Non-stop mode support.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances. Assuming that NEXT is the immediate
380 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
381
382 * The stack address of NEXT must be inner-than-or-equal to the stack
383 address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If NEXT and THIS have different stack addresses, no other frame
389 in the frame chain may have a stack address in between.
390
391 Therefore, if frame_id_inner (TEST, THIS) holds, but
392 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
393 to a valid frame in the frame chain.
394
395 The sanity checks above cannot be performed when a SIGTRAMP frame
396 is involved, because signal handlers might be executed on a different
397 stack than the stack used by the routine that caused the signal
398 to be raised. This can happen for instance when a thread exceeds
399 its maximum stack size. In this case, certain compilers implement
400 a stack overflow strategy that cause the handler to be run on a
401 different stack. */
402
403 static int
404 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
405 {
406 int inner;
407 if (!l.stack_addr_p || !r.stack_addr_p)
408 /* Like NaN, any operation involving an invalid ID always fails. */
409 inner = 0;
410 else
411 /* Only return non-zero when strictly inner than. Note that, per
412 comment in "frame.h", there is some fuzz here. Frameless
413 functions are not strictly inner than (same .stack but
414 different .code and/or .special address). */
415 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
416 if (frame_debug)
417 {
418 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
419 fprint_frame_id (gdb_stdlog, l);
420 fprintf_unfiltered (gdb_stdlog, ",r=");
421 fprint_frame_id (gdb_stdlog, r);
422 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
423 }
424 return inner;
425 }
426
427 struct frame_info *
428 frame_find_by_id (struct frame_id id)
429 {
430 struct frame_info *frame, *prev_frame;
431
432 /* ZERO denotes the null frame, let the caller decide what to do
433 about it. Should it instead return get_current_frame()? */
434 if (!frame_id_p (id))
435 return NULL;
436
437 for (frame = get_current_frame (); ; frame = prev_frame)
438 {
439 struct frame_id this = get_frame_id (frame);
440 if (frame_id_eq (id, this))
441 /* An exact match. */
442 return frame;
443
444 prev_frame = get_prev_frame (frame);
445 if (!prev_frame)
446 return NULL;
447
448 /* As a safety net to avoid unnecessary backtracing while trying
449 to find an invalid ID, we check for a common situation where
450 we can detect from comparing stack addresses that no other
451 frame in the current frame chain can have this ID. See the
452 comment at frame_id_inner for details. */
453 if (get_frame_type (frame) == NORMAL_FRAME
454 && !frame_id_inner (get_frame_arch (frame), id, this)
455 && frame_id_inner (get_frame_arch (prev_frame), id,
456 get_frame_id (prev_frame)))
457 return NULL;
458 }
459 return NULL;
460 }
461
462 CORE_ADDR
463 frame_pc_unwind (struct frame_info *this_frame)
464 {
465 if (!this_frame->prev_pc.p)
466 {
467 CORE_ADDR pc;
468 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
469 {
470 /* The right way. The `pure' way. The one true way. This
471 method depends solely on the register-unwind code to
472 determine the value of registers in THIS frame, and hence
473 the value of this frame's PC (resume address). A typical
474 implementation is no more than:
475
476 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
477 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
478
479 Note: this method is very heavily dependent on a correct
480 register-unwind implementation, it pays to fix that
481 method first; this method is frame type agnostic, since
482 it only deals with register values, it works with any
483 frame. This is all in stark contrast to the old
484 FRAME_SAVED_PC which would try to directly handle all the
485 different ways that a PC could be unwound. */
486 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
487 }
488 else
489 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
490 this_frame->prev_pc.value = pc;
491 this_frame->prev_pc.p = 1;
492 if (frame_debug)
493 fprintf_unfiltered (gdb_stdlog,
494 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
495 this_frame->level,
496 paddr_nz (this_frame->prev_pc.value));
497 }
498 return this_frame->prev_pc.value;
499 }
500
501 CORE_ADDR
502 get_frame_func (struct frame_info *this_frame)
503 {
504 struct frame_info *next_frame = this_frame->next;
505
506 if (!next_frame->prev_func.p)
507 {
508 /* Make certain that this, and not the adjacent, function is
509 found. */
510 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
511 next_frame->prev_func.p = 1;
512 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
513 if (frame_debug)
514 fprintf_unfiltered (gdb_stdlog,
515 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
516 this_frame->level,
517 paddr_nz (next_frame->prev_func.addr));
518 }
519 return next_frame->prev_func.addr;
520 }
521
522 static int
523 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
524 {
525 return frame_register_read (src, regnum, buf);
526 }
527
528 struct regcache *
529 frame_save_as_regcache (struct frame_info *this_frame)
530 {
531 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
532 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
533 regcache_save (regcache, do_frame_register_read, this_frame);
534 discard_cleanups (cleanups);
535 return regcache;
536 }
537
538 void
539 frame_pop (struct frame_info *this_frame)
540 {
541 struct frame_info *prev_frame;
542 struct regcache *scratch;
543 struct cleanup *cleanups;
544
545 if (get_frame_type (this_frame) == DUMMY_FRAME)
546 {
547 /* Popping a dummy frame involves restoring more than just registers.
548 dummy_frame_pop does all the work. */
549 dummy_frame_pop (get_frame_id (this_frame));
550 return;
551 }
552
553 /* Ensure that we have a frame to pop to. */
554 prev_frame = get_prev_frame_1 (this_frame);
555
556 if (!prev_frame)
557 error (_("Cannot pop the initial frame."));
558
559 /* Make a copy of all the register values unwound from this frame.
560 Save them in a scratch buffer so that there isn't a race between
561 trying to extract the old values from the current regcache while
562 at the same time writing new values into that same cache. */
563 scratch = frame_save_as_regcache (prev_frame);
564 cleanups = make_cleanup_regcache_xfree (scratch);
565
566 /* FIXME: cagney/2003-03-16: It should be possible to tell the
567 target's register cache that it is about to be hit with a burst
568 register transfer and that the sequence of register writes should
569 be batched. The pair target_prepare_to_store() and
570 target_store_registers() kind of suggest this functionality.
571 Unfortunately, they don't implement it. Their lack of a formal
572 definition can lead to targets writing back bogus values
573 (arguably a bug in the target code mind). */
574 /* Now copy those saved registers into the current regcache.
