct frame_info *
945 get_selected_frame (const char *message)
946 {
947 if (selected_frame == NULL)
948 {
949 if (message != NULL && (!target_has_registers
950 || !target_has_stack
951 || !target_has_memory))
952 error (("%s"), message);
953 /* Hey! Don't trust this. It should really be re-finding the
954 last selected frame of the currently selected thread. This,
955 though, is better than nothing. */
956 select_frame (get_current_frame ());
957 }
958 /* There is always a frame. */
959 gdb_assert (selected_frame != NULL);
960 return selected_frame;
961 }
962
963 /* This is a variant of get_selected_frame() which can be called when
964 the inferior does not have a frame; in that case it will return
965 NULL instead of calling error(). */
966
967 struct frame_info *
968 deprecated_safe_get_selected_frame (void)
969 {
970 if (!target_has_registers || !target_has_stack || !target_has_memory)
971 return NULL;
972 return get_selected_frame (NULL);
973 }
974
975 /* Select frame FI (or NULL - to invalidate the current frame). */
976
977 void
978 select_frame (struct frame_info *fi)
979 {
980 struct symtab *s;
981
982 selected_frame = fi;
983 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
984 frame is being invalidated. */
985 if (deprecated_selected_frame_level_changed_hook)
986 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
987
988 /* FIXME: kseitz/2002-08-28: It would be nice to call
989 selected_frame_level_changed_event() right here, but due to limitations
990 in the current interfaces, we would end up flooding UIs with events
991 because select_frame() is used extensively internally.
992
993 Once we have frame-parameterized frame (and frame-related) commands,
994 the event notification can be moved here, since this function will only
995 be called when the user's selected frame is being changed. */
996
997 /* Ensure that symbols for this frame are read in. Also, determine the
998 source language of this frame, and switch to it if desired. */
999 if (fi)
1000 {
1001 /* We retrieve the frame's symtab by using the frame PC. However
1002 we cannot use the frame PC as-is, because it usually points to
1003 the instruction following the "call", which is sometimes the
1004 first instruction of another function. So we rely on
1005 get_frame_address_in_block() which provides us with a PC which
1006 is guaranteed to be inside the frame's code block. */
1007 s = find_pc_symtab (get_frame_address_in_block (fi));
1008 if (s
1009 && s->language != current_language->la_language
1010 && s->language != language_unknown
1011 && language_mode == language_mode_auto)
1012 {
1013 set_language (s->language);
1014 }
1015 }
1016 }
1017
1018 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1019 Always returns a non-NULL value. */
1020
1021 struct frame_info *
1022 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1023 {
1024 struct frame_info *fi;
1025
1026 if (frame_debug)
1027 {
1028 fprintf_unfiltered (gdb_stdlog,
1029 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1030 paddr_nz (addr), paddr_nz (pc));
1031 }
1032
1033 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1034
1035 fi->next = create_sentinel_frame (current_regcache);
1036
1037 /* Select/initialize both the unwind function and the frame's type
1038 based on the PC. */
1039 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1040
1041 fi->this_id.p = 1;
1042 deprecated_update_frame_base_hack (fi, addr);
1043 deprecated_update_frame_pc_hack (fi, pc);
1044
1045 if (frame_debug)
1046 {
1047 fprintf_unfiltered (gdb_stdlog, "-> ");
1048 fprint_frame (gdb_stdlog, fi);
1049 fprintf_unfiltered (gdb_stdlog, " }\n");
1050 }
1051
1052 return fi;
1053 }
1054
1055 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1056 innermost frame). Be careful to not fall off the bottom of the
1057 frame chain and onto the sentinel frame. */
1058
1059 struct frame_info *
1060 get_next_frame (struct frame_info *this_frame)
1061 {
1062 if (this_frame->level > 0)
1063 return this_frame->next;
1064 else
1065 return NULL;
1066 }
1067
1068 /* Observer for the target_changed event. */
1069
1070 void
1071 frame_observer_target_changed (struct target_ops *target)
1072 {
1073 reinit_frame_cache ();
1074 }
1075
1076 /* Flush the entire frame cache. */
1077
1078 void
1079 reinit_frame_cache (void)
1080 {
1081 /* Since we can't really be sure what the first object allocated was */
1082 obstack_free (&frame_cache_obstack, 0);
1083 obstack_init (&frame_cache_obstack);
1084
1085 current_frame = NULL; /* Invalidate cache */
1086 select_frame (NULL);
1087 annotate_frames_invalid ();
1088 if (frame_debug)
1089 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1090 }
1091
1092 /* Find where a register is saved (in memory or another register).
