* readelf.c: Include xc16x.h.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's program space. */
74 struct program_space *pspace;
75
76 /* The frame's address space. */
77 struct address_space *aspace;
78
79 /* The frame's low-level unwinder and corresponding cache. The
80 low-level unwinder is responsible for unwinding register values
81 for the previous frame. The low-level unwind methods are
82 selected based on the presence, or otherwise, of register unwind
83 information such as CFI. */
84 void *prologue_cache;
85 const struct frame_unwind *unwind;
86
87 /* Cached copy of the previous frame's architecture. */
88 struct
89 {
90 int p;
91 struct gdbarch *arch;
92 } prev_arch;
93
94 /* Cached copy of the previous frame's resume address. */
95 struct {
96 int p;
97 CORE_ADDR value;
98 } prev_pc;
99
100 /* Cached copy of the previous frame's function address. */
101 struct
102 {
103 CORE_ADDR addr;
104 int p;
105 } prev_func;
106
107 /* This frame's ID. */
108 struct
109 {
110 int p;
111 struct frame_id value;
112 } this_id;
113
114 /* The frame's high-level base methods, and corresponding cache.
115 The high level base methods are selected based on the frame's
116 debug info. */
117 const struct frame_base *base;
118 void *base_cache;
119
120 /* Pointers to the next (down, inner, younger) and previous (up,
121 outer, older) frame_info's in the frame cache. */
122 struct frame_info *next; /* down, inner, younger */
123 int prev_p;
124 struct frame_info *prev; /* up, outer, older */
125
126 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
127 could. Only valid when PREV_P is set. */
128 enum unwind_stop_reason stop_reason;
129 };
130
131 /* A frame stash used to speed up frame lookups. */
132
133 /* We currently only stash one frame at a time, as this seems to be
134 sufficient for now. */
135 static struct frame_info *frame_stash = NULL;
136
137 /* Add the following FRAME to the frame stash. */
138
139 static void
140 frame_stash_add (struct frame_info *frame)
141 {
142 frame_stash = frame;
143 }
144
145 /* Search the frame stash for an entry with the given frame ID.
146 If found, return that frame. Otherwise return NULL. */
147
148 static struct frame_info *
149 frame_stash_find (struct frame_id id)
150 {
151 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
152 return frame_stash;
153
154 return NULL;
155 }
156
157 /* Invalidate the frame stash by removing all entries in it. */
158
159 static void
160 frame_stash_invalidate (void)
161 {
162 frame_stash = NULL;
163 }
164
165 /* Flag to control debugging. */
166
167 int frame_debug;
168 static void
169 show_frame_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
173 }
174
175 /* Flag to indicate whether backtraces should stop at main et.al. */
176
177 static int backtrace_past_main;
178 static void
179 show_backtrace_past_main (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("\
183 Whether backtraces should continue past \"main\" is %s.\n"),
184 value);
185 }
186
187 static int backtrace_past_entry;
188 static void
189 show_backtrace_past_entry (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("\
193 Whether backtraces should continue past the entry point of a program is %s.\n"),
194 value);
195 }
196
197 static int backtrace_limit = INT_MAX;
198 static void
199 show_backtrace_limit (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("\
203 An upper bound on the number of backtrace levels is %s.\n"),
204 value);
205 }
206
207
208 static void
209 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
210 {
211 if (p)
212 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
213 else
214 fprintf_unfiltered (file, "!%s", name);
215 }
216
217 void
218 fprint_frame_id (struct ui_file *file, struct frame_id id)
219 {
220 fprintf_unfiltered (file, "{");
221 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
222 fprintf_unfiltered (file, ",");
223 fprint_field (file, "code", id.code_addr_p, id.code_addr);
224 fprintf_unfiltered (file, ",");
225 fprint_field (file, "special", id.special_addr_p, id.special_addr);
226 if (id.inline_depth)
227 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
228 fprintf_unfiltered (file, "}");
229 }
230
231 static void
232 fprint_frame_type (struct ui_file *file, enum frame_type type)
233 {
234 switch (type)
235 {
236 case NORMAL_FRAME:
237 fprintf_unfiltered (file, "NORMAL_FRAME");
238 return;
239 case DUMMY_FRAME:
240 fprintf_unfiltered (file, "DUMMY_FRAME");
241 return;
242 case INLINE_FRAME:
243 fprintf_unfiltered (file, "INLINE_FRAME");
244 return;
245 case SENTINEL_FRAME:
246 fprintf_unfiltered (file, "SENTINEL_FRAME");
247 return;
248 case SIGTRAMP_FRAME:
249 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
250 return;
251 case ARCH_FRAME:
252 fprintf_unfiltered (file, "ARCH_FRAME");
253 return;
254 default:
255 fprintf_unfiltered (file, "<unknown type>");
256 return;
257 };
258 }
259
260 static void
261 fprint_frame (struct ui_file *file, struct frame_info *fi)
262 {
263 if (fi == NULL)
264 {
265 fprintf_unfiltered (file, "<NULL frame>");
266 return;
267 }
268 fprintf_unfiltered (file, "{");
269 fprintf_unfiltered (file, "level=%d", fi->level);
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "type=");
272 if (fi->unwind != NULL)
273 fprint_frame_type (file, fi->unwind->type);
274 else
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "unwind=");
278 if (fi->unwind != NULL)
279 gdb_print_host_address (fi->unwind, file);
280 else
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "pc=");
284 if (fi->next != NULL && fi->next->prev_pc.p)
285 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
286 else
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "id=");
290 if (fi->this_id.p)
291 fprint_frame_id (file, fi->this_id.value);
292 else
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, ",");
295 fprintf_unfiltered (file, "func=");
296 if (fi->next != NULL && fi->next->prev_func.p)
297 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
298 else
299 fprintf_unfiltered (file, "<unknown>");
300 fprintf_unfiltered (file, "}");
301 }
302
303 /* Given FRAME, return the enclosing normal frame for inlined
304 function frames. Otherwise return the original frame. */
305
306 static struct frame_info *
307 skip_inlined_frames (struct frame_info *frame)
308 {
309 while (get_frame_type (frame) == INLINE_FRAME)
310 frame = get_prev_frame (frame);
311
312 return frame;
313 }
314
315 /* Return a frame uniq ID that can be used to, later, re-find the
316 frame. */
317
318 struct frame_id
319 get_frame_id (struct frame_info *fi)
320 {
321 if (fi == NULL)
322 return null_frame_id;
323
324 if (!fi->this_id.p)
325 {
326 if (frame_debug)
327 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
328 fi->level);
329 /* Find the unwinder. */
330 if (fi->unwind == NULL)
331 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
332 /* Find THIS frame's ID. */
333 /* Default to outermost if no ID is found. */
334 fi->this_id.value = outer_frame_id;
335 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
336 gdb_assert (frame_id_p (fi->this_id.value));
337 fi->this_id.p = 1;
338 if (frame_debug)
339 {
340 fprintf_unfiltered (gdb_stdlog, "-> ");
341 fprint_frame_id (gdb_stdlog, fi->this_id.value);
342 fprintf_unfiltered (gdb_stdlog, " }\n");
343 }
344 }
345
346 frame_stash_add (fi);
347
348 return fi->this_id.value;
349 }
350
351 struct frame_id
352 get_stack_frame_id (struct frame_info *next_frame)
353 {
354 return get_frame_id (skip_inlined_frames (next_frame));
355 }
356
357 struct frame_id
358 frame_unwind_caller_id (struct frame_info *next_frame)
359 {
360 struct frame_info *this_frame;
361
362 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
363 the frame chain, leading to this function unintentionally
364 returning a null_frame_id (e.g., when a caller requests the frame
365 ID of "main()"s caller. */
366
367 next_frame = skip_inlined_frames (next_frame);
368 this_frame = get_prev_frame_1 (next_frame);
369 if (this_frame)
370 return get_frame_id (skip_inlined_frames (this_frame));
371 else
372 return null_frame_id;
373 }
374
375 const struct frame_id null_frame_id; /* All zeros. */
376 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
377
378 struct frame_id
379 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
380 CORE_ADDR special_addr)
381 {
382 struct frame_id id = null_frame_id;
383 id.stack_addr = stack_addr;
384 id.stack_addr_p = 1;
385 id.code_addr = code_addr;
386 id.code_addr_p = 1;
387 id.special_addr = special_addr;
388 id.special_addr_p = 1;
389 return id;
390 }
391
392 struct frame_id
393 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
394 {
395 struct frame_id id = null_frame_id;
396 id.stack_addr = stack_addr;
397 id.stack_addr_p = 1;
398 id.code_addr = code_addr;
399 id.code_addr_p = 1;
400 return id;
401 }
402
403 struct frame_id
404 frame_id_build_wild (CORE_ADDR stack_addr)
405 {
406 struct frame_id id = null_frame_id;
407 id.stack_addr = stack_addr;
408 id.stack_addr_p = 1;
409 return id;
410 }
411
412 int
413 frame_id_p (struct frame_id l)
414 {
415 int p;
416 /* The frame is valid iff it has a valid stack address. */
417 p = l.stack_addr_p;
418 /* outer_frame_id is also valid. */
419 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
420 p = 1;
421 if (frame_debug)
422 {
423 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
424 fprint_frame_id (gdb_stdlog, l);
425 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
426 }
427 return p;
428 }
429
430 int
431 frame_id_inlined_p (struct frame_id l)
432 {
433 if (!frame_id_p (l))
434 return 0;
435
436 return (l.inline_depth != 0);
437 }
438
439 int
440 frame_id_eq (struct frame_id l, struct frame_id r)
441 {
442 int eq;
443 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
444 /* The outermost frame marker is equal to itself. This is the
445 dodgy thing about outer_frame_id, since between execution steps
446 we might step into another function - from which we can't
447 unwind either. More thought required to get rid of
448 outer_frame_id. */
449 eq = 1;
450 else if (!l.stack_addr_p || !r.stack_addr_p)
451 /* Like a NaN, if either ID is invalid, the result is false.