575 Here, regcache_cpy() calls regcache_restore(). */
576 regcache_cpy (get_current_regcache (), scratch);
577 do_cleanups (cleanups);
578
579 /* We've made right mess of GDB's local state, just discard
580 everything. */
581 reinit_frame_cache ();
582 }
583
584 void
585 frame_register_unwind (struct frame_info *frame, int regnum,
586 int *optimizedp, enum lval_type *lvalp,
587 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
588 {
589 struct value *value;
590
591 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
592 that the value proper does not need to be fetched. */
593 gdb_assert (optimizedp != NULL);
594 gdb_assert (lvalp != NULL);
595 gdb_assert (addrp != NULL);
596 gdb_assert (realnump != NULL);
597 /* gdb_assert (bufferp != NULL); */
598
599 value = frame_unwind_register_value (frame, regnum);
600
601 gdb_assert (value != NULL);
602
603 *optimizedp = value_optimized_out (value);
604 *lvalp = VALUE_LVAL (value);
605 *addrp = VALUE_ADDRESS (value);
606 *realnump = VALUE_REGNUM (value);
607
608 if (bufferp)
609 memcpy (bufferp, value_contents_all (value),
610 TYPE_LENGTH (value_type (value)));
611
612 /* Dispose of the new value. This prevents watchpoints from
613 trying to watch the saved frame pointer. */
614 release_value (value);
615 value_free (value);
616 }
617
618 void
619 frame_register (struct frame_info *frame, int regnum,
620 int *optimizedp, enum lval_type *lvalp,
621 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
622 {
623 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
624 that the value proper does not need to be fetched. */
625 gdb_assert (optimizedp != NULL);
626 gdb_assert (lvalp != NULL);
627 gdb_assert (addrp != NULL);
628 gdb_assert (realnump != NULL);
629 /* gdb_assert (bufferp != NULL); */
630
631 /* Obtain the register value by unwinding the register from the next
632 (more inner frame). */
633 gdb_assert (frame != NULL && frame->next != NULL);
634 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
635 realnump, bufferp);
636 }
637
638 void
639 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
640 {
641 int optimized;
642 CORE_ADDR addr;
643 int realnum;
644 enum lval_type lval;
645 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
646 &realnum, buf);
647 }
648
649 void
650 get_frame_register (struct frame_info *frame,
651 int regnum, gdb_byte *buf)
652 {
653 frame_unwind_register (frame->next, regnum, buf);
654 }
655
656 struct value *
657 frame_unwind_register_value (struct frame_info *frame, int regnum)
658 {
659 struct value *value;
660
661 gdb_assert (frame != NULL);
662
663 if (frame_debug)
664 {
665 fprintf_unfiltered (gdb_stdlog, "\
666 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
667 frame->level, regnum,
668 user_reg_map_regnum_to_name
669 (get_frame_arch (frame), regnum));
670 }
671
672 /* Find the unwinder. */
673 if (frame->unwind == NULL)
674 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
675
676 /* Ask this frame to unwind its register. */
677 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
678
679 if (frame_debug)
680 {
681 fprintf_unfiltered (gdb_stdlog, "->");
682 if (value_optimized_out (value))
683 fprintf_unfiltered (gdb_stdlog, " optimized out");
684 else
685 {
686 if (VALUE_LVAL (value) == lval_register)
687 fprintf_unfiltered (gdb_stdlog, " register=%d",
688 VALUE_REGNUM (value));
689 else if (VALUE_LVAL (value) == lval_memory)
690 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
691 paddr_nz (VALUE_ADDRESS (value)));
692 else
693 fprintf_unfiltered (gdb_stdlog, " computed");
694
695 if (value_lazy (value))
696 fprintf_unfiltered (gdb_stdlog, " lazy");
697 else
698 {
699 int i;
700 const gdb_byte *buf = value_contents (value);
701
702 fprintf_unfiltered (gdb_stdlog, " bytes=");
703 fprintf_unfiltered (gdb_stdlog, "[");
704 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
705 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
706 fprintf_unfiltered (gdb_stdlog, "]");
707 }
708 }
709
710 fprintf_unfiltered (gdb_stdlog, " }\n");
711 }
712
713 return value;
714 }
715
716 struct value *
717 get_frame_register_value (struct frame_info *frame, int regnum)
718 {
719 return frame_unwind_register_value (frame->next, regnum);
720 }
721
722 LONGEST
723 frame_unwind_register_signed (struct frame_info *frame, int regnum)
724 {
725 gdb_byte buf[MAX_REGISTER_SIZE];
726 frame_unwind_register (frame, regnum, buf);
727 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
728 regnum));
729 }
730
731 LONGEST
732 get_frame_register_signed (struct frame_info *frame, int regnum)
733 {
734 return frame_unwind_register_signed (frame->next, regnum);
735 }
736
737 ULONGEST
738 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
739 {
740 gdb_byte buf[MAX_REGISTER_SIZE];
741 frame_unwind_register (frame, regnum, buf);
742 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
743 regnum));
744 }
745
746 ULONGEST
747 get_frame_register_unsigned (struct frame_info *frame, int regnum)
748 {
749 return frame_unwind_register_unsigned (frame->next, regnum);
750 }
751
752 void
753 put_frame_register (struct frame_info *frame, int regnum,
754 const gdb_byte *buf)
755 {
756 struct gdbarch *gdbarch = get_frame_arch (frame);
757 int realnum;
758 int optim;
759 enum lval_type lval;
760 CORE_ADDR addr;
761 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
762 if (optim)
763 error (_("Attempt to assign to a value that was optimized out."));
764 switch (lval)
765 {
766 case lval_memory:
767 {
768 /* FIXME: write_memory doesn't yet take constant buffers.
769 Arrrg! */
770 gdb_byte tmp[MAX_REGISTER_SIZE];
771 memcpy (tmp, buf, register_size (gdbarch, regnum));
772 write_memory (addr, tmp, register_size (gdbarch, regnum));
773 break;
774 }
775 case lval_register:
776 regcache_cooked_write (get_current_regcache (), realnum, buf);
777 break;
778 default:
779 error (_("Attempt to assign to an unmodifiable value."));
780 }
781 }
782
783 /* frame_register_read ()
784
785 Find and return the value of REGNUM for the specified stack frame.
786 The number of bytes copied is REGISTER_SIZE (REGNUM).
787
788 Returns 0 if the register value could not be found. */
789
790 int
791 frame_register_read (struct frame_info *frame, int regnum,
792 gdb_byte *myaddr)
793 {
794 int optimized;
795 enum lval_type lval;
796 CORE_ADDR addr;
797 int realnum;
798 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
799
800 return !optimized;
801 }
802
803 int
804 get_frame_register_bytes (struct frame_info *frame, int regnum,
805 CORE_ADDR offset, int len, gdb_byte *myaddr)
806 {
807 struct gdbarch *gdbarch = get_frame_arch (frame);
808 int i;
809 int maxsize;
810 int numregs;
811
812 /* Skip registers wholly inside of OFFSET. */
813 while (offset >= register_size (gdbarch, regnum))
814 {
815 offset -= register_size (gdbarch, regnum);
816 regnum++;
817 }
818
819 /* Ensure that we will not read beyond the end of the register file.
