2008-10-29 Stefan Schulze Frielinghaus <xxschulz@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397 static int
398 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399 {
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419 }
420
421 struct frame_info *
422 frame_find_by_id (struct frame_id id)
423 {
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454 }
455
456 CORE_ADDR
457 frame_pc_unwind (struct frame_info *this_frame)
458 {
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493 }
494
495 CORE_ADDR
496 get_frame_func (struct frame_info *this_frame)
497 {
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514 }
515
516 static int
517 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518 {
519 return frame_register_read (src, regnum, buf);
520 }
521
522 struct regcache *
523 frame_save_as_regcache (struct frame_info *this_frame)
524 {
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530 }
531
532 void
533 frame_pop (struct frame_info *this_frame)
534 {
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 /* Ensure that we have a frame to pop to. */
540 prev_frame = get_prev_frame_1 (this_frame);
541
542 if (!prev_frame)
543 error (_("Cannot pop the initial frame."));
544
545 /* Make a copy of all the register values unwound from this frame.
546 Save them in a scratch buffer so that there isn't a race between
547 trying to extract the old values from the current regcache while
548 at the same time writing new values into that same cache. */
549 scratch = frame_save_as_regcache (prev_frame);
550 cleanups = make_cleanup_regcache_xfree (scratch);
551
552 /* If we are popping a dummy frame, clean up the associated
553 data as well. */
554 if (get_frame_type (this_frame) == DUMMY_FRAME)
555 dummy_frame_pop (get_frame_id (this_frame));
556
557 /* FIXME: cagney/2003-03-16: It should be possible to tell the
558 target's register cache that it is about to be hit with a burst
559 register transfer and that the sequence of register writes should
560 be batched. The pair target_prepare_to_store() and
561 target_store_registers() kind of suggest this functionality.
562 Unfortunately, they don't implement it. Their lack of a formal
563 definition can lead to targets writing back bogus values
564 (arguably a bug in the target code mind). */
565 /* Now copy those saved registers into the current regcache.
566 Here, regcache_cpy() calls regcache_restore(). */
567 regcache_cpy (get_current_regcache (), scratch);
568 do_cleanups (cleanups);
569
570 /* We've made right mess of GDB's local state, just discard
571 everything. */
572 reinit_frame_cache ();
573 }
574
575 void
576 frame_register_unwind (struct frame_info *frame, int regnum,
577 int *optimizedp, enum lval_type *lvalp,
578 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
579 {
580 struct value *value;
581
582 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
583 that the value proper does not need to be fetched. */
584 gdb_assert (optimizedp != NULL);
585 gdb_assert (lvalp != NULL);
586 gdb_assert (addrp != NULL);
587 gdb_assert (realnump != NULL);
588 /* gdb_assert (bufferp != NULL); */
589
590 value = frame_unwind_register_value (frame, regnum);
591
592 gdb_assert (value != NULL);
593
594 *optimizedp = value_optimized_out (value);
595 *lvalp = VALUE_LVAL (value);
596 *addrp = VALUE_ADDRESS (value);
597 *realnump = VALUE_REGNUM (value);
598
599 if (bufferp)
600 memcpy (bufferp, value_contents_all (value),
601 TYPE_LENGTH (value_type (value)));
602
603 /* Dispose of the new value. This prevents watchpoints from
604 trying to watch the saved frame pointer. */
605 release_value (value);
606 value_free (value);
607 }
608
609 void
610 frame_register (struct frame_info *frame, int regnum,
611 int *optimizedp, enum lval_type *lvalp,
612 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
613 {
614 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
615 that the value proper does not need to be fetched. */
616 gdb_assert (optimizedp != NULL);
617 gdb_assert (lvalp != NULL);
618 gdb_assert (addrp != NULL);
619 gdb_assert (realnump != NULL);
620 /* gdb_assert (bufferp != NULL); */
621
622 /* Obtain the register value by unwinding the register from the next
623 (more inner frame). */
624 gdb_assert (frame != NULL && frame->next != NULL);
625 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
626 realnump, bufferp);
627 }
628
629 void
630 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
631 {
632 int optimized;
633 CORE_ADDR addr;
634 int realnum;
635 enum lval_type lval;
636 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
637 &realnum, buf);
638 }
639
640 void
641 get_frame_register (struct frame_info *frame,
642 int regnum, gdb_byte *buf)
643 {
644 frame_unwind_register (frame->next, regnum, buf);
645 }
646
647 struct value *
648 frame_unwind_register_value (struct frame_info *frame, int regnum)
649 {
650 struct value *value;
651
652 gdb_assert (frame != NULL);
653
654 if (frame_debug)
655 {
656 fprintf_unfiltered (gdb_stdlog, "\
657 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
658 frame->level, regnum,
659 user_reg_map_regnum_to_name
660 (get_frame_arch (frame), regnum));
661 }
662
663 /* Find the unwinder. */
664 if (frame->unwind == NULL)
665 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
666
667 /* Ask this frame to unwind its register. */
668 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
669
670 if (frame_debug)
671 {
672 fprintf_unfiltered (gdb_stdlog, "->");
673 if (value_optimized_out (value))
674 fprintf_unfiltered (gdb_stdlog, " optimized out");
675 else
676 {
677 if (VALUE_LVAL (value) == lval_register)
678 fprintf_unfiltered (gdb_stdlog, " register=%d",
679 VALUE_REGNUM (value));
680 else if (VALUE_LVAL (value) == lval_memory)
681 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
682 paddr_nz (VALUE_ADDRESS (value)));
683 else
684 fprintf_unfiltered (gdb_stdlog, " computed");
685
686 if (value_lazy (value))
687 fprintf_unfiltered (gdb_stdlog, " lazy");
688 else
689 {
690 int i;
691 const gdb_byte *buf = value_contents (value);
692
693 fprintf_unfiltered (gdb_stdlog, " bytes=");
694 fprintf_unfiltered (gdb_stdlog, "[");
695 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
696 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
697 fprintf_unfiltered (gdb_stdlog, "]");
698 }
699 }
700
701 fprintf_unfiltered (gdb_stdlog, " }\n");
702 }
703
704 return value;
705 }
706
707 struct value *
708 get_frame_register_value (struct frame_info *frame, int regnum)
709 {
710 return frame_unwind_register_value (frame->next, regnum);
711 }
712
713 LONGEST
714 frame_unwind_register_signed (struct frame_info *frame, int regnum)
715 {
716 gdb_byte buf[MAX_REGISTER_SIZE];
717 frame_unwind_register (frame, regnum, buf);
718 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
719 regnum));
720 }
721
722 LONGEST
723 get_frame_register_signed (struct frame_info *frame, int regnum)
724 {
725 return frame_unwind_register_signed (frame->next, regnum);
726 }
727
728 ULONGEST
729 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
730 {
731 gdb_byte buf[MAX_REGISTER_SIZE];
732 frame_unwind_register (frame, regnum, buf);
733 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
734 regnum));
735 }
736
737 ULONGEST
738 get_frame_register_unsigned (struct frame_info *frame, int regnum)
739 {
740 return frame_unwind_register_unsigned (frame->next, regnum);
741 }
742
743 void
744 put_frame_register (struct frame_info *frame, int regnum,
745 const gdb_byte *buf)
746 {
747 struct gdbarch *gdbarch = get_frame_arch (frame);
748 int realnum;
749 int optim;
750 enum lval_type lval;
751 CORE_ADDR addr;
752 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
753 if (optim)
754 error (_("Attempt to assign to a value that was optimized out."));
755 switch (lval)
756 {
757 case lval_memory:
758 {
759 /* FIXME: write_memory doesn't yet take constant buffers.