452 Note that a frame ID is invalid iff it is the null frame ID. */
453 eq = 0;
454 else if (l.stack_addr != r.stack_addr)
455 /* If .stack addresses are different, the frames are different. */
456 eq = 0;
457 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
458 /* An invalid code addr is a wild card. If .code addresses are
459 different, the frames are different. */
460 eq = 0;
461 else if (l.special_addr_p && r.special_addr_p
462 && l.special_addr != r.special_addr)
463 /* An invalid special addr is a wild card (or unused). Otherwise
464 if special addresses are different, the frames are different. */
465 eq = 0;
466 else if (l.inline_depth != r.inline_depth)
467 /* If inline depths are different, the frames must be different. */
468 eq = 0;
469 else
470 /* Frames are equal. */
471 eq = 1;
472
473 if (frame_debug)
474 {
475 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
476 fprint_frame_id (gdb_stdlog, l);
477 fprintf_unfiltered (gdb_stdlog, ",r=");
478 fprint_frame_id (gdb_stdlog, r);
479 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
480 }
481 return eq;
482 }
483
484 /* Safety net to check whether frame ID L should be inner to
485 frame ID R, according to their stack addresses.
486
487 This method cannot be used to compare arbitrary frames, as the
488 ranges of valid stack addresses may be discontiguous (e.g. due
489 to sigaltstack).
490
491 However, it can be used as safety net to discover invalid frame
492 IDs in certain circumstances. Assuming that NEXT is the immediate
493 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
494
495 * The stack address of NEXT must be inner-than-or-equal to the stack
496 address of THIS.
497
498 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
499 error has occurred.
500
501 * If NEXT and THIS have different stack addresses, no other frame
502 in the frame chain may have a stack address in between.
503
504 Therefore, if frame_id_inner (TEST, THIS) holds, but
505 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
506 to a valid frame in the frame chain.
507
508 The sanity checks above cannot be performed when a SIGTRAMP frame
509 is involved, because signal handlers might be executed on a different
510 stack than the stack used by the routine that caused the signal
511 to be raised. This can happen for instance when a thread exceeds
512 its maximum stack size. In this case, certain compilers implement
513 a stack overflow strategy that cause the handler to be run on a
514 different stack. */
515
516 static int
517 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
518 {
519 int inner;
520 if (!l.stack_addr_p || !r.stack_addr_p)
521 /* Like NaN, any operation involving an invalid ID always fails. */
522 inner = 0;
523 else if (l.inline_depth > r.inline_depth
524 && l.stack_addr == r.stack_addr
525 && l.code_addr_p == r.code_addr_p
526 && l.special_addr_p == r.special_addr_p
527 && l.special_addr == r.special_addr)
528 {
529 /* Same function, different inlined functions. */
530 struct block *lb, *rb;
531
532 gdb_assert (l.code_addr_p && r.code_addr_p);
533
534 lb = block_for_pc (l.code_addr);
535 rb = block_for_pc (r.code_addr);
536
537 if (lb == NULL || rb == NULL)
538 /* Something's gone wrong. */
539 inner = 0;
540 else
541 /* This will return true if LB and RB are the same block, or
542 if the block with the smaller depth lexically encloses the
543 block with the greater depth. */
544 inner = contained_in (lb, rb);
545 }
546 else
547 /* Only return non-zero when strictly inner than. Note that, per
548 comment in "frame.h", there is some fuzz here. Frameless
549 functions are not strictly inner than (same .stack but
550 different .code and/or .special address). */
551 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
552 if (frame_debug)
553 {
554 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
555 fprint_frame_id (gdb_stdlog, l);
556 fprintf_unfiltered (gdb_stdlog, ",r=");
557 fprint_frame_id (gdb_stdlog, r);
558 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
559 }
560 return inner;
561 }
562
563 struct frame_info *
564 frame_find_by_id (struct frame_id id)
565 {
566 struct frame_info *frame, *prev_frame;
567
568 /* ZERO denotes the null frame, let the caller decide what to do
569 about it. Should it instead return get_current_frame()? */
570 if (!frame_id_p (id))
571 return NULL;
572
573 /* Try using the frame stash first. Finding it there removes the need
574 to perform the search by looping over all frames, which can be very
575 CPU-intensive if the number of frames is very high (the loop is O(n)
576 and get_prev_frame performs a series of checks that are relatively
577 expensive). This optimization is particularly useful when this function
578 is called from another function (such as value_fetch_lazy, case
579 VALUE_LVAL (val) == lval_register) which already loops over all frames,
580 making the overall behavior O(n^2). */
581 frame = frame_stash_find (id);
582 if (frame)
583 return frame;
584
585 for (frame = get_current_frame (); ; frame = prev_frame)
586 {
587 struct frame_id this = get_frame_id (frame);
588 if (frame_id_eq (id, this))
589 /* An exact match. */
590 return frame;
591
592 prev_frame = get_prev_frame (frame);
593 if (!prev_frame)
594 return NULL;
595
596 /* As a safety net to avoid unnecessary backtracing while trying
597 to find an invalid ID, we check for a common situation where
598 we can detect from comparing stack addresses that no other
599 frame in the current frame chain can have this ID. See the
600 comment at frame_id_inner for details. */
601 if (get_frame_type (frame) == NORMAL_FRAME
602 && !frame_id_inner (get_frame_arch (frame), id, this)
603 && frame_id_inner (get_frame_arch (prev_frame), id,
604 get_frame_id (prev_frame)))
605 return NULL;
606 }
607 return NULL;
608 }
609
610 static CORE_ADDR
611 frame_unwind_pc (struct frame_info *this_frame)
612 {
613 if (!this_frame->prev_pc.p)
614 {
615 CORE_ADDR pc;
616 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
617 {
618 /* The right way. The `pure' way. The one true way. This
619 method depends solely on the register-unwind code to
620 determine the value of registers in THIS frame, and hence
621 the value of this frame's PC (resume address). A typical
622 implementation is no more than:
623
624 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
625 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
626
627 Note: this method is very heavily dependent on a correct
628 register-unwind implementation, it pays to fix that
629 method first; this method is frame type agnostic, since
630 it only deals with register values, it works with any
631 frame. This is all in stark contrast to the old
632 FRAME_SAVED_PC which would try to directly handle all the
633 different ways that a PC could be unwound. */
634 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
635 }
636 else
637 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
638 this_frame->prev_pc.value = pc;
639 this_frame->prev_pc.p = 1;
640 if (frame_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "{ frame_unwind_caller_pc (this_frame=%d) -> %s }\n",
643 this_frame->level,
644 hex_string (this_frame->prev_pc.value));
645 }
646 return this_frame->prev_pc.value;
647 }
648
649 CORE_ADDR
650 frame_unwind_caller_pc (struct frame_info *this_frame)
651 {
652 return frame_unwind_pc (skip_inlined_frames (this_frame));
653 }
654
655 CORE_ADDR
656 get_frame_func (struct frame_info *this_frame)
657 {
658 struct frame_info *next_frame = this_frame->next;
659
660 if (!next_frame->prev_func.p)
661 {
662 /* Make certain that this, and not the adjacent, function is
663 found. */
664 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
665 next_frame->prev_func.p = 1;
666 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
667 if (frame_debug)
668 fprintf_unfiltered (gdb_stdlog,
669 "{ get_frame_func (this_frame=%d) -> %s }\n",
670 this_frame->level,
671 hex_string (next_frame->prev_func.addr));
672 }
673 return next_frame->prev_func.addr;
674 }
675
676 static int
677 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
678 {
679 return frame_register_read (src, regnum, buf);
680 }
681
682 struct regcache *
683 frame_save_as_regcache (struct frame_info *this_frame)
684 {
685 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
686 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
687 regcache_save (regcache, do_frame_register_read, this_frame);
688 discard_cleanups (cleanups);
689 return regcache;
690 }
691
692 void
693 frame_pop (struct frame_info *this_frame)
694 {
695 struct frame_info *prev_frame;
696 struct regcache *scratch;
697 struct cleanup *cleanups;
698
699 if (get_frame_type (this_frame) == DUMMY_FRAME)
700 {
701 /* Popping a dummy frame involves restoring more than just registers.
