Remove unnecessary null_cleanup
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
47 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
48
49 /* Status of some values cached in the frame_info object. */
50
51 enum cached_copy_status
52 {
53 /* Value is unknown. */
54 CC_UNKNOWN,
55
56 /* We have a value. */
57 CC_VALUE,
58
59 /* Value was not saved. */
60 CC_NOT_SAVED,
61
62 /* Value is unavailable. */
63 CC_UNAVAILABLE
64 };
65
66 /* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
75
76 struct frame_info
77 {
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
82 most frame. */
83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
87 int level;
88
89 /* The frame's program space. */
90 struct program_space *pspace;
91
92 /* The frame's address space. */
93 struct address_space *aspace;
94
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
98 selected based on the presence, or otherwise, of register unwind
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
102
103 /* Cached copy of the previous frame's architecture. */
104 struct
105 {
106 int p;
107 struct gdbarch *arch;
108 } prev_arch;
109
110 /* Cached copy of the previous frame's resume address. */
111 struct {
112 enum cached_copy_status status;
113 CORE_ADDR value;
114 } prev_pc;
115
116 /* Cached copy of the previous frame's function address. */
117 struct
118 {
119 CORE_ADDR addr;
120 int p;
121 } prev_func;
122
123 /* This frame's ID. */
124 struct
125 {
126 int p;
127 struct frame_id value;
128 } this_id;
129
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
132 debug info. */
133 const struct frame_base *base;
134 void *base_cache;
135
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
139 int prev_p;
140 struct frame_info *prev; /* up, outer, older */
141
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
145
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
149 };
150
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
155
156 static htab_t frame_stash;
157
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
161
162 static hashval_t
163 frame_addr_hash (const void *ap)
164 {
165 const struct frame_info *frame = (const struct frame_info *) ap;
166 const struct frame_id f_id = frame->this_id.value;
167 hashval_t hash = 0;
168
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 || f_id.code_addr_p
171 || f_id.special_addr_p);
172
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
182
183 return hash;
184 }
185
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
188
189 static int
190 frame_addr_hash_eq (const void *a, const void *b)
191 {
192 const struct frame_info *f_entry = (const struct frame_info *) a;
193 const struct frame_info *f_element = (const struct frame_info *) b;
194
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
197 }
198
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
201
202 static void
203 frame_stash_create (void)
204 {
205 frame_stash = htab_create (100,
206 frame_addr_hash,
207 frame_addr_hash_eq,
208 NULL);
209 }
210
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
213 otherwise. */
214
215 static int
216 frame_stash_add (struct frame_info *frame)
217 {
218 struct frame_info **slot;
219
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
222
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
224 frame,
225 INSERT);
226
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
231 if (*slot != NULL)
232 return 0;
233
234 *slot = frame;
235 return 1;
236 }
237
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
240 NULL. */
241
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
244 {
245 struct frame_info dummy;
246 struct frame_info *frame;
247
248 dummy.this_id.value = id;
249 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
250 return frame;
251 }
252
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
255 invalidated. */
256
257 static void
258 frame_stash_invalidate (void)
259 {
260 htab_empty (frame_stash);
261 }
262
263 /* Flag to control debugging. */
264
265 unsigned int frame_debug;
266 static void
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
271 }
272
273 /* Flag to indicate whether backtraces should stop at main et.al. */
274
275 static int backtrace_past_main;
276 static void
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
283 value);
284 }
285
286 static int backtrace_past_entry;
287 static void
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
293 value);
294 }
295
296 static unsigned int backtrace_limit = UINT_MAX;
297 static void
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
300 {
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
304 value);
305 }
306
307
308 static void
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
310 {
311 if (p)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
313 else
314 fprintf_unfiltered (file, "!%s", name);
315 }
316
317 void
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
319 {
320 fprintf_unfiltered (file, "{");
321
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
326 else
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
329
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
332
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
334
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
337
338 fprintf_unfiltered (file, "}");
339 }
340
341 static void
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
343 {
344 switch (type)
345 {
346 case NORMAL_FRAME:
347 fprintf_unfiltered (file, "NORMAL_FRAME");
348 return;
349 case DUMMY_FRAME:
350 fprintf_unfiltered (file, "DUMMY_FRAME");
351 return;
352 case INLINE_FRAME:
353 fprintf_unfiltered (file, "INLINE_FRAME");
354 return;
355 case TAILCALL_FRAME:
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
357 return;
358 case SIGTRAMP_FRAME:
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360 return;
361 case ARCH_FRAME:
362 fprintf_unfiltered (file, "ARCH_FRAME");
363 return;
364 case SENTINEL_FRAME:
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
366 return;
367 default:
368 fprintf_unfiltered (file, "<unknown type>");
369 return;
370 };
371 }
372
373 static void
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
375 {
376 if (fi == NULL)
377 {
378 fprintf_unfiltered (file, "<NULL frame>");
379 return;
380 }
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
387 else
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
393 else
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
408 if (fi->this_id.p)
409 fprint_frame_id (file, fi->this_id.value);
410 else
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
419 }
420
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return FRAME if FRAME is a non-artificial frame.
424 Return NULL if FRAME is the start of an artificial-only chain. */
425
426 static struct frame_info *
427 skip_artificial_frames (struct frame_info *frame)
428 {
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
432 sets a backtrace limit).