820 This can only ever happen if the debug information is bad. */
821 maxsize = -offset;
822 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
823 for (i = regnum; i < numregs; i++)
824 {
825 int thissize = register_size (gdbarch, i);
826 if (thissize == 0)
827 break; /* This register is not available on this architecture. */
828 maxsize += thissize;
829 }
830 if (len > maxsize)
831 {
832 warning (_("Bad debug information detected: "
833 "Attempt to read %d bytes from registers."), len);
834 return 0;
835 }
836
837 /* Copy the data. */
838 while (len > 0)
839 {
840 int curr_len = register_size (gdbarch, regnum) - offset;
841 if (curr_len > len)
842 curr_len = len;
843
844 if (curr_len == register_size (gdbarch, regnum))
845 {
846 if (!frame_register_read (frame, regnum, myaddr))
847 return 0;
848 }
849 else
850 {
851 gdb_byte buf[MAX_REGISTER_SIZE];
852 if (!frame_register_read (frame, regnum, buf))
853 return 0;
854 memcpy (myaddr, buf + offset, curr_len);
855 }
856
857 myaddr += curr_len;
858 len -= curr_len;
859 offset = 0;
860 regnum++;
861 }
862
863 return 1;
864 }
865
866 void
867 put_frame_register_bytes (struct frame_info *frame, int regnum,
868 CORE_ADDR offset, int len, const gdb_byte *myaddr)
869 {
870 struct gdbarch *gdbarch = get_frame_arch (frame);
871
872 /* Skip registers wholly inside of OFFSET. */
873 while (offset >= register_size (gdbarch, regnum))
874 {
875 offset -= register_size (gdbarch, regnum);
876 regnum++;
877 }
878
879 /* Copy the data. */
880 while (len > 0)
881 {
882 int curr_len = register_size (gdbarch, regnum) - offset;
883 if (curr_len > len)
884 curr_len = len;
885
886 if (curr_len == register_size (gdbarch, regnum))
887 {
888 put_frame_register (frame, regnum, myaddr);
889 }
890 else
891 {
892 gdb_byte buf[MAX_REGISTER_SIZE];
893 frame_register_read (frame, regnum, buf);
894 memcpy (buf + offset, myaddr, curr_len);
895 put_frame_register (frame, regnum, buf);
896 }
897
898 myaddr += curr_len;
899 len -= curr_len;
900 offset = 0;
901 regnum++;
902 }
903 }
904
905 /* Create a sentinel frame. */
906
907 static struct frame_info *
908 create_sentinel_frame (struct regcache *regcache)
909 {
910 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
911 frame->level = -1;
912 /* Explicitly initialize the sentinel frame's cache. Provide it
913 with the underlying regcache. In the future additional
914 information, such as the frame's thread will be added. */
915 frame->prologue_cache = sentinel_frame_cache (regcache);
916 /* For the moment there is only one sentinel frame implementation. */
917 frame->unwind = sentinel_frame_unwind;
918 /* Link this frame back to itself. The frame is self referential
919 (the unwound PC is the same as the pc), so make it so. */
920 frame->next = frame;
921 /* Make the sentinel frame's ID valid, but invalid. That way all
922 comparisons with it should fail. */
923 frame->this_id.p = 1;
924 frame->this_id.value = null_frame_id;
925 if (frame_debug)
926 {
927 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
928 fprint_frame (gdb_stdlog, frame);
929 fprintf_unfiltered (gdb_stdlog, " }\n");
930 }
931 return frame;
932 }
933
934 /* Info about the innermost stack frame (contents of FP register) */
935
936 static struct frame_info *current_frame;
937
938 /* Cache for frame addresses already read by gdb. Valid only while
939 inferior is stopped. Control variables for the frame cache should
940 be local to this module. */
941
942 static struct obstack frame_cache_obstack;
943
944 void *
945 frame_obstack_zalloc (unsigned long size)
946 {
947 void *data = obstack_alloc (&frame_cache_obstack, size);
948 memset (data, 0, size);
949 return data;
950 }
951
952 /* Return the innermost (currently executing) stack frame. This is
953 split into two functions. The function unwind_to_current_frame()
954 is wrapped in catch exceptions so that, even when the unwind of the
955 sentinel frame fails, the function still returns a stack frame. */
956
957 static int
958 unwind_to_current_frame (struct ui_out *ui_out, void *args)
959 {
960 struct frame_info *frame = get_prev_frame (args);
961 /* A sentinel frame can fail to unwind, e.g., because its PC value
962 lands in somewhere like start. */
963 if (frame == NULL)
964 return 1;
965 current_frame = frame;
966 return 0;
967 }
968
969 struct frame_info *
970 get_current_frame (void)
971 {
972 /* First check, and report, the lack of registers. Having GDB
973 report "No stack!" or "No memory" when the target doesn't even
974 have registers is very confusing. Besides, "printcmd.exp"
975 explicitly checks that ``print $pc'' with no registers prints "No
976 registers". */
977 if (!target_has_registers)
978 error (_("No registers."));
979 if (!target_has_stack)
980 error (_("No stack."));
981 if (!target_has_memory)
982 error (_("No memory."));
983 if (ptid_equal (inferior_ptid, null_ptid))
984 error (_("No selected thread."));
985 if (is_exited (inferior_ptid))
986 error (_("Invalid selected thread."));
987 if (is_executing (inferior_ptid))
988 error (_("Target is executing."));
989
990 if (current_frame == NULL)
991 {
992 struct frame_info *sentinel_frame =
993 create_sentinel_frame (get_current_regcache ());
994 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
995 RETURN_MASK_ERROR) != 0)
996 {
997 /* Oops! Fake a current frame? Is this useful? It has a PC
998 of zero, for instance. */
999 current_frame = sentinel_frame;
1000 }
1001 }
1002 return current_frame;
1003 }
1004
1005 /* The "selected" stack frame is used by default for local and arg
1006 access. May be zero, for no selected frame. */
1007
1008 static struct frame_info *selected_frame;
1009
1010 int
1011 has_stack_frames (void)
1012 {
1013 if (!target_has_registers || !target_has_stack || !target_has_memory)
1014 return 0;
1015
1016 /* No current inferior, no frame. */
1017 if (ptid_equal (inferior_ptid, null_ptid))