702 dummy_frame_pop does all the work. */
703 dummy_frame_pop (get_frame_id (this_frame));
704 return;
705 }
706
707 /* Ensure that we have a frame to pop to. */
708 prev_frame = get_prev_frame_1 (this_frame);
709
710 if (!prev_frame)
711 error (_("Cannot pop the initial frame."));
712
713 /* Make a copy of all the register values unwound from this frame.
714 Save them in a scratch buffer so that there isn't a race between
715 trying to extract the old values from the current regcache while
716 at the same time writing new values into that same cache. */
717 scratch = frame_save_as_regcache (prev_frame);
718 cleanups = make_cleanup_regcache_xfree (scratch);
719
720 /* FIXME: cagney/2003-03-16: It should be possible to tell the
721 target's register cache that it is about to be hit with a burst
722 register transfer and that the sequence of register writes should
723 be batched. The pair target_prepare_to_store() and
724 target_store_registers() kind of suggest this functionality.
725 Unfortunately, they don't implement it. Their lack of a formal
726 definition can lead to targets writing back bogus values
727 (arguably a bug in the target code mind). */
728 /* Now copy those saved registers into the current regcache.
729 Here, regcache_cpy() calls regcache_restore(). */
730 regcache_cpy (get_current_regcache (), scratch);
731 do_cleanups (cleanups);
732
733 /* We've made right mess of GDB's local state, just discard
734 everything. */
735 reinit_frame_cache ();
736 }
737
738 void
739 frame_register_unwind (struct frame_info *frame, int regnum,
740 int *optimizedp, enum lval_type *lvalp,
741 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
742 {
743 struct value *value;
744
745 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
746 that the value proper does not need to be fetched. */
747 gdb_assert (optimizedp != NULL);
748 gdb_assert (lvalp != NULL);
749 gdb_assert (addrp != NULL);
750 gdb_assert (realnump != NULL);
751 /* gdb_assert (bufferp != NULL); */
752
753 value = frame_unwind_register_value (frame, regnum);
754
755 gdb_assert (value != NULL);
756
757 *optimizedp = value_optimized_out (value);
758 *lvalp = VALUE_LVAL (value);
759 *addrp = value_address (value);
760 *realnump = VALUE_REGNUM (value);
761
762 if (bufferp)
763 memcpy (bufferp, value_contents_all (value),
764 TYPE_LENGTH (value_type (value)));
765
766 /* Dispose of the new value. This prevents watchpoints from
767 trying to watch the saved frame pointer. */
768 release_value (value);
769 value_free (value);
770 }
771
772 void
773 frame_register (struct frame_info *frame, int regnum,
774 int *optimizedp, enum lval_type *lvalp,
775 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
776 {
777 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
778 that the value proper does not need to be fetched. */
779 gdb_assert (optimizedp != NULL);
780 gdb_assert (lvalp != NULL);
781 gdb_assert (addrp != NULL);
782 gdb_assert (realnump != NULL);
783 /* gdb_assert (bufferp != NULL); */
784
785 /* Obtain the register value by unwinding the register from the next
786 (more inner frame). */
787 gdb_assert (frame != NULL && frame->next != NULL);
788 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
789 realnump, bufferp);
790 }
791
792 void
793 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
794 {
795 int optimized;
796 CORE_ADDR addr;
797 int realnum;
798 enum lval_type lval;
799 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
800 &realnum, buf);
801 }
802
803 void
804 get_frame_register (struct frame_info *frame,
805 int regnum, gdb_byte *buf)
806 {
807 frame_unwind_register (frame->next, regnum, buf);
808 }
809
810 struct value *
811 frame_unwind_register_value (struct frame_info *frame, int regnum)
812 {
813 struct gdbarch *gdbarch;
814 struct value *value;
815
816 gdb_assert (frame != NULL);
817 gdbarch = frame_unwind_arch (frame);
818
819 if (frame_debug)
820 {
821 fprintf_unfiltered (gdb_stdlog, "\
822 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
823 frame->level, regnum,
824 user_reg_map_regnum_to_name (gdbarch, regnum));
825 }
826
827 /* Find the unwinder. */
828 if (frame->unwind == NULL)
829 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
830
831 /* Ask this frame to unwind its register. */
832 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
833
834 if (frame_debug)
835 {
836 fprintf_unfiltered (gdb_stdlog, "->");
837 if (value_optimized_out (value))
838 fprintf_unfiltered (gdb_stdlog, " optimized out");
839 else
840 {
841 if (VALUE_LVAL (value) == lval_register)
842 fprintf_unfiltered (gdb_stdlog, " register=%d",
843 VALUE_REGNUM (value));
844 else if (VALUE_LVAL (value) == lval_memory)
845 fprintf_unfiltered (gdb_stdlog, " address=%s",
846 paddress (gdbarch,
847 value_address (value)));
848 else
849 fprintf_unfiltered (gdb_stdlog, " computed");
850
851 if (value_lazy (value))
852 fprintf_unfiltered (gdb_stdlog, " lazy");
853 else
854 {
855 int i;
856 const gdb_byte *buf = value_contents (value);
857
858 fprintf_unfiltered (gdb_stdlog, " bytes=");
859 fprintf_unfiltered (gdb_stdlog, "[");
860 for (i = 0; i < register_size (gdbarch, regnum); i++)
861 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
862 fprintf_unfiltered (gdb_stdlog, "]");
863 }
864 }
865
866 fprintf_unfiltered (gdb_stdlog, " }\n");
867 }
868
869 return value;
870 }
871
872 struct value *
873 get_frame_register_value (struct frame_info *frame, int regnum)
874 {
875 return frame_unwind_register_value (frame->next, regnum);
876 }
877
878 LONGEST
879 frame_unwind_register_signed (struct frame_info *frame, int regnum)
880 {
881 struct gdbarch *gdbarch = frame_unwind_arch (frame);
882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
883 int size = register_size (gdbarch, regnum);
884 gdb_byte buf[MAX_REGISTER_SIZE];
885 frame_unwind_register (frame, regnum, buf);
886 return extract_signed_integer (buf, size, byte_order);
887 }
888
889 LONGEST
890 get_frame_register_signed (struct frame_info *frame, int regnum)
891 {
892 return frame_unwind_register_signed (frame->next, regnum);
893 }
894
895 ULONGEST
896 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
897 {
898 struct gdbarch *gdbarch = frame_unwind_arch (frame);
899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
900 int size = register_size (gdbarch, regnum);
901 gdb_byte buf[MAX_REGISTER_SIZE];
902 frame_unwind_register (frame, regnum, buf);
903 return extract_unsigned_integer (buf, size, byte_order);
904 }
905
906 ULONGEST
907 get_frame_register_unsigned (struct frame_info *frame, int regnum)
908 {
909 return frame_unwind_register_unsigned (frame->next, regnum);
910 }
911
912 void
913 put_frame_register (struct frame_info *frame, int regnum,
914 const gdb_byte *buf)
915 {
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917 int realnum;
918 int optim;
919 enum lval_type lval;
920 CORE_ADDR addr;
921 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
922 if (optim)
923 error (_("Attempt to assign to a value that was optimized out."));
924 switch (lval)
925 {
926 case lval_memory:
927 {
928 /* FIXME: write_memory doesn't yet take constant buffers.
929 Arrrg! */
930 gdb_byte tmp[MAX_REGISTER_SIZE];
931 memcpy (tmp, buf, register_size (gdbarch, regnum));
932 write_memory (addr, tmp, register_size (gdbarch, regnum));
933 break;
934 }
935 case lval_register:
936 regcache_cooked_write (get_current_regcache (), realnum, buf);
937 break;
938 default:
939 error (_("Attempt to assign to an unmodifiable value."));
940 }
941 }
942
943 /* frame_register_read ()
944
945 Find and return the value of REGNUM for the specified stack frame.
946 The number of bytes copied is REGISTER_SIZE (REGNUM).
947
948 Returns 0 if the register value could not be found. */
949
950 int
951 frame_register_read (struct frame_info *frame, int regnum,
952 gdb_byte *myaddr)
953 {
954 int optimized;
955 enum lval_type lval;
956 CORE_ADDR addr;
957 int realnum;
958 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
959
960 return !optimized;
961 }
962
963 int
964 get_frame_register_bytes (struct frame_info *frame, int regnum,
965 CORE_ADDR offset, int len, gdb_byte *myaddr)
966 {
967 struct gdbarch *gdbarch = get_frame_arch (frame);
968 int i;
969 int maxsize;
970 int numregs;
971
972 /* Skip registers wholly inside of OFFSET. */
973 while (offset >= register_size (gdbarch, regnum))
974 {
975 offset -= register_size (gdbarch, regnum);
976 regnum++;
977 }
978
979 /* Ensure that we will not read beyond the end of the register file.