760 Arrrg! */
761 gdb_byte tmp[MAX_REGISTER_SIZE];
762 memcpy (tmp, buf, register_size (gdbarch, regnum));
763 write_memory (addr, tmp, register_size (gdbarch, regnum));
764 break;
765 }
766 case lval_register:
767 regcache_cooked_write (get_current_regcache (), realnum, buf);
768 break;
769 default:
770 error (_("Attempt to assign to an unmodifiable value."));
771 }
772 }
773
774 /* frame_register_read ()
775
776 Find and return the value of REGNUM for the specified stack frame.
777 The number of bytes copied is REGISTER_SIZE (REGNUM).
778
779 Returns 0 if the register value could not be found. */
780
781 int
782 frame_register_read (struct frame_info *frame, int regnum,
783 gdb_byte *myaddr)
784 {
785 int optimized;
786 enum lval_type lval;
787 CORE_ADDR addr;
788 int realnum;
789 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
790
791 return !optimized;
792 }
793
794 int
795 get_frame_register_bytes (struct frame_info *frame, int regnum,
796 CORE_ADDR offset, int len, gdb_byte *myaddr)
797 {
798 struct gdbarch *gdbarch = get_frame_arch (frame);
799 int i;
800 int maxsize;
801 int numregs;
802
803 /* Skip registers wholly inside of OFFSET. */
804 while (offset >= register_size (gdbarch, regnum))
805 {
806 offset -= register_size (gdbarch, regnum);
807 regnum++;
808 }
809
810 /* Ensure that we will not read beyond the end of the register file.
811 This can only ever happen if the debug information is bad. */
812 maxsize = -offset;
813 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
814 for (i = regnum; i < numregs; i++)
815 {
816 int thissize = register_size (gdbarch, i);
817 if (thissize == 0)
818 break; /* This register is not available on this architecture. */
819 maxsize += thissize;
820 }
821 if (len > maxsize)
822 {
823 warning (_("Bad debug information detected: "
824 "Attempt to read %d bytes from registers."), len);
825 return 0;
826 }
827
828 /* Copy the data. */
829 while (len > 0)
830 {
831 int curr_len = register_size (gdbarch, regnum) - offset;
832 if (curr_len > len)
833 curr_len = len;
834
835 if (curr_len == register_size (gdbarch, regnum))
836 {
837 if (!frame_register_read (frame, regnum, myaddr))
838 return 0;
839 }
840 else
841 {
842 gdb_byte buf[MAX_REGISTER_SIZE];
843 if (!frame_register_read (frame, regnum, buf))
844 return 0;
845 memcpy (myaddr, buf + offset, curr_len);
846 }
847
848 myaddr += curr_len;
849 len -= curr_len;
850 offset = 0;
851 regnum++;
852 }
853
854 return 1;
855 }
856
857 void
858 put_frame_register_bytes (struct frame_info *frame, int regnum,
859 CORE_ADDR offset, int len, const gdb_byte *myaddr)
860 {
861 struct gdbarch *gdbarch = get_frame_arch (frame);
862
863 /* Skip registers wholly inside of OFFSET. */
864 while (offset >= register_size (gdbarch, regnum))
865 {
866 offset -= register_size (gdbarch, regnum);
867 regnum++;
868 }
869
870 /* Copy the data. */
871 while (len > 0)
872 {
873 int curr_len = register_size (gdbarch, regnum) - offset;
874 if (curr_len > len)
875 curr_len = len;
876
877 if (curr_len == register_size (gdbarch, regnum))
878 {
879 put_frame_register (frame, regnum, myaddr);
880 }
881 else
882 {
883 gdb_byte buf[MAX_REGISTER_SIZE];
884 frame_register_read (frame, regnum, buf);
885 memcpy (buf + offset, myaddr, curr_len);
886 put_frame_register (frame, regnum, buf);
887 }
888
889 myaddr += curr_len;
890 len -= curr_len;
891 offset = 0;
892 regnum++;
893 }
894 }
895
896 /* Create a sentinel frame. */
897
898 static struct frame_info *
899 create_sentinel_frame (struct regcache *regcache)
900 {
901 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
902 frame->level = -1;
903 /* Explicitly initialize the sentinel frame's cache. Provide it
904 with the underlying regcache. In the future additional
905 information, such as the frame's thread will be added. */
906 frame->prologue_cache = sentinel_frame_cache (regcache);
907 /* For the moment there is only one sentinel frame implementation. */
908 frame->unwind = sentinel_frame_unwind;
909 /* Link this frame back to itself. The frame is self referential
910 (the unwound PC is the same as the pc), so make it so. */
911 frame->next = frame;
912 /* Make the sentinel frame's ID valid, but invalid. That way all
913 comparisons with it should fail. */
914 frame->this_id.p = 1;
915 frame->this_id.value = null_frame_id;
916 if (frame_debug)
917 {
918 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
919 fprint_frame (gdb_stdlog, frame);