1093 The result of frame_register_unwind is just where it is saved
1094 relative to this particular frame. */
1095
1096 static void
1097 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1098 int *optimizedp, enum lval_type *lvalp,
1099 CORE_ADDR *addrp, int *realnump)
1100 {
1101 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1102
1103 while (this_frame != NULL)
1104 {
1105 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1106 addrp, realnump, NULL);
1107
1108 if (*optimizedp)
1109 break;
1110
1111 if (*lvalp != lval_register)
1112 break;
1113
1114 regnum = *realnump;
1115 this_frame = get_next_frame (this_frame);
1116 }
1117 }
1118
1119 /* Return a "struct frame_info" corresponding to the frame that called
1120 THIS_FRAME. Returns NULL if there is no such frame.
1121
1122 Unlike get_prev_frame, this function always tries to unwind the
1123 frame. */
1124
1125 static struct frame_info *
1126 get_prev_frame_1 (struct frame_info *this_frame)
1127 {
1128 struct frame_info *prev_frame;
1129 struct frame_id this_id;
1130
1131 gdb_assert (this_frame != NULL);
1132
1133 if (frame_debug)
1134 {
1135 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1136 if (this_frame != NULL)
1137 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1138 else
1139 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1140 fprintf_unfiltered (gdb_stdlog, ") ");
1141 }
1142
1143 /* Only try to do the unwind once. */
1144 if (this_frame->prev_p)
1145 {
1146 if (frame_debug)
1147 {
1148 fprintf_unfiltered (gdb_stdlog, "-> ");
1149 fprint_frame (gdb_stdlog, this_frame->prev);
1150 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1151 }
1152 return this_frame->prev;
1153 }
1154 this_frame->prev_p = 1;
1155 this_frame->stop_reason = UNWIND_NO_REASON;
1156
1157 /* Check that this frame's ID was valid. If it wasn't, don't try to
1158 unwind to the prev frame. Be careful to not apply this test to
1159 the sentinel frame. */
1160 this_id = get_frame_id (this_frame);
1161 if (this_frame->level >= 0 && !frame_id_p (this_id))
1162 {
1163 if (frame_debug)
1164 {
1165 fprintf_unfiltered (gdb_stdlog, "-> ");
1166 fprint_frame (gdb_stdlog, NULL);
1167 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1168 }
1169 this_frame->stop_reason = UNWIND_NULL_ID;
1170 return NULL;
1171 }
1172
1173 /* Check that this frame's ID isn't inner to (younger, below, next)
1174 the next frame. This happens when a frame unwind goes backwards.