433
434 Note that for record targets we may get a frame chain that consists
435 of artificial frames only. */
436 while (get_frame_type (frame) == INLINE_FRAME
437 || get_frame_type (frame) == TAILCALL_FRAME)
438 {
439 frame = get_prev_frame_always (frame);
440 if (frame == NULL)
441 break;
442 }
443
444 return frame;
445 }
446
447 struct frame_info *
448 skip_unwritable_frames (struct frame_info *frame)
449 {
450 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
451 {
452 frame = get_prev_frame (frame);
453 if (frame == NULL)
454 break;
455 }
456
457 return frame;
458 }
459
460 /* See frame.h. */
461
462 struct frame_info *
463 skip_tailcall_frames (struct frame_info *frame)
464 {
465 while (get_frame_type (frame) == TAILCALL_FRAME)
466 {
467 /* Note that for record targets we may get a frame chain that consists of
468 tailcall frames only. */
469 frame = get_prev_frame (frame);
470 if (frame == NULL)
471 break;
472 }
473
474 return frame;
475 }
476
477 /* Compute the frame's uniq ID that can be used to, later, re-find the
478 frame. */
479
480 static void
481 compute_frame_id (struct frame_info *fi)
482 {
483 gdb_assert (!fi->this_id.p);
484
485 if (frame_debug)
486 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
487 fi->level);
488 /* Find the unwinder. */
489 if (fi->unwind == NULL)
490 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
491 /* Find THIS frame's ID. */
492 /* Default to outermost if no ID is found. */
493 fi->this_id.value = outer_frame_id;
494 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
495 gdb_assert (frame_id_p (fi->this_id.value));
496 fi->this_id.p = 1;
497 if (frame_debug)
498 {
499 fprintf_unfiltered (gdb_stdlog, "-> ");
500 fprint_frame_id (gdb_stdlog, fi->this_id.value);
501 fprintf_unfiltered (gdb_stdlog, " }\n");
502 }
503 }
504
505 /* Return a frame uniq ID that can be used to, later, re-find the
506 frame. */
507
508 struct frame_id
509 get_frame_id (struct frame_info *fi)
510 {
511 if (fi == NULL)
512 return null_frame_id;
513
514 if (!fi->this_id.p)
515 {
516 int stashed;
517
518 /* If we haven't computed the frame id yet, then it must be that
519 this is the current frame. Compute it now, and stash the
520 result. The IDs of other frames are computed as soon as
521 they're created, in order to detect cycles. See
522 get_prev_frame_if_no_cycle. */
523 gdb_assert (fi->level == 0);
524
525 /* Compute. */
526 compute_frame_id (fi);
527
528 /* Since this is the first frame in the chain, this should
529 always succeed. */
530 stashed = frame_stash_add (fi);
531 gdb_assert (stashed);
532 }
533
534 return fi->this_id.value;
535 }
536
537 struct frame_id
538 get_stack_frame_id (struct frame_info *next_frame)
539 {
540 return get_frame_id (skip_artificial_frames (next_frame));
541 }
542
543 struct frame_id
544 frame_unwind_caller_id (struct frame_info *next_frame)
545 {
546 struct frame_info *this_frame;
547
548 /* Use get_prev_frame_always, and not get_prev_frame. The latter
549 will truncate the frame chain, leading to this function
550 unintentionally returning a null_frame_id (e.g., when a caller
551 requests the frame ID of "main()"s caller. */
552
553 next_frame = skip_artificial_frames (next_frame);
554 if (next_frame == NULL)
555 return null_frame_id;
556
557 this_frame = get_prev_frame_always (next_frame);
558 if (this_frame)
559 return get_frame_id (skip_artificial_frames (this_frame));
560 else
561 return null_frame_id;
562 }
563
564 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
565 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
566
567 struct frame_id
568 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
569 CORE_ADDR special_addr)
570 {
571 struct frame_id id = null_frame_id;
572
573 id.stack_addr = stack_addr;
574 id.stack_status = FID_STACK_VALID;
575 id.code_addr = code_addr;
576 id.code_addr_p = 1;
577 id.special_addr = special_addr;
578 id.special_addr_p = 1;
579 return id;
580 }
581
582 /* See frame.h. */
583
584 struct frame_id
585 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
586 {
587 struct frame_id id = null_frame_id;
588
589 id.stack_status = FID_STACK_UNAVAILABLE;
590 id.code_addr = code_addr;
591 id.code_addr_p = 1;
592 return id;
593 }
594
595 /* See frame.h. */
596
597 struct frame_id
598 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
599 CORE_ADDR special_addr)
600 {
601 struct frame_id id = null_frame_id;
602
603 id.stack_status = FID_STACK_UNAVAILABLE;
604 id.code_addr = code_addr;
605 id.code_addr_p = 1;
606 id.special_addr = special_addr;
607 id.special_addr_p = 1;
608 return id;
609 }
610
611 struct frame_id
612 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
613 {
614 struct frame_id id = null_frame_id;
615
616 id.stack_addr = stack_addr;
617 id.stack_status = FID_STACK_VALID;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build_wild (CORE_ADDR stack_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 return id;
631 }
632
633 int
634 frame_id_p (struct frame_id l)
635 {
636 int p;
637
638 /* The frame is valid iff it has a valid stack address. */
639 p = l.stack_status != FID_STACK_INVALID;
640 /* outer_frame_id is also valid. */
641 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
642 p = 1;
643 if (frame_debug)
644 {
645 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
646 fprint_frame_id (gdb_stdlog, l);
647 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
648 }
649 return p;
650 }
651
652 int
653 frame_id_artificial_p (struct frame_id l)
654 {
655 if (!frame_id_p (l))
656 return 0;
657
658 return (l.artificial_depth != 0);
659 }
660
661 int
662 frame_id_eq (struct frame_id l, struct frame_id r)
663 {
664 int eq;
665
666 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
667 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
668 /* The outermost frame marker is equal to itself. This is the
669 dodgy thing about outer_frame_id, since between execution steps
670 we might step into another function - from which we can't
671 unwind either. More thought required to get rid of
672 outer_frame_id. */
673 eq = 1;
674 else if (l.stack_status == FID_STACK_INVALID
675 || r.stack_status == FID_STACK_INVALID)
676 /* Like a NaN, if either ID is invalid, the result is false.
677 Note that a frame ID is invalid iff it is the null frame ID. */
678 eq = 0;
679 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
680 /* If .stack addresses are different, the frames are different. */
681 eq = 0;
682 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
683 /* An invalid code addr is a wild card. If .code addresses are
684 different, the frames are different. */
685 eq = 0;
686 else if (l.special_addr_p && r.special_addr_p
687 && l.special_addr != r.special_addr)
688 /* An invalid special addr is a wild card (or unused). Otherwise
689 if special addresses are different, the frames are different. */
690 eq = 0;
691 else if (l.artificial_depth != r.artificial_depth)
692 /* If artifical depths are different, the frames must be different. */
693 eq = 0;
694 else
695 /* Frames are equal. */
696 eq = 1;
697
698 if (frame_debug)
699 {
700 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
701 fprint_frame_id (gdb_stdlog, l);
702 fprintf_unfiltered (gdb_stdlog, ",r=");
703 fprint_frame_id (gdb_stdlog, r);
704 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
705 }
706 return eq;
707 }
708
709 /* Safety net to check whether frame ID L should be inner to
710 frame ID R, according to their stack addresses.
711
712 This method cannot be used to compare arbitrary frames, as the
713 ranges of valid stack addresses may be discontiguous (e.g. due
714 to sigaltstack).
715
716 However, it can be used as safety net to discover invalid frame
717 IDs in certain circumstances. Assuming that NEXT is the immediate
718 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
719
720 * The stack address of NEXT must be inner-than-or-equal to the stack
721 address of THIS.
722
723 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
724 error has occurred.
725
726 * If NEXT and THIS have different stack addresses, no other frame
727 in the frame chain may have a stack address in between.
728
729 Therefore, if frame_id_inner (TEST, THIS) holds, but
730 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
731 to a valid frame in the frame chain.