920 fprintf_unfiltered (gdb_stdlog, " }\n");
921 }
922 return frame;
923 }
924
925 /* Info about the innermost stack frame (contents of FP register) */
926
927 static struct frame_info *current_frame;
928
929 /* Cache for frame addresses already read by gdb. Valid only while
930 inferior is stopped. Control variables for the frame cache should
931 be local to this module. */
932
933 static struct obstack frame_cache_obstack;
934
935 void *
936 frame_obstack_zalloc (unsigned long size)
937 {
938 void *data = obstack_alloc (&frame_cache_obstack, size);
939 memset (data, 0, size);
940 return data;
941 }
942
943 /* Return the innermost (currently executing) stack frame. This is
944 split into two functions. The function unwind_to_current_frame()
945 is wrapped in catch exceptions so that, even when the unwind of the
946 sentinel frame fails, the function still returns a stack frame. */
947
948 static int
949 unwind_to_current_frame (struct ui_out *ui_out, void *args)
950 {
951 struct frame_info *frame = get_prev_frame (args);
952 /* A sentinel frame can fail to unwind, e.g., because its PC value
953 lands in somewhere like start. */
954 if (frame == NULL)
955 return 1;
956 current_frame = frame;
957 return 0;
958 }
959
960 struct frame_info *
961 get_current_frame (void)
962 {
963 /* First check, and report, the lack of registers. Having GDB
964 report "No stack!" or "No memory" when the target doesn't even
965 have registers is very confusing. Besides, "printcmd.exp"
966 explicitly checks that ``print $pc'' with no registers prints "No
967 registers". */
968 if (!target_has_registers)
969 error (_("No registers."));
970 if (!target_has_stack)
971 error (_("No stack."));
972 if (!target_has_memory)
973 error (_("No memory."));
974 if (is_executing (inferior_ptid))
975 error (_("Target is executing."));
976
977 if (current_frame == NULL)
978 {
979 struct frame_info *sentinel_frame =
980 create_sentinel_frame (get_current_regcache ());
981 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
982 RETURN_MASK_ERROR) != 0)
983 {
984 /* Oops! Fake a current frame? Is this useful? It has a PC
985 of zero, for instance. */
986 current_frame = sentinel_frame;
987 }
988 }
989 return current_frame;
990 }
991
992 /* The "selected" stack frame is used by default for local and arg
993 access. May be zero, for no selected frame. */
994
995 static struct frame_info *selected_frame;
996
997 static int
998 has_stack_frames (void)
999 {
1000 if (!target_has_registers || !target_has_stack || !target_has_memory)
1001 return 0;
1002
1003 /* If the current thread is executing, don't try to read from
1004 it. */
1005 if (is_executing (inferior_ptid))
1006 return 0;
1007
1008 return 1;
1009 }
1010
1011 /* Return the selected frame. Always non-NULL (unless there isn't an
1012 inferior sufficient for creating a frame) in which case an error is
1013 thrown. */
1014
1015 struct frame_info *
1016 get_selected_frame (const char *message)
1017 {
1018 if (selected_frame == NULL)
1019 {
1020 if (message != NULL && !has_stack_frames ())
1021 error (("%s"), message);
1022 /* Hey! Don't trust this. It should really be re-finding the
1023 last selected frame of the currently selected thread. This,
1024 though, is better than nothing. */
1025 select_frame (get_current_frame ());
1026 }
1027 /* There is always a frame. */
1028 gdb_assert (selected_frame != NULL);
1029 return selected_frame;
1030 }
1031
1032 /* This is a variant of get_selected_frame() which can be called when
1033 the inferior does not have a frame; in that case it will return
1034 NULL instead of calling error(). */
1035
1036 struct frame_info *
1037 deprecated_safe_get_selected_frame (void)
1038 {
1039 if (!has_stack_frames ())
1040 return NULL;
1041 return get_selected_frame (NULL);
1042 }
1043
1044 /* Select frame FI (or NULL - to invalidate the current frame). */
1045
1046 void
1047 select_frame (struct frame_info *fi)
1048 {
1049 struct symtab *s;
1050
1051 selected_frame = fi;
1052 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1053 frame is being invalidated. */
1054 if (deprecated_selected_frame_level_changed_hook)
1055 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1056
1057 /* FIXME: kseitz/2002-08-28: It would be nice to call
1058 selected_frame_level_changed_event() right here, but due to limitations
1059 in the current interfaces, we would end up flooding UIs with events
1060 because select_frame() is used extensively internally.