1175 Exclude signal trampolines (due to sigaltstack the frame ID can
1176 go backwards) and sentinel frames (the test is meaningless). */
1177 if (this_frame->next->level >= 0
1178 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1179 && frame_id_inner (this_id, get_frame_id (this_frame->next)))
1180 {
1181 if (frame_debug)
1182 {
1183 fprintf_unfiltered (gdb_stdlog, "-> ");
1184 fprint_frame (gdb_stdlog, NULL);
1185 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1186 }
1187 this_frame->stop_reason = UNWIND_INNER_ID;
1188 return NULL;
1189 }
1190
1191 /* Check that this and the next frame are not identical. If they
1192 are, there is most likely a stack cycle. As with the inner-than
1193 test above, avoid comparing the inner-most and sentinel frames. */
1194 if (this_frame->level > 0
1195 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1196 {
1197 if (frame_debug)
1198 {
1199 fprintf_unfiltered (gdb_stdlog, "-> ");
1200 fprint_frame (gdb_stdlog, NULL);
1201 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1202 }
1203 this_frame->stop_reason = UNWIND_SAME_ID;
1204 return NULL;
1205 }
1206
1207 /* Check that this and the next frame do not unwind the PC register
1208 to the same memory location. If they do, then even though they
1209 have different frame IDs, the new frame will be bogus; two
1210 functions can't share a register save slot for the PC. This can
1211 happen when the prologue analyzer finds a stack adjustment, but
1212 no PC save.
1213
1214 This check does assume that the "PC register" is roughly a
1215 traditional PC, even if the gdbarch_unwind_pc method adjusts
1216 it (we do not rely on the value, only on the unwound PC being
1217 dependent on this value). A potential improvement would be
1218 to have the frame prev_pc method and the gdbarch unwind_pc
1219 method set the same lval and location information as
1220 frame_register_unwind. */
1221 if (this_frame->level > 0
1222 && PC_REGNUM >= 0
1223 && get_frame_type (this_frame) == NORMAL_FRAME
1224 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1225 {
1226 int optimized, realnum;
1227 enum lval_type lval, nlval;
1228 CORE_ADDR addr, naddr;
1229
1230 frame_register_unwind_location (this_frame, PC_REGNUM, &optimized,
1231 &lval, &addr, &realnum);
1232 frame_register_unwind_location (get_next_frame (this_frame), PC_REGNUM,
1233 &optimized, &nlval, &naddr, &realnum);
1234
1235 if (lval == lval_memory && lval == nlval && addr == naddr)
1236 {
1237 if (frame_debug)
1238 {
1239 fprintf_unfiltered (gdb_stdlog, "-> ");
1240 fprint_frame (gdb_stdlog, NULL);
1241 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1242 }
1243
1244 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1245 this_frame->prev = NULL;
1246 return NULL;
1247 }
1248 }
1249
1250 /* Allocate the new frame but do not wire it in to the frame chain.
1251 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1252 frame->next to pull some fancy tricks (of course such code is, by
1253 definition, recursive). Try to prevent it.
1254
1255 There is no reason to worry about memory leaks, should the
1256 remainder of the function fail. The allocated memory will be
1257 quickly reclaimed when the frame cache is flushed, and the `we've
1258 been here before' check above will stop repeated memory
1259 allocation calls. */
1260 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1261 prev_frame->level = this_frame->level + 1;
1262
1263 /* Don't yet compute ->unwind (and hence ->type). It is computed
1264 on-demand in get_frame_type, frame_register_unwind, and
1265 get_frame_id. */
1266
1267 /* Don't yet compute the frame's ID. It is computed on-demand by
1268 get_frame_id(). */
1269
1270 /* The unwound frame ID is validate at the start of this function,
1271 as part of the logic to decide if that frame should be further
1272 unwound, and not here while the prev frame is being created.
1273 Doing this makes it possible for the user to examine a frame that
1274 has an invalid frame ID.