732
733 The sanity checks above cannot be performed when a SIGTRAMP frame
734 is involved, because signal handlers might be executed on a different
735 stack than the stack used by the routine that caused the signal
736 to be raised. This can happen for instance when a thread exceeds
737 its maximum stack size. In this case, certain compilers implement
738 a stack overflow strategy that cause the handler to be run on a
739 different stack. */
740
741 static int
742 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
743 {
744 int inner;
745
746 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
747 /* Like NaN, any operation involving an invalid ID always fails.
748 Likewise if either ID has an unavailable stack address. */
749 inner = 0;
750 else if (l.artificial_depth > r.artificial_depth
751 && l.stack_addr == r.stack_addr
752 && l.code_addr_p == r.code_addr_p
753 && l.special_addr_p == r.special_addr_p
754 && l.special_addr == r.special_addr)
755 {
756 /* Same function, different inlined functions. */
757 const struct block *lb, *rb;
758
759 gdb_assert (l.code_addr_p && r.code_addr_p);
760
761 lb = block_for_pc (l.code_addr);
762 rb = block_for_pc (r.code_addr);
763
764 if (lb == NULL || rb == NULL)
765 /* Something's gone wrong. */
766 inner = 0;
767 else
768 /* This will return true if LB and RB are the same block, or
769 if the block with the smaller depth lexically encloses the
770 block with the greater depth. */
771 inner = contained_in (lb, rb);
772 }
773 else
774 /* Only return non-zero when strictly inner than. Note that, per
775 comment in "frame.h", there is some fuzz here. Frameless
776 functions are not strictly inner than (same .stack but
777 different .code and/or .special address). */
778 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
779 if (frame_debug)
780 {
781 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
782 fprint_frame_id (gdb_stdlog, l);
783 fprintf_unfiltered (gdb_stdlog, ",r=");
784 fprint_frame_id (gdb_stdlog, r);
785 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
786 }
787 return inner;
788 }
789
790 struct frame_info *
791 frame_find_by_id (struct frame_id id)
792 {
793 struct frame_info *frame, *prev_frame;
794
795 /* ZERO denotes the null frame, let the caller decide what to do
796 about it. Should it instead return get_current_frame()? */
797 if (!frame_id_p (id))
798 return NULL;
799
800 /* Try using the frame stash first. Finding it there removes the need
801 to perform the search by looping over all frames, which can be very
802 CPU-intensive if the number of frames is very high (the loop is O(n)
803 and get_prev_frame performs a series of checks that are relatively
804 expensive). This optimization is particularly useful when this function
805 is called from another function (such as value_fetch_lazy, case
806 VALUE_LVAL (val) == lval_register) which already loops over all frames,
807 making the overall behavior O(n^2). */
808 frame = frame_stash_find (id);
809 if (frame)
810 return frame;
811
812 for (frame = get_current_frame (); ; frame = prev_frame)
813 {
814 struct frame_id self = get_frame_id (frame);
815
816 if (frame_id_eq (id, self))
817 /* An exact match. */
818 return frame;
819
820 prev_frame = get_prev_frame (frame);
821 if (!prev_frame)
822 return NULL;
823
824 /* As a safety net to avoid unnecessary backtracing while trying
825 to find an invalid ID, we check for a common situation where
826 we can detect from comparing stack addresses that no other
827 frame in the current frame chain can have this ID. See the
828 comment at frame_id_inner for details. */
829 if (get_frame_type (frame) == NORMAL_FRAME
830 && !frame_id_inner (get_frame_arch (frame), id, self)
831 && frame_id_inner (get_frame_arch (prev_frame), id,
832 get_frame_id (prev_frame)))
833 return NULL;
834 }
835 return NULL;
836 }
837
838 static CORE_ADDR
839 frame_unwind_pc (struct frame_info *this_frame)
840 {
841 if (this_frame->prev_pc.status == CC_UNKNOWN)
842 {
843 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
844 {
845 struct gdbarch *prev_gdbarch;
846 CORE_ADDR pc = 0;
847 int pc_p = 0;
848
849 /* The right way. The `pure' way. The one true way. This
850 method depends solely on the register-unwind code to
851 determine the value of registers in THIS frame, and hence
852 the value of this frame's PC (resume address). A typical
853 implementation is no more than:
854
855 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
856 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
857
858 Note: this method is very heavily dependent on a correct
859 register-unwind implementation, it pays to fix that
860 method first; this method is frame type agnostic, since
861 it only deals with register values, it works with any
862 frame. This is all in stark contrast to the old
863 FRAME_SAVED_PC which would try to directly handle all the
864 different ways that a PC could be unwound. */
865 prev_gdbarch = frame_unwind_arch (this_frame);
866
867 TRY
868 {
869 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
870 pc_p = 1;
871 }
872 CATCH (ex, RETURN_MASK_ERROR)
873 {
874 if (ex.error == NOT_AVAILABLE_ERROR)
875 {
876 this_frame->prev_pc.status = CC_UNAVAILABLE;
877
878 if (frame_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "{ frame_unwind_pc (this_frame=%d)"
881 " -> <unavailable> }\n",
882 this_frame->level);
883 }
884 else if (ex.error == OPTIMIZED_OUT_ERROR)
885 {
886 this_frame->prev_pc.status = CC_NOT_SAVED;
887
888 if (frame_debug)
889 fprintf_unfiltered (gdb_stdlog,
890 "{ frame_unwind_pc (this_frame=%d)"
891 " -> <not saved> }\n",
892 this_frame->level);
893 }
894 else
895 throw_exception (ex);
896 }
897 END_CATCH
898
899 if (pc_p)
900 {
901 this_frame->prev_pc.value = pc;
902 this_frame->prev_pc.status = CC_VALUE;
903 if (frame_debug)
904 fprintf_unfiltered (gdb_stdlog,
905 "{ frame_unwind_pc (this_frame=%d) "
906 "-> %s }\n",
907 this_frame->level,
908 hex_string (this_frame->prev_pc.value));
909 }
910 }
911 else
912 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
913 }
914
915 if (this_frame->prev_pc.status == CC_VALUE)
916 return this_frame->prev_pc.value;
917 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
918 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
919 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
920 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