1061
1062 Once we have frame-parameterized frame (and frame-related) commands,
1063 the event notification can be moved here, since this function will only
1064 be called when the user's selected frame is being changed. */
1065
1066 /* Ensure that symbols for this frame are read in. Also, determine the
1067 source language of this frame, and switch to it if desired. */
1068 if (fi)
1069 {
1070 /* We retrieve the frame's symtab by using the frame PC. However
1071 we cannot use the frame PC as-is, because it usually points to
1072 the instruction following the "call", which is sometimes the
1073 first instruction of another function. So we rely on
1074 get_frame_address_in_block() which provides us with a PC which
1075 is guaranteed to be inside the frame's code block. */
1076 s = find_pc_symtab (get_frame_address_in_block (fi));
1077 if (s
1078 && s->language != current_language->la_language
1079 && s->language != language_unknown
1080 && language_mode == language_mode_auto)
1081 {
1082 set_language (s->language);
1083 }
1084 }
1085 }
1086
1087 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1088 Always returns a non-NULL value. */
1089
1090 struct frame_info *
1091 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1092 {
1093 struct frame_info *fi;
1094
1095 if (frame_debug)
1096 {
1097 fprintf_unfiltered (gdb_stdlog,
1098 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1099 paddr_nz (addr), paddr_nz (pc));
1100 }
1101
1102 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1103
1104 fi->next = create_sentinel_frame (get_current_regcache ());
1105
1106 /* Select/initialize both the unwind function and the frame's type
1107 based on the PC. */
1108 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1109
1110 fi->this_id.p = 1;
1111 deprecated_update_frame_base_hack (fi, addr);
1112 deprecated_update_frame_pc_hack (fi, pc);
1113
1114 if (frame_debug)
1115 {
1116 fprintf_unfiltered (gdb_stdlog, "-> ");
1117 fprint_frame (gdb_stdlog, fi);
1118 fprintf_unfiltered (gdb_stdlog, " }\n");
1119 }
1120
1121 return fi;
1122 }
1123
1124 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1125 innermost frame). Be careful to not fall off the bottom of the
1126 frame chain and onto the sentinel frame. */
1127
1128 struct frame_info *
1129 get_next_frame (struct frame_info *this_frame)
1130 {
1131 if (this_frame->level > 0)
1132 return this_frame->next;
1133 else
1134 return NULL;
1135 }
1136
1137 /* Observer for the target_changed event. */
1138
1139 void
1140 frame_observer_target_changed (struct target_ops *target)
1141 {
1142 reinit_frame_cache ();
1143 }
1144
1145 /* Flush the entire frame cache. */
1146
1147 void
1148 reinit_frame_cache (void)
1149 {
1150 struct frame_info *fi;
1151
1152 /* Tear down all frame caches. */
1153 for (fi = current_frame; fi != NULL; fi = fi->prev)
1154 {
1155 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1156 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1157 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1158 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1159 }
1160
1161 /* Since we can't really be sure what the first object allocated was */
1162 obstack_free (&frame_cache_obstack, 0);
1163 obstack_init (&frame_cache_obstack);
1164
1165 if (current_frame != NULL)
1166 annotate_frames_invalid ();
1167
1168 current_frame = NULL; /* Invalidate cache */
1169 select_frame (NULL);
1170 if (frame_debug)
1171 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1172 }
1173
1174 /* Find where a register is saved (in memory or another register).
1175 The result of frame_register_unwind is just where it is saved
1176 relative to this particular frame. */
1177
1178 static void
1179 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1180 int *optimizedp, enum lval_type *lvalp,
1181 CORE_ADDR *addrp, int *realnump)
1182 {
1183 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1184
1185 while (this_frame != NULL)
1186 {
1187 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1188 addrp, realnump, NULL);
1189
1190 if (*optimizedp)
1191 break;
1192
1193 if (*lvalp != lval_register)
1194 break;
1195
1196 regnum = *realnump;
1197 this_frame = get_next_frame (this_frame);
1198 }
1199 }
1200
1201 /* Return a "struct frame_info" corresponding to the frame that called
1202 THIS_FRAME. Returns NULL if there is no such frame.
1203
1204 Unlike get_prev_frame, this function always tries to unwind the
1205 frame. */
1206
1207 static struct frame_info *
1208 get_prev_frame_1 (struct frame_info *this_frame)
1209 {
1210 struct frame_info *prev_frame;
1211 struct frame_id this_id;
1212 struct gdbarch *gdbarch;
1213
1214 gdb_assert (this_frame != NULL);
1215 gdbarch = get_frame_arch (this_frame);
1216
1217 if (frame_debug)
1218 {
1219 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1220 if (this_frame != NULL)
1221 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1222 else
1223 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1224 fprintf_unfiltered (gdb_stdlog, ") ");
1225 }
1226
1227 /* Only try to do the unwind once. */
1228 if (this_frame->prev_p)
1229 {
1230 if (frame_debug)
1231 {
1232 fprintf_unfiltered (gdb_stdlog, "-> ");
1233 fprint_frame (gdb_stdlog, this_frame->prev);
1234 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1235 }
1236 return this_frame->prev;
1237 }
1238
1239 /* If the frame unwinder hasn't been selected yet, we must do so
1240 before setting prev_p; otherwise the check for misbehaved
1241 sniffers will think that this frame's sniffer tried to unwind
1242 further (see frame_cleanup_after_sniffer). */
1243 if (this_frame->unwind == NULL)
1244 this_frame->unwind
1245 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1246
1247 this_frame->prev_p = 1;
1248 this_frame->stop_reason = UNWIND_NO_REASON;
1249
1250 /* Check that this frame's ID was valid. If it wasn't, don't try to
1251 unwind to the prev frame. Be careful to not apply this test to
1252 the sentinel frame. */
1253 this_id = get_frame_id (this_frame);
1254 if (this_frame->level >= 0 && !frame_id_p (this_id))
1255 {
1256 if (frame_debug)
1257 {
1258 fprintf_unfiltered (gdb_stdlog, "-> ");
1259 fprint_frame (gdb_stdlog, NULL);
1260 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1261 }
1262 this_frame->stop_reason = UNWIND_NULL_ID;
1263 return NULL;
1264 }
1265
1266 /* Check that this frame's ID isn't inner to (younger, below, next)
1267 the next frame. This happens when a frame unwind goes backwards.
1268 This check is valid only if the next frame is NORMAL. See the
1269 comment at frame_id_inner for details. */
1270 if (this_frame->next->unwind->type == NORMAL_FRAME
1271 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1272 get_frame_id (this_frame->next)))
1273 {
1274 if (frame_debug)
1275 {
1276 fprintf_unfiltered (gdb_stdlog, "-> ");
1277 fprint_frame (gdb_stdlog, NULL);
1278 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1279 }
1280 this_frame->stop_reason = UNWIND_INNER_ID;
1281 return NULL;
1282 }
1283
1284 /* Check that this and the next frame are not identical. If they
1285 are, there is most likely a stack cycle. As with the inner-than
1286 test above, avoid comparing the inner-most and sentinel frames. */
1287 if (this_frame->level > 0
1288 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1289 {
1290 if (frame_debug)
1291 {
1292 fprintf_unfiltered (gdb_stdlog, "-> ");
1293 fprint_frame (gdb_stdlog, NULL);
1294 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1295 }
1296 this_frame->stop_reason = UNWIND_SAME_ID;
1297 return NULL;
1298 }
1299
1300 /* Check that this and the next frame do not unwind the PC register
1301 to the same memory location. If they do, then even though they
1302 have different frame IDs, the new frame will be bogus; two
1303 functions can't share a register save slot for the PC. This can
1304 happen when the prologue analyzer finds a stack adjustment, but
1305 no PC save.