980 This can only ever happen if the debug information is bad. */
981 maxsize = -offset;
982 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
983 for (i = regnum; i < numregs; i++)
984 {
985 int thissize = register_size (gdbarch, i);
986 if (thissize == 0)
987 break; /* This register is not available on this architecture. */
988 maxsize += thissize;
989 }
990 if (len > maxsize)
991 {
992 warning (_("Bad debug information detected: "
993 "Attempt to read %d bytes from registers."), len);
994 return 0;
995 }
996
997 /* Copy the data. */
998 while (len > 0)
999 {
1000 int curr_len = register_size (gdbarch, regnum) - offset;
1001 if (curr_len > len)
1002 curr_len = len;
1003
1004 if (curr_len == register_size (gdbarch, regnum))
1005 {
1006 if (!frame_register_read (frame, regnum, myaddr))
1007 return 0;
1008 }
1009 else
1010 {
1011 gdb_byte buf[MAX_REGISTER_SIZE];
1012 if (!frame_register_read (frame, regnum, buf))
1013 return 0;
1014 memcpy (myaddr, buf + offset, curr_len);
1015 }
1016
1017 myaddr += curr_len;
1018 len -= curr_len;
1019 offset = 0;
1020 regnum++;
1021 }
1022
1023 return 1;
1024 }
1025
1026 void
1027 put_frame_register_bytes (struct frame_info *frame, int regnum,
1028 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1029 {
1030 struct gdbarch *gdbarch = get_frame_arch (frame);
1031
1032 /* Skip registers wholly inside of OFFSET. */
1033 while (offset >= register_size (gdbarch, regnum))
1034 {
1035 offset -= register_size (gdbarch, regnum);
1036 regnum++;
1037 }
1038
1039 /* Copy the data. */
1040 while (len > 0)
1041 {
1042 int curr_len = register_size (gdbarch, regnum) - offset;
1043 if (curr_len > len)
1044 curr_len = len;
1045
1046 if (curr_len == register_size (gdbarch, regnum))
1047 {
1048 put_frame_register (frame, regnum, myaddr);
1049 }
1050 else
1051 {
1052 gdb_byte buf[MAX_REGISTER_SIZE];
1053 frame_register_read (frame, regnum, buf);
1054 memcpy (buf + offset, myaddr, curr_len);
1055 put_frame_register (frame, regnum, buf);
1056 }
1057
1058 myaddr += curr_len;
1059 len -= curr_len;
1060 offset = 0;
1061 regnum++;
1062 }
1063 }
1064
1065 /* Create a sentinel frame. */
1066
1067 static struct frame_info *
1068 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1069 {
1070 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1071 frame->level = -1;
1072 frame->pspace = pspace;
1073 frame->aspace = get_regcache_aspace (regcache);
1074 /* Explicitly initialize the sentinel frame's cache. Provide it
1075 with the underlying regcache. In the future additional
1076 information, such as the frame's thread will be added. */
1077 frame->prologue_cache = sentinel_frame_cache (regcache);
1078 /* For the moment there is only one sentinel frame implementation. */
1079 frame->unwind = sentinel_frame_unwind;
1080 /* Link this frame back to itself. The frame is self referential
1081 (the unwound PC is the same as the pc), so make it so. */
1082 frame->next = frame;
1083 /* Make the sentinel frame's ID valid, but invalid. That way all
1084 comparisons with it should fail. */
1085 frame->this_id.p = 1;
1086 frame->this_id.value = null_frame_id;
1087 if (frame_debug)
1088 {
1089 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1090 fprint_frame (gdb_stdlog, frame);
1091 fprintf_unfiltered (gdb_stdlog, " }\n");
1092 }
1093 return frame;
1094 }
1095
1096 /* Info about the innermost stack frame (contents of FP register) */
1097
1098 static struct frame_info *current_frame;
1099
1100 /* Cache for frame addresses already read by gdb. Valid only while
1101 inferior is stopped. Control variables for the frame cache should
1102 be local to this module. */
1103
1104 static struct obstack frame_cache_obstack;
1105
1106 void *
1107 frame_obstack_zalloc (unsigned long size)
1108 {
1109 void *data = obstack_alloc (&frame_cache_obstack, size);
1110 memset (data, 0, size);
1111 return data;
1112 }
1113
1114 /* Return the innermost (currently executing) stack frame. This is
1115 split into two functions. The function unwind_to_current_frame()
1116 is wrapped in catch exceptions so that, even when the unwind of the
1117 sentinel frame fails, the function still returns a stack frame. */
1118
1119 static int
1120 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1121 {
1122 struct frame_info *frame = get_prev_frame (args);
1123 /* A sentinel frame can fail to unwind, e.g., because its PC value
1124 lands in somewhere like start. */
1125 if (frame == NULL)
1126 return 1;
1127 current_frame = frame;
1128 return 0;
1129 }
1130
1131 struct frame_info *
1132 get_current_frame (void)
1133 {
1134 /* First check, and report, the lack of registers. Having GDB
1135 report "No stack!" or "No memory" when the target doesn't even
1136 have registers is very confusing. Besides, "printcmd.exp"
1137 explicitly checks that ``print $pc'' with no registers prints "No
1138 registers". */
1139 if (!target_has_registers)
1140 error (_("No registers."));
1141 if (!target_has_stack)
1142 error (_("No stack."));
1143 if (!target_has_memory)
1144 error (_("No memory."));
1145 if (ptid_equal (inferior_ptid, null_ptid))
1146 error (_("No selected thread."));
1147 if (is_exited (inferior_ptid))
1148 error (_("Invalid selected thread."));
1149 if (is_executing (inferior_ptid))
1150 error (_("Target is executing."));
1151
1152 if (current_frame == NULL)
1153 {
1154 struct frame_info *sentinel_frame =
1155 create_sentinel_frame (current_program_space, get_current_regcache ());
1156 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1157 RETURN_MASK_ERROR) != 0)
1158 {
1159 /* Oops! Fake a current frame? Is this useful? It has a PC
1160 of zero, for instance. */
1161 current_frame = sentinel_frame;
1162 }
1163 }
1164 return current_frame;
1165 }
1166
1167 /* The "selected" stack frame is used by default for local and arg
1168 access. May be zero, for no selected frame. */
1169
1170 static struct frame_info *selected_frame;
1171
1172 int
1173 has_stack_frames (void)
1174 {
1175 if (!target_has_registers || !target_has_stack || !target_has_memory)
1176 return 0;
1177
1178 /* No current inferior, no frame. */
1179 if (ptid_equal (inferior_ptid, null_ptid))
1180 return 0;
1181
1182 /* Don't try to read from a dead thread. */
1183 if (is_exited (inferior_ptid))
1184 return 0;
1185
1186 /* ... or from a spinning thread. */
1187 if (is_executing (inferior_ptid))
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 /* Return the selected frame. Always non-NULL (unless there isn't an
1194 inferior sufficient for creating a frame) in which case an error is
1195 thrown. */
1196
1197 struct frame_info *
1198 get_selected_frame (const char *message)
1199 {
1200 if (selected_frame == NULL)
1201 {
1202 if (message != NULL && !has_stack_frames ())
1203 error (("%s"), message);
1204 /* Hey! Don't trust this. It should really be re-finding the
1205 last selected frame of the currently selected thread. This,
1206 though, is better than nothing. */
1207 select_frame (get_current_frame ());
1208 }
1209 /* There is always a frame. */
1210 gdb_assert (selected_frame != NULL);
1211 return selected_frame;
1212 }
1213
1214 /* This is a variant of get_selected_frame() which can be called when
1215 the inferior does not have a frame; in that case it will return
1216 NULL instead of calling error(). */
1217
1218 struct frame_info *
1219 deprecated_safe_get_selected_frame (void)
1220 {
1221 if (!has_stack_frames ())
1222 return NULL;
1223 return get_selected_frame (NULL);
1224 }
1225
1226 /* Select frame FI (or NULL - to invalidate the current frame). */
1227
1228 void
1229 select_frame (struct frame_info *fi)
1230 {
1231 struct symtab *s;
1232
1233 selected_frame = fi;
1234 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1235 frame is being invalidated. */
1236 if (deprecated_selected_frame_level_changed_hook)
1237 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1238
1239 /* FIXME: kseitz/2002-08-28: It would be nice to call
1240 selected_frame_level_changed_event() right here, but due to limitations
1241 in the current interfaces, we would end up flooding UIs with events
1242 because select_frame() is used extensively internally.