1018 return 0;
1019
1020 /* Don't try to read from a dead thread. */
1021 if (is_exited (inferior_ptid))
1022 return 0;
1023
1024 /* ... or from a spinning thread. */
1025 if (is_executing (inferior_ptid))
1026 return 0;
1027
1028 return 1;
1029 }
1030
1031 /* Return the selected frame. Always non-NULL (unless there isn't an
1032 inferior sufficient for creating a frame) in which case an error is
1033 thrown. */
1034
1035 struct frame_info *
1036 get_selected_frame (const char *message)
1037 {
1038 if (selected_frame == NULL)
1039 {
1040 if (message != NULL && !has_stack_frames ())
1041 error (("%s"), message);
1042 /* Hey! Don't trust this. It should really be re-finding the
1043 last selected frame of the currently selected thread. This,
1044 though, is better than nothing. */
1045 select_frame (get_current_frame ());
1046 }
1047 /* There is always a frame. */
1048 gdb_assert (selected_frame != NULL);
1049 return selected_frame;
1050 }
1051
1052 /* This is a variant of get_selected_frame() which can be called when
1053 the inferior does not have a frame; in that case it will return
1054 NULL instead of calling error(). */
1055
1056 struct frame_info *
1057 deprecated_safe_get_selected_frame (void)
1058 {
1059 if (!has_stack_frames ())
1060 return NULL;
1061 return get_selected_frame (NULL);
1062 }
1063
1064 /* Select frame FI (or NULL - to invalidate the current frame). */
1065
1066 void
1067 select_frame (struct frame_info *fi)
1068 {
1069 struct symtab *s;
1070
1071 selected_frame = fi;
1072 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1073 frame is being invalidated. */
1074 if (deprecated_selected_frame_level_changed_hook)
1075 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1076
1077 /* FIXME: kseitz/2002-08-28: It would be nice to call
1078 selected_frame_level_changed_event() right here, but due to limitations
1079 in the current interfaces, we would end up flooding UIs with events
1080 because select_frame() is used extensively internally.
1081
1082 Once we have frame-parameterized frame (and frame-related) commands,
1083 the event notification can be moved here, since this function will only
1084 be called when the user's selected frame is being changed. */
1085
1086 /* Ensure that symbols for this frame are read in. Also, determine the
1087 source language of this frame, and switch to it if desired. */
1088 if (fi)
1089 {
1090 /* We retrieve the frame's symtab by using the frame PC. However
1091 we cannot use the frame PC as-is, because it usually points to
1092 the instruction following the "call", which is sometimes the
1093 first instruction of another function. So we rely on
1094 get_frame_address_in_block() which provides us with a PC which
1095 is guaranteed to be inside the frame's code block. */
1096 s = find_pc_symtab (get_frame_address_in_block (fi));
1097 if (s
1098 && s->language != current_language->la_language
1099 && s->language != language_unknown
1100 && language_mode == language_mode_auto)
1101 {
1102 set_language (s->language);
1103 }
1104 }
1105 }
1106
1107 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1108 Always returns a non-NULL value. */
1109
1110 struct frame_info *
1111 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1112 {
1113 struct frame_info *fi;
1114
1115 if (frame_debug)
1116 {
1117 fprintf_unfiltered (gdb_stdlog,
1118 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1119 paddr_nz (addr), paddr_nz (pc));
1120 }
1121
1122 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1123
1124 fi->next = create_sentinel_frame (get_current_regcache ());
1125
1126 /* Set/update this frame's cached PC value, found in the next frame.
1127 Do this before looking for this frame's unwinder. A sniffer is
1128 very likely to read this, and the corresponding unwinder is
1129 entitled to rely that the PC doesn't magically change. */
1130 fi->next->prev_pc.value = pc;
1131 fi->next->prev_pc.p = 1;
1132
1133 /* Select/initialize both the unwind function and the frame's type
1134 based on the PC. */
1135 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1136
1137 fi->this_id.p = 1;
1138 fi->this_id.value = frame_id_build (addr, pc);
1139
1140 if (frame_debug)
1141 {
1142 fprintf_unfiltered (gdb_stdlog, "-> ");
1143 fprint_frame (gdb_stdlog, fi);
1144 fprintf_unfiltered (gdb_stdlog, " }\n");
1145 }
1146
1147 return fi;
1148 }
1149
1150 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1151 innermost frame). Be careful to not fall off the bottom of the
1152 frame chain and onto the sentinel frame. */
1153
1154 struct frame_info *
1155 get_next_frame (struct frame_info *this_frame)
1156 {
1157 if (this_frame->level > 0)
1158 return this_frame->next;
1159 else
1160 return NULL;
1161 }
1162
1163 /* Observer for the target_changed event. */
1164
1165 static void
1166 frame_observer_target_changed (struct target_ops *target)
1167 {
1168 reinit_frame_cache ();
1169 }
1170
1171 /* Flush the entire frame cache. */
1172
1173 void
1174 reinit_frame_cache (void)
1175 {
1176 struct frame_info *fi;
1177
1178 /* Tear down all frame caches. */
1179 for (fi = current_frame; fi != NULL; fi = fi->prev)
1180 {
1181 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1182 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1183 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1184 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1185 }
1186
1187 /* Since we can't really be sure what the first object allocated was */
1188 obstack_free (&frame_cache_obstack, 0);
1189 obstack_init (&frame_cache_obstack);
1190
1191 if (current_frame != NULL)
1192 annotate_frames_invalid ();
1193
1194 current_frame = NULL; /* Invalidate cache */
1195 select_frame (NULL);
1196 if (frame_debug)
1197 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1198 }
1199
1200 /* Find where a register is saved (in memory or another register).