1306
1307 This check does assume that the "PC register" is roughly a
1308 traditional PC, even if the gdbarch_unwind_pc method adjusts
1309 it (we do not rely on the value, only on the unwound PC being
1310 dependent on this value). A potential improvement would be
1311 to have the frame prev_pc method and the gdbarch unwind_pc
1312 method set the same lval and location information as
1313 frame_register_unwind. */
1314 if (this_frame->level > 0
1315 && gdbarch_pc_regnum (gdbarch) >= 0
1316 && get_frame_type (this_frame) == NORMAL_FRAME
1317 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1318 {
1319 int optimized, realnum, nrealnum;
1320 enum lval_type lval, nlval;
1321 CORE_ADDR addr, naddr;
1322
1323 frame_register_unwind_location (this_frame,
1324 gdbarch_pc_regnum (gdbarch),
1325 &optimized, &lval, &addr, &realnum);
1326 frame_register_unwind_location (get_next_frame (this_frame),
1327 gdbarch_pc_regnum (gdbarch),
1328 &optimized, &nlval, &naddr, &nrealnum);
1329
1330 if ((lval == lval_memory && lval == nlval && addr == naddr)
1331 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1332 {
1333 if (frame_debug)
1334 {
1335 fprintf_unfiltered (gdb_stdlog, "-> ");
1336 fprint_frame (gdb_stdlog, NULL);
1337 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1338 }
1339
1340 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1341 this_frame->prev = NULL;
1342 return NULL;
1343 }
1344 }
1345
1346 /* Allocate the new frame but do not wire it in to the frame chain.
1347 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1348 frame->next to pull some fancy tricks (of course such code is, by
1349 definition, recursive). Try to prevent it.
1350
1351 There is no reason to worry about memory leaks, should the
1352 remainder of the function fail. The allocated memory will be
1353 quickly reclaimed when the frame cache is flushed, and the `we've
1354 been here before' check above will stop repeated memory
1355 allocation calls. */
1356 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1357 prev_frame->level = this_frame->level + 1;
1358
1359 /* Don't yet compute ->unwind (and hence ->type). It is computed
1360 on-demand in get_frame_type, frame_register_unwind, and
1361 get_frame_id. */
1362
1363 /* Don't yet compute the frame's ID. It is computed on-demand by
1364 get_frame_id(). */
1365
1366 /* The unwound frame ID is validate at the start of this function,
1367 as part of the logic to decide if that frame should be further
1368 unwound, and not here while the prev frame is being created.
1369 Doing this makes it possible for the user to examine a frame that
1370 has an invalid frame ID.
1371
1372 Some very old VAX code noted: [...] For the sake of argument,
1373 suppose that the stack is somewhat trashed (which is one reason
1374 that "info frame" exists). So, return 0 (indicating we don't
1375 know the address of the arglist) if we don't know what frame this
1376 frame calls. */
1377
1378 /* Link it in. */
1379 this_frame->prev = prev_frame;
1380 prev_frame->next = this_frame;
1381
1382 if (frame_debug)
1383 {
1384 fprintf_unfiltered (gdb_stdlog, "-> ");
1385 fprint_frame (gdb_stdlog, prev_frame);
1386 fprintf_unfiltered (gdb_stdlog, " }\n");
1387 }
1388
1389 return prev_frame;
1390 }
1391
1392 /* Debug routine to print a NULL frame being returned. */
1393
1394 static void
1395 frame_debug_got_null_frame (struct ui_file *file,
1396 struct frame_info *this_frame,
1397 const char *reason)
1398 {
1399 if (frame_debug)
1400 {
1401 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1402 if (this_frame != NULL)
1403 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1404 else
1405 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1406 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1407 }
1408 }
1409
1410 /* Is this (non-sentinel) frame in the "main"() function? */
1411
1412 static int
1413 inside_main_func (struct frame_info *this_frame)
1414 {
1415 struct minimal_symbol *msymbol;
1416 CORE_ADDR maddr;
1417
1418 if (symfile_objfile == 0)
1419 return 0;
1420 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1421 if (msymbol == NULL)
1422 return 0;
1423 /* Make certain that the code, and not descriptor, address is
1424 returned. */
1425 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1426 SYMBOL_VALUE_ADDRESS (msymbol),
1427 &current_target);
1428 return maddr == get_frame_func (this_frame);
1429 }
1430
1431 /* Test whether THIS_FRAME is inside the process entry point function. */
1432
1433 static int
1434 inside_entry_func (struct frame_info *this_frame)
1435 {
1436 return (get_frame_func (this_frame) == entry_point_address ());
1437 }
1438
1439 /* Return a structure containing various interesting information about
1440 the frame that called THIS_FRAME. Returns NULL if there is entier
1441 no such frame or the frame fails any of a set of target-independent
1442 condition that should terminate the frame chain (e.g., as unwinding
1443 past main()).
1444
1445 This function should not contain target-dependent tests, such as
1446 checking whether the program-counter is zero. */
1447
1448 struct frame_info *
1449 get_prev_frame (struct frame_info *this_frame)
1450 {
1451 struct frame_info *prev_frame;
1452
1453 /* Return the inner-most frame, when the caller passes in NULL. */
1454 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1455 caller should have previously obtained a valid frame using
1456 get_selected_frame() and then called this code - only possibility
1457 I can think of is code behaving badly.
1458
1459 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1460 block_innermost_frame(). It does the sequence: frame = NULL;
1461 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1462 it couldn't be written better, I don't know.
1463
1464 NOTE: cagney/2003-01-11: I suspect what is happening in
1465 block_innermost_frame() is, when the target has no state
1466 (registers, memory, ...), it is still calling this function. The
1467 assumption being that this function will return NULL indicating
1468 that a frame isn't possible, rather than checking that the target
1469 has state and then calling get_current_frame() and
1470 get_prev_frame(). This is a guess mind. */
1471 if (this_frame == NULL)
1472 {
1473 /* NOTE: cagney/2002-11-09: There was a code segment here that
1474 would error out when CURRENT_FRAME was NULL. The comment
1475 that went with it made the claim ...