1243
1244 Once we have frame-parameterized frame (and frame-related) commands,
1245 the event notification can be moved here, since this function will only
1246 be called when the user's selected frame is being changed. */
1247
1248 /* Ensure that symbols for this frame are read in. Also, determine the
1249 source language of this frame, and switch to it if desired. */
1250 if (fi)
1251 {
1252 /* We retrieve the frame's symtab by using the frame PC. However
1253 we cannot use the frame PC as-is, because it usually points to
1254 the instruction following the "call", which is sometimes the
1255 first instruction of another function. So we rely on
1256 get_frame_address_in_block() which provides us with a PC which
1257 is guaranteed to be inside the frame's code block. */
1258 s = find_pc_symtab (get_frame_address_in_block (fi));
1259 if (s
1260 && s->language != current_language->la_language
1261 && s->language != language_unknown
1262 && language_mode == language_mode_auto)
1263 {
1264 set_language (s->language);
1265 }
1266 }
1267 }
1268
1269 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1270 Always returns a non-NULL value. */
1271
1272 struct frame_info *
1273 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1274 {
1275 struct frame_info *fi;
1276
1277 if (frame_debug)
1278 {
1279 fprintf_unfiltered (gdb_stdlog,
1280 "{ create_new_frame (addr=%s, pc=%s) ",
1281 hex_string (addr), hex_string (pc));
1282 }
1283
1284 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1285
1286 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1287
1288 /* Set/update this frame's cached PC value, found in the next frame.
1289 Do this before looking for this frame's unwinder. A sniffer is
1290 very likely to read this, and the corresponding unwinder is
1291 entitled to rely that the PC doesn't magically change. */
1292 fi->next->prev_pc.value = pc;
1293 fi->next->prev_pc.p = 1;
1294
1295 /* We currently assume that frame chain's can't cross spaces. */
1296 fi->pspace = fi->next->pspace;
1297 fi->aspace = fi->next->aspace;
1298
1299 /* Select/initialize both the unwind function and the frame's type
1300 based on the PC. */
1301 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1302
1303 fi->this_id.p = 1;
1304 fi->this_id.value = frame_id_build (addr, pc);
1305
1306 if (frame_debug)
1307 {
1308 fprintf_unfiltered (gdb_stdlog, "-> ");
1309 fprint_frame (gdb_stdlog, fi);
1310 fprintf_unfiltered (gdb_stdlog, " }\n");
1311 }
1312
1313 return fi;
1314 }
1315
1316 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1317 innermost frame). Be careful to not fall off the bottom of the
1318 frame chain and onto the sentinel frame. */
1319
1320 struct frame_info *
1321 get_next_frame (struct frame_info *this_frame)
1322 {
1323 if (this_frame->level > 0)
1324 return this_frame->next;
1325 else
1326 return NULL;
1327 }
1328
1329 /* Observer for the target_changed event. */
1330
1331 static void
1332 frame_observer_target_changed (struct target_ops *target)
1333 {
1334 reinit_frame_cache ();
1335 }
1336
1337 /* Flush the entire frame cache. */
1338
1339 void
1340 reinit_frame_cache (void)
1341 {
1342 struct frame_info *fi;
1343
1344 /* Tear down all frame caches. */
1345 for (fi = current_frame; fi != NULL; fi = fi->prev)
1346 {
1347 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1348 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1349 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1350 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1351 }
1352
1353 /* Since we can't really be sure what the first object allocated was */
1354 obstack_free (&frame_cache_obstack, 0);
1355 obstack_init (&frame_cache_obstack);
1356
1357 if (current_frame != NULL)
1358 annotate_frames_invalid ();
1359
1360 current_frame = NULL; /* Invalidate cache */
1361 select_frame (NULL);
1362 frame_stash_invalidate ();
1363 if (frame_debug)
1364 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1365 }
1366
1367 /* Find where a register is saved (in memory or another register).
1368 The result of frame_register_unwind is just where it is saved
1369 relative to this particular frame. */
1370
1371 static void
1372 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1373 int *optimizedp, enum lval_type *lvalp,
1374 CORE_ADDR *addrp, int *realnump)
1375 {
1376 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1377
1378 while (this_frame != NULL)
1379 {
1380 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1381 addrp, realnump, NULL);
1382
1383 if (*optimizedp)
1384 break;
1385
1386 if (*lvalp != lval_register)
1387 break;
1388
1389 regnum = *realnump;
1390 this_frame = get_next_frame (this_frame);
1391 }
1392 }
1393
1394 /* Return a "struct frame_info" corresponding to the frame that called
1395 THIS_FRAME. Returns NULL if there is no such frame.
1396
1397 Unlike get_prev_frame, this function always tries to unwind the
1398 frame. */
1399
1400 static struct frame_info *
1401 get_prev_frame_1 (struct frame_info *this_frame)
1402 {
1403 struct frame_id this_id;
1404 struct gdbarch *gdbarch;
1405
1406 gdb_assert (this_frame != NULL);
1407 gdbarch = get_frame_arch (this_frame);
1408
1409 if (frame_debug)
1410 {
1411 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1412 if (this_frame != NULL)
1413 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1414 else
1415 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1416 fprintf_unfiltered (gdb_stdlog, ") ");
1417 }
1418
1419 /* Only try to do the unwind once. */
1420 if (this_frame->prev_p)
1421 {
1422 if (frame_debug)
1423 {
1424 fprintf_unfiltered (gdb_stdlog, "-> ");
1425 fprint_frame (gdb_stdlog, this_frame->prev);
1426 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1427 }
1428 return this_frame->prev;
1429 }
1430
1431 /* If the frame unwinder hasn't been selected yet, we must do so
1432 before setting prev_p; otherwise the check for misbehaved
1433 sniffers will think that this frame's sniffer tried to unwind
1434 further (see frame_cleanup_after_sniffer). */
1435 if (this_frame->unwind == NULL)
1436 this_frame->unwind
1437 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1438
1439 this_frame->prev_p = 1;
1440 this_frame->stop_reason = UNWIND_NO_REASON;
1441
1442 /* If we are unwinding from an inline frame, all of the below tests
1443 were already performed when we unwound from the next non-inline
1444 frame. We must skip them, since we can not get THIS_FRAME's ID
1445 until we have unwound all the way down to the previous non-inline
1446 frame. */
1447 if (get_frame_type (this_frame) == INLINE_FRAME)
1448 return get_prev_frame_raw (this_frame);
1449
1450 /* Check that this frame's ID was valid. If it wasn't, don't try to
1451 unwind to the prev frame. Be careful to not apply this test to
1452 the sentinel frame. */
1453 this_id = get_frame_id (this_frame);
1454 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1455 {
1456 if (frame_debug)
1457 {
1458 fprintf_unfiltered (gdb_stdlog, "-> ");
1459 fprint_frame (gdb_stdlog, NULL);
1460 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1461 }
1462 this_frame->stop_reason = UNWIND_NULL_ID;
1463 return NULL;
1464 }
1465
1466 /* Check that this frame's ID isn't inner to (younger, below, next)
1467 the next frame. This happens when a frame unwind goes backwards.
1468 This check is valid only if this frame and the next frame are NORMAL.
1469 See the comment at frame_id_inner for details. */
1470 if (get_frame_type (this_frame) == NORMAL_FRAME
1471 && this_frame->next->unwind->type == NORMAL_FRAME
1472 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1473 get_frame_id (this_frame->next)))
1474 {
1475 if (frame_debug)
1476 {
1477 fprintf_unfiltered (gdb_stdlog, "-> ");
1478 fprint_frame (gdb_stdlog, NULL);
1479 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1480 }
1481 this_frame->stop_reason = UNWIND_INNER_ID;
1482 return NULL;
1483 }
1484
1485 /* Check that this and the next frame are not identical. If they
1486 are, there is most likely a stack cycle. As with the inner-than
1487 test above, avoid comparing the inner-most and sentinel frames. */
1488 if (this_frame->level > 0
1489 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1490 {
1491 if (frame_debug)
1492 {
1493 fprintf_unfiltered (gdb_stdlog, "-> ");
1494 fprint_frame (gdb_stdlog, NULL);
1495 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1496 }
1497 this_frame->stop_reason = UNWIND_SAME_ID;
1498 return NULL;
1499 }
1500
1501 /* Check that this and the next frame do not unwind the PC register
1502 to the same memory location. If they do, then even though they
1503 have different frame IDs, the new frame will be bogus; two
1504 functions can't share a register save slot for the PC. This can
1505 happen when the prologue analyzer finds a stack adjustment, but
1506 no PC save.