1201 The result of frame_register_unwind is just where it is saved
1202 relative to this particular frame. */
1203
1204 static void
1205 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1206 int *optimizedp, enum lval_type *lvalp,
1207 CORE_ADDR *addrp, int *realnump)
1208 {
1209 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1210
1211 while (this_frame != NULL)
1212 {
1213 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1214 addrp, realnump, NULL);
1215
1216 if (*optimizedp)
1217 break;
1218
1219 if (*lvalp != lval_register)
1220 break;
1221
1222 regnum = *realnump;
1223 this_frame = get_next_frame (this_frame);
1224 }
1225 }
1226
1227 /* Return a "struct frame_info" corresponding to the frame that called
1228 THIS_FRAME. Returns NULL if there is no such frame.
1229
1230 Unlike get_prev_frame, this function always tries to unwind the
1231 frame. */
1232
1233 static struct frame_info *
1234 get_prev_frame_1 (struct frame_info *this_frame)
1235 {
1236 struct frame_info *prev_frame;
1237 struct frame_id this_id;
1238 struct gdbarch *gdbarch;
1239
1240 gdb_assert (this_frame != NULL);
1241 gdbarch = get_frame_arch (this_frame);
1242
1243 if (frame_debug)
1244 {
1245 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1246 if (this_frame != NULL)
1247 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1248 else
1249 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1250 fprintf_unfiltered (gdb_stdlog, ") ");
1251 }
1252
1253 /* Only try to do the unwind once. */
1254 if (this_frame->prev_p)
1255 {
1256 if (frame_debug)
1257 {
1258 fprintf_unfiltered (gdb_stdlog, "-> ");
1259 fprint_frame (gdb_stdlog, this_frame->prev);
1260 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1261 }
1262 return this_frame->prev;
1263 }
1264
1265 /* If the frame unwinder hasn't been selected yet, we must do so
1266 before setting prev_p; otherwise the check for misbehaved
1267 sniffers will think that this frame's sniffer tried to unwind
1268 further (see frame_cleanup_after_sniffer). */
1269 if (this_frame->unwind == NULL)
1270 this_frame->unwind
1271 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1272
1273 this_frame->prev_p = 1;
1274 this_frame->stop_reason = UNWIND_NO_REASON;
1275
1276 /* Check that this frame's ID was valid. If it wasn't, don't try to
1277 unwind to the prev frame. Be careful to not apply this test to
1278 the sentinel frame. */
1279 this_id = get_frame_id (this_frame);
1280 if (this_frame->level >= 0 && !frame_id_p (this_id))
1281 {
1282 if (frame_debug)
1283 {
1284 fprintf_unfiltered (gdb_stdlog, "-> ");
1285 fprint_frame (gdb_stdlog, NULL);
1286 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1287 }
1288 this_frame->stop_reason = UNWIND_NULL_ID;
1289 return NULL;
1290 }
1291
1292 /* Check that this frame's ID isn't inner to (younger, below, next)
1293 the next frame. This happens when a frame unwind goes backwards.
1294 This check is valid only if this frame and the next frame are NORMAL.
1295 See the comment at frame_id_inner for details. */
1296 if (get_frame_type (this_frame) == NORMAL_FRAME
1297 && this_frame->next->unwind->type == NORMAL_FRAME
1298 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1299 get_frame_id (this_frame->next)))
1300 {
1301 if (frame_debug)
1302 {
1303 fprintf_unfiltered (gdb_stdlog, "-> ");
1304 fprint_frame (gdb_stdlog, NULL);
1305 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1306 }
1307 this_frame->stop_reason = UNWIND_INNER_ID;
1308 return NULL;
1309 }
1310
1311 /* Check that this and the next frame are not identical. If they
1312 are, there is most likely a stack cycle. As with the inner-than
1313 test above, avoid comparing the inner-most and sentinel frames. */
1314 if (this_frame->level > 0
1315 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1316 {
1317 if (frame_debug)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "-> ");
1320 fprint_frame (gdb_stdlog, NULL);
1321 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1322 }
1323 this_frame->stop_reason = UNWIND_SAME_ID;
1324 return NULL;
1325 }
1326
1327 /* Check that this and the next frame do not unwind the PC register
1328 to the same memory location. If they do, then even though they
1329 have different frame IDs, the new frame will be bogus; two
1330 functions can't share a register save slot for the PC. This can
1331 happen when the prologue analyzer finds a stack adjustment, but
1332 no PC save.
1333
1334 This check does assume that the "PC register" is roughly a
1335 traditional PC, even if the gdbarch_unwind_pc method adjusts
1336 it (we do not rely on the value, only on the unwound PC being
1337 dependent on this value). A potential improvement would be
1338 to have the frame prev_pc method and the gdbarch unwind_pc
1339 method set the same lval and location information as
1340 frame_register_unwind. */
1341 if (this_frame->level > 0
1342 && gdbarch_pc_regnum (gdbarch) >= 0
1343 && get_frame_type (this_frame) == NORMAL_FRAME
1344 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1345 {
1346 int optimized, realnum, nrealnum;
1347 enum lval_type lval, nlval;
1348 CORE_ADDR addr, naddr;
1349
1350 frame_register_unwind_location (this_frame,
1351 gdbarch_pc_regnum (gdbarch),
1352 &optimized, &lval, &addr, &realnum);
1353 frame_register_unwind_location (get_next_frame (this_frame),
1354 gdbarch_pc_regnum (gdbarch),
1355 &optimized, &nlval, &naddr, &nrealnum);
1356
1357 if ((lval == lval_memory && lval == nlval && addr == naddr)
1358 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1359 {
1360 if (frame_debug)
1361 {
1362 fprintf_unfiltered (gdb_stdlog, "-> ");
1363 fprint_frame (gdb_stdlog, NULL);
1364 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1365 }
1366
1367 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1368 this_frame->prev = NULL;
1369 return NULL;
1370 }
1371 }
1372
1373 /* Allocate the new frame but do not wire it in to the frame chain.
1374 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1375 frame->next to pull some fancy tricks (of course such code is, by
1376 definition, recursive). Try to prevent it.
1377
1378 There is no reason to worry about memory leaks, should the
1379 remainder of the function fail. The allocated memory will be
1380 quickly reclaimed when the frame cache is flushed, and the `we've
1381 been here before' check above will stop repeated memory
1382 allocation calls. */
1383 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1384 prev_frame->level = this_frame->level + 1;
1385
1386 /* Don't yet compute ->unwind (and hence ->type). It is computed
1387 on-demand in get_frame_type, frame_register_unwind, and
1388 get_frame_id. */
1389
1390 /* Don't yet compute the frame's ID. It is computed on-demand by
1391 get_frame_id(). */
1392
1393 /* The unwound frame ID is validate at the start of this function,
1394 as part of the logic to decide if that frame should be further
1395 unwound, and not here while the prev frame is being created.
1396 Doing this makes it possible for the user to examine a frame that
1397 has an invalid frame ID.