1476
1477 ``This screws value_of_variable, which just wants a nice
1478 clean NULL return from block_innermost_frame if there are no
1479 frames. I don't think I've ever seen this message happen
1480 otherwise. And returning NULL here is a perfectly legitimate
1481 thing to do.''
1482
1483 Per the above, this code shouldn't even be called with a NULL
1484 THIS_FRAME. */
1485 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1486 return current_frame;
1487 }
1488
1489 /* There is always a frame. If this assertion fails, suspect that
1490 something should be calling get_selected_frame() or
1491 get_current_frame(). */
1492 gdb_assert (this_frame != NULL);
1493
1494 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1495 sense to stop unwinding at a dummy frame. One place where a dummy
1496 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1497 pcsqh register (space register for the instruction at the head of the
1498 instruction queue) cannot be written directly; the only way to set it
1499 is to branch to code that is in the target space. In order to implement
1500 frame dummies on HPUX, the called function is made to jump back to where
1501 the inferior was when the user function was called. If gdb was inside
1502 the main function when we created the dummy frame, the dummy frame will
1503 point inside the main function. */
1504 if (this_frame->level >= 0
1505 && get_frame_type (this_frame) != DUMMY_FRAME
1506 && !backtrace_past_main
1507 && inside_main_func (this_frame))
1508 /* Don't unwind past main(). Note, this is done _before_ the
1509 frame has been marked as previously unwound. That way if the
1510 user later decides to enable unwinds past main(), that will
1511 automatically happen. */
1512 {
1513 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1514 return NULL;
1515 }
1516
1517 /* If the user's backtrace limit has been exceeded, stop. We must
1518 add two to the current level; one of those accounts for backtrace_limit
1519 being 1-based and the level being 0-based, and the other accounts for
1520 the level of the new frame instead of the level of the current
1521 frame. */
1522 if (this_frame->level + 2 > backtrace_limit)
1523 {
1524 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1525 "backtrace limit exceeded");
1526 return NULL;
1527 }
1528
1529 /* If we're already inside the entry function for the main objfile,
1530 then it isn't valid. Don't apply this test to a dummy frame -
1531 dummy frame PCs typically land in the entry func. Don't apply
1532 this test to the sentinel frame. Sentinel frames should always
1533 be allowed to unwind. */
1534 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1535 wasn't checking for "main" in the minimal symbols. With that
1536 fixed asm-source tests now stop in "main" instead of halting the
1537 backtrace in weird and wonderful ways somewhere inside the entry
1538 file. Suspect that tests for inside the entry file/func were
1539 added to work around that (now fixed) case. */
1540 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1541 suggested having the inside_entry_func test use the
1542 inside_main_func() msymbol trick (along with entry_point_address()
1543 I guess) to determine the address range of the start function.
1544 That should provide a far better stopper than the current
1545 heuristics. */
1546 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1547 applied tail-call optimizations to main so that a function called
1548 from main returns directly to the caller of main. Since we don't
1549 stop at main, we should at least stop at the entry point of the
1550 application. */
1551 if (!backtrace_past_entry
1552 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1553 && inside_entry_func (this_frame))
1554 {
1555 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1556 return NULL;
1557 }
1558
1559 /* Assume that the only way to get a zero PC is through something
1560 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1561 will never unwind a zero PC. */
1562 if (this_frame->level > 0
1563 && get_frame_type (this_frame) == NORMAL_FRAME
1564 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1565 && get_frame_pc (this_frame) == 0)
1566 {
1567 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1568 return NULL;
1569 }
1570
1571 return get_prev_frame_1 (this_frame);
1572 }
1573
1574 CORE_ADDR
1575 get_frame_pc (struct frame_info *frame)
1576 {
1577 gdb_assert (frame->next != NULL);
1578 return frame_pc_unwind (frame->next);
1579 }
1580
1581 /* Return an address that falls within THIS_FRAME's code block. */
1582
1583 CORE_ADDR
1584 get_frame_address_in_block (struct frame_info *this_frame)
1585 {
1586 /* A draft address. */
1587 CORE_ADDR pc = get_frame_pc (this_frame);
1588
1589 struct frame_info *next_frame = this_frame->next;
1590
1591 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1592 Normally the resume address is inside the body of the function
1593 associated with THIS_FRAME, but there is a special case: when
1594 calling a function which the compiler knows will never return
1595 (for instance abort), the call may be the very last instruction
1596 in the calling function. The resume address will point after the
1597 call and may be at the beginning of a different function
1598 entirely.
1599
1600 If THIS_FRAME is a signal frame or dummy frame, then we should
1601 not adjust the unwound PC. For a dummy frame, GDB pushed the
1602 resume address manually onto the stack. For a signal frame, the
1603 OS may have pushed the resume address manually and invoked the
1604 handler (e.g. GNU/Linux), or invoked the trampoline which called
1605 the signal handler - but in either case the signal handler is
1606 expected to return to the trampoline. So in both of these
1607 cases we know that the resume address is executable and
1608 related. So we only need to adjust the PC if THIS_FRAME
1609 is a normal function.
1610
1611 If the program has been interrupted while THIS_FRAME is current,
1612 then clearly the resume address is inside the associated
1613 function. There are three kinds of interruption: debugger stop
1614 (next frame will be SENTINEL_FRAME), operating system
1615 signal or exception (next frame will be SIGTRAMP_FRAME),
1616 or debugger-induced function call (next frame will be
1617 DUMMY_FRAME). So we only need to adjust the PC if
1618 NEXT_FRAME is a normal function.
1619
1620 We check the type of NEXT_FRAME first, since it is already
1621 known; frame type is determined by the unwinder, and since
1622 we have THIS_FRAME we've already selected an unwinder for
1623 NEXT_FRAME. */
1624 if (get_frame_type (next_frame) == NORMAL_FRAME
1625 && get_frame_type (this_frame) == NORMAL_FRAME)
1626 return pc - 1;
1627
1628 return pc;
1629 }
1630
1631 static int
1632 pc_notcurrent (struct frame_info *frame)
1633 {
1634 /* If FRAME is not the innermost frame, that normally means that
1635 FRAME->pc points at the return instruction (which is *after* the
1636 call instruction), and we want to get the line containing the
1637 call (because the call is where the user thinks the program is).