1507
1508 This check does assume that the "PC register" is roughly a
1509 traditional PC, even if the gdbarch_unwind_pc method adjusts
1510 it (we do not rely on the value, only on the unwound PC being
1511 dependent on this value). A potential improvement would be
1512 to have the frame prev_pc method and the gdbarch unwind_pc
1513 method set the same lval and location information as
1514 frame_register_unwind. */
1515 if (this_frame->level > 0
1516 && gdbarch_pc_regnum (gdbarch) >= 0
1517 && get_frame_type (this_frame) == NORMAL_FRAME
1518 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1519 || get_frame_type (this_frame->next) == INLINE_FRAME))
1520 {
1521 int optimized, realnum, nrealnum;
1522 enum lval_type lval, nlval;
1523 CORE_ADDR addr, naddr;
1524
1525 frame_register_unwind_location (this_frame,
1526 gdbarch_pc_regnum (gdbarch),
1527 &optimized, &lval, &addr, &realnum);
1528 frame_register_unwind_location (get_next_frame (this_frame),
1529 gdbarch_pc_regnum (gdbarch),
1530 &optimized, &nlval, &naddr, &nrealnum);
1531
1532 if ((lval == lval_memory && lval == nlval && addr == naddr)
1533 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1534 {
1535 if (frame_debug)
1536 {
1537 fprintf_unfiltered (gdb_stdlog, "-> ");
1538 fprint_frame (gdb_stdlog, NULL);
1539 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1540 }
1541
1542 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1543 this_frame->prev = NULL;
1544 return NULL;
1545 }
1546 }
1547
1548 return get_prev_frame_raw (this_frame);
1549 }
1550
1551 /* Construct a new "struct frame_info" and link it previous to
1552 this_frame. */
1553
1554 static struct frame_info *
1555 get_prev_frame_raw (struct frame_info *this_frame)
1556 {
1557 struct frame_info *prev_frame;
1558
1559 /* Allocate the new frame but do not wire it in to the frame chain.
1560 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1561 frame->next to pull some fancy tricks (of course such code is, by
1562 definition, recursive). Try to prevent it.
1563
1564 There is no reason to worry about memory leaks, should the
1565 remainder of the function fail. The allocated memory will be
1566 quickly reclaimed when the frame cache is flushed, and the `we've
1567 been here before' check above will stop repeated memory
1568 allocation calls. */
1569 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1570 prev_frame->level = this_frame->level + 1;
1571
1572 /* For now, assume we don't have frame chains crossing address
1573 spaces. */
1574 prev_frame->pspace = this_frame->pspace;
1575 prev_frame->aspace = this_frame->aspace;
1576
1577 /* Don't yet compute ->unwind (and hence ->type). It is computed
1578 on-demand in get_frame_type, frame_register_unwind, and
1579 get_frame_id. */
1580
1581 /* Don't yet compute the frame's ID. It is computed on-demand by
1582 get_frame_id(). */
1583
1584 /* The unwound frame ID is validate at the start of this function,
1585 as part of the logic to decide if that frame should be further
1586 unwound, and not here while the prev frame is being created.
1587 Doing this makes it possible for the user to examine a frame that
1588 has an invalid frame ID.
1589
1590 Some very old VAX code noted: [...] For the sake of argument,
1591 suppose that the stack is somewhat trashed (which is one reason
1592 that "info frame" exists). So, return 0 (indicating we don't
1593 know the address of the arglist) if we don't know what frame this
1594 frame calls. */
1595
1596 /* Link it in. */
1597 this_frame->prev = prev_frame;
1598 prev_frame->next = this_frame;
1599
1600 if (frame_debug)
1601 {
1602 fprintf_unfiltered (gdb_stdlog, "-> ");
1603 fprint_frame (gdb_stdlog, prev_frame);
1604 fprintf_unfiltered (gdb_stdlog, " }\n");
1605 }
1606
1607 return prev_frame;
1608 }
1609
1610 /* Debug routine to print a NULL frame being returned. */
1611
1612 static void
1613 frame_debug_got_null_frame (struct frame_info *this_frame,
1614 const char *reason)
1615 {
1616 if (frame_debug)
1617 {
1618 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1619 if (this_frame != NULL)
1620 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1621 else
1622 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1623 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1624 }
1625 }
1626
1627 /* Is this (non-sentinel) frame in the "main"() function? */
1628
1629 static int
1630 inside_main_func (struct frame_info *this_frame)
1631 {
1632 struct minimal_symbol *msymbol;
1633 CORE_ADDR maddr;
1634
1635 if (symfile_objfile == 0)
1636 return 0;
1637 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1638 if (msymbol == NULL)
1639 return 0;
1640 /* Make certain that the code, and not descriptor, address is
1641 returned. */
1642 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1643 SYMBOL_VALUE_ADDRESS (msymbol),
1644 &current_target);
1645 return maddr == get_frame_func (this_frame);
1646 }
1647
1648 /* Test whether THIS_FRAME is inside the process entry point function. */
1649
1650 static int
1651 inside_entry_func (struct frame_info *this_frame)
1652 {
1653 CORE_ADDR entry_point;
1654
1655 if (!entry_point_address_query (&entry_point))
1656 return 0;
1657
1658 return get_frame_func (this_frame) == entry_point;
1659 }
1660
1661 /* Return a structure containing various interesting information about
1662 the frame that called THIS_FRAME. Returns NULL if there is entier
1663 no such frame or the frame fails any of a set of target-independent
1664 condition that should terminate the frame chain (e.g., as unwinding
1665 past main()).
1666
1667 This function should not contain target-dependent tests, such as
1668 checking whether the program-counter is zero. */
1669
1670 struct frame_info *
1671 get_prev_frame (struct frame_info *this_frame)
1672 {
1673 struct frame_info *prev_frame;
1674
1675 /* There is always a frame. If this assertion fails, suspect that
1676 something should be calling get_selected_frame() or
1677 get_current_frame(). */
1678 gdb_assert (this_frame != NULL);
1679
1680 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1681 sense to stop unwinding at a dummy frame. One place where a dummy
1682 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1683 pcsqh register (space register for the instruction at the head of the
1684 instruction queue) cannot be written directly; the only way to set it
1685 is to branch to code that is in the target space. In order to implement
1686 frame dummies on HPUX, the called function is made to jump back to where
1687 the inferior was when the user function was called. If gdb was inside
1688 the main function when we created the dummy frame, the dummy frame will
1689 point inside the main function. */
1690 if (this_frame->level >= 0
1691 && get_frame_type (this_frame) == NORMAL_FRAME
1692 && !backtrace_past_main
1693 && inside_main_func (this_frame))
1694 /* Don't unwind past main(). Note, this is done _before_ the
1695 frame has been marked as previously unwound. That way if the
1696 user later decides to enable unwinds past main(), that will
1697 automatically happen. */
1698 {
1699 frame_debug_got_null_frame (this_frame, "inside main func");
1700 return NULL;
1701 }
1702
1703 /* If the user's backtrace limit has been exceeded, stop. We must
1704 add two to the current level; one of those accounts for backtrace_limit
1705 being 1-based and the level being 0-based, and the other accounts for
1706 the level of the new frame instead of the level of the current
1707 frame. */
1708 if (this_frame->level + 2 > backtrace_limit)
1709 {
1710 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1711 return NULL;
1712 }
1713
1714 /* If we're already inside the entry function for the main objfile,
1715 then it isn't valid. Don't apply this test to a dummy frame -
1716 dummy frame PCs typically land in the entry func. Don't apply
1717 this test to the sentinel frame. Sentinel frames should always
1718 be allowed to unwind. */
1719 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1720 wasn't checking for "main" in the minimal symbols. With that
1721 fixed asm-source tests now stop in "main" instead of halting the
1722 backtrace in weird and wonderful ways somewhere inside the entry
1723 file. Suspect that tests for inside the entry file/func were
1724 added to work around that (now fixed) case. */
1725 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1726 suggested having the inside_entry_func test use the
1727 inside_main_func() msymbol trick (along with entry_point_address()