1275
1276 Some very old VAX code noted: [...] For the sake of argument,
1277 suppose that the stack is somewhat trashed (which is one reason
1278 that "info frame" exists). So, return 0 (indicating we don't
1279 know the address of the arglist) if we don't know what frame this
1280 frame calls. */
1281
1282 /* Link it in. */
1283 this_frame->prev = prev_frame;
1284 prev_frame->next = this_frame;
1285
1286 if (frame_debug)
1287 {
1288 fprintf_unfiltered (gdb_stdlog, "-> ");
1289 fprint_frame (gdb_stdlog, prev_frame);
1290 fprintf_unfiltered (gdb_stdlog, " }\n");
1291 }
1292
1293 return prev_frame;
1294 }
1295
1296 /* Debug routine to print a NULL frame being returned. */
1297
1298 static void
1299 frame_debug_got_null_frame (struct ui_file *file,
1300 struct frame_info *this_frame,
1301 const char *reason)
1302 {
1303 if (frame_debug)
1304 {
1305 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1306 if (this_frame != NULL)
1307 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1308 else
1309 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1310 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1311 }
1312 }
1313
1314 /* Is this (non-sentinel) frame in the "main"() function? */
1315
1316 static int
1317 inside_main_func (struct frame_info *this_frame)
1318 {
1319 struct minimal_symbol *msymbol;
1320 CORE_ADDR maddr;
1321
1322 if (symfile_objfile == 0)
1323 return 0;
1324 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1325 if (msymbol == NULL)
1326 return 0;
1327 /* Make certain that the code, and not descriptor, address is
1328 returned. */
1329 maddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
1330 SYMBOL_VALUE_ADDRESS (msymbol),
1331 &current_target);
1332 return maddr == get_frame_func (this_frame);
1333 }
1334
1335 /* Test whether THIS_FRAME is inside the process entry point function. */
1336
1337 static int
1338 inside_entry_func (struct frame_info *this_frame)
1339 {
1340 return (get_frame_func (this_frame) == entry_point_address ());
1341 }
1342
1343 /* Return a structure containing various interesting information about
1344 the frame that called THIS_FRAME. Returns NULL if there is entier
1345 no such frame or the frame fails any of a set of target-independent
1346 condition that should terminate the frame chain (e.g., as unwinding
1347 past main()).
1348
1349 This function should not contain target-dependent tests, such as
1350 checking whether the program-counter is zero. */
1351
1352 struct frame_info *
1353 get_prev_frame (struct frame_info *this_frame)
1354 {
1355 struct frame_info *prev_frame;
1356
1357 /* Return the inner-most frame, when the caller passes in NULL. */
1358 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1359 caller should have previously obtained a valid frame using
1360 get_selected_frame() and then called this code - only possibility
1361 I can think of is code behaving badly.
1362
1363 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1364 block_innermost_frame(). It does the sequence: frame = NULL;
1365 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1366 it couldn't be written better, I don't know.
1367
1368 NOTE: cagney/2003-01-11: I suspect what is happening in
1369 block_innermost_frame() is, when the target has no state
1370 (registers, memory, ...), it is still calling this function. The
1371 assumption being that this function will return NULL indicating
1372 that a frame isn't possible, rather than checking that the target
1373 has state and then calling get_current_frame() and
1374 get_prev_frame(). This is a guess mind. */
1375 if (this_frame == NULL)
1376 {
1377 /* NOTE: cagney/2002-11-09: There was a code segment here that
1378 would error out when CURRENT_FRAME was NULL. The comment
1379 that went with it made the claim ...
1380
1381 ``This screws value_of_variable, which just wants a nice
1382 clean NULL return from block_innermost_frame if there are no
1383 frames. I don't think I've ever seen this message happen
1384 otherwise. And returning NULL here is a perfectly legitimate
1385 thing to do.''
