Record GDB 7.1 branch creation. Bump version number to 7.1.50.20100219-cvs.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's program space. */
74 struct program_space *pspace;
75
76 /* The frame's address space. */
77 struct address_space *aspace;
78
79 /* The frame's low-level unwinder and corresponding cache. The
80 low-level unwinder is responsible for unwinding register values
81 for the previous frame. The low-level unwind methods are
82 selected based on the presence, or otherwise, of register unwind
83 information such as CFI. */
84 void *prologue_cache;
85 const struct frame_unwind *unwind;
86
87 /* Cached copy of the previous frame's architecture. */
88 struct
89 {
90 int p;
91 struct gdbarch *arch;
92 } prev_arch;
93
94 /* Cached copy of the previous frame's resume address. */
95 struct {
96 int p;
97 CORE_ADDR value;
98 } prev_pc;
99
100 /* Cached copy of the previous frame's function address. */
101 struct
102 {
103 CORE_ADDR addr;
104 int p;
105 } prev_func;
106
107 /* This frame's ID. */
108 struct
109 {
110 int p;
111 struct frame_id value;
112 } this_id;
113
114 /* The frame's high-level base methods, and corresponding cache.
115 The high level base methods are selected based on the frame's
116 debug info. */
117 const struct frame_base *base;
118 void *base_cache;
119
120 /* Pointers to the next (down, inner, younger) and previous (up,
121 outer, older) frame_info's in the frame cache. */
122 struct frame_info *next; /* down, inner, younger */
123 int prev_p;
124 struct frame_info *prev; /* up, outer, older */
125
126 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
127 could. Only valid when PREV_P is set. */
128 enum unwind_stop_reason stop_reason;
129 };
130
131 /* A frame stash used to speed up frame lookups. */
132
133 /* We currently only stash one frame at a time, as this seems to be
134 sufficient for now. */
135 static struct frame_info *frame_stash = NULL;
136
137 /* Add the following FRAME to the frame stash. */
138
139 static void
140 frame_stash_add (struct frame_info *frame)
141 {
142 frame_stash = frame;
143 }
144
145 /* Search the frame stash for an entry with the given frame ID.
146 If found, return that frame. Otherwise return NULL. */
147
148 static struct frame_info *
149 frame_stash_find (struct frame_id id)
150 {
151 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
152 return frame_stash;
153
154 return NULL;
155 }
156
157 /* Invalidate the frame stash by removing all entries in it. */
158
159 static void
160 frame_stash_invalidate (void)
161 {
162 frame_stash = NULL;
163 }
164
165 /* Flag to control debugging. */
166
167 int frame_debug;
168 static void
169 show_frame_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
173 }
174
175 /* Flag to indicate whether backtraces should stop at main et.al. */
176
177 static int backtrace_past_main;
178 static void
179 show_backtrace_past_main (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("\
183 Whether backtraces should continue past \"main\" is %s.\n"),
184 value);
185 }
186
187 static int backtrace_past_entry;
188 static void
189 show_backtrace_past_entry (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("\
193 Whether backtraces should continue past the entry point of a program is %s.\n"),
194 value);
195 }
196
197 static int backtrace_limit = INT_MAX;
198 static void
199 show_backtrace_limit (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("\
203 An upper bound on the number of backtrace levels is %s.\n"),
204 value);
205 }
206
207
208 static void
209 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
210 {
211 if (p)
212 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
213 else
214 fprintf_unfiltered (file, "!%s", name);
215 }
216
217 void
218 fprint_frame_id (struct ui_file *file, struct frame_id id)
219 {
220 fprintf_unfiltered (file, "{");
221 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
222 fprintf_unfiltered (file, ",");
223 fprint_field (file, "code", id.code_addr_p, id.code_addr);
224 fprintf_unfiltered (file, ",");
225 fprint_field (file, "special", id.special_addr_p, id.special_addr);
226 if (id.inline_depth)
227 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
228 fprintf_unfiltered (file, "}");
229 }
230
231 static void
232 fprint_frame_type (struct ui_file *file, enum frame_type type)
233 {
234 switch (type)
235 {
236 case NORMAL_FRAME:
237 fprintf_unfiltered (file, "NORMAL_FRAME");
238 return;
239 case DUMMY_FRAME:
240 fprintf_unfiltered (file, "DUMMY_FRAME");
241 return;
242 case INLINE_FRAME:
243 fprintf_unfiltered (file, "INLINE_FRAME");
244 return;
245 case SENTINEL_FRAME:
246 fprintf_unfiltered (file, "SENTINEL_FRAME");
247 return;
248 case SIGTRAMP_FRAME:
249 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
250 return;
251 case ARCH_FRAME:
252 fprintf_unfiltered (file, "ARCH_FRAME");
253 return;
254 default:
255 fprintf_unfiltered (file, "<unknown type>");
256 return;
257 };
258 }
259
260 static void
261 fprint_frame (struct ui_file *file, struct frame_info *fi)
262 {
263 if (fi == NULL)
264 {
265 fprintf_unfiltered (file, "<NULL frame>");
266 return;
267 }
268 fprintf_unfiltered (file, "{");
269 fprintf_unfiltered (file, "level=%d", fi->level);
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "type=");
272 if (fi->unwind != NULL)
273 fprint_frame_type (file, fi->unwind->type);
274 else
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "unwind=");
278 if (fi->unwind != NULL)
279 gdb_print_host_address (fi->unwind, file);
280 else
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "pc=");
284 if (fi->next != NULL && fi->next->prev_pc.p)
285 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
286 else
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "id=");
290 if (fi->this_id.p)
291 fprint_frame_id (file, fi->this_id.value);
292 else
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, ",");
295 fprintf_unfiltered (file, "func=");
296 if (fi->next != NULL && fi->next->prev_func.p)
297 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
298 else
299 fprintf_unfiltered (file, "<unknown>");
300 fprintf_unfiltered (file, "}");
301 }
302
303 /* Given FRAME, return the enclosing normal frame for inlined
304 function frames. Otherwise return the original frame. */
305
306 static struct frame_info *
307 skip_inlined_frames (struct frame_info *frame)
308 {
309 while (get_frame_type (frame) == INLINE_FRAME)
310 frame = get_prev_frame (frame);
311
312 return frame;
313 }
314
315 /* Return a frame uniq ID that can be used to, later, re-find the
316 frame. */
317
318 struct frame_id
319 get_frame_id (struct frame_info *fi)
320 {
321 if (fi == NULL)
322 return null_frame_id;
323
324 if (!fi->this_id.p)
325 {
326 if (frame_debug)
327 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
328 fi->level);
329 /* Find the unwinder. */
330 if (fi->unwind == NULL)
331 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
332 /* Find THIS frame's ID. */
333 /* Default to outermost if no ID is found. */
334 fi->this_id.value = outer_frame_id;
335 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
336 gdb_assert (frame_id_p (fi->this_id.value));
337 fi->this_id.p = 1;
338 if (frame_debug)
339 {
340 fprintf_unfiltered (gdb_stdlog, "-> ");
341 fprint_frame_id (gdb_stdlog, fi->this_id.value);
342 fprintf_unfiltered (gdb_stdlog, " }\n");
343 }
344 }
345
346 frame_stash_add (fi);
347
348 return fi->this_id.value;
349 }
350
351 struct frame_id
352 get_stack_frame_id (struct frame_info *next_frame)
353 {
354 return get_frame_id (skip_inlined_frames (next_frame));
355 }
356
357 struct frame_id
358 frame_unwind_caller_id (struct frame_info *next_frame)
359 {
360 struct frame_info *this_frame;
361
362 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
363 the frame chain, leading to this function unintentionally
364 returning a null_frame_id (e.g., when a caller requests the frame
365 ID of "main()"s caller. */
366
367 next_frame = skip_inlined_frames (next_frame);
368 this_frame = get_prev_frame_1 (next_frame);
369 if (this_frame)
370 return get_frame_id (skip_inlined_frames (this_frame));
371 else
372 return null_frame_id;
373 }
374
375 const struct frame_id null_frame_id; /* All zeros. */
376 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
377
378 struct frame_id
379 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
380 CORE_ADDR special_addr)
381 {
382 struct frame_id id = null_frame_id;
383 id.stack_addr = stack_addr;
384 id.stack_addr_p = 1;
385 id.code_addr = code_addr;
386 id.code_addr_p = 1;
387 id.special_addr = special_addr;
388 id.special_addr_p = 1;
389 return id;
390 }
391
392 struct frame_id
393 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
394 {
395 struct frame_id id = null_frame_id;
396 id.stack_addr = stack_addr;
397 id.stack_addr_p = 1;
398 id.code_addr = code_addr;
399 id.code_addr_p = 1;
400 return id;
401 }
402
403 struct frame_id
404 frame_id_build_wild (CORE_ADDR stack_addr)
405 {
406 struct frame_id id = null_frame_id;
407 id.stack_addr = stack_addr;
408 id.stack_addr_p = 1;
409 return id;
410 }
411
412 int
413 frame_id_p (struct frame_id l)
414 {
415 int p;
416 /* The frame is valid iff it has a valid stack address. */
417 p = l.stack_addr_p;
418 /* outer_frame_id is also valid. */
419 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
420 p = 1;
421 if (frame_debug)
422 {
423 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
424 fprint_frame_id (gdb_stdlog, l);
425 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
426 }
427 return p;
428 }
429
430 int
431 frame_id_inlined_p (struct frame_id l)
432 {
433 if (!frame_id_p (l))
434 return 0;
435
436 return (l.inline_depth != 0);
437 }
438
439 int
440 frame_id_eq (struct frame_id l, struct frame_id r)
441 {
442 int eq;
443 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
444 /* The outermost frame marker is equal to itself. This is the
445 dodgy thing about outer_frame_id, since between execution steps
446 we might step into another function - from which we can't
447 unwind either. More thought required to get rid of
448 outer_frame_id. */
449 eq = 1;
450 else if (!l.stack_addr_p || !r.stack_addr_p)
451 /* Like a NaN, if either ID is invalid, the result is false.