921 else
922 internal_error (__FILE__, __LINE__,
923 "unexpected prev_pc status: %d",
924 (int) this_frame->prev_pc.status);
925 }
926
927 CORE_ADDR
928 frame_unwind_caller_pc (struct frame_info *this_frame)
929 {
930 this_frame = skip_artificial_frames (this_frame);
931
932 /* We must have a non-artificial frame. The caller is supposed to check
933 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
934 in this case. */
935 gdb_assert (this_frame != NULL);
936
937 return frame_unwind_pc (this_frame);
938 }
939
940 int
941 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
942 {
943 struct frame_info *next_frame = this_frame->next;
944
945 if (!next_frame->prev_func.p)
946 {
947 CORE_ADDR addr_in_block;
948
949 /* Make certain that this, and not the adjacent, function is
950 found. */
951 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
952 {
953 next_frame->prev_func.p = -1;
954 if (frame_debug)
955 fprintf_unfiltered (gdb_stdlog,
956 "{ get_frame_func (this_frame=%d)"
957 " -> unavailable }\n",
958 this_frame->level);
959 }
960 else
961 {
962 next_frame->prev_func.p = 1;
963 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
964 if (frame_debug)
965 fprintf_unfiltered (gdb_stdlog,
966 "{ get_frame_func (this_frame=%d) -> %s }\n",
967 this_frame->level,
968 hex_string (next_frame->prev_func.addr));
969 }
970 }
971
972 if (next_frame->prev_func.p < 0)
973 {
974 *pc = -1;
975 return 0;
976 }
977 else
978 {
979 *pc = next_frame->prev_func.addr;
980 return 1;
981 }
982 }
983
984 CORE_ADDR
985 get_frame_func (struct frame_info *this_frame)
986 {
987 CORE_ADDR pc;
988
989 if (!get_frame_func_if_available (this_frame, &pc))
990 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
991
992 return pc;
993 }
994
995 static enum register_status
996 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
997 {
998 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
999 return REG_UNAVAILABLE;
1000 else
1001 return REG_VALID;
1002 }
1003
1004 struct regcache *
1005 frame_save_as_regcache (struct frame_info *this_frame)
1006 {
1007 struct address_space *aspace = get_frame_address_space (this_frame);
1008 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1009 aspace);
1010 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1011
1012 regcache_save (regcache, do_frame_register_read, this_frame);
1013 discard_cleanups (cleanups);
1014 return regcache;
1015 }
1016
1017 void
1018 frame_pop (struct frame_info *this_frame)
1019 {
1020 struct frame_info *prev_frame;
1021 struct regcache *scratch;
1022 struct cleanup *cleanups;
1023
1024 if (get_frame_type (this_frame) == DUMMY_FRAME)
1025 {
1026 /* Popping a dummy frame involves restoring more than just registers.
1027 dummy_frame_pop does all the work. */
1028 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1029 return;
1030 }
1031
1032 /* Ensure that we have a frame to pop to. */
1033 prev_frame = get_prev_frame_always (this_frame);
1034
1035 if (!prev_frame)
1036 error (_("Cannot pop the initial frame."));
1037
1038 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1039 entering THISFRAME. */
1040 prev_frame = skip_tailcall_frames (prev_frame);
1041
1042 if (prev_frame == NULL)
1043 error (_("Cannot find the caller frame."));
1044
1045 /* Make a copy of all the register values unwound from this frame.
1046 Save them in a scratch buffer so that there isn't a race between
1047 trying to extract the old values from the current regcache while
1048 at the same time writing new values into that same cache. */
1049 scratch = frame_save_as_regcache (prev_frame);
1050 cleanups = make_cleanup_regcache_xfree (scratch);
1051
1052 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1053 target's register cache that it is about to be hit with a burst
1054 register transfer and that the sequence of register writes should
1055 be batched. The pair target_prepare_to_store() and
1056 target_store_registers() kind of suggest this functionality.
1057 Unfortunately, they don't implement it. Their lack of a formal
1058 definition can lead to targets writing back bogus values
1059 (arguably a bug in the target code mind). */
1060 /* Now copy those saved registers into the current regcache.
1061 Here, regcache_cpy() calls regcache_restore(). */
1062 regcache_cpy (get_current_regcache (), scratch);
1063 do_cleanups (cleanups);
1064
1065 /* We've made right mess of GDB's local state, just discard
1066 everything. */
1067 reinit_frame_cache ();
1068 }
1069
1070 void
1071 frame_register_unwind (struct frame_info *frame, int regnum,
1072 int *optimizedp, int *unavailablep,
1073 enum lval_type *lvalp, CORE_ADDR *addrp,
1074 int *realnump, gdb_byte *bufferp)
1075 {
1076 struct value *value;
1077
1078 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1079 that the value proper does not need to be fetched. */
1080 gdb_assert (optimizedp != NULL);
1081 gdb_assert (lvalp != NULL);
1082 gdb_assert (addrp != NULL);
1083 gdb_assert (realnump != NULL);
1084 /* gdb_assert (bufferp != NULL); */
1085
1086 value = frame_unwind_register_value (frame, regnum);
1087
1088 gdb_assert (value != NULL);
1089
1090 *optimizedp = value_optimized_out (value);
1091 *unavailablep = !value_entirely_available (value);
1092 *lvalp = VALUE_LVAL (value);
1093 *addrp = value_address (value);
1094 *realnump = VALUE_REGNUM (value);
1095
1096 if (bufferp)
1097 {
1098 if (!*optimizedp && !*unavailablep)
1099 memcpy (bufferp, value_contents_all (value),
1100 TYPE_LENGTH (value_type (value)));
1101 else
1102 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1103 }
1104
1105 /* Dispose of the new value. This prevents watchpoints from
1106 trying to watch the saved frame pointer. */
1107 release_value (value);
1108 value_free (value);
1109 }
1110
1111 void
1112 frame_register (struct frame_info *frame, int regnum,
1113 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1114 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1115 {
1116 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1117 that the value proper does not need to be fetched. */
1118 gdb_assert (optimizedp != NULL);
1119 gdb_assert (lvalp != NULL);
1120 gdb_assert (addrp != NULL);
1121 gdb_assert (realnump != NULL);
1122 /* gdb_assert (bufferp != NULL); */
1123
1124 /* Obtain the register value by unwinding the register from the next
1125 (more inner frame). */
1126 gdb_assert (frame != NULL && frame->next != NULL);