1386
1387 Per the above, this code shouldn't even be called with a NULL
1388 THIS_FRAME. */
1389 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1390 return current_frame;
1391 }
1392
1393 /* There is always a frame. If this assertion fails, suspect that
1394 something should be calling get_selected_frame() or
1395 get_current_frame(). */
1396 gdb_assert (this_frame != NULL);
1397
1398 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1399 sense to stop unwinding at a dummy frame. One place where a dummy
1400 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1401 pcsqh register (space register for the instruction at the head of the
1402 instruction queue) cannot be written directly; the only way to set it
1403 is to branch to code that is in the target space. In order to implement
1404 frame dummies on HPUX, the called function is made to jump back to where
1405 the inferior was when the user function was called. If gdb was inside
1406 the main function when we created the dummy frame, the dummy frame will
1407 point inside the main function. */
1408 if (this_frame->level >= 0
1409 && get_frame_type (this_frame) != DUMMY_FRAME
1410 && !backtrace_past_main
1411 && inside_main_func (this_frame))
1412 /* Don't unwind past main(). Note, this is done _before_ the
1413 frame has been marked as previously unwound. That way if the
1414 user later decides to enable unwinds past main(), that will
1415 automatically happen. */
1416 {
1417 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1418 return NULL;
1419 }
1420
1421 /* If the user's backtrace limit has been exceeded, stop. We must
1422 add two to the current level; one of those accounts for backtrace_limit
1423 being 1-based and the level being 0-based, and the other accounts for
1424 the level of the new frame instead of the level of the current
1425 frame. */
1426 if (this_frame->level + 2 > backtrace_limit)
1427 {
1428 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1429 "backtrace limit exceeded");
1430 return NULL;
1431 }
1432
1433 /* If we're already inside the entry function for the main objfile,
1434 then it isn't valid. Don't apply this test to a dummy frame -
1435 dummy frame PCs typically land in the entry func. Don't apply
1436 this test to the sentinel frame. Sentinel frames should always
1437 be allowed to unwind. */
1438 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1439 wasn't checking for "main" in the minimal symbols. With that
1440 fixed asm-source tests now stop in "main" instead of halting the
1441 backtrace in weird and wonderful ways somewhere inside the entry
1442 file. Suspect that tests for inside the entry file/func were
1443 added to work around that (now fixed) case. */
1444 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1445 suggested having the inside_entry_func test use the
1446 inside_main_func() msymbol trick (along with entry_point_address()
1447 I guess) to determine the address range of the start function.
1448 That should provide a far better stopper than the current
1449 heuristics. */
1450 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1451 applied tail-call optimizations to main so that a function called
1452 from main returns directly to the caller of main. Since we don't
1453 stop at main, we should at least stop at the entry point of the
1454 application. */
1455 if (!backtrace_past_entry
1456 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1457 && inside_entry_func (this_frame))
1458 {
1459 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1460 return NULL;
1461 }
1462
1463 /* Assume that the only way to get a zero PC is through something
1464 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1465 will never unwind a zero PC. */
1466 if (this_frame->level > 0
1467 && get_frame_type (this_frame) == NORMAL_FRAME
1468 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1469 && get_frame_pc (this_frame) == 0)
1470 {
1471 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1472 return NULL;
1473 }
1474
1475 return get_prev_frame_1 (this_frame);
1476 }
1477
1478 CORE_ADDR
1479 get_frame_pc (struct frame_info *frame)
1480 {
1481 gdb_assert (frame->next != NULL);
1482 return frame_pc_unwind (frame->next);
1483 }
1484
1485 /* Return an address that falls within NEXT_FRAME's caller's code
1486 block, assuming that the caller is a THIS_TYPE frame. */
1487
1488 CORE_ADDR
1489 frame_unwind_address_in_block (struct frame_info *next_frame,
1490 enum frame_type this_type)
1491 {
1492 /* A draft address. */
1493 CORE_ADDR pc = frame_pc_unwind (next_frame);
1494
1495 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1496 we shold not adjust the unwound PC. These frames may not call
1497 their next frame in the normal way; the operating system or GDB
1498 may have pushed their resume address manually onto the stack, so
1499 it may be the very first instruction. Even if the resume address
1500 was not manually pushed, they expect to be returned to. */
1501 if (this_type != NORMAL_FRAME)
1502 return pc;
1503
1504 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1505 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1506 frame's PC ends up pointing at the instruction fallowing the
1507 "call". Adjust that PC value so that it falls on the call
1508 instruction (which, hopefully, falls within THIS frame's code
1509 block). So far it's proved to be a very good approximation. See
1510 get_frame_type() for why ->type can't be used. */
1511 if (next_frame->level >= 0
1512 && get_frame_type (next_frame) == NORMAL_FRAME)
1513 --pc;
1514 return pc;
1515 }
1516
1517 CORE_ADDR
1518 get_frame_address_in_block (struct frame_info *this_frame)
1519 {
1520 return frame_unwind_address_in_block (this_frame->next,
1521 get_frame_type (this_frame));
1522 }
1523
1524 static int
1525 pc_notcurrent (struct frame_info *frame)
1526 {
1527 /* If FRAME is not the innermost frame, that normally means that
1528 FRAME->pc points at the return instruction (which is *after* the
1529 call instruction), and we want to get the line containing the
1530 call (because the call is where the user thinks the program is).