452 Note that a frame ID is invalid iff it is the null frame ID. */
453 eq = 0;
454 else if (l.stack_addr != r.stack_addr)
455 /* If .stack addresses are different, the frames are different. */
456 eq = 0;
457 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
458 /* An invalid code addr is a wild card. If .code addresses are
459 different, the frames are different. */
460 eq = 0;
461 else if (l.special_addr_p && r.special_addr_p
462 && l.special_addr != r.special_addr)
463 /* An invalid special addr is a wild card (or unused). Otherwise
464 if special addresses are different, the frames are different. */
465 eq = 0;
466 else if (l.inline_depth != r.inline_depth)
467 /* If inline depths are different, the frames must be different. */
468 eq = 0;
469 else
470 /* Frames are equal. */
471 eq = 1;
472
473 if (frame_debug)
474 {
475 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
476 fprint_frame_id (gdb_stdlog, l);
477 fprintf_unfiltered (gdb_stdlog, ",r=");
478 fprint_frame_id (gdb_stdlog, r);
479 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
480 }
481 return eq;
482 }
483
484 /* Safety net to check whether frame ID L should be inner to
485 frame ID R, according to their stack addresses.
486
487 This method cannot be used to compare arbitrary frames, as the
488 ranges of valid stack addresses may be discontiguous (e.g. due
489 to sigaltstack).
490
491 However, it can be used as safety net to discover invalid frame
492 IDs in certain circumstances. Assuming that NEXT is the immediate
493 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
494
495 * The stack address of NEXT must be inner-than-or-equal to the stack
496 address of THIS.
497
498 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
499 error has occurred.
500
501 * If NEXT and THIS have different stack addresses, no other frame
502 in the frame chain may have a stack address in between.
503
504 Therefore, if frame_id_inner (TEST, THIS) holds, but
505 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
506 to a valid frame in the frame chain.
507
508 The sanity checks above cannot be performed when a SIGTRAMP frame
509 is involved, because signal handlers might be executed on a different
510 stack than the stack used by the routine that caused the signal
511 to be raised. This can happen for instance when a thread exceeds
512 its maximum stack size. In this case, certain compilers implement
513 a stack overflow strategy that cause the handler to be run on a
514 different stack. */
515
516 static int
517 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
518 {
519 int inner;
520 if (!l.stack_addr_p || !r.stack_addr_p)
521 /* Like NaN, any operation involving an invalid ID always fails. */
522 inner = 0;
523 else if (l.inline_depth > r.inline_depth
524 && l.stack_addr == r.stack_addr
525 && l.code_addr_p == r.code_addr_p
526 && l.special_addr_p == r.special_addr_p
527 && l.special_addr == r.special_addr)
528 {
529 /* Same function, different inlined functions. */
530 struct block *lb, *rb;
531
532 gdb_assert (l.code_addr_p && r.code_addr_p);
533
534 lb = block_for_pc (l.code_addr);
535 rb = block_for_pc (r.code_addr);
536
537 if (lb == NULL || rb == NULL)
538 /* Something's gone wrong. */
539 inner = 0;
540 else
541 /* This will return true if LB and RB are the same block, or
542 if the block with the smaller depth lexically encloses the
543 block with the greater depth. */
544 inner = contained_in (lb, rb);
545 }
546 else
547 /* Only return non-zero when strictly inner than. Note that, per
548 comment in "frame.h", there is some fuzz here. Frameless
549 functions are not strictly inner than (same .stack but
550 different .code and/or .special address). */
551 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
552 if (frame_debug)
553 {
554 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
555 fprint_frame_id (gdb_stdlog, l);
556 fprintf_unfiltered (gdb_stdlog, ",r=");
557 fprint_frame_id (gdb_stdlog, r);
558 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
559 }
560 return inner;
561 }
562
563 struct frame_info *
564 frame_find_by_id (struct frame_id id)
565 {
566 struct frame_info *frame, *prev_frame;
567
568 /* ZERO denotes the null frame, let the caller decide what to do
569 about it. Should it instead return get_current_frame()? */
570 if (!frame_id_p (id))
571 return NULL;
572
573 /* Try using the frame stash first. Finding it there removes the need
574 to perform the search by looping over all frames, which can be very
575 CPU-intensive if the number of frames is very high (the loop is O(n)
576 and get_prev_frame performs a series of checks that are relatively
577 expensive). This optimization is particularly useful when this function
578 is called from another function (such as value_fetch_lazy, case
579 VALUE_LVAL (val) == lval_register) which already loops over all frames,
580 making the overall behavior O(n^2). */
581 frame = frame_stash_find (id);
582 if (frame)
583 return frame;
584
585 for (frame = get_current_frame (); ; frame = prev_frame)
586 {
587 struct frame_id this = get_frame_id (frame);
588 if (frame_id_eq (id, this))
589 /* An exact match. */
590 return frame;
591
592 prev_frame = get_prev_frame (frame);
593 if (!prev_frame)
594 return NULL;
595
596 /* As a safety net to avoid unnecessary backtracing while trying
597 to find an invalid ID, we check for a common situation where
598 we can detect from comparing stack addresses that no other
599 frame in the current frame chain can have this ID. See the
600 comment at frame_id_inner for details. */
601 if (get_frame_type (frame) == NORMAL_FRAME
602 && !frame_id_inner (get_frame_arch (frame), id, this)
603 && frame_id_inner (get_frame_arch (prev_frame), id,
604 get_frame_id (prev_frame)))
605 return NULL;
606 }
607 return NULL;
608 }
609
610 static CORE_ADDR
611 frame_unwind_pc (struct frame_info *this_frame)
612 {
613 if (!this_frame->prev_pc.p)
614 {
615 CORE_ADDR pc;
616 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
617 {
618 /* The right way. The `pure' way. The one true way. This
619 method depends solely on the register-unwind code to
620 determine the value of registers in THIS frame, and hence
621 the value of this frame's PC (resume address). A typical
622 implementation is no more than:
623
624 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
625 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
626
627 Note: this method is very heavily dependent on a correct
628 register-unwind implementation, it pays to fix that
629 method first; this method is frame type agnostic, since
630 it only deals with register values, it works with any
631 frame. This is all in stark contrast to the old
632 FRAME_SAVED_PC which would try to directly handle all the
633 different ways that a PC could be unwound. */
634 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
635 }
636 else
637 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
638 this_frame->prev_pc.value = pc;
639 this_frame->prev_pc.p = 1;
640 if (frame_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
643 this_frame->level,
644 hex_string (this_frame->prev_pc.value));
645 }
646 return this_frame->prev_pc.value;
647 }
648
649 CORE_ADDR
650 frame_unwind_caller_pc (struct frame_info *this_frame)
651 {
652 return frame_unwind_pc (skip_inlined_frames (this_frame));
653 }
654
655 CORE_ADDR
656 get_frame_func (struct frame_info *this_frame)
657 {
658 struct frame_info *next_frame = this_frame->next;
659
660 if (!next_frame->prev_func.p)
661 {
662 /* Make certain that this, and not the adjacent, function is
663 found. */
664 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
665 next_frame->prev_func.p = 1;
666 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
667 if (frame_debug)
668 fprintf_unfiltered (gdb_stdlog,
669 "{ get_frame_func (this_frame=%d) -> %s }\n",
670 this_frame->level,
671 hex_string (next_frame->prev_func.addr));
672 }
673 return next_frame->prev_func.addr;
674 }
675
676 static int
677 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
678 {
679 return frame_register_read (src, regnum, buf);
680 }
681
682 struct regcache *
683 frame_save_as_regcache (struct frame_info *this_frame)
684 {
685 struct address_space *aspace = get_frame_address_space (this_frame);
686 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
687 aspace);
688 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
689 regcache_save (regcache, do_frame_register_read, this_frame);
690 discard_cleanups (cleanups);
691 return regcache;
692 }
693
694 void
695 frame_pop (struct frame_info *this_frame)
696 {
697 struct frame_info *prev_frame;
698 struct regcache *scratch;
699 struct cleanup *cleanups;
700
701 if (get_frame_type (this_frame) == DUMMY_FRAME)
702 {
703 /* Popping a dummy frame involves restoring more than just registers.