1638 However, if the next frame is either a SIGTRAMP_FRAME or a
1639 DUMMY_FRAME, then the next frame will contain a saved interrupt
1640 PC and such a PC indicates the current (rather than next)
1641 instruction/line, consequently, for such cases, want to get the
1642 line containing fi->pc. */
1643 struct frame_info *next = get_next_frame (frame);
1644 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1645 return notcurrent;
1646 }
1647
1648 void
1649 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1650 {
1651 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1652 }
1653
1654 /* Per "frame.h", return the ``address'' of the frame. Code should
1655 really be using get_frame_id(). */
1656 CORE_ADDR
1657 get_frame_base (struct frame_info *fi)
1658 {
1659 return get_frame_id (fi).stack_addr;
1660 }
1661
1662 /* High-level offsets into the frame. Used by the debug info. */
1663
1664 CORE_ADDR
1665 get_frame_base_address (struct frame_info *fi)
1666 {
1667 if (get_frame_type (fi) != NORMAL_FRAME)
1668 return 0;
1669 if (fi->base == NULL)
1670 fi->base = frame_base_find_by_frame (fi);
1671 /* Sneaky: If the low-level unwind and high-level base code share a
1672 common unwinder, let them share the prologue cache. */
1673 if (fi->base->unwind == fi->unwind)
1674 return fi->base->this_base (fi, &fi->prologue_cache);
1675 return fi->base->this_base (fi, &fi->base_cache);
1676 }
1677
1678 CORE_ADDR
1679 get_frame_locals_address (struct frame_info *fi)
1680 {
1681 void **cache;
1682 if (get_frame_type (fi) != NORMAL_FRAME)
1683 return 0;
1684 /* If there isn't a frame address method, find it. */
1685 if (fi->base == NULL)
1686 fi->base = frame_base_find_by_frame (fi);
1687 /* Sneaky: If the low-level unwind and high-level base code share a
1688 common unwinder, let them share the prologue cache. */
1689 if (fi->base->unwind == fi->unwind)
1690 return fi->base->this_locals (fi, &fi->prologue_cache);
1691 return fi->base->this_locals (fi, &fi->base_cache);
1692 }
1693
1694 CORE_ADDR
1695 get_frame_args_address (struct frame_info *fi)
1696 {
1697 void **cache;
1698 if (get_frame_type (fi) != NORMAL_FRAME)
1699 return 0;
1700 /* If there isn't a frame address method, find it. */
1701 if (fi->base == NULL)
1702 fi->base = frame_base_find_by_frame (fi);
1703 /* Sneaky: If the low-level unwind and high-level base code share a
1704 common unwinder, let them share the prologue cache. */
1705 if (fi->base->unwind == fi->unwind)
1706 return fi->base->this_args (fi, &fi->prologue_cache);
1707 return fi->base->this_args (fi, &fi->base_cache);
1708 }
1709
1710 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1711 or -1 for a NULL frame. */
1712
1713 int
1714 frame_relative_level (struct frame_info *fi)
1715 {
1716 if (fi == NULL)
1717 return -1;
1718 else
1719 return fi->level;
1720 }
1721
1722 enum frame_type
1723 get_frame_type (struct frame_info *frame)
1724 {
1725 if (frame->unwind == NULL)
1726 /* Initialize the frame's unwinder because that's what
1727 provides the frame's type. */
1728 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1729 return frame->unwind->type;
1730 }
1731
1732 void
1733 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1734 {
1735 if (frame_debug)
1736 fprintf_unfiltered (gdb_stdlog,
1737 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1738 frame->level, paddr_nz (pc));
1739 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1740 maintaining a locally allocated frame object. Since such frames
1741 are not in the frame chain, it isn't possible to assume that the
1742 frame has a next. Sigh. */
1743 if (frame->next != NULL)
1744 {
1745 /* While we're at it, update this frame's cached PC value, found
1746 in the next frame. Oh for the day when "struct frame_info"
1747 is opaque and this hack on hack can just go away. */
1748 frame->next->prev_pc.value = pc;
1749 frame->next->prev_pc.p = 1;
1750 }
1751 }
1752
1753 void
1754 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1755 {
1756 if (frame_debug)
1757 fprintf_unfiltered (gdb_stdlog,
1758 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1759 frame->level, paddr_nz (base));
1760 /* See comment in "frame.h". */
1761 frame->this_id.value.stack_addr = base;
1762 }
1763
1764 /* Memory access methods. */
1765
1766 void
1767 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1768 gdb_byte *buf, int len)
1769 {
1770 read_memory (addr, buf, len);
1771 }
1772
1773 LONGEST
1774 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1775 int len)
1776 {
1777 return read_memory_integer (addr, len);
1778 }
1779
1780 ULONGEST
1781 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1782 int len)
1783 {
1784 return read_memory_unsigned_integer (addr, len);
1785 }
1786
1787 int
1788 safe_frame_unwind_memory (struct frame_info *this_frame,
1789 CORE_ADDR addr, gdb_byte *buf, int len)
1790 {
1791 /* NOTE: target_read_memory returns zero on success! */
1792 return !target_read_memory (addr, buf, len);
1793 }
1794
1795 /* Architecture method. */
1796
1797 struct gdbarch *
1798 get_frame_arch (struct frame_info *this_frame)
1799 {
1800 return current_gdbarch;
1801 }
1802
1803 /* Stack pointer methods. */
1804
1805 CORE_ADDR
1806 get_frame_sp (struct frame_info *this_frame)
1807 {
1808 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1809 /* Normality - an architecture that provides a way of obtaining any
1810 frame inner-most address. */
1811 if (gdbarch_unwind_sp_p (gdbarch))
1812 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1813 operate on THIS_FRAME now. */
1814 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1815 /* Now things are really are grim. Hope that the value returned by
1816 the gdbarch_sp_regnum register is meaningful. */
1817 if (gdbarch_sp_regnum (gdbarch) >= 0)