1531 However, if the next frame is either a SIGTRAMP_FRAME or a
1532 DUMMY_FRAME, then the next frame will contain a saved interrupt
1533 PC and such a PC indicates the current (rather than next)
1534 instruction/line, consequently, for such cases, want to get the
1535 line containing fi->pc. */
1536 struct frame_info *next = get_next_frame (frame);
1537 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1538 return notcurrent;
1539 }
1540
1541 void
1542 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1543 {
1544 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1545 }
1546
1547 /* Per "frame.h", return the ``address'' of the frame. Code should
1548 really be using get_frame_id(). */
1549 CORE_ADDR
1550 get_frame_base (struct frame_info *fi)
1551 {
1552 return get_frame_id (fi).stack_addr;
1553 }
1554
1555 /* High-level offsets into the frame. Used by the debug info. */
1556
1557 CORE_ADDR
1558 get_frame_base_address (struct frame_info *fi)
1559 {
1560 if (get_frame_type (fi) != NORMAL_FRAME)
1561 return 0;
1562 if (fi->base == NULL)
1563 fi->base = frame_base_find_by_frame (fi->next);
1564 /* Sneaky: If the low-level unwind and high-level base code share a
1565 common unwinder, let them share the prologue cache. */
1566 if (fi->base->unwind == fi->unwind)
1567 return fi->base->this_base (fi->next, &fi->prologue_cache);
1568 return fi->base->this_base (fi->next, &fi->base_cache);
1569 }
1570
1571 CORE_ADDR
1572 get_frame_locals_address (struct frame_info *fi)
1573 {
1574 void **cache;
1575 if (get_frame_type (fi) != NORMAL_FRAME)
1576 return 0;
1577 /* If there isn't a frame address method, find it. */
1578 if (fi->base == NULL)
1579 fi->base = frame_base_find_by_frame (fi->next);
1580 /* Sneaky: If the low-level unwind and high-level base code share a
1581 common unwinder, let them share the prologue cache. */
1582 if (fi->base->unwind == fi->unwind)
1583 cache = &fi->prologue_cache;
1584 else
1585 cache = &fi->base_cache;
1586 return fi->base->this_locals (fi->next, cache);
1587 }
1588
1589 CORE_ADDR
1590 get_frame_args_address (struct frame_info *fi)
1591 {
1592 void **cache;
1593 if (get_frame_type (fi) != NORMAL_FRAME)
1594 return 0;
1595 /* If there isn't a frame address method, find it. */
1596 if (fi->base == NULL)
1597 fi->base = frame_base_find_by_frame (fi->next);
1598 /* Sneaky: If the low-level unwind and high-level base code share a
1599 common unwinder, let them share the prologue cache. */
1600 if (fi->base->unwind == fi->unwind)
1601 cache = &fi->prologue_cache;
1602 else
1603 cache = &fi->base_cache;
1604 return fi->base->this_args (fi->next, cache);
1605 }
1606
1607 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1608 or -1 for a NULL frame. */
1609
1610 int
1611 frame_relative_level (struct frame_info *fi)
1612 {
1613 if (fi == NULL)
1614 return -1;
1615 else
1616 return fi->level;
1617 }
1618
1619 enum frame_type
1620 get_frame_type (struct frame_info *frame)
1621 {
1622 if (frame->unwind == NULL)
1623 /* Initialize the frame's unwinder because that's what
1624 provides the frame's type. */
1625 frame->unwind = frame_unwind_find_by_frame (frame->next,
1626 &frame->prologue_cache);
1627 return frame->unwind->type;
1628 }
1629
1630 void
1631 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1632 {
1633 if (frame_debug)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1636 frame->level, paddr_nz (pc));