1398
1399 Some very old VAX code noted: [...] For the sake of argument,
1400 suppose that the stack is somewhat trashed (which is one reason
1401 that "info frame" exists). So, return 0 (indicating we don't
1402 know the address of the arglist) if we don't know what frame this
1403 frame calls. */
1404
1405 /* Link it in. */
1406 this_frame->prev = prev_frame;
1407 prev_frame->next = this_frame;
1408
1409 if (frame_debug)
1410 {
1411 fprintf_unfiltered (gdb_stdlog, "-> ");
1412 fprint_frame (gdb_stdlog, prev_frame);
1413 fprintf_unfiltered (gdb_stdlog, " }\n");
1414 }
1415
1416 return prev_frame;
1417 }
1418
1419 /* Debug routine to print a NULL frame being returned. */
1420
1421 static void
1422 frame_debug_got_null_frame (struct frame_info *this_frame,
1423 const char *reason)
1424 {
1425 if (frame_debug)
1426 {
1427 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1428 if (this_frame != NULL)
1429 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1430 else
1431 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1432 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1433 }
1434 }
1435
1436 /* Is this (non-sentinel) frame in the "main"() function? */
1437
1438 static int
1439 inside_main_func (struct frame_info *this_frame)
1440 {
1441 struct minimal_symbol *msymbol;
1442 CORE_ADDR maddr;
1443
1444 if (symfile_objfile == 0)
1445 return 0;
1446 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1447 if (msymbol == NULL)
1448 return 0;
1449 /* Make certain that the code, and not descriptor, address is
1450 returned. */
1451 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1452 SYMBOL_VALUE_ADDRESS (msymbol),
1453 &current_target);
1454 return maddr == get_frame_func (this_frame);
1455 }
1456
1457 /* Test whether THIS_FRAME is inside the process entry point function. */
1458
1459 static int
1460 inside_entry_func (struct frame_info *this_frame)
1461 {
1462 return (get_frame_func (this_frame) == entry_point_address ());
1463 }
1464
1465 /* Return a structure containing various interesting information about
1466 the frame that called THIS_FRAME. Returns NULL if there is entier
1467 no such frame or the frame fails any of a set of target-independent
1468 condition that should terminate the frame chain (e.g., as unwinding
1469 past main()).
1470
1471 This function should not contain target-dependent tests, such as
1472 checking whether the program-counter is zero. */
1473
1474 struct frame_info *
1475 get_prev_frame (struct frame_info *this_frame)
1476 {
1477 struct frame_info *prev_frame;
1478
1479 /* There is always a frame. If this assertion fails, suspect that
1480 something should be calling get_selected_frame() or
1481 get_current_frame(). */
1482 gdb_assert (this_frame != NULL);
1483
1484 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1485 sense to stop unwinding at a dummy frame. One place where a dummy
1486 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1487 pcsqh register (space register for the instruction at the head of the
1488 instruction queue) cannot be written directly; the only way to set it
1489 is to branch to code that is in the target space. In order to implement
1490 frame dummies on HPUX, the called function is made to jump back to where
1491 the inferior was when the user function was called. If gdb was inside
1492 the main function when we created the dummy frame, the dummy frame will
1493 point inside the main function. */
1494 if (this_frame->level >= 0
1495 && get_frame_type (this_frame) != DUMMY_FRAME
1496 && !backtrace_past_main
1497 && inside_main_func (this_frame))
1498 /* Don't unwind past main(). Note, this is done _before_ the
1499 frame has been marked as previously unwound. That way if the
1500 user later decides to enable unwinds past main(), that will
1501 automatically happen. */
1502 {
1503 frame_debug_got_null_frame (this_frame, "inside main func");
1504 return NULL;
1505 }
1506
1507 /* If the user's backtrace limit has been exceeded, stop. We must
1508 add two to the current level; one of those accounts for backtrace_limit
1509 being 1-based and the level being 0-based, and the other accounts for
1510 the level of the new frame instead of the level of the current
1511 frame. */
1512 if (this_frame->level + 2 > backtrace_limit)
1513 {
1514 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1515 return NULL;
1516 }
1517
1518 /* If we're already inside the entry function for the main objfile,
1519 then it isn't valid. Don't apply this test to a dummy frame -
1520 dummy frame PCs typically land in the entry func. Don't apply
1521 this test to the sentinel frame. Sentinel frames should always
1522 be allowed to unwind. */
1523 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1524 wasn't checking for "main" in the minimal symbols. With that
1525 fixed asm-source tests now stop in "main" instead of halting the
1526 backtrace in weird and wonderful ways somewhere inside the entry
1527 file. Suspect that tests for inside the entry file/func were
1528 added to work around that (now fixed) case. */
1529 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1530 suggested having the inside_entry_func test use the
1531 inside_main_func() msymbol trick (along with entry_point_address()
1532 I guess) to determine the address range of the start function.
1533 That should provide a far better stopper than the current
1534 heuristics. */
1535 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1536 applied tail-call optimizations to main so that a function called
1537 from main returns directly to the caller of main. Since we don't
1538 stop at main, we should at least stop at the entry point of the
1539 application. */
1540 if (!backtrace_past_entry
1541 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1542 && inside_entry_func (this_frame))
1543 {
1544 frame_debug_got_null_frame (this_frame, "inside entry func");
1545 return NULL;
1546 }
1547
1548 /* Assume that the only way to get a zero PC is through something
1549 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1550 will never unwind a zero PC. */
1551 if (this_frame->level > 0
1552 && get_frame_type (this_frame) == NORMAL_FRAME
1553 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1554 && get_frame_pc (this_frame) == 0)
1555 {
1556 frame_debug_got_null_frame (this_frame, "zero PC");
1557 return NULL;
1558 }
1559
1560 return get_prev_frame_1 (this_frame);
1561 }
1562
1563 CORE_ADDR
1564 get_frame_pc (struct frame_info *frame)
1565 {
1566 gdb_assert (frame->next != NULL);
1567 return frame_pc_unwind (frame->next);
1568 }
1569
1570 /* Return an address that falls within THIS_FRAME's code block. */
1571
1572 CORE_ADDR
1573 get_frame_address_in_block (struct frame_info *this_frame)
1574 {
1575 /* A draft address. */
1576 CORE_ADDR pc = get_frame_pc (this_frame);
1577
1578 struct frame_info *next_frame = this_frame->next;
1579
1580 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1581 Normally the resume address is inside the body of the function
1582 associated with THIS_FRAME, but there is a special case: when
1583 calling a function which the compiler knows will never return
1584 (for instance abort), the call may be the very last instruction
1585 in the calling function. The resume address will point after the
1586 call and may be at the beginning of a different function
1587 entirely.