1127 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1128 lvalp, addrp, realnump, bufferp);
1129 }
1130
1131 void
1132 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1133 {
1134 int optimized;
1135 int unavailable;
1136 CORE_ADDR addr;
1137 int realnum;
1138 enum lval_type lval;
1139
1140 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1141 &lval, &addr, &realnum, buf);
1142
1143 if (optimized)
1144 throw_error (OPTIMIZED_OUT_ERROR,
1145 _("Register %d was not saved"), regnum);
1146 if (unavailable)
1147 throw_error (NOT_AVAILABLE_ERROR,
1148 _("Register %d is not available"), regnum);
1149 }
1150
1151 void
1152 get_frame_register (struct frame_info *frame,
1153 int regnum, gdb_byte *buf)
1154 {
1155 frame_unwind_register (frame->next, regnum, buf);
1156 }
1157
1158 struct value *
1159 frame_unwind_register_value (struct frame_info *frame, int regnum)
1160 {
1161 struct gdbarch *gdbarch;
1162 struct value *value;
1163
1164 gdb_assert (frame != NULL);
1165 gdbarch = frame_unwind_arch (frame);
1166
1167 if (frame_debug)
1168 {
1169 fprintf_unfiltered (gdb_stdlog,
1170 "{ frame_unwind_register_value "
1171 "(frame=%d,regnum=%d(%s),...) ",
1172 frame->level, regnum,
1173 user_reg_map_regnum_to_name (gdbarch, regnum));
1174 }
1175
1176 /* Find the unwinder. */
1177 if (frame->unwind == NULL)
1178 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1179
1180 /* Ask this frame to unwind its register. */
1181 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1182
1183 if (frame_debug)
1184 {
1185 fprintf_unfiltered (gdb_stdlog, "->");
1186 if (value_optimized_out (value))
1187 {
1188 fprintf_unfiltered (gdb_stdlog, " ");
1189 val_print_optimized_out (value, gdb_stdlog);
1190 }
1191 else
1192 {
1193 if (VALUE_LVAL (value) == lval_register)
1194 fprintf_unfiltered (gdb_stdlog, " register=%d",
1195 VALUE_REGNUM (value));
1196 else if (VALUE_LVAL (value) == lval_memory)
1197 fprintf_unfiltered (gdb_stdlog, " address=%s",
1198 paddress (gdbarch,
1199 value_address (value)));
1200 else
1201 fprintf_unfiltered (gdb_stdlog, " computed");
1202
1203 if (value_lazy (value))
1204 fprintf_unfiltered (gdb_stdlog, " lazy");
1205 else
1206 {
1207 int i;
1208 const gdb_byte *buf = value_contents (value);
1209
1210 fprintf_unfiltered (gdb_stdlog, " bytes=");
1211 fprintf_unfiltered (gdb_stdlog, "[");
1212 for (i = 0; i < register_size (gdbarch, regnum); i++)
1213 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1214 fprintf_unfiltered (gdb_stdlog, "]");
1215 }
1216 }
1217
1218 fprintf_unfiltered (gdb_stdlog, " }\n");
1219 }
1220
1221 return value;
1222 }
1223
1224 struct value *
1225 get_frame_register_value (struct frame_info *frame, int regnum)
1226 {
1227 return frame_unwind_register_value (frame->next, regnum);
1228 }
1229
1230 LONGEST
1231 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1232 {
1233 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1235 int size = register_size (gdbarch, regnum);
1236 gdb_byte buf[MAX_REGISTER_SIZE];
1237
1238 frame_unwind_register (frame, regnum, buf);
1239 return extract_signed_integer (buf, size, byte_order);
1240 }
1241
1242 LONGEST
1243 get_frame_register_signed (struct frame_info *frame, int regnum)
1244 {
1245 return frame_unwind_register_signed (frame->next, regnum);
1246 }
1247
1248 ULONGEST
1249 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1250 {
1251 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1253 int size = register_size (gdbarch, regnum);
1254 gdb_byte buf[MAX_REGISTER_SIZE];
1255
1256 frame_unwind_register (frame, regnum, buf);
1257 return extract_unsigned_integer (buf, size, byte_order);
1258 }
1259
1260 ULONGEST
1261 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1262 {
1263 return frame_unwind_register_unsigned (frame->next, regnum);
1264 }
1265
1266 int
1267 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1268 ULONGEST *val)
1269 {
1270 struct value *regval = get_frame_register_value (frame, regnum);
1271
1272 if (!value_optimized_out (regval)
1273 && value_entirely_available (regval))
1274 {
1275 struct gdbarch *gdbarch = get_frame_arch (frame);
1276 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1277 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1278
1279 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1280 return 1;
1281 }
1282
1283 return 0;
1284 }
1285
1286 void
1287 put_frame_register (struct frame_info *frame, int regnum,
1288 const gdb_byte *buf)
1289 {
1290 struct gdbarch *gdbarch = get_frame_arch (frame);
1291 int realnum;
1292 int optim;
1293 int unavail;
1294 enum lval_type lval;
1295 CORE_ADDR addr;
1296
1297 frame_register (frame, regnum, &optim, &unavail,
1298 &lval, &addr, &realnum, NULL);
1299 if (optim)
1300 error (_("Attempt to assign to a register that was not saved."));
1301 switch (lval)
1302 {
1303 case lval_memory:
1304 {
1305 write_memory (addr, buf, register_size (gdbarch, regnum));
1306 break;
1307 }
1308 case lval_register:
1309 regcache_cooked_write (get_current_regcache (), realnum, buf);
1310 break;
1311 default:
1312 error (_("Attempt to assign to an unmodifiable value."));
1313 }
1314 }
1315
1316 /* This function is deprecated. Use get_frame_register_value instead,
1317 which provides more accurate information.
1318
1319 Find and return the value of REGNUM for the specified stack frame.
1320 The number of bytes copied is REGISTER_SIZE (REGNUM).
1321
1322 Returns 0 if the register value could not be found. */
1323
1324 int
1325 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1326 gdb_byte *myaddr)
1327 {
1328 int optimized;
1329 int unavailable;
1330 enum lval_type lval;
1331 CORE_ADDR addr;
1332 int realnum;
1333
1334 frame_register (frame, regnum, &optimized, &unavailable,
1335 &lval, &addr, &realnum, myaddr);
1336
1337 return !optimized && !unavailable;
1338 }
1339
1340 int
1341 get_frame_register_bytes (struct frame_info *frame, int regnum,
1342 CORE_ADDR offset, int len, gdb_byte *myaddr,
1343 int *optimizedp, int *unavailablep)
1344 {
1345 struct gdbarch *gdbarch = get_frame_arch (frame);
1346 int i;
1347 int maxsize;
1348 int numregs;
1349
1350 /* Skip registers wholly inside of OFFSET. */
1351 while (offset >= register_size (gdbarch, regnum))
1352 {
1353 offset -= register_size (gdbarch, regnum);
1354 regnum++;
1355 }
1356
1357 /* Ensure that we will not read beyond the end of the register file.