1728 I guess) to determine the address range of the start function.
1729 That should provide a far better stopper than the current
1730 heuristics. */
1731 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1732 applied tail-call optimizations to main so that a function called
1733 from main returns directly to the caller of main. Since we don't
1734 stop at main, we should at least stop at the entry point of the
1735 application. */
1736 if (this_frame->level >= 0
1737 && get_frame_type (this_frame) == NORMAL_FRAME
1738 && !backtrace_past_entry
1739 && inside_entry_func (this_frame))
1740 {
1741 frame_debug_got_null_frame (this_frame, "inside entry func");
1742 return NULL;
1743 }
1744
1745 /* Assume that the only way to get a zero PC is through something
1746 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1747 will never unwind a zero PC. */
1748 if (this_frame->level > 0
1749 && (get_frame_type (this_frame) == NORMAL_FRAME
1750 || get_frame_type (this_frame) == INLINE_FRAME)
1751 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1752 && get_frame_pc (this_frame) == 0)
1753 {
1754 frame_debug_got_null_frame (this_frame, "zero PC");
1755 return NULL;
1756 }
1757
1758 return get_prev_frame_1 (this_frame);
1759 }
1760
1761 CORE_ADDR
1762 get_frame_pc (struct frame_info *frame)
1763 {
1764 gdb_assert (frame->next != NULL);
1765 return frame_unwind_pc (frame->next);
1766 }
1767
1768 /* Return an address that falls within THIS_FRAME's code block. */
1769
1770 CORE_ADDR
1771 get_frame_address_in_block (struct frame_info *this_frame)
1772 {
1773 /* A draft address. */
1774 CORE_ADDR pc = get_frame_pc (this_frame);
1775
1776 struct frame_info *next_frame = this_frame->next;
1777
1778 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1779 Normally the resume address is inside the body of the function
1780 associated with THIS_FRAME, but there is a special case: when
1781 calling a function which the compiler knows will never return
1782 (for instance abort), the call may be the very last instruction
1783 in the calling function. The resume address will point after the
1784 call and may be at the beginning of a different function
1785 entirely.
1786
1787 If THIS_FRAME is a signal frame or dummy frame, then we should
1788 not adjust the unwound PC. For a dummy frame, GDB pushed the
1789 resume address manually onto the stack. For a signal frame, the
1790 OS may have pushed the resume address manually and invoked the
1791 handler (e.g. GNU/Linux), or invoked the trampoline which called
1792 the signal handler - but in either case the signal handler is
1793 expected to return to the trampoline. So in both of these
1794 cases we know that the resume address is executable and
1795 related. So we only need to adjust the PC if THIS_FRAME
1796 is a normal function.
1797
1798 If the program has been interrupted while THIS_FRAME is current,
1799 then clearly the resume address is inside the associated
1800 function. There are three kinds of interruption: debugger stop
1801 (next frame will be SENTINEL_FRAME), operating system
1802 signal or exception (next frame will be SIGTRAMP_FRAME),
1803 or debugger-induced function call (next frame will be
1804 DUMMY_FRAME). So we only need to adjust the PC if
1805 NEXT_FRAME is a normal function.
1806
1807 We check the type of NEXT_FRAME first, since it is already
1808 known; frame type is determined by the unwinder, and since
1809 we have THIS_FRAME we've already selected an unwinder for
1810 NEXT_FRAME.
1811
1812 If the next frame is inlined, we need to keep going until we find
1813 the real function - for instance, if a signal handler is invoked
1814 while in an inlined function, then the code address of the
1815 "calling" normal function should not be adjusted either. */
1816
1817 while (get_frame_type (next_frame) == INLINE_FRAME)
1818 next_frame = next_frame->next;
1819
1820 if (get_frame_type (next_frame) == NORMAL_FRAME
1821 && (get_frame_type (this_frame) == NORMAL_FRAME
1822 || get_frame_type (this_frame) == INLINE_FRAME))
1823 return pc - 1;
1824
1825 return pc;
1826 }
1827
1828 void
1829 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1830 {
1831 struct frame_info *next_frame;
1832 int notcurrent;
1833
1834 /* If the next frame represents an inlined function call, this frame's
1835 sal is the "call site" of that inlined function, which can not
1836 be inferred from get_frame_pc. */
1837 next_frame = get_next_frame (frame);
1838 if (frame_inlined_callees (frame) > 0)
1839 {
1840 struct symbol *sym;
1841
1842 if (next_frame)
1843 sym = get_frame_function (next_frame);
1844 else
1845 sym = inline_skipped_symbol (inferior_ptid);
1846
1847 init_sal (sal);
1848 if (SYMBOL_LINE (sym) != 0)
1849 {
1850 sal->symtab = SYMBOL_SYMTAB (sym);
1851 sal->line = SYMBOL_LINE (sym);
1852 }
1853 else
1854 /* If the symbol does not have a location, we don't know where
1855 the call site is. Do not pretend to. This is jarring, but
1856 we can't do much better. */
1857 sal->pc = get_frame_pc (frame);
1858
1859 return;
1860 }
1861
1862 /* If FRAME is not the innermost frame, that normally means that
1863 FRAME->pc points at the return instruction (which is *after* the
1864 call instruction), and we want to get the line containing the
1865 call (because the call is where the user thinks the program is).
1866 However, if the next frame is either a SIGTRAMP_FRAME or a
1867 DUMMY_FRAME, then the next frame will contain a saved interrupt
1868 PC and such a PC indicates the current (rather than next)
1869 instruction/line, consequently, for such cases, want to get the
1870 line containing fi->pc. */
1871 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1872 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1873 }
1874
1875 /* Per "frame.h", return the ``address'' of the frame. Code should
1876 really be using get_frame_id(). */
1877 CORE_ADDR
1878 get_frame_base (struct frame_info *fi)
1879 {
1880 return get_frame_id (fi).stack_addr;
1881 }
1882
1883 /* High-level offsets into the frame. Used by the debug info. */
1884
1885 CORE_ADDR
1886 get_frame_base_address (struct frame_info *fi)
1887 {
1888 if (get_frame_type (fi) != NORMAL_FRAME)
1889 return 0;
1890 if (fi->base == NULL)
1891 fi->base = frame_base_find_by_frame (fi);
1892 /* Sneaky: If the low-level unwind and high-level base code share a
1893 common unwinder, let them share the prologue cache. */
1894 if (fi->base->unwind == fi->unwind)
1895 return fi->base->this_base (fi, &fi->prologue_cache);
1896 return fi->base->this_base (fi, &fi->base_cache);
1897 }
1898
1899 CORE_ADDR
1900 get_frame_locals_address (struct frame_info *fi)
1901 {
1902 void **cache;
1903 if (get_frame_type (fi) != NORMAL_FRAME)
1904 return 0;
1905 /* If there isn't a frame address method, find it. */
1906 if (fi->base == NULL)
1907 fi->base = frame_base_find_by_frame (fi);
1908 /* Sneaky: If the low-level unwind and high-level base code share a
1909 common unwinder, let them share the prologue cache. */
1910 if (fi->base->unwind == fi->unwind)
1911 return fi->base->this_locals (fi, &fi->prologue_cache);
1912 return fi->base->this_locals (fi, &fi->base_cache);
1913 }
1914
1915 CORE_ADDR
1916 get_frame_args_address (struct frame_info *fi)
1917 {
1918 void **cache;
1919 if (get_frame_type (fi) != NORMAL_FRAME)
1920 return 0;
1921 /* If there isn't a frame address method, find it. */
1922 if (fi->base == NULL)
1923 fi->base = frame_base_find_by_frame (fi);
1924 /* Sneaky: If the low-level unwind and high-level base code share a
1925 common unwinder, let them share the prologue cache. */
1926 if (fi->base->unwind == fi->unwind)
1927 return fi->base->this_args (fi, &fi->prologue_cache);
1928 return fi->base->this_args (fi, &fi->base_cache);
1929 }
1930
1931 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1932 otherwise. */
1933
1934 int
1935 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1936 {
1937 if (fi->unwind == NULL)
1938 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1939 return fi->unwind == unwinder;
1940 }
1941
1942 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1943 or -1 for a NULL frame. */
1944
1945 int
1946 frame_relative_level (struct frame_info *fi)
1947 {
1948 if (fi == NULL)
1949 return -1;
1950 else
1951 return fi->level;
1952 }
1953
1954 enum frame_type
1955 get_frame_type (struct frame_info *frame)
1956 {
1957 if (frame->unwind == NULL)
1958 /* Initialize the frame's unwinder because that's what
1959 provides the frame's type. */
1960 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1961 return frame->unwind->type;
1962 }
1963
1964 struct program_space *
1965 get_frame_program_space (struct frame_info *frame)
1966 {
1967 return frame->pspace;
1968 }
1969
1970 struct program_space *
1971 frame_unwind_program_space (struct frame_info *this_frame)
1972 {
1973 gdb_assert (this_frame);
1974