704 dummy_frame_pop does all the work. */
705 dummy_frame_pop (get_frame_id (this_frame));
706 return;
707 }
708
709 /* Ensure that we have a frame to pop to. */
710 prev_frame = get_prev_frame_1 (this_frame);
711
712 if (!prev_frame)
713 error (_("Cannot pop the initial frame."));
714
715 /* Make a copy of all the register values unwound from this frame.
716 Save them in a scratch buffer so that there isn't a race between
717 trying to extract the old values from the current regcache while
718 at the same time writing new values into that same cache. */
719 scratch = frame_save_as_regcache (prev_frame);
720 cleanups = make_cleanup_regcache_xfree (scratch);
721
722 /* FIXME: cagney/2003-03-16: It should be possible to tell the
723 target's register cache that it is about to be hit with a burst
724 register transfer and that the sequence of register writes should
725 be batched. The pair target_prepare_to_store() and
726 target_store_registers() kind of suggest this functionality.
727 Unfortunately, they don't implement it. Their lack of a formal
728 definition can lead to targets writing back bogus values
729 (arguably a bug in the target code mind). */
730 /* Now copy those saved registers into the current regcache.
731 Here, regcache_cpy() calls regcache_restore(). */
732 regcache_cpy (get_current_regcache (), scratch);
733 do_cleanups (cleanups);
734
735 /* We've made right mess of GDB's local state, just discard
736 everything. */
737 reinit_frame_cache ();
738 }
739
740 void
741 frame_register_unwind (struct frame_info *frame, int regnum,
742 int *optimizedp, enum lval_type *lvalp,
743 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
744 {
745 struct value *value;
746
747 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
748 that the value proper does not need to be fetched. */
749 gdb_assert (optimizedp != NULL);
750 gdb_assert (lvalp != NULL);
751 gdb_assert (addrp != NULL);
752 gdb_assert (realnump != NULL);
753 /* gdb_assert (bufferp != NULL); */
754
755 value = frame_unwind_register_value (frame, regnum);
756
757 gdb_assert (value != NULL);
758
759 *optimizedp = value_optimized_out (value);
760 *lvalp = VALUE_LVAL (value);
761 *addrp = value_address (value);
762 *realnump = VALUE_REGNUM (value);
763
764 if (bufferp)
765 memcpy (bufferp, value_contents_all (value),
766 TYPE_LENGTH (value_type (value)));
767
768 /* Dispose of the new value. This prevents watchpoints from
769 trying to watch the saved frame pointer. */
770 release_value (value);
771 value_free (value);
772 }
773
774 void
775 frame_register (struct frame_info *frame, int regnum,
776 int *optimizedp, enum lval_type *lvalp,
777 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
778 {
779 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
780 that the value proper does not need to be fetched. */
781 gdb_assert (optimizedp != NULL);
782 gdb_assert (lvalp != NULL);
783 gdb_assert (addrp != NULL);
784 gdb_assert (realnump != NULL);
785 /* gdb_assert (bufferp != NULL); */
786
787 /* Obtain the register value by unwinding the register from the next
788 (more inner frame). */
789 gdb_assert (frame != NULL && frame->next != NULL);
790 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
791 realnump, bufferp);
792 }
793
794 void
795 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
796 {
797 int optimized;
798 CORE_ADDR addr;
799 int realnum;
800 enum lval_type lval;
801 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
802 &realnum, buf);
803 }
804
805 void
806 get_frame_register (struct frame_info *frame,
807 int regnum, gdb_byte *buf)
808 {
809 frame_unwind_register (frame->next, regnum, buf);
810 }
811
812 struct value *
813 frame_unwind_register_value (struct frame_info *frame, int regnum)
814 {
815 struct gdbarch *gdbarch;
816 struct value *value;
817
818 gdb_assert (frame != NULL);
819 gdbarch = frame_unwind_arch (frame);
820
821 if (frame_debug)
822 {
823 fprintf_unfiltered (gdb_stdlog, "\
824 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
825 frame->level, regnum,
826 user_reg_map_regnum_to_name (gdbarch, regnum));
827 }
828
829 /* Find the unwinder. */
830 if (frame->unwind == NULL)
831 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
832
833 /* Ask this frame to unwind its register. */
834 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
835
836 if (frame_debug)
837 {
838 fprintf_unfiltered (gdb_stdlog, "->");
839 if (value_optimized_out (value))
840 fprintf_unfiltered (gdb_stdlog, " optimized out");
841 else
842 {
843 if (VALUE_LVAL (value) == lval_register)
844 fprintf_unfiltered (gdb_stdlog, " register=%d",
845 VALUE_REGNUM (value));
846 else if (VALUE_LVAL (value) == lval_memory)
847 fprintf_unfiltered (gdb_stdlog, " address=%s",
848 paddress (gdbarch,
849 value_address (value)));
850 else
851 fprintf_unfiltered (gdb_stdlog, " computed");
852
853 if (value_lazy (value))
854 fprintf_unfiltered (gdb_stdlog, " lazy");
855 else
856 {
857 int i;
858 const gdb_byte *buf = value_contents (value);
859
860 fprintf_unfiltered (gdb_stdlog, " bytes=");
861 fprintf_unfiltered (gdb_stdlog, "[");
862 for (i = 0; i < register_size (gdbarch, regnum); i++)
863 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
864 fprintf_unfiltered (gdb_stdlog, "]");
865 }
866 }
867
868 fprintf_unfiltered (gdb_stdlog, " }\n");
869 }
870
871 return value;
872 }
873
874 struct value *
875 get_frame_register_value (struct frame_info *frame, int regnum)
876 {
877 return frame_unwind_register_value (frame->next, regnum);
878 }
879
880 LONGEST
881 frame_unwind_register_signed (struct frame_info *frame, int regnum)
882 {
883 struct gdbarch *gdbarch = frame_unwind_arch (frame);
884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
885 int size = register_size (gdbarch, regnum);
886 gdb_byte buf[MAX_REGISTER_SIZE];
887 frame_unwind_register (frame, regnum, buf);
888 return extract_signed_integer (buf, size, byte_order);
889 }
890
891 LONGEST
892 get_frame_register_signed (struct frame_info *frame, int regnum)
893 {
894 return frame_unwind_register_signed (frame->next, regnum);
895 }
896
897 ULONGEST
898 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
899 {
900 struct gdbarch *gdbarch = frame_unwind_arch (frame);
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 int size = register_size (gdbarch, regnum);
903 gdb_byte buf[MAX_REGISTER_SIZE];
904 frame_unwind_register (frame, regnum, buf);
905 return extract_unsigned_integer (buf, size, byte_order);
906 }
907
908 ULONGEST
909 get_frame_register_unsigned (struct frame_info *frame, int regnum)
910 {
911 return frame_unwind_register_unsigned (frame->next, regnum);
912 }
913
914 void
915 put_frame_register (struct frame_info *frame, int regnum,
916 const gdb_byte *buf)
917 {
918 struct gdbarch *gdbarch = get_frame_arch (frame);
919 int realnum;
920 int optim;
921 enum lval_type lval;
922 CORE_ADDR addr;
923 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
924 if (optim)
925 error (_("Attempt to assign to a value that was optimized out."));
926 switch (lval)
927 {
928 case lval_memory:
929 {
930 /* FIXME: write_memory doesn't yet take constant buffers.
931 Arrrg! */
932 gdb_byte tmp[MAX_REGISTER_SIZE];
933 memcpy (tmp, buf, register_size (gdbarch, regnum));
934 write_memory (addr, tmp, register_size (gdbarch, regnum));
935 break;
936 }
937 case lval_register:
938 regcache_cooked_write (get_current_regcache (), realnum, buf);
939 break;
940 default:
941 error (_("Attempt to assign to an unmodifiable value."));
942 }
943 }
944
945 /* frame_register_read ()
946
947 Find and return the value of REGNUM for the specified stack frame.
948 The number of bytes copied is REGISTER_SIZE (REGNUM).
949
950 Returns 0 if the register value could not be found. */
951
952 int
953 frame_register_read (struct frame_info *frame, int regnum,
954 gdb_byte *myaddr)
955 {
956 int optimized;
957 enum lval_type lval;
958 CORE_ADDR addr;
959 int realnum;
960 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
961
962 return !optimized;
963 }
964
965 int
966 get_frame_register_bytes (struct frame_info *frame, int regnum,
967 CORE_ADDR offset, int len, gdb_byte *myaddr)
968 {
969 struct gdbarch *gdbarch = get_frame_arch (frame);
970 int i;
971 int maxsize;
972 int numregs;
973
974 /* Skip registers wholly inside of OFFSET. */
975 while (offset >= register_size (gdbarch, regnum))
976 {
977 offset -= register_size (gdbarch, regnum);
978 regnum++;
979 }
980
981 /* Ensure that we will not read beyond the end of the register file.