1358 This can only ever happen if the debug information is bad. */
1359 maxsize = -offset;
1360 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1361 for (i = regnum; i < numregs; i++)
1362 {
1363 int thissize = register_size (gdbarch, i);
1364
1365 if (thissize == 0)
1366 break; /* This register is not available on this architecture. */
1367 maxsize += thissize;
1368 }
1369 if (len > maxsize)
1370 error (_("Bad debug information detected: "
1371 "Attempt to read %d bytes from registers."), len);
1372
1373 /* Copy the data. */
1374 while (len > 0)
1375 {
1376 int curr_len = register_size (gdbarch, regnum) - offset;
1377
1378 if (curr_len > len)
1379 curr_len = len;
1380
1381 if (curr_len == register_size (gdbarch, regnum))
1382 {
1383 enum lval_type lval;
1384 CORE_ADDR addr;
1385 int realnum;
1386
1387 frame_register (frame, regnum, optimizedp, unavailablep,
1388 &lval, &addr, &realnum, myaddr);
1389 if (*optimizedp || *unavailablep)
1390 return 0;
1391 }
1392 else
1393 {
1394 gdb_byte buf[MAX_REGISTER_SIZE];
1395 enum lval_type lval;
1396 CORE_ADDR addr;
1397 int realnum;
1398
1399 frame_register (frame, regnum, optimizedp, unavailablep,
1400 &lval, &addr, &realnum, buf);
1401 if (*optimizedp || *unavailablep)
1402 return 0;
1403 memcpy (myaddr, buf + offset, curr_len);
1404 }
1405
1406 myaddr += curr_len;
1407 len -= curr_len;
1408 offset = 0;
1409 regnum++;
1410 }
1411
1412 *optimizedp = 0;
1413 *unavailablep = 0;
1414 return 1;
1415 }
1416
1417 void
1418 put_frame_register_bytes (struct frame_info *frame, int regnum,
1419 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1420 {
1421 struct gdbarch *gdbarch = get_frame_arch (frame);
1422
1423 /* Skip registers wholly inside of OFFSET. */
1424 while (offset >= register_size (gdbarch, regnum))
1425 {
1426 offset -= register_size (gdbarch, regnum);
1427 regnum++;
1428 }
1429
1430 /* Copy the data. */
1431 while (len > 0)
1432 {
1433 int curr_len = register_size (gdbarch, regnum) - offset;
1434
1435 if (curr_len > len)
1436 curr_len = len;
1437
1438 if (curr_len == register_size (gdbarch, regnum))
1439 {
1440 put_frame_register (frame, regnum, myaddr);
1441 }
1442 else
1443 {
1444 gdb_byte buf[MAX_REGISTER_SIZE];
1445
1446 deprecated_frame_register_read (frame, regnum, buf);
1447 memcpy (buf + offset, myaddr, curr_len);
1448 put_frame_register (frame, regnum, buf);
1449 }
1450
1451 myaddr += curr_len;
1452 len -= curr_len;
1453 offset = 0;
1454 regnum++;
1455 }
1456 }
1457
1458 /* Create a sentinel frame. */
1459
1460 static struct frame_info *
1461 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1462 {
1463 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1464
1465 frame->level = -1;
1466 frame->pspace = pspace;
1467 frame->aspace = get_regcache_aspace (regcache);
1468 /* Explicitly initialize the sentinel frame's cache. Provide it
1469 with the underlying regcache. In the future additional
1470 information, such as the frame's thread will be added. */
1471 frame->prologue_cache = sentinel_frame_cache (regcache);
1472 /* For the moment there is only one sentinel frame implementation. */
1473 frame->unwind = &sentinel_frame_unwind;
1474 /* Link this frame back to itself. The frame is self referential
1475 (the unwound PC is the same as the pc), so make it so. */
1476 frame->next = frame;
1477 /* Make the sentinel frame's ID valid, but invalid. That way all
1478 comparisons with it should fail. */
1479 frame->this_id.p = 1;
1480 frame->this_id.value = null_frame_id;
1481 if (frame_debug)
1482 {
1483 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1484 fprint_frame (gdb_stdlog, frame);
1485 fprintf_unfiltered (gdb_stdlog, " }\n");
1486 }
1487 return frame;
1488 }
1489
1490 /* Info about the innermost stack frame (contents of FP register). */
1491
1492 static struct frame_info *current_frame;
1493
1494 /* Cache for frame addresses already read by gdb. Valid only while
1495 inferior is stopped. Control variables for the frame cache should
1496 be local to this module. */
1497
1498 static struct obstack frame_cache_obstack;
1499
1500 void *
1501 frame_obstack_zalloc (unsigned long size)
1502 {
1503 void *data = obstack_alloc (&frame_cache_obstack, size);
1504
1505 memset (data, 0, size);
1506 return data;
1507 }
1508
1509 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1510
1511 struct frame_info *
1512 get_current_frame (void)
1513 {
1514 /* First check, and report, the lack of registers. Having GDB
1515 report "No stack!" or "No memory" when the target doesn't even
1516 have registers is very confusing. Besides, "printcmd.exp"
1517 explicitly checks that ``print $pc'' with no registers prints "No
1518 registers". */
1519 if (!target_has_registers)
1520 error (_("No registers."));
1521 if (!target_has_stack)
1522 error (_("No stack."));
1523 if (!target_has_memory)
1524 error (_("No memory."));
1525 /* Traceframes are effectively a substitute for the live inferior. */
1526 if (get_traceframe_number () < 0)
1527 validate_registers_access ();
1528
1529 if (current_frame == NULL)
1530 {
1531 int stashed;
1532 struct frame_info *sentinel_frame =
1533 create_sentinel_frame (current_program_space, get_current_regcache ());
1534
1535 /* Set the current frame before computing the frame id, to avoid
1536 recursion inside compute_frame_id, in case the frame's
1537 unwinder decides to do a symbol lookup (which depends on the
1538 selected frame's block).