1975 /* This is really a placeholder to keep the API consistent --- we
1976 assume for now that we don't have frame chains crossing
1977 spaces. */
1978 return this_frame->pspace;
1979 }
1980
1981 struct address_space *
1982 get_frame_address_space (struct frame_info *frame)
1983 {
1984 return frame->aspace;
1985 }
1986
1987 /* Memory access methods. */
1988
1989 void
1990 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1991 gdb_byte *buf, int len)
1992 {
1993 read_memory (addr, buf, len);
1994 }
1995
1996 LONGEST
1997 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1998 int len)
1999 {
2000 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2001 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2002 return read_memory_integer (addr, len, byte_order);
2003 }
2004
2005 ULONGEST
2006 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2007 int len)
2008 {
2009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2010 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2011 return read_memory_unsigned_integer (addr, len, byte_order);
2012 }
2013
2014 int
2015 safe_frame_unwind_memory (struct frame_info *this_frame,
2016 CORE_ADDR addr, gdb_byte *buf, int len)
2017 {
2018 /* NOTE: target_read_memory returns zero on success! */
2019 return !target_read_memory (addr, buf, len);
2020 }
2021
2022 /* Architecture methods. */
2023
2024 struct gdbarch *
2025 get_frame_arch (struct frame_info *this_frame)
2026 {
2027 return frame_unwind_arch (this_frame->next);
2028 }
2029
2030 struct gdbarch *
2031 frame_unwind_arch (struct frame_info *next_frame)
2032 {
2033 if (!next_frame->prev_arch.p)
2034 {
2035 struct gdbarch *arch;
2036
2037 if (next_frame->unwind == NULL)
2038 next_frame->unwind
2039 = frame_unwind_find_by_frame (next_frame,
2040 &next_frame->prologue_cache);
2041
2042 if (next_frame->unwind->prev_arch != NULL)
2043 arch = next_frame->unwind->prev_arch (next_frame,
2044 &next_frame->prologue_cache);
2045 else
2046 arch = get_frame_arch (next_frame);
2047
2048 next_frame->prev_arch.arch = arch;
2049 next_frame->prev_arch.p = 1;
2050 if (frame_debug)
2051 fprintf_unfiltered (gdb_stdlog,
2052 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2053 next_frame->level,
2054 gdbarch_bfd_arch_info (arch)->printable_name);
2055 }
2056
2057 return next_frame->prev_arch.arch;
2058 }
2059
2060 struct gdbarch *
2061 frame_unwind_caller_arch (struct frame_info *next_frame)
2062 {
2063 return frame_unwind_arch (skip_inlined_frames (next_frame));
2064 }
2065
2066 /* Stack pointer methods. */
2067
2068 CORE_ADDR
2069 get_frame_sp (struct frame_info *this_frame)
2070 {
2071 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2072 /* Normality - an architecture that provides a way of obtaining any
2073 frame inner-most address. */
2074 if (gdbarch_unwind_sp_p (gdbarch))
2075 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2076 operate on THIS_FRAME now. */
2077 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2078 /* Now things are really are grim. Hope that the value returned by
2079 the gdbarch_sp_regnum register is meaningful. */
2080 if (gdbarch_sp_regnum (gdbarch) >= 0)
2081 return get_frame_register_unsigned (this_frame,
2082 gdbarch_sp_regnum (gdbarch));
2083 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2084 }
2085
2086 /* Return the reason why we can't unwind past FRAME. */
2087
2088 enum unwind_stop_reason
2089 get_frame_unwind_stop_reason (struct frame_info *frame)
2090 {
2091 /* If we haven't tried to unwind past this point yet, then assume
2092 that unwinding would succeed. */
2093 if (frame->prev_p == 0)
2094 return UNWIND_NO_REASON;
2095
2096 /* Otherwise, we set a reason when we succeeded (or failed) to
2097 unwind. */
2098 return frame->stop_reason;
2099 }
2100
2101 /* Return a string explaining REASON. */
2102
2103 const char *
2104 frame_stop_reason_string (enum unwind_stop_reason reason)
2105 {
2106 switch (reason)
2107 {
2108 case UNWIND_NULL_ID:
2109 return _("unwinder did not report frame ID");
2110
2111 case UNWIND_INNER_ID:
2112 return _("previous frame inner to this frame (corrupt stack?)");
2113
2114 case UNWIND_SAME_ID:
2115 return _("previous frame identical to this frame (corrupt stack?)");
2116
2117 case UNWIND_NO_SAVED_PC:
2118 return _("frame did not save the PC");
2119
2120 case UNWIND_NO_REASON:
2121 case UNWIND_FIRST_ERROR:
2122 default:
2123 internal_error (__FILE__, __LINE__,
2124 "Invalid frame stop reason");
2125 }
2126 }
2127
2128 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2129 FRAME. */
2130
2131 static void
2132 frame_cleanup_after_sniffer (void *arg)
2133 {
2134 struct frame_info *frame = arg;
2135
2136 /* The sniffer should not allocate a prologue cache if it did not
2137 match this frame. */
2138 gdb_assert (frame->prologue_cache == NULL);
2139
2140 /* No sniffer should extend the frame chain; sniff based on what is
2141 already certain. */
2142 gdb_assert (!frame->prev_p);
2143
2144 /* The sniffer should not check the frame's ID; that's circular. */
2145 gdb_assert (!frame->this_id.p);
2146
2147 /* Clear cached fields dependent on the unwinder.
2148
2149 The previous PC is independent of the unwinder, but the previous
2150 function is not (see get_frame_address_in_block). */
2151 frame->prev_func.p = 0;
2152 frame->prev_func.addr = 0;
2153
2154 /* Discard the unwinder last, so that we can easily find it if an assertion
2155 in this function triggers. */
2156 frame->unwind = NULL;
2157 }
2158
2159 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2160 Return a cleanup which should be called if unwinding fails, and
2161 discarded if it succeeds. */
2162
2163 struct cleanup *
2164 frame_prepare_for_sniffer (struct frame_info *frame,
2165 const struct frame_unwind *unwind)
2166 {
2167 gdb_assert (frame->unwind == NULL);
2168 frame->unwind = unwind;
2169 return make_cleanup (frame_cleanup_after_sniffer, frame);
2170 }
2171
2172 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2173
2174 static struct cmd_list_element *set_backtrace_cmdlist;
2175 static struct cmd_list_element *show_backtrace_cmdlist;
2176
2177 static void
2178 set_backtrace_cmd (char *args, int from_tty)
2179 {
2180 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2181 }
2182
2183 static void
2184 show_backtrace_cmd (char *args, int from_tty)
2185 {
2186 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2187 }
2188
2189 void
2190 _initialize_frame (void)
2191 {
2192 obstack_init (&frame_cache_obstack);
2193
2194 observer_attach_target_changed (frame_observer_target_changed);
2195
2196 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2197 Set backtrace specific variables.\n\
2198 Configure backtrace variables such as the backtrace limit"),
2199 &set_backtrace_cmdlist, "set backtrace ",
2200 0/*allow-unknown*/, &setlist);
2201 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2202 Show backtrace specific variables\n\
2203 Show backtrace variables such as the backtrace limit"),
2204 &show_backtrace_cmdlist, "show backtrace ",
2205 0/*allow-unknown*/, &showlist);
2206
2207 add_setshow_boolean_cmd ("past-main", class_obscure,
2208 &backtrace_past_main, _("\
2209 Set whether backtraces should continue past \"main\"."), _("\
2210 Show whether backtraces should continue past \"main\"."), _("\
2211 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2212 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2213 of the stack trace."),
2214 NULL,
2215 show_backtrace_past_main,
2216 &set_backtrace_cmdlist,
2217 &show_backtrace_cmdlist);
2218
2219 add_setshow_boolean_cmd ("past-entry", class_obscure,
2220 &backtrace_past_entry, _("\
2221 Set whether backtraces should continue past the entry point of a program."),
2222 _("\
2223 Show whether backtraces should continue past the entry point of a program."),
2224 _("\
2225 Normally there are no callers beyond the entry point of a program, so GDB\n\
2226 will terminate the backtrace there. Set this variable if you need to see \n\
2227 the rest of the stack trace."),
2228 NULL,
2229 show_backtrace_past_entry,
2230 &set_backtrace_cmdlist,
2231 &show_backtrace_cmdlist);
2232
2233 add_setshow_integer_cmd ("limit", class_obscure,
2234 &backtrace_limit, _("\
2235 Set an upper bound on the number of backtrace levels."), _("\
2236 Show the upper bound on the number of backtrace levels."), _("\
2237 No more than the specified number of frames can be displayed or examined.\n\
2238 Zero is unlimited."),
2239 NULL,
2240 show_backtrace_limit,
2241 &set_backtrace_cmdlist,
2242 &show_backtrace_cmdlist);
2243
2244 /* Debug this files internals. */
2245 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2246 Set frame debugging."), _("\
2247 Show frame debugging."), _("\
2248 When non-zero, frame specific internal debugging is enabled."),
2249 NULL,
2250 show_frame_debug,
2251 &setdebuglist, &showdebuglist);
2252 }
This page took 0.099893 seconds and 4 git commands to generate.