982 This can only ever happen if the debug information is bad. */
983 maxsize = -offset;
984 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
985 for (i = regnum; i < numregs; i++)
986 {
987 int thissize = register_size (gdbarch, i);
988 if (thissize == 0)
989 break; /* This register is not available on this architecture. */
990 maxsize += thissize;
991 }
992 if (len > maxsize)
993 {
994 warning (_("Bad debug information detected: "
995 "Attempt to read %d bytes from registers."), len);
996 return 0;
997 }
998
999 /* Copy the data. */
1000 while (len > 0)
1001 {
1002 int curr_len = register_size (gdbarch, regnum) - offset;
1003 if (curr_len > len)
1004 curr_len = len;
1005
1006 if (curr_len == register_size (gdbarch, regnum))
1007 {
1008 if (!frame_register_read (frame, regnum, myaddr))
1009 return 0;
1010 }
1011 else
1012 {
1013 gdb_byte buf[MAX_REGISTER_SIZE];
1014 if (!frame_register_read (frame, regnum, buf))
1015 return 0;
1016 memcpy (myaddr, buf + offset, curr_len);
1017 }
1018
1019 myaddr += curr_len;
1020 len -= curr_len;
1021 offset = 0;
1022 regnum++;
1023 }
1024
1025 return 1;
1026 }
1027
1028 void
1029 put_frame_register_bytes (struct frame_info *frame, int regnum,
1030 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1031 {
1032 struct gdbarch *gdbarch = get_frame_arch (frame);
1033
1034 /* Skip registers wholly inside of OFFSET. */
1035 while (offset >= register_size (gdbarch, regnum))
1036 {
1037 offset -= register_size (gdbarch, regnum);
1038 regnum++;
1039 }
1040
1041 /* Copy the data. */
1042 while (len > 0)
1043 {
1044 int curr_len = register_size (gdbarch, regnum) - offset;
1045 if (curr_len > len)
1046 curr_len = len;
1047
1048 if (curr_len == register_size (gdbarch, regnum))
1049 {
1050 put_frame_register (frame, regnum, myaddr);
1051 }
1052 else
1053 {
1054 gdb_byte buf[MAX_REGISTER_SIZE];
1055 frame_register_read (frame, regnum, buf);
1056 memcpy (buf + offset, myaddr, curr_len);
1057 put_frame_register (frame, regnum, buf);
1058 }
1059
1060 myaddr += curr_len;
1061 len -= curr_len;
1062 offset = 0;
1063 regnum++;
1064 }
1065 }
1066
1067 /* Create a sentinel frame. */
1068
1069 static struct frame_info *
1070 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1071 {
1072 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1073 frame->level = -1;
1074 frame->pspace = pspace;
1075 frame->aspace = get_regcache_aspace (regcache);
1076 /* Explicitly initialize the sentinel frame's cache. Provide it
1077 with the underlying regcache. In the future additional
1078 information, such as the frame's thread will be added. */
1079 frame->prologue_cache = sentinel_frame_cache (regcache);
1080 /* For the moment there is only one sentinel frame implementation. */
1081 frame->unwind = sentinel_frame_unwind;
1082 /* Link this frame back to itself. The frame is self referential
1083 (the unwound PC is the same as the pc), so make it so. */
1084 frame->next = frame;
1085 /* Make the sentinel frame's ID valid, but invalid. That way all
1086 comparisons with it should fail. */
1087 frame->this_id.p = 1;
1088 frame->this_id.value = null_frame_id;
1089 if (frame_debug)
1090 {
1091 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1092 fprint_frame (gdb_stdlog, frame);
1093 fprintf_unfiltered (gdb_stdlog, " }\n");
1094 }
1095 return frame;
1096 }
1097
1098 /* Info about the innermost stack frame (contents of FP register) */
1099
1100 static struct frame_info *current_frame;
1101
1102 /* Cache for frame addresses already read by gdb. Valid only while
1103 inferior is stopped. Control variables for the frame cache should
1104 be local to this module. */
1105
1106 static struct obstack frame_cache_obstack;
1107
1108 void *
1109 frame_obstack_zalloc (unsigned long size)
1110 {
1111 void *data = obstack_alloc (&frame_cache_obstack, size);
1112 memset (data, 0, size);
1113 return data;
1114 }
1115
1116 /* Return the innermost (currently executing) stack frame. This is
1117 split into two functions. The function unwind_to_current_frame()
1118 is wrapped in catch exceptions so that, even when the unwind of the
1119 sentinel frame fails, the function still returns a stack frame. */
1120
1121 static int
1122 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1123 {
1124 struct frame_info *frame = get_prev_frame (args);
1125 /* A sentinel frame can fail to unwind, e.g., because its PC value
1126 lands in somewhere like start. */
1127 if (frame == NULL)
1128 return 1;
1129 current_frame = frame;
1130 return 0;
1131 }
1132
1133 struct frame_info *
1134 get_current_frame (void)
1135 {
1136 /* First check, and report, the lack of registers. Having GDB
1137 report "No stack!" or "No memory" when the target doesn't even
1138 have registers is very confusing. Besides, "printcmd.exp"
1139 explicitly checks that ``print $pc'' with no registers prints "No
1140 registers". */
1141 if (!target_has_registers)
1142 error (_("No registers."));
1143 if (!target_has_stack)
1144 error (_("No stack."));
1145 if (!target_has_memory)
1146 error (_("No memory."));
1147 if (ptid_equal (inferior_ptid, null_ptid))
1148 error (_("No selected thread."));
1149 if (is_exited (inferior_ptid))
1150 error (_("Invalid selected thread."));
1151 if (is_executing (inferior_ptid))
1152 error (_("Target is executing."));
1153
1154 if (current_frame == NULL)
1155 {
1156 struct frame_info *sentinel_frame =
1157 create_sentinel_frame (current_program_space, get_current_regcache ());
1158 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1159 RETURN_MASK_ERROR) != 0)
1160 {
1161 /* Oops! Fake a current frame? Is this useful? It has a PC
1162 of zero, for instance. */
1163 current_frame = sentinel_frame;
1164 }
1165 }
1166 return current_frame;
1167 }
1168
1169 /* The "selected" stack frame is used by default for local and arg
1170 access. May be zero, for no selected frame. */
1171
1172 static struct frame_info *selected_frame;
1173
1174 int
1175 has_stack_frames (void)
1176 {
1177 if (!target_has_registers || !target_has_stack || !target_has_memory)
1178 return 0;
1179
1180 /* No current inferior, no frame. */
1181 if (ptid_equal (inferior_ptid, null_ptid))
1182 return 0;
1183
1184 /* Don't try to read from a dead thread. */
1185 if (is_exited (inferior_ptid))
1186 return 0;
1187
1188 /* ... or from a spinning thread. */
1189 if (is_executing (inferior_ptid))
1190 return 0;
1191
1192 return 1;
1193 }
1194
1195 /* Return the selected frame. Always non-NULL (unless there isn't an
1196 inferior sufficient for creating a frame) in which case an error is
1197 thrown. */
1198
1199 struct frame_info *
1200 get_selected_frame (const char *message)
1201 {
1202 if (selected_frame == NULL)
1203 {
1204 if (message != NULL && !has_stack_frames ())
1205 error (("%s"), message);
1206 /* Hey! Don't trust this. It should really be re-finding the
1207 last selected frame of the currently selected thread. This,
1208 though, is better than nothing. */
1209 select_frame (get_current_frame ());
1210 }
1211 /* There is always a frame. */
1212 gdb_assert (selected_frame != NULL);
1213 return selected_frame;
1214 }
1215
1216 /* This is a variant of get_selected_frame() which can be called when
1217 the inferior does not have a frame; in that case it will return
1218 NULL instead of calling error(). */
1219
1220 struct frame_info *
1221 deprecated_safe_get_selected_frame (void)
1222 {
1223 if (!has_stack_frames ())
1224 return NULL;
1225 return get_selected_frame (NULL);
1226 }
1227
1228 /* Select frame FI (or NULL - to invalidate the current frame). */
1229
1230 void
1231 select_frame (struct frame_info *fi)
1232 {
1233 struct symtab *s;
1234
1235 selected_frame = fi;
1236 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1237 frame is being invalidated. */
1238 if (deprecated_selected_frame_level_changed_hook)
1239 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1240
1241 /* FIXME: kseitz/2002-08-28: It would be nice to call
1242 selected_frame_level_changed_event() right here, but due to limitations
1243 in the current interfaces, we would end up flooding UIs with events
1244 because select_frame() is used extensively internally.