1539
1540 This call must always succeed. In particular, nothing inside
1541 get_prev_frame_always_1 should try to unwind from the
1542 sentinel frame, because that could fail/throw, and we always
1543 want to leave with the current frame created and linked in --
1544 we should never end up with the sentinel frame as outermost
1545 frame. */
1546 current_frame = get_prev_frame_always_1 (sentinel_frame);
1547 gdb_assert (current_frame != NULL);
1548
1549 /* No need to compute the frame id yet. That'll be done lazily
1550 from inside get_frame_id instead. */
1551 }
1552
1553 return current_frame;
1554 }
1555
1556 /* The "selected" stack frame is used by default for local and arg
1557 access. May be zero, for no selected frame. */
1558
1559 static struct frame_info *selected_frame;
1560
1561 int
1562 has_stack_frames (void)
1563 {
1564 if (!target_has_registers || !target_has_stack || !target_has_memory)
1565 return 0;
1566
1567 /* Traceframes are effectively a substitute for the live inferior. */
1568 if (get_traceframe_number () < 0)
1569 {
1570 /* No current inferior, no frame. */
1571 if (ptid_equal (inferior_ptid, null_ptid))
1572 return 0;
1573
1574 /* Don't try to read from a dead thread. */
1575 if (is_exited (inferior_ptid))
1576 return 0;
1577
1578 /* ... or from a spinning thread. */
1579 if (is_executing (inferior_ptid))
1580 return 0;
1581 }
1582
1583 return 1;
1584 }
1585
1586 /* Return the selected frame. Always non-NULL (unless there isn't an
1587 inferior sufficient for creating a frame) in which case an error is
1588 thrown. */
1589
1590 struct frame_info *
1591 get_selected_frame (const char *message)
1592 {
1593 if (selected_frame == NULL)
1594 {
1595 if (message != NULL && !has_stack_frames ())
1596 error (("%s"), message);
1597 /* Hey! Don't trust this. It should really be re-finding the
1598 last selected frame of the currently selected thread. This,
1599 though, is better than nothing. */
1600 select_frame (get_current_frame ());
1601 }
1602 /* There is always a frame. */
1603 gdb_assert (selected_frame != NULL);
1604 return selected_frame;
1605 }
1606
1607 /* If there is a selected frame, return it. Otherwise, return NULL. */
1608
1609 struct frame_info *
1610 get_selected_frame_if_set (void)
1611 {
1612 return selected_frame;
1613 }
1614
1615 /* This is a variant of get_selected_frame() which can be called when
1616 the inferior does not have a frame; in that case it will return
1617 NULL instead of calling error(). */
1618
1619 struct frame_info *
1620 deprecated_safe_get_selected_frame (void)
1621 {
1622 if (!has_stack_frames ())
1623 return NULL;
1624 return get_selected_frame (NULL);
1625 }
1626
1627 /* Select frame FI (or NULL - to invalidate the current frame). */
1628
1629 void
1630 select_frame (struct frame_info *fi)
1631 {
1632 selected_frame = fi;
1633 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1634 frame is being invalidated. */
1635
1636 /* FIXME: kseitz/2002-08-28: It would be nice to call
1637 selected_frame_level_changed_event() right here, but due to limitations
1638 in the current interfaces, we would end up flooding UIs with events
1639 because select_frame() is used extensively internally.
1640
1641 Once we have frame-parameterized frame (and frame-related) commands,
1642 the event notification can be moved here, since this function will only
1643 be called when the user's selected frame is being changed. */
1644
1645 /* Ensure that symbols for this frame are read in. Also, determine the
1646 source language of this frame, and switch to it if desired. */
1647 if (fi)
1648 {
1649 CORE_ADDR pc;
1650
1651 /* We retrieve the frame's symtab by using the frame PC.
1652 However we cannot use the frame PC as-is, because it usually
1653 points to the instruction following the "call", which is
1654 sometimes the first instruction of another function. So we
1655 rely on get_frame_address_in_block() which provides us with a
1656 PC which is guaranteed to be inside the frame's code
1657 block. */
1658 if (get_frame_address_in_block_if_available (fi, &pc))
1659 {
1660 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1661
1662 if (cust != NULL
1663 && compunit_language (cust) != current_language->la_language
1664 && compunit_language (cust) != language_unknown
1665 && language_mode == language_mode_auto)
1666 set_language (compunit_language (cust));
1667 }
1668 }
1669 }
1670
1671 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1672 Always returns a non-NULL value. */
1673
1674 struct frame_info *
1675 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1676 {
1677 struct frame_info *fi;
1678
1679 if (frame_debug)
1680 {
1681 fprintf_unfiltered (gdb_stdlog,
1682 "{ create_new_frame (addr=%s, pc=%s) ",
1683 hex_string (addr), hex_string (pc));
1684 }
1685
1686 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1687
1688 fi->next = create_sentinel_frame (current_program_space,
1689 get_current_regcache ());
1690
1691 /* Set/update this frame's cached PC value, found in the next frame.
1692 Do this before looking for this frame's unwinder. A sniffer is
1693 very likely to read this, and the corresponding unwinder is
1694 entitled to rely that the PC doesn't magically change. */
1695 fi->next->prev_pc.value = pc;
1696 fi->next->prev_pc.status = CC_VALUE;
1697
1698 /* We currently assume that frame chain's can't cross spaces. */
1699 fi->pspace = fi->next->pspace;
1700 fi->aspace = fi->next->aspace;
1701
1702 /* Select/initialize both the unwind function and the frame's type
1703 based on the PC. */
1704 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1705
1706 fi->this_id.p = 1;
1707 fi->this_id.value = frame_id_build (addr, pc);
1708
1709 if (frame_debug)
1710 {
1711 fprintf_unfiltered (gdb_stdlog, "-> ");
1712 fprint_frame (gdb_stdlog, fi);
1713 fprintf_unfiltered (gdb_stdlog, " }\n");
1714 }
1715
1716 return fi;
1717 }
1718
1719 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1720 innermost frame). Be careful to not fall off the bottom of the
1721 frame chain and onto the sentinel frame. */
1722
1723 struct frame_info *
1724 get_next_frame (struct frame_info *this_frame)
1725 {
1726 if (this_frame->level > 0)
1727 return this_frame->next;
1728 else
1729 return NULL;
1730 }
1731
1732 /* Observer for the target_changed event. */
1733
1734 static void
1735 frame_observer_target_changed (struct target_ops *target)
1736 {
1737 reinit_frame_cache ();
1738 }
1739
1740 /* Flush the entire frame cache. */
1741
1742 void
1743 reinit_frame_cache (void)
1744 {
1745 struct frame_info *fi;
1746
1747 /* Tear down all frame caches. */
1748 for (fi = current_frame; fi != NULL; fi = fi->prev)
1749 {
1750 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1751 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1752 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1753 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1754 }
1755
1756 /* Since we can't really be sure what the first object allocated was. */
1757 obstack_free (&frame_cache_obstack, 0);
1758 obstack_init (&frame_cache_obstack);
1759
1760 if (current_frame != NULL)
1761 annotate_frames_invalid ();
1762
1763 current_frame = NULL; /* Invalidate cache */
1764 select_frame (NULL);
1765 frame_stash_invalidate ();
1766 if (frame_debug)
1767 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1768 }
1769
1770 /* Find where a register is saved (in memory or another register).