1588
1589 If THIS_FRAME is a signal frame or dummy frame, then we should
1590 not adjust the unwound PC. For a dummy frame, GDB pushed the
1591 resume address manually onto the stack. For a signal frame, the
1592 OS may have pushed the resume address manually and invoked the
1593 handler (e.g. GNU/Linux), or invoked the trampoline which called
1594 the signal handler - but in either case the signal handler is
1595 expected to return to the trampoline. So in both of these
1596 cases we know that the resume address is executable and
1597 related. So we only need to adjust the PC if THIS_FRAME
1598 is a normal function.
1599
1600 If the program has been interrupted while THIS_FRAME is current,
1601 then clearly the resume address is inside the associated
1602 function. There are three kinds of interruption: debugger stop
1603 (next frame will be SENTINEL_FRAME), operating system
1604 signal or exception (next frame will be SIGTRAMP_FRAME),
1605 or debugger-induced function call (next frame will be
1606 DUMMY_FRAME). So we only need to adjust the PC if
1607 NEXT_FRAME is a normal function.
1608
1609 We check the type of NEXT_FRAME first, since it is already
1610 known; frame type is determined by the unwinder, and since
1611 we have THIS_FRAME we've already selected an unwinder for
1612 NEXT_FRAME. */
1613 if (get_frame_type (next_frame) == NORMAL_FRAME
1614 && get_frame_type (this_frame) == NORMAL_FRAME)
1615 return pc - 1;
1616
1617 return pc;
1618 }
1619
1620 static int
1621 pc_notcurrent (struct frame_info *frame)
1622 {
1623 /* If FRAME is not the innermost frame, that normally means that
1624 FRAME->pc points at the return instruction (which is *after* the
1625 call instruction), and we want to get the line containing the
1626 call (because the call is where the user thinks the program is).
1627 However, if the next frame is either a SIGTRAMP_FRAME or a
1628 DUMMY_FRAME, then the next frame will contain a saved interrupt
1629 PC and such a PC indicates the current (rather than next)
1630 instruction/line, consequently, for such cases, want to get the
1631 line containing fi->pc. */
1632 struct frame_info *next = get_next_frame (frame);
1633 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1634 return notcurrent;
1635 }
1636
1637 void
1638 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1639 {
1640 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1641 }
1642
1643 /* Per "frame.h", return the ``address'' of the frame. Code should
1644 really be using get_frame_id(). */
1645 CORE_ADDR
1646 get_frame_base (struct frame_info *fi)
1647 {
1648 return get_frame_id (fi).stack_addr;
1649 }
1650
1651 /* High-level offsets into the frame. Used by the debug info. */
1652
1653 CORE_ADDR
1654 get_frame_base_address (struct frame_info *fi)
1655 {
1656 if (get_frame_type (fi) != NORMAL_FRAME)
1657 return 0;
1658 if (fi->base == NULL)
1659 fi->base = frame_base_find_by_frame (fi);
1660 /* Sneaky: If the low-level unwind and high-level base code share a
1661 common unwinder, let them share the prologue cache. */
1662 if (fi->base->unwind == fi->unwind)
1663 return fi->base->this_base (fi, &fi->prologue_cache);
1664 return fi->base->this_base (fi, &fi->base_cache);
1665 }
1666
1667 CORE_ADDR
1668 get_frame_locals_address (struct frame_info *fi)
1669 {
1670 void **cache;
1671 if (get_frame_type (fi) != NORMAL_FRAME)
1672 return 0;
1673 /* If there isn't a frame address method, find it. */
1674 if (fi->base == NULL)
1675 fi->base = frame_base_find_by_frame (fi);
1676 /* Sneaky: If the low-level unwind and high-level base code share a
1677 common unwinder, let them share the prologue cache. */
1678 if (fi->base->unwind == fi->unwind)
1679 return fi->base->this_locals (fi, &fi->prologue_cache);
1680 return fi->base->this_locals (fi, &fi->base_cache);
1681 }
1682
1683 CORE_ADDR
1684 get_frame_args_address (struct frame_info *fi)
1685 {
1686 void **cache;
1687 if (get_frame_type (fi) != NORMAL_FRAME)
1688 return 0;
1689 /* If there isn't a frame address method, find it. */
1690 if (fi->base == NULL)
1691 fi->base = frame_base_find_by_frame (fi);
1692 /* Sneaky: If the low-level unwind and high-level base code share a
1693 common unwinder, let them share the prologue cache. */
1694 if (fi->base->unwind == fi->unwind)
1695 return fi->base->this_args (fi, &fi->prologue_cache);
1696 return fi->base->this_args (fi, &fi->base_cache);
1697 }
1698
1699 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1700 or -1 for a NULL frame. */
1701
1702 int
1703 frame_relative_level (struct frame_info *fi)
1704 {
1705 if (fi == NULL)
1706 return -1;
1707 else
1708 return fi->level;
1709 }
1710
1711 enum frame_type
1712 get_frame_type (struct frame_info *frame)
1713 {
1714 if (frame->unwind == NULL)
1715 /* Initialize the frame's unwinder because that's what
1716 provides the frame's type. */
1717 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1718 return frame->unwind->type;
1719 }
1720
1721 /* Memory access methods. */
1722
1723 void
1724 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1725 gdb_byte *buf, int len)
1726 {
1727 read_memory (addr, buf, len);
1728 }
1729
1730 LONGEST
1731 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1732 int len)
1733 {
1734 return read_memory_integer (addr, len);
1735 }
1736
1737 ULONGEST
1738 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1739 int len)
1740 {
1741 return read_memory_unsigned_integer (addr, len);
1742 }
1743
1744 int
1745 safe_frame_unwind_memory (struct frame_info *this_frame,
1746 CORE_ADDR addr, gdb_byte *buf, int len)
1747 {
1748 /* NOTE: target_read_memory returns zero on success! */
1749 return !target_read_memory (addr, buf, len);
1750 }
1751
1752 /* Architecture method. */
1753
1754 struct gdbarch *
1755 get_frame_arch (struct frame_info *this_frame)
1756 {
1757 /* In the future, this function will return a per-frame
1758 architecture instead of current_gdbarch. Calling the
1759 routine with a NULL value of this_frame is a bug! */
1760 gdb_assert (this_frame);
1761
1762 return current_gdbarch;
1763 }
1764
1765 /* Stack pointer methods. */
1766
1767 CORE_ADDR
1768 get_frame_sp (struct frame_info *this_frame)
1769 {