1245
1246 Once we have frame-parameterized frame (and frame-related) commands,
1247 the event notification can be moved here, since this function will only
1248 be called when the user's selected frame is being changed. */
1249
1250 /* Ensure that symbols for this frame are read in. Also, determine the
1251 source language of this frame, and switch to it if desired. */
1252 if (fi)
1253 {
1254 /* We retrieve the frame's symtab by using the frame PC. However
1255 we cannot use the frame PC as-is, because it usually points to
1256 the instruction following the "call", which is sometimes the
1257 first instruction of another function. So we rely on
1258 get_frame_address_in_block() which provides us with a PC which
1259 is guaranteed to be inside the frame's code block. */
1260 s = find_pc_symtab (get_frame_address_in_block (fi));
1261 if (s
1262 && s->language != current_language->la_language
1263 && s->language != language_unknown
1264 && language_mode == language_mode_auto)
1265 {
1266 set_language (s->language);
1267 }
1268 }
1269 }
1270
1271 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1272 Always returns a non-NULL value. */
1273
1274 struct frame_info *
1275 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1276 {
1277 struct frame_info *fi;
1278
1279 if (frame_debug)
1280 {
1281 fprintf_unfiltered (gdb_stdlog,
1282 "{ create_new_frame (addr=%s, pc=%s) ",
1283 hex_string (addr), hex_string (pc));
1284 }
1285
1286 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1287
1288 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1289
1290 /* Set/update this frame's cached PC value, found in the next frame.
1291 Do this before looking for this frame's unwinder. A sniffer is
1292 very likely to read this, and the corresponding unwinder is
1293 entitled to rely that the PC doesn't magically change. */
1294 fi->next->prev_pc.value = pc;
1295 fi->next->prev_pc.p = 1;
1296
1297 /* We currently assume that frame chain's can't cross spaces. */
1298 fi->pspace = fi->next->pspace;
1299 fi->aspace = fi->next->aspace;
1300
1301 /* Select/initialize both the unwind function and the frame's type
1302 based on the PC. */
1303 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1304
1305 fi->this_id.p = 1;
1306 fi->this_id.value = frame_id_build (addr, pc);
1307
1308 if (frame_debug)
1309 {
1310 fprintf_unfiltered (gdb_stdlog, "-> ");
1311 fprint_frame (gdb_stdlog, fi);
1312 fprintf_unfiltered (gdb_stdlog, " }\n");
1313 }
1314
1315 return fi;
1316 }
1317
1318 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1319 innermost frame). Be careful to not fall off the bottom of the
1320 frame chain and onto the sentinel frame. */
1321
1322 struct frame_info *
1323 get_next_frame (struct frame_info *this_frame)
1324 {
1325 if (this_frame->level > 0)
1326 return this_frame->next;
1327 else
1328 return NULL;
1329 }
1330
1331 /* Observer for the target_changed event. */
1332
1333 static void
1334 frame_observer_target_changed (struct target_ops *target)
1335 {
1336 reinit_frame_cache ();
1337 }
1338
1339 /* Flush the entire frame cache. */
1340
1341 void
1342 reinit_frame_cache (void)
1343 {
1344 struct frame_info *fi;
1345
1346 /* Tear down all frame caches. */
1347 for (fi = current_frame; fi != NULL; fi = fi->prev)
1348 {
1349 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1350 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1351 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1352 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1353 }
1354
1355 /* Since we can't really be sure what the first object allocated was */
1356 obstack_free (&frame_cache_obstack, 0);
1357 obstack_init (&frame_cache_obstack);
1358
1359 if (current_frame != NULL)
1360 annotate_frames_invalid ();
1361
1362 current_frame = NULL; /* Invalidate cache */
1363 select_frame (NULL);
1364 frame_stash_invalidate ();
1365 if (frame_debug)
1366 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1367 }
1368
1369 /* Find where a register is saved (in memory or another register).
1370 The result of frame_register_unwind is just where it is saved
1371 relative to this particular frame. */
1372
1373 static void
1374 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1375 int *optimizedp, enum lval_type *lvalp,
1376 CORE_ADDR *addrp, int *realnump)
1377 {
1378 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1379
1380 while (this_frame != NULL)
1381 {
1382 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1383 addrp, realnump, NULL);
1384
1385 if (*optimizedp)
1386 break;
1387
1388 if (*lvalp != lval_register)
1389 break;
1390
1391 regnum = *realnump;
1392 this_frame = get_next_frame (this_frame);
1393 }
1394 }
1395
1396 /* Return a "struct frame_info" corresponding to the frame that called
1397 THIS_FRAME. Returns NULL if there is no such frame.
1398
1399 Unlike get_prev_frame, this function always tries to unwind the
1400 frame. */
1401
1402 static struct frame_info *
1403 get_prev_frame_1 (struct frame_info *this_frame)
1404 {
1405 struct frame_id this_id;
1406 struct gdbarch *gdbarch;
1407
1408 gdb_assert (this_frame != NULL);
1409 gdbarch = get_frame_arch (this_frame);
1410
1411 if (frame_debug)
1412 {
1413 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1414 if (this_frame != NULL)
1415 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1416 else
1417 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1418 fprintf_unfiltered (gdb_stdlog, ") ");
1419 }
1420
1421 /* Only try to do the unwind once. */
1422 if (this_frame->prev_p)
1423 {
1424 if (frame_debug)
1425 {
1426 fprintf_unfiltered (gdb_stdlog, "-> ");
1427 fprint_frame (gdb_stdlog, this_frame->prev);
1428 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1429 }
1430 return this_frame->prev;
1431 }
1432
1433 /* If the frame unwinder hasn't been selected yet, we must do so
1434 before setting prev_p; otherwise the check for misbehaved
1435 sniffers will think that this frame's sniffer tried to unwind
1436 further (see frame_cleanup_after_sniffer). */
1437 if (this_frame->unwind == NULL)
1438 this_frame->unwind
1439 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1440
1441 this_frame->prev_p = 1;
1442 this_frame->stop_reason = UNWIND_NO_REASON;
1443
1444 /* If we are unwinding from an inline frame, all of the below tests
1445 were already performed when we unwound from the next non-inline
1446 frame. We must skip them, since we can not get THIS_FRAME's ID
1447 until we have unwound all the way down to the previous non-inline
1448 frame. */
1449 if (get_frame_type (this_frame) == INLINE_FRAME)
1450 return get_prev_frame_raw (this_frame);
1451
1452 /* Check that this frame's ID was valid. If it wasn't, don't try to
1453 unwind to the prev frame. Be careful to not apply this test to
1454 the sentinel frame. */
1455 this_id = get_frame_id (this_frame);
1456 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1457 {
1458 if (frame_debug)
1459 {
1460 fprintf_unfiltered (gdb_stdlog, "-> ");
1461 fprint_frame (gdb_stdlog, NULL);
1462 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1463 }
1464 this_frame->stop_reason = UNWIND_NULL_ID;
1465 return NULL;
1466 }
1467
1468 /* Check that this frame's ID isn't inner to (younger, below, next)
1469 the next frame. This happens when a frame unwind goes backwards.
1470 This check is valid only if this frame and the next frame are NORMAL.
1471 See the comment at frame_id_inner for details. */
1472 if (get_frame_type (this_frame) == NORMAL_FRAME
1473 && this_frame->next->unwind->type == NORMAL_FRAME
1474 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1475 get_frame_id (this_frame->next)))
1476 {
1477 if (frame_debug)
1478 {
1479 fprintf_unfiltered (gdb_stdlog, "-> ");
1480 fprint_frame (gdb_stdlog, NULL);
1481 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1482 }
1483 this_frame->stop_reason = UNWIND_INNER_ID;
1484 return NULL;
1485 }
1486
1487 /* Check that this and the next frame are not identical. If they
1488 are, there is most likely a stack cycle. As with the inner-than
1489 test above, avoid comparing the inner-most and sentinel frames. */
1490 if (this_frame->level > 0
1491 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1492 {
1493 if (frame_debug)
1494 {
1495 fprintf_unfiltered (gdb_stdlog, "-> ");
1496 fprint_frame (gdb_stdlog, NULL);
1497 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1498 }
1499 this_frame->stop_reason = UNWIND_SAME_ID;
1500 return NULL;
1501 }
1502
1503 /* Check that this and the next frame do not unwind the PC register
1504 to the same memory location. If they do, then even though they
1505 have different frame IDs, the new frame will be bogus; two
1506 functions can't share a register save slot for the PC. This can
1507 happen when the prologue analyzer finds a stack adjustment, but
1508 no PC save.