1818 return get_frame_register_unsigned (this_frame,
1819 gdbarch_sp_regnum (gdbarch));
1820 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1821 }
1822
1823 /* Return the reason why we can't unwind past FRAME. */
1824
1825 enum unwind_stop_reason
1826 get_frame_unwind_stop_reason (struct frame_info *frame)
1827 {
1828 /* If we haven't tried to unwind past this point yet, then assume
1829 that unwinding would succeed. */
1830 if (frame->prev_p == 0)
1831 return UNWIND_NO_REASON;
1832
1833 /* Otherwise, we set a reason when we succeeded (or failed) to
1834 unwind. */
1835 return frame->stop_reason;
1836 }
1837
1838 /* Return a string explaining REASON. */
1839
1840 const char *
1841 frame_stop_reason_string (enum unwind_stop_reason reason)
1842 {
1843 switch (reason)
1844 {
1845 case UNWIND_NULL_ID:
1846 return _("unwinder did not report frame ID");
1847
1848 case UNWIND_INNER_ID:
1849 return _("previous frame inner to this frame (corrupt stack?)");
1850
1851 case UNWIND_SAME_ID:
1852 return _("previous frame identical to this frame (corrupt stack?)");
1853
1854 case UNWIND_NO_SAVED_PC:
1855 return _("frame did not save the PC");
1856
1857 case UNWIND_NO_REASON:
1858 case UNWIND_FIRST_ERROR:
1859 default:
1860 internal_error (__FILE__, __LINE__,
1861 "Invalid frame stop reason");
1862 }
1863 }
1864
1865 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1866 FRAME. */
1867
1868 static void
1869 frame_cleanup_after_sniffer (void *arg)
1870 {
1871 struct frame_info *frame = arg;
1872
1873 /* The sniffer should not allocate a prologue cache if it did not
1874 match this frame. */
1875 gdb_assert (frame->prologue_cache == NULL);
1876
1877 /* No sniffer should extend the frame chain; sniff based on what is
1878 already certain. */
1879 gdb_assert (!frame->prev_p);
1880
1881 /* The sniffer should not check the frame's ID; that's circular. */
1882 gdb_assert (!frame->this_id.p);
1883
1884 /* Clear cached fields dependent on the unwinder.
1885
1886 The previous PC is independent of the unwinder, but the previous
1887 function is not (see get_frame_address_in_block). */
1888 frame->prev_func.p = 0;
1889 frame->prev_func.addr = 0;
1890
1891 /* Discard the unwinder last, so that we can easily find it if an assertion
1892 in this function triggers. */
1893 frame->unwind = NULL;
1894 }
1895
1896 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1897 Return a cleanup which should be called if unwinding fails, and
1898 discarded if it succeeds. */
1899
1900 struct cleanup *
1901 frame_prepare_for_sniffer (struct frame_info *frame,
1902 const struct frame_unwind *unwind)
1903 {
1904 gdb_assert (frame->unwind == NULL);
1905 frame->unwind = unwind;
1906 return make_cleanup (frame_cleanup_after_sniffer, frame);
1907 }
1908
1909 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1910
1911 static struct cmd_list_element *set_backtrace_cmdlist;
1912 static struct cmd_list_element *show_backtrace_cmdlist;
1913
1914 static void
1915 set_backtrace_cmd (char *args, int from_tty)
1916 {
1917 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1918 }
1919
1920 static void
1921 show_backtrace_cmd (char *args, int from_tty)
1922 {
1923 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1924 }
1925
1926 void
1927 _initialize_frame (void)
1928 {
1929 obstack_init (&frame_cache_obstack);
1930
1931 observer_attach_target_changed (frame_observer_target_changed);
1932
1933 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1934 Set backtrace specific variables.\n\
1935 Configure backtrace variables such as the backtrace limit"),
1936 &set_backtrace_cmdlist, "set backtrace ",
1937 0/*allow-unknown*/, &setlist);
1938 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1939 Show backtrace specific variables\n\
1940 Show backtrace variables such as the backtrace limit"),
1941 &show_backtrace_cmdlist, "show backtrace ",
1942 0/*allow-unknown*/, &showlist);
1943
1944 add_setshow_boolean_cmd ("past-main", class_obscure,
1945 &backtrace_past_main, _("\
1946 Set whether backtraces should continue past \"main\"."), _("\
1947 Show whether backtraces should continue past \"main\"."), _("\
1948 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1949 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1950 of the stack trace."),
1951 NULL,
1952 show_backtrace_past_main,
1953 &set_backtrace_cmdlist,
1954 &show_backtrace_cmdlist);
1955
1956 add_setshow_boolean_cmd ("past-entry", class_obscure,
1957 &backtrace_past_entry, _("\
1958 Set whether backtraces should continue past the entry point of a program."),
1959 _("\
1960 Show whether backtraces should continue past the entry point of a program."),
1961 _("\
1962 Normally there are no callers beyond the entry point of a program, so GDB\n\
1963 will terminate the backtrace there. Set this variable if you need to see \n\
1964 the rest of the stack trace."),
1965 NULL,
1966 show_backtrace_past_entry,
1967 &set_backtrace_cmdlist,
1968 &show_backtrace_cmdlist);
1969
1970 add_setshow_integer_cmd ("limit", class_obscure,
1971 &backtrace_limit, _("\
1972 Set an upper bound on the number of backtrace levels."), _("\
1973 Show the upper bound on the number of backtrace levels."), _("\
1974 No more than the specified number of frames can be displayed or examined.\n\
1975 Zero is unlimited."),
1976 NULL,
1977 show_backtrace_limit,
1978 &set_backtrace_cmdlist,
1979 &show_backtrace_cmdlist);
1980
1981 /* Debug this files internals. */
1982 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1983 Set frame debugging."), _("\
1984 Show frame debugging."), _("\
1985 When non-zero, frame specific internal debugging is enabled."),
1986 NULL,
1987 show_frame_debug,
1988 &setdebuglist, &showdebuglist);
1989 }
This page took 0.070659 seconds and 4 git commands to generate.