1637 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1638 maintaining a locally allocated frame object. Since such frames
1639 are not in the frame chain, it isn't possible to assume that the
1640 frame has a next. Sigh. */
1641 if (frame->next != NULL)
1642 {
1643 /* While we're at it, update this frame's cached PC value, found
1644 in the next frame. Oh for the day when "struct frame_info"
1645 is opaque and this hack on hack can just go away. */
1646 frame->next->prev_pc.value = pc;
1647 frame->next->prev_pc.p = 1;
1648 }
1649 }
1650
1651 void
1652 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1653 {
1654 if (frame_debug)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1657 frame->level, paddr_nz (base));
1658 /* See comment in "frame.h". */
1659 frame->this_id.value.stack_addr = base;
1660 }
1661
1662 /* Memory access methods. */
1663
1664 void
1665 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1666 gdb_byte *buf, int len)
1667 {
1668 read_memory (addr, buf, len);
1669 }
1670
1671 LONGEST
1672 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1673 int len)
1674 {
1675 return read_memory_integer (addr, len);
1676 }
1677
1678 ULONGEST
1679 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1680 int len)
1681 {
1682 return read_memory_unsigned_integer (addr, len);
1683 }
1684
1685 int
1686 safe_frame_unwind_memory (struct frame_info *this_frame,
1687 CORE_ADDR addr, gdb_byte *buf, int len)
1688 {
1689 /* NOTE: read_memory_nobpt returns zero on success! */
1690 return !read_memory_nobpt (addr, buf, len);
1691 }
1692
1693 /* Architecture method. */
1694
1695 struct gdbarch *
1696 get_frame_arch (struct frame_info *this_frame)
1697 {
1698 return current_gdbarch;
1699 }
1700
1701 /* Stack pointer methods. */
1702
1703 CORE_ADDR
1704 get_frame_sp (struct frame_info *this_frame)
1705 {
1706 return frame_sp_unwind (this_frame->next);
1707 }
1708
1709 CORE_ADDR
1710 frame_sp_unwind (struct frame_info *next_frame)
1711 {
1712 /* Normality - an architecture that provides a way of obtaining any
1713 frame inner-most address. */
1714 if (gdbarch_unwind_sp_p (current_gdbarch))
1715 return gdbarch_unwind_sp (current_gdbarch, next_frame);
1716 /* Things are looking grim. If it's the inner-most frame and there
1717 is a TARGET_READ_SP, then that can be used. */
1718 if (next_frame->level < 0 && TARGET_READ_SP_P ())
1719 return TARGET_READ_SP ();
1720 /* Now things are really are grim. Hope that the value returned by
1721 the SP_REGNUM register is meaningful. */
1722 if (SP_REGNUM >= 0)
1723 {
1724 ULONGEST sp;
1725 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1726 return sp;
1727 }
1728 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1729 }
1730
1731 /* Return the reason why we can't unwind past FRAME. */
1732
1733 enum unwind_stop_reason
1734 get_frame_unwind_stop_reason (struct frame_info *frame)
1735 {
1736 /* If we haven't tried to unwind past this point yet, then assume
1737 that unwinding would succeed. */
1738 if (frame->prev_p == 0)
1739 return UNWIND_NO_REASON;
1740
1741 /* Otherwise, we set a reason when we succeeded (or failed) to
1742 unwind. */
1743 return frame->stop_reason;
1744 }
1745
1746 /* Return a string explaining REASON. */
1747
1748 const char *
1749 frame_stop_reason_string (enum unwind_stop_reason reason)
1750 {
1751 switch (reason)
1752 {
1753 case UNWIND_NULL_ID:
1754 return _("unwinder did not report frame ID");
1755
1756 case UNWIND_INNER_ID:
1757 return _("previous frame inner to this frame (corrupt stack?)");
1758
1759 case UNWIND_SAME_ID:
1760 return _("previous frame identical to this frame (corrupt stack?)");
1761
1762 case UNWIND_NO_SAVED_PC:
1763 return _("frame did not save the PC");
1764
1765 case UNWIND_NO_REASON:
1766 case UNWIND_FIRST_ERROR:
1767 default:
1768 internal_error (__FILE__, __LINE__,
1769 "Invalid frame stop reason");
1770 }
1771 }
1772
1773 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1774
1775 static struct cmd_list_element *set_backtrace_cmdlist;
1776 static struct cmd_list_element *show_backtrace_cmdlist;
1777
1778 static void
1779 set_backtrace_cmd (char *args, int from_tty)
1780 {
1781 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1782 }
1783
1784 static void
1785 show_backtrace_cmd (char *args, int from_tty)
1786 {
1787 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1788 }
1789
1790 void
1791 _initialize_frame (void)
1792 {
1793 obstack_init (&frame_cache_obstack);
1794
1795 observer_attach_target_changed (frame_observer_target_changed);
1796
1797 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1798 Set backtrace specific variables.\n\
1799 Configure backtrace variables such as the backtrace limit"),
1800 &set_backtrace_cmdlist, "set backtrace ",
1801 0/*allow-unknown*/, &setlist);
1802 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1803 Show backtrace specific variables\n\
1804 Show backtrace variables such as the backtrace limit"),
1805 &show_backtrace_cmdlist, "show backtrace ",
1806 0/*allow-unknown*/, &showlist);
1807
1808 add_setshow_boolean_cmd ("past-main", class_obscure,
1809 &backtrace_past_main, _("\
1810 Set whether backtraces should continue past \"main\"."), _("\
1811 Show whether backtraces should continue past \"main\"."), _("\
1812 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1813 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1814 of the stack trace."),
1815 NULL,
1816 show_backtrace_past_main,
1817 &set_backtrace_cmdlist,
1818 &show_backtrace_cmdlist);
1819
1820 add_setshow_boolean_cmd ("past-entry", class_obscure,
1821 &backtrace_past_entry, _("\
1822 Set whether backtraces should continue past the entry point of a program."),
1823 _("\
1824 Show whether backtraces should continue past the entry point of a program."),
1825 _("\
1826 Normally there are no callers beyond the entry point of a program, so GDB\n\
1827 will terminate the backtrace there. Set this variable if you need to see \n\
1828 the rest of the stack trace."),
1829 NULL,
1830 show_backtrace_past_entry,
1831 &set_backtrace_cmdlist,
1832 &show_backtrace_cmdlist);
1833
1834 add_setshow_integer_cmd ("limit", class_obscure,
1835 &backtrace_limit, _("\
1836 Set an upper bound on the number of backtrace levels."), _("\
1837 Show the upper bound on the number of backtrace levels."), _("\
1838 No more than the specified number of frames can be displayed or examined.\n\
1839 Zero is unlimited."),
1840 NULL,
1841 show_backtrace_limit,
1842 &set_backtrace_cmdlist,
1843 &show_backtrace_cmdlist);
1844
1845 /* Debug this files internals. */
1846 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1847 Set frame debugging."), _("\
1848 Show frame debugging."), _("\
1849 When non-zero, frame specific internal debugging is enabled."),
1850 NULL,
1851 show_frame_debug,
1852 &setdebuglist, &showdebuglist);
1853 }
This page took 0.066592 seconds and 4 git commands to generate.