1509
1510 This check does assume that the "PC register" is roughly a
1511 traditional PC, even if the gdbarch_unwind_pc method adjusts
1512 it (we do not rely on the value, only on the unwound PC being
1513 dependent on this value). A potential improvement would be
1514 to have the frame prev_pc method and the gdbarch unwind_pc
1515 method set the same lval and location information as
1516 frame_register_unwind. */
1517 if (this_frame->level > 0
1518 && gdbarch_pc_regnum (gdbarch) >= 0
1519 && get_frame_type (this_frame) == NORMAL_FRAME
1520 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1521 || get_frame_type (this_frame->next) == INLINE_FRAME))
1522 {
1523 int optimized, realnum, nrealnum;
1524 enum lval_type lval, nlval;
1525 CORE_ADDR addr, naddr;
1526
1527 frame_register_unwind_location (this_frame,
1528 gdbarch_pc_regnum (gdbarch),
1529 &optimized, &lval, &addr, &realnum);
1530 frame_register_unwind_location (get_next_frame (this_frame),
1531 gdbarch_pc_regnum (gdbarch),
1532 &optimized, &nlval, &naddr, &nrealnum);
1533
1534 if ((lval == lval_memory && lval == nlval && addr == naddr)
1535 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1536 {
1537 if (frame_debug)
1538 {
1539 fprintf_unfiltered (gdb_stdlog, "-> ");
1540 fprint_frame (gdb_stdlog, NULL);
1541 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1542 }
1543
1544 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1545 this_frame->prev = NULL;
1546 return NULL;
1547 }
1548 }
1549
1550 return get_prev_frame_raw (this_frame);
1551 }
1552
1553 /* Construct a new "struct frame_info" and link it previous to
1554 this_frame. */
1555
1556 static struct frame_info *
1557 get_prev_frame_raw (struct frame_info *this_frame)
1558 {
1559 struct frame_info *prev_frame;
1560
1561 /* Allocate the new frame but do not wire it in to the frame chain.
1562 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1563 frame->next to pull some fancy tricks (of course such code is, by
1564 definition, recursive). Try to prevent it.
1565
1566 There is no reason to worry about memory leaks, should the
1567 remainder of the function fail. The allocated memory will be
1568 quickly reclaimed when the frame cache is flushed, and the `we've
1569 been here before' check above will stop repeated memory
1570 allocation calls. */
1571 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1572 prev_frame->level = this_frame->level + 1;
1573
1574 /* For now, assume we don't have frame chains crossing address
1575 spaces. */
1576 prev_frame->pspace = this_frame->pspace;
1577 prev_frame->aspace = this_frame->aspace;
1578
1579 /* Don't yet compute ->unwind (and hence ->type). It is computed
1580 on-demand in get_frame_type, frame_register_unwind, and
1581 get_frame_id. */
1582
1583 /* Don't yet compute the frame's ID. It is computed on-demand by
1584 get_frame_id(). */
1585
1586 /* The unwound frame ID is validate at the start of this function,
1587 as part of the logic to decide if that frame should be further
1588 unwound, and not here while the prev frame is being created.
1589 Doing this makes it possible for the user to examine a frame that
1590 has an invalid frame ID.
1591
1592 Some very old VAX code noted: [...] For the sake of argument,
1593 suppose that the stack is somewhat trashed (which is one reason
1594 that "info frame" exists). So, return 0 (indicating we don't
1595 know the address of the arglist) if we don't know what frame this
1596 frame calls. */
1597
1598 /* Link it in. */
1599 this_frame->prev = prev_frame;
1600 prev_frame->next = this_frame;
1601
1602 if (frame_debug)
1603 {
1604 fprintf_unfiltered (gdb_stdlog, "-> ");
1605 fprint_frame (gdb_stdlog, prev_frame);
1606 fprintf_unfiltered (gdb_stdlog, " }\n");
1607 }
1608
1609 return prev_frame;
1610 }
1611
1612 /* Debug routine to print a NULL frame being returned. */
1613
1614 static void
1615 frame_debug_got_null_frame (struct frame_info *this_frame,
1616 const char *reason)
1617 {
1618 if (frame_debug)
1619 {
1620 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1621 if (this_frame != NULL)
1622 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1623 else
1624 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1625 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1626 }
1627 }
1628
1629 /* Is this (non-sentinel) frame in the "main"() function? */
1630
1631 static int
1632 inside_main_func (struct frame_info *this_frame)
1633 {
1634 struct minimal_symbol *msymbol;
1635 CORE_ADDR maddr;
1636
1637 if (symfile_objfile == 0)
1638 return 0;
1639 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1640 if (msymbol == NULL)
1641 return 0;
1642 /* Make certain that the code, and not descriptor, address is
1643 returned. */
1644 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1645 SYMBOL_VALUE_ADDRESS (msymbol),
1646 &current_target);
1647 return maddr == get_frame_func (this_frame);
1648 }
1649
1650 /* Test whether THIS_FRAME is inside the process entry point function. */
1651
1652 static int
1653 inside_entry_func (struct frame_info *this_frame)
1654 {
1655 CORE_ADDR entry_point;
1656
1657 if (!entry_point_address_query (&entry_point))
1658 return 0;
1659
1660 return get_frame_func (this_frame) == entry_point;
1661 }
1662
1663 /* Return a structure containing various interesting information about
1664 the frame that called THIS_FRAME. Returns NULL if there is entier
1665 no such frame or the frame fails any of a set of target-independent
1666 condition that should terminate the frame chain (e.g., as unwinding
1667 past main()).
1668
1669 This function should not contain target-dependent tests, such as
1670 checking whether the program-counter is zero. */
1671
1672 struct frame_info *
1673 get_prev_frame (struct frame_info *this_frame)
1674 {
1675 struct frame_info *prev_frame;
1676
1677 /* There is always a frame. If this assertion fails, suspect that
1678 something should be calling get_selected_frame() or
1679 get_current_frame(). */
1680 gdb_assert (this_frame != NULL);
1681
1682 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1683 sense to stop unwinding at a dummy frame. One place where a dummy
1684 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1685 pcsqh register (space register for the instruction at the head of the
1686 instruction queue) cannot be written directly; the only way to set it
1687 is to branch to code that is in the target space. In order to implement
1688 frame dummies on HPUX, the called function is made to jump back to where
1689 the inferior was when the user function was called. If gdb was inside
1690 the main function when we created the dummy frame, the dummy frame will
1691 point inside the main function. */
1692 if (this_frame->level >= 0
1693 && get_frame_type (this_frame) == NORMAL_FRAME
1694 && !backtrace_past_main
1695 && inside_main_func (this_frame))
1696 /* Don't unwind past main(). Note, this is done _before_ the
1697 frame has been marked as previously unwound. That way if the
1698 user later decides to enable unwinds past main(), that will
1699 automatically happen. */
1700 {
1701 frame_debug_got_null_frame (this_frame, "inside main func");
1702 return NULL;
1703 }
1704
1705 /* If the user's backtrace limit has been exceeded, stop. We must
1706 add two to the current level; one of those accounts for backtrace_limit
1707 being 1-based and the level being 0-based, and the other accounts for
1708 the level of the new frame instead of the level of the current
1709 frame. */
1710 if (this_frame->level + 2 > backtrace_limit)
1711 {
1712 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1713 return NULL;
1714 }
1715
1716 /* If we're already inside the entry function for the main objfile,
1717 then it isn't valid. Don't apply this test to a dummy frame -
1718 dummy frame PCs typically land in the entry func. Don't apply
1719 this test to the sentinel frame. Sentinel frames should always
1720 be allowed to unwind. */
1721 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1722 wasn't checking for "main" in the minimal symbols. With that
1723 fixed asm-source tests now stop in "main" instead of halting the
1724 backtrace in weird and wonderful ways somewhere inside the entry
1725 file. Suspect that tests for inside the entry file/func were
1726 added to work around that (now fixed) case. */
1727 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1728 suggested having the inside_entry_func test use the
1729 inside_main_func() msymbol trick (along with entry_point_address()