1770 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1771 /* Normality - an architecture that provides a way of obtaining any
1772 frame inner-most address. */
1773 if (gdbarch_unwind_sp_p (gdbarch))
1774 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1775 operate on THIS_FRAME now. */
1776 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1777 /* Now things are really are grim. Hope that the value returned by
1778 the gdbarch_sp_regnum register is meaningful. */
1779 if (gdbarch_sp_regnum (gdbarch) >= 0)
1780 return get_frame_register_unsigned (this_frame,
1781 gdbarch_sp_regnum (gdbarch));
1782 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1783 }
1784
1785 /* Return the reason why we can't unwind past FRAME. */
1786
1787 enum unwind_stop_reason
1788 get_frame_unwind_stop_reason (struct frame_info *frame)
1789 {
1790 /* If we haven't tried to unwind past this point yet, then assume
1791 that unwinding would succeed. */
1792 if (frame->prev_p == 0)
1793 return UNWIND_NO_REASON;
1794
1795 /* Otherwise, we set a reason when we succeeded (or failed) to
1796 unwind. */
1797 return frame->stop_reason;
1798 }
1799
1800 /* Return a string explaining REASON. */
1801
1802 const char *
1803 frame_stop_reason_string (enum unwind_stop_reason reason)
1804 {
1805 switch (reason)
1806 {
1807 case UNWIND_NULL_ID:
1808 return _("unwinder did not report frame ID");
1809
1810 case UNWIND_INNER_ID:
1811 return _("previous frame inner to this frame (corrupt stack?)");
1812
1813 case UNWIND_SAME_ID:
1814 return _("previous frame identical to this frame (corrupt stack?)");
1815
1816 case UNWIND_NO_SAVED_PC:
1817 return _("frame did not save the PC");
1818
1819 case UNWIND_NO_REASON:
1820 case UNWIND_FIRST_ERROR:
1821 default:
1822 internal_error (__FILE__, __LINE__,
1823 "Invalid frame stop reason");
1824 }
1825 }
1826
1827 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1828 FRAME. */
1829
1830 static void
1831 frame_cleanup_after_sniffer (void *arg)
1832 {
1833 struct frame_info *frame = arg;
1834
1835 /* The sniffer should not allocate a prologue cache if it did not
1836 match this frame. */
1837 gdb_assert (frame->prologue_cache == NULL);
1838
1839 /* No sniffer should extend the frame chain; sniff based on what is
1840 already certain. */
1841 gdb_assert (!frame->prev_p);
1842
1843 /* The sniffer should not check the frame's ID; that's circular. */
1844 gdb_assert (!frame->this_id.p);
1845
1846 /* Clear cached fields dependent on the unwinder.
1847
1848 The previous PC is independent of the unwinder, but the previous
1849 function is not (see get_frame_address_in_block). */
1850 frame->prev_func.p = 0;
1851 frame->prev_func.addr = 0;
1852
1853 /* Discard the unwinder last, so that we can easily find it if an assertion
1854 in this function triggers. */
1855 frame->unwind = NULL;
1856 }
1857
1858 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1859 Return a cleanup which should be called if unwinding fails, and
1860 discarded if it succeeds. */
1861
1862 struct cleanup *
1863 frame_prepare_for_sniffer (struct frame_info *frame,
1864 const struct frame_unwind *unwind)
1865 {
1866 gdb_assert (frame->unwind == NULL);
1867 frame->unwind = unwind;
1868 return make_cleanup (frame_cleanup_after_sniffer, frame);
1869 }
1870
1871 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1872
1873 static struct cmd_list_element *set_backtrace_cmdlist;
1874 static struct cmd_list_element *show_backtrace_cmdlist;
1875
1876 static void
1877 set_backtrace_cmd (char *args, int from_tty)
1878 {
1879 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1880 }
1881
1882 static void
1883 show_backtrace_cmd (char *args, int from_tty)
1884 {
1885 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1886 }
1887
1888 void
1889 _initialize_frame (void)
1890 {
1891 obstack_init (&frame_cache_obstack);
1892
1893 observer_attach_target_changed (frame_observer_target_changed);
1894
1895 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1896 Set backtrace specific variables.\n\
1897 Configure backtrace variables such as the backtrace limit"),
1898 &set_backtrace_cmdlist, "set backtrace ",
1899 0/*allow-unknown*/, &setlist);
1900 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1901 Show backtrace specific variables\n\
1902 Show backtrace variables such as the backtrace limit"),
1903 &show_backtrace_cmdlist, "show backtrace ",
1904 0/*allow-unknown*/, &showlist);
1905
1906 add_setshow_boolean_cmd ("past-main", class_obscure,
1907 &backtrace_past_main, _("\
1908 Set whether backtraces should continue past \"main\"."), _("\
1909 Show whether backtraces should continue past \"main\"."), _("\
1910 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1911 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1912 of the stack trace."),
1913 NULL,
1914 show_backtrace_past_main,
1915 &set_backtrace_cmdlist,
1916 &show_backtrace_cmdlist);
1917
1918 add_setshow_boolean_cmd ("past-entry", class_obscure,
1919 &backtrace_past_entry, _("\
1920 Set whether backtraces should continue past the entry point of a program."),
1921 _("\
1922 Show whether backtraces should continue past the entry point of a program."),
1923 _("\
1924 Normally there are no callers beyond the entry point of a program, so GDB\n\
1925 will terminate the backtrace there. Set this variable if you need to see \n\
1926 the rest of the stack trace."),
1927 NULL,
1928 show_backtrace_past_entry,
1929 &set_backtrace_cmdlist,
1930 &show_backtrace_cmdlist);
1931
1932 add_setshow_integer_cmd ("limit", class_obscure,
1933 &backtrace_limit, _("\
1934 Set an upper bound on the number of backtrace levels."), _("\
1935 Show the upper bound on the number of backtrace levels."), _("\
1936 No more than the specified number of frames can be displayed or examined.\n\
1937 Zero is unlimited."),
1938 NULL,
1939 show_backtrace_limit,
1940 &set_backtrace_cmdlist,
1941 &show_backtrace_cmdlist);
1942
1943 /* Debug this files internals. */
1944 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1945 Set frame debugging."), _("\
1946 Show frame debugging."), _("\
1947 When non-zero, frame specific internal debugging is enabled."),
1948 NULL,
1949 show_frame_debug,
1950 &setdebuglist, &showdebuglist);
1951 }
This page took 0.07336 seconds and 4 git commands to generate.