1730 I guess) to determine the address range of the start function.
1731 That should provide a far better stopper than the current
1732 heuristics. */
1733 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1734 applied tail-call optimizations to main so that a function called
1735 from main returns directly to the caller of main. Since we don't
1736 stop at main, we should at least stop at the entry point of the
1737 application. */
1738 if (this_frame->level >= 0
1739 && get_frame_type (this_frame) == NORMAL_FRAME
1740 && !backtrace_past_entry
1741 && inside_entry_func (this_frame))
1742 {
1743 frame_debug_got_null_frame (this_frame, "inside entry func");
1744 return NULL;
1745 }
1746
1747 /* Assume that the only way to get a zero PC is through something
1748 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1749 will never unwind a zero PC. */
1750 if (this_frame->level > 0
1751 && (get_frame_type (this_frame) == NORMAL_FRAME
1752 || get_frame_type (this_frame) == INLINE_FRAME)
1753 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1754 && get_frame_pc (this_frame) == 0)
1755 {
1756 frame_debug_got_null_frame (this_frame, "zero PC");
1757 return NULL;
1758 }
1759
1760 return get_prev_frame_1 (this_frame);
1761 }
1762
1763 CORE_ADDR
1764 get_frame_pc (struct frame_info *frame)
1765 {
1766 gdb_assert (frame->next != NULL);
1767 return frame_unwind_pc (frame->next);
1768 }
1769
1770 /* Return an address that falls within THIS_FRAME's code block. */
1771
1772 CORE_ADDR
1773 get_frame_address_in_block (struct frame_info *this_frame)
1774 {
1775 /* A draft address. */
1776 CORE_ADDR pc = get_frame_pc (this_frame);
1777
1778 struct frame_info *next_frame = this_frame->next;
1779
1780 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1781 Normally the resume address is inside the body of the function
1782 associated with THIS_FRAME, but there is a special case: when
1783 calling a function which the compiler knows will never return
1784 (for instance abort), the call may be the very last instruction
1785 in the calling function. The resume address will point after the
1786 call and may be at the beginning of a different function
1787 entirely.
1788
1789 If THIS_FRAME is a signal frame or dummy frame, then we should
1790 not adjust the unwound PC. For a dummy frame, GDB pushed the
1791 resume address manually onto the stack. For a signal frame, the
1792 OS may have pushed the resume address manually and invoked the
1793 handler (e.g. GNU/Linux), or invoked the trampoline which called
1794 the signal handler - but in either case the signal handler is
1795 expected to return to the trampoline. So in both of these
1796 cases we know that the resume address is executable and
1797 related. So we only need to adjust the PC if THIS_FRAME
1798 is a normal function.
1799
1800 If the program has been interrupted while THIS_FRAME is current,
1801 then clearly the resume address is inside the associated
1802 function. There are three kinds of interruption: debugger stop
1803 (next frame will be SENTINEL_FRAME), operating system
1804 signal or exception (next frame will be SIGTRAMP_FRAME),
1805 or debugger-induced function call (next frame will be
1806 DUMMY_FRAME). So we only need to adjust the PC if
1807 NEXT_FRAME is a normal function.
1808
1809 We check the type of NEXT_FRAME first, since it is already
1810 known; frame type is determined by the unwinder, and since
1811 we have THIS_FRAME we've already selected an unwinder for
1812 NEXT_FRAME.
1813
1814 If the next frame is inlined, we need to keep going until we find
1815 the real function - for instance, if a signal handler is invoked
1816 while in an inlined function, then the code address of the
1817 "calling" normal function should not be adjusted either. */
1818
1819 while (get_frame_type (next_frame) == INLINE_FRAME)
1820 next_frame = next_frame->next;
1821
1822 if (get_frame_type (next_frame) == NORMAL_FRAME
1823 && (get_frame_type (this_frame) == NORMAL_FRAME
1824 || get_frame_type (this_frame) == INLINE_FRAME))
1825 return pc - 1;
1826
1827 return pc;
1828 }
1829
1830 void
1831 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1832 {
1833 struct frame_info *next_frame;
1834 int notcurrent;
1835
1836 /* If the next frame represents an inlined function call, this frame's
1837 sal is the "call site" of that inlined function, which can not
1838 be inferred from get_frame_pc. */
1839 next_frame = get_next_frame (frame);
1840 if (frame_inlined_callees (frame) > 0)
1841 {
1842 struct symbol *sym;
1843
1844 if (next_frame)
1845 sym = get_frame_function (next_frame);
1846 else
1847 sym = inline_skipped_symbol (inferior_ptid);
1848
1849 init_sal (sal);
1850 if (SYMBOL_LINE (sym) != 0)
1851 {
1852 sal->symtab = SYMBOL_SYMTAB (sym);
1853 sal->line = SYMBOL_LINE (sym);
1854 }
1855 else
1856 /* If the symbol does not have a location, we don't know where
1857 the call site is. Do not pretend to. This is jarring, but
1858 we can't do much better. */
1859 sal->pc = get_frame_pc (frame);
1860
1861 return;
1862 }
1863
1864 /* If FRAME is not the innermost frame, that normally means that
1865 FRAME->pc points at the return instruction (which is *after* the
1866 call instruction), and we want to get the line containing the
1867 call (because the call is where the user thinks the program is).
1868 However, if the next frame is either a SIGTRAMP_FRAME or a
1869 DUMMY_FRAME, then the next frame will contain a saved interrupt
1870 PC and such a PC indicates the current (rather than next)
1871 instruction/line, consequently, for such cases, want to get the
1872 line containing fi->pc. */
1873 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1874 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1875 }
1876
1877 /* Per "frame.h", return the ``address'' of the frame. Code should
1878 really be using get_frame_id(). */
1879 CORE_ADDR
1880 get_frame_base (struct frame_info *fi)
1881 {
1882 return get_frame_id (fi).stack_addr;
1883 }
1884
1885 /* High-level offsets into the frame. Used by the debug info. */
1886
1887 CORE_ADDR
1888 get_frame_base_address (struct frame_info *fi)
1889 {
1890 if (get_frame_type (fi) != NORMAL_FRAME)
1891 return 0;
1892 if (fi->base == NULL)
1893 fi->base = frame_base_find_by_frame (fi);
1894 /* Sneaky: If the low-level unwind and high-level base code share a
1895 common unwinder, let them share the prologue cache. */
1896 if (fi->base->unwind == fi->unwind)
1897 return fi->base->this_base (fi, &fi->prologue_cache);
1898 return fi->base->this_base (fi, &fi->base_cache);
1899 }
1900
1901 CORE_ADDR
1902 get_frame_locals_address (struct frame_info *fi)
1903 {
1904 void **cache;
1905 if (get_frame_type (fi) != NORMAL_FRAME)
1906 return 0;
1907 /* If there isn't a frame address method, find it. */
1908 if (fi->base == NULL)
1909 fi->base = frame_base_find_by_frame (fi);
1910 /* Sneaky: If the low-level unwind and high-level base code share a
1911 common unwinder, let them share the prologue cache. */
1912 if (fi->base->unwind == fi->unwind)
1913 return fi->base->this_locals (fi, &fi->prologue_cache);
1914 return fi->base->this_locals (fi, &fi->base_cache);
1915 }
1916
1917 CORE_ADDR
1918 get_frame_args_address (struct frame_info *fi)
1919 {
1920 void **cache;
1921 if (get_frame_type (fi) != NORMAL_FRAME)
1922 return 0;
1923 /* If there isn't a frame address method, find it. */
1924 if (fi->base == NULL)
1925 fi->base = frame_base_find_by_frame (fi);
1926 /* Sneaky: If the low-level unwind and high-level base code share a
1927 common unwinder, let them share the prologue cache. */
1928 if (fi->base->unwind == fi->unwind)
1929 return fi->base->this_args (fi, &fi->prologue_cache);
1930 return fi->base->this_args (fi, &fi->base_cache);
1931 }
1932
1933 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1934 otherwise. */
1935
1936 int
1937 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1938 {
1939 if (fi->unwind == NULL)
1940 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1941 return fi->unwind == unwinder;
1942 }
1943
1944 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1945 or -1 for a NULL frame. */
1946
1947 int
1948 frame_relative_level (struct frame_info *fi)
1949 {
1950 if (fi == NULL)
1951 return -1;
1952 else
1953 return fi->level;
1954 }
1955
1956 enum frame_type
1957 get_frame_type (struct frame_info *frame)
1958 {
1959 if (frame->unwind == NULL)
1960 /* Initialize the frame's unwinder because that's what
1961 provides the frame's type. */
1962 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1963 return frame->unwind->type;
1964 }
1965
1966 struct program_space *
1967 get_frame_program_space (struct frame_info *frame)
1968 {
1969 return frame->pspace;
1970 }
1971
1972 struct program_space *
1973 frame_unwind_program_space (struct frame_info *this_frame)
1974 {
1975 gdb_assert (this_frame);
1976
1977 /* This is really a placeholder to keep the API consistent --- we
1978 assume for now that we don't have frame chains crossing
1979 spaces. */
1980 return this_frame->pspace;
1981 }
1982
1983 struct address_space *
1984 get_frame_address_space (struct frame_info *frame)
1985 {
1986 return frame->aspace;
1987 }
1988
1989 /* Memory access methods. */
1990
1991 void
1992 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1993 gdb_byte *buf, int len)
1994 {
1995 read_memory (addr, buf, len);
1996 }
1997
1998 LONGEST
1999 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2000 int len)
2001 {
2002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2004 return read_memory_integer (addr, len, byte_order);
2005 }
2006
2007 ULONGEST
2008 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2009 int len)
2010 {
2011 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2013 return read_memory_unsigned_integer (addr, len, byte_order);
2014 }
2015
2016 int
2017 safe_frame_unwind_memory (struct frame_info *this_frame,
2018 CORE_ADDR addr, gdb_byte *buf, int len)
2019 {
2020 /* NOTE: target_read_memory returns zero on success! */
2021 return !target_read_memory (addr, buf, len);
2022 }
2023
2024 /* Architecture methods. */
2025
2026 struct gdbarch *
2027 get_frame_arch (struct frame_info *this_frame)
2028 {
2029 return frame_unwind_arch (this_frame->next);
2030 }
2031
2032 struct gdbarch *
2033 frame_unwind_arch (struct frame_info *next_frame)
2034 {
2035 if (!next_frame->prev_arch.p)
2036 {
2037 struct gdbarch *arch;
2038
2039 if (next_frame->unwind == NULL)
2040 next_frame->unwind
2041 = frame_unwind_find_by_frame (next_frame,
2042 &next_frame->prologue_cache);
2043
2044 if (next_frame->unwind->prev_arch != NULL)
2045 arch = next_frame->unwind->prev_arch (next_frame,
2046 &next_frame->prologue_cache);
2047 else
2048 arch = get_frame_arch (next_frame);
2049
2050 next_frame->prev_arch.arch = arch;
2051 next_frame->prev_arch.p = 1;
2052 if (frame_debug)
2053 fprintf_unfiltered (gdb_stdlog,
2054 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2055 next_frame->level,
2056 gdbarch_bfd_arch_info (arch)->printable_name);
2057 }
2058
2059 return next_frame->prev_arch.arch;
2060 }
2061
2062 struct gdbarch *
2063 frame_unwind_caller_arch (struct frame_info *next_frame)
2064 {
2065 return frame_unwind_arch (skip_inlined_frames (next_frame));
2066 }
2067
2068 /* Stack pointer methods. */
2069
2070 CORE_ADDR
2071 get_frame_sp (struct frame_info *this_frame)
2072 {
2073 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2074 /* Normality - an architecture that provides a way of obtaining any
2075 frame inner-most address. */
2076 if (gdbarch_unwind_sp_p (gdbarch))
2077 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2078 operate on THIS_FRAME now. */
2079 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2080 /* Now things are really are grim. Hope that the value returned by
2081 the gdbarch_sp_regnum register is meaningful. */
2082 if (gdbarch_sp_regnum (gdbarch) >= 0)
2083 return get_frame_register_unsigned (this_frame,
2084 gdbarch_sp_regnum (gdbarch));
2085 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2086 }
2087
2088 /* Return the reason why we can't unwind past FRAME. */
2089
2090 enum unwind_stop_reason
2091 get_frame_unwind_stop_reason (struct frame_info *frame)
2092 {
2093 /* If we haven't tried to unwind past this point yet, then assume
2094 that unwinding would succeed. */
2095 if (frame->prev_p == 0)
2096 return UNWIND_NO_REASON;
2097
2098 /* Otherwise, we set a reason when we succeeded (or failed) to
2099 unwind. */
2100 return frame->stop_reason;
2101 }
2102
2103 /* Return a string explaining REASON. */
2104
2105 const char *
2106 frame_stop_reason_string (enum unwind_stop_reason reason)
2107 {
2108 switch (reason)
2109 {
2110 case UNWIND_NULL_ID:
2111 return _("unwinder did not report frame ID");
2112
2113 case UNWIND_INNER_ID:
2114 return _("previous frame inner to this frame (corrupt stack?)");
2115
2116 case UNWIND_SAME_ID:
2117 return _("previous frame identical to this frame (corrupt stack?)");
2118
2119 case UNWIND_NO_SAVED_PC:
2120 return _("frame did not save the PC");
2121
2122 case UNWIND_NO_REASON:
2123 case UNWIND_FIRST_ERROR:
2124 default:
2125 internal_error (__FILE__, __LINE__,
2126 "Invalid frame stop reason");
2127 }
2128 }
2129
2130 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2131 FRAME. */
2132
2133 static void
2134 frame_cleanup_after_sniffer (void *arg)
2135 {
2136 struct frame_info *frame = arg;
2137
2138 /* The sniffer should not allocate a prologue cache if it did not
2139 match this frame. */
2140 gdb_assert (frame->prologue_cache == NULL);
2141
2142 /* No sniffer should extend the frame chain; sniff based on what is
2143 already certain. */
2144 gdb_assert (!frame->prev_p);
2145
2146 /* The sniffer should not check the frame's ID; that's circular. */
2147 gdb_assert (!frame->this_id.p);
2148
2149 /* Clear cached fields dependent on the unwinder.
2150
2151 The previous PC is independent of the unwinder, but the previous
2152 function is not (see get_frame_address_in_block). */
2153 frame->prev_func.p = 0;
2154 frame->prev_func.addr = 0;
2155
2156 /* Discard the unwinder last, so that we can easily find it if an assertion
2157 in this function triggers. */
2158 frame->unwind = NULL;
2159 }
2160
2161 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2162 Return a cleanup which should be called if unwinding fails, and
2163 discarded if it succeeds. */
2164
2165 struct cleanup *
2166 frame_prepare_for_sniffer (struct frame_info *frame,
2167 const struct frame_unwind *unwind)
2168 {
2169 gdb_assert (frame->unwind == NULL);
2170 frame->unwind = unwind;
2171 return make_cleanup (frame_cleanup_after_sniffer, frame);
2172 }
2173
2174 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2175
2176 static struct cmd_list_element *set_backtrace_cmdlist;
2177 static struct cmd_list_element *show_backtrace_cmdlist;
2178
2179 static void
2180 set_backtrace_cmd (char *args, int from_tty)
2181 {
2182 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2183 }
2184
2185 static void
2186 show_backtrace_cmd (char *args, int from_tty)
2187 {
2188 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2189 }
2190
2191 void
2192 _initialize_frame (void)
2193 {
2194 obstack_init (&frame_cache_obstack);
2195
2196 observer_attach_target_changed (frame_observer_target_changed);
2197
2198 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2199 Set backtrace specific variables.\n\
2200 Configure backtrace variables such as the backtrace limit"),
2201 &set_backtrace_cmdlist, "set backtrace ",
2202 0/*allow-unknown*/, &setlist);
2203 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2204 Show backtrace specific variables\n\
2205 Show backtrace variables such as the backtrace limit"),
2206 &show_backtrace_cmdlist, "show backtrace ",
2207 0/*allow-unknown*/, &showlist);
2208
2209 add_setshow_boolean_cmd ("past-main", class_obscure,
2210 &backtrace_past_main, _("\
2211 Set whether backtraces should continue past \"main\"."), _("\
2212 Show whether backtraces should continue past \"main\"."), _("\
2213 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2214 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2215 of the stack trace."),
2216 NULL,
2217 show_backtrace_past_main,
2218 &set_backtrace_cmdlist,
2219 &show_backtrace_cmdlist);
2220
2221 add_setshow_boolean_cmd ("past-entry", class_obscure,
2222 &backtrace_past_entry, _("\
2223 Set whether backtraces should continue past the entry point of a program."),
2224 _("\
2225 Show whether backtraces should continue past the entry point of a program."),
2226 _("\
2227 Normally there are no callers beyond the entry point of a program, so GDB\n\
2228 will terminate the backtrace there. Set this variable if you need to see \n\
2229 the rest of the stack trace."),
2230 NULL,
2231 show_backtrace_past_entry,
2232 &set_backtrace_cmdlist,
2233 &show_backtrace_cmdlist);
2234
2235 add_setshow_integer_cmd ("limit", class_obscure,
2236 &backtrace_limit, _("\
2237 Set an upper bound on the number of backtrace levels."), _("\
2238 Show the upper bound on the number of backtrace levels."), _("\
2239 No more than the specified number of frames can be displayed or examined.\n\
2240 Zero is unlimited."),
2241 NULL,
2242 show_backtrace_limit,
2243 &set_backtrace_cmdlist,
2244 &show_backtrace_cmdlist);
2245
2246 /* Debug this files internals. */
2247 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2248 Set frame debugging."), _("\
2249 Show frame debugging."), _("\
2250 When non-zero, frame specific internal debugging is enabled."),
2251 NULL,
2252 show_frame_debug,
2253 &setdebuglist, &showdebuglist);
2254 }
This page took 0.079165 seconds and 4 git commands to generate.