1771 The result of frame_register_unwind is just where it is saved
1772 relative to this particular frame. */
1773
1774 static void
1775 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1776 int *optimizedp, enum lval_type *lvalp,
1777 CORE_ADDR *addrp, int *realnump)
1778 {
1779 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1780
1781 while (this_frame != NULL)
1782 {
1783 int unavailable;
1784
1785 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1786 lvalp, addrp, realnump, NULL);
1787
1788 if (*optimizedp)
1789 break;
1790
1791 if (*lvalp != lval_register)
1792 break;
1793
1794 regnum = *realnump;
1795 this_frame = get_next_frame (this_frame);
1796 }
1797 }
1798
1799 /* Called during frame unwinding to remove a previous frame pointer from a
1800 frame passed in ARG. */
1801
1802 static void
1803 remove_prev_frame (void *arg)
1804 {
1805 struct frame_info *this_frame, *prev_frame;
1806
1807 this_frame = (struct frame_info *) arg;
1808 prev_frame = this_frame->prev;
1809 gdb_assert (prev_frame != NULL);
1810
1811 prev_frame->next = NULL;
1812 this_frame->prev = NULL;
1813 }
1814
1815 /* Get the previous raw frame, and check that it is not identical to
1816 same other frame frame already in the chain. If it is, there is
1817 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1818 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1819 validity tests, that compare THIS_FRAME and the next frame, we do
1820 this right after creating the previous frame, to avoid ever ending
1821 up with two frames with the same id in the frame chain. */
1822
1823 static struct frame_info *
1824 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1825 {
1826 struct frame_info *prev_frame;
1827 struct cleanup *prev_frame_cleanup;
1828
1829 prev_frame = get_prev_frame_raw (this_frame);
1830
1831 /* Don't compute the frame id of the current frame yet. Unwinding
1832 the sentinel frame can fail (e.g., if the thread is gone and we
1833 can't thus read its registers). If we let the cycle detection
1834 code below try to compute a frame ID, then an error thrown from
1835 within the frame ID computation would result in the sentinel
1836 frame as outermost frame, which is bogus. Instead, we'll compute
1837 the current frame's ID lazily in get_frame_id. Note that there's
1838 no point in doing cycle detection when there's only one frame, so
1839 nothing is lost here. */
1840 if (prev_frame->level == 0)
1841 return prev_frame;
1842
1843 /* The cleanup will remove the previous frame that get_prev_frame_raw
1844 linked onto THIS_FRAME. */
1845 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1846
1847 compute_frame_id (prev_frame);
1848 if (!frame_stash_add (prev_frame))
1849 {
1850 /* Another frame with the same id was already in the stash. We just
1851 detected a cycle. */
1852 if (frame_debug)
1853 {
1854 fprintf_unfiltered (gdb_stdlog, "-> ");
1855 fprint_frame (gdb_stdlog, NULL);
1856 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1857 }
1858 this_frame->stop_reason = UNWIND_SAME_ID;
1859 /* Unlink. */
1860 prev_frame->next = NULL;
1861 this_frame->prev = NULL;
1862 prev_frame = NULL;
1863 }
1864
1865 discard_cleanups (prev_frame_cleanup);
1866 return prev_frame;
1867 }
1868
1869 /* Helper function for get_prev_frame_always, this is called inside a
1870 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1871 there is no such frame. This may throw an exception. */
1872
1873 static struct frame_info *
1874 get_prev_frame_always_1 (struct frame_info *this_frame)
1875 {
1876 struct gdbarch *gdbarch;
1877
1878 gdb_assert (this_frame != NULL);
1879 gdbarch = get_frame_arch (this_frame);
1880
1881 if (frame_debug)
1882 {
1883 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1884 if (this_frame != NULL)
1885 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1886 else
1887 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1888 fprintf_unfiltered (gdb_stdlog, ") ");
1889 }
1890
1891 /* Only try to do the unwind once. */
1892 if (this_frame->prev_p)
1893 {
1894 if (frame_debug)
1895 {
1896 fprintf_unfiltered (gdb_stdlog, "-> ");
1897 fprint_frame (gdb_stdlog, this_frame->prev);
1898 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1899 }
1900 return this_frame->prev;
1901 }
1902
1903 /* If the frame unwinder hasn't been selected yet, we must do so
1904 before setting prev_p; otherwise the check for misbehaved
1905 sniffers will think that this frame's sniffer tried to unwind
1906 further (see frame_cleanup_after_sniffer). */
1907 if (this_frame->unwind == NULL)
1908 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1909
1910 this_frame->prev_p = 1;
1911 this_frame->stop_reason = UNWIND_NO_REASON;
1912
1913 /* If we are unwinding from an inline frame, all of the below tests
1914 were already performed when we unwound from the next non-inline
1915 frame. We must skip them, since we can not get THIS_FRAME's ID
1916 until we have unwound all the way down to the previous non-inline
1917 frame. */
1918 if (get_frame_type (this_frame) == INLINE_FRAME)
1919 return get_prev_frame_if_no_cycle (this_frame);
1920
1921 /* Check that this frame is unwindable. If it isn't, don't try to
1922 unwind to the prev frame. */
1923 this_frame->stop_reason
1924 = this_frame->unwind->stop_reason (this_frame,
1925 &this_frame->prologue_cache);
1926
1927 if (this_frame->stop_reason != UNWIND_NO_REASON)
1928 {
1929 if (frame_debug)
1930 {
1931 enum unwind_stop_reason reason = this_frame->stop_reason;
1932
1933 fprintf_unfiltered (gdb_stdlog, "-> ");
1934 fprint_frame (gdb_stdlog, NULL);
1935 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1936 frame_stop_reason_symbol_string (reason));
1937 }
1938 return NULL;
1939 }
1940
1941 /* Check that this frame's ID isn't inner to (younger, below, next)
1942 the next frame. This happens when a frame unwind goes backwards.
1943 This check is valid only if this frame and the next frame are NORMAL.
1944 See the comment at frame_id_inner for details. */
1945 if (get_frame_type (this_frame) == NORMAL_FRAME
1946 && this_frame->next->unwind->type == NORMAL_FRAME
1947 && frame_id_inner (get_frame_arch (this_frame->next),
1948 get_frame_id (this_frame),
1949 get_frame_id (this_frame->next)))
1950 {
1951 CORE_ADDR this_pc_in_block;
1952 struct minimal_symbol *morestack_msym;
1953 const char *morestack_name = NULL;
1954
1955 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1956 this_pc_in_block = get_frame_address_in_block (this_frame);
1957 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1958 if (morestack_msym)
1959 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1960 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1961 {
1962 if (frame_debug)
1963 {
1964 fprintf_unfiltered (gdb_stdlog, "-> ");
1965 fprint_frame (gdb_stdlog, NULL);
1966 fprintf_unfiltered (gdb_stdlog,
1967 " // this frame ID is inner }\n");
1968 }
1969 this_frame->stop_reason = UNWIND_INNER_ID;
1970 return NULL;
1971 }
1972 }
1973
1974 /* Check that this and the next frame do not unwind the PC register
1975 to the same memory location. If they do, then even though they
1976 have different frame IDs, the new frame will be bogus; two
1977 functions can't share a register save slot for the PC. This can
1978 happen when the prologue analyzer finds a stack adjustment, but
1979 no PC save.
1980
1981 This check does assume that the "PC register" is roughly a
1982 traditional PC, even if the gdbarch_unwind_pc method adjusts
1983 it (we do not rely on the value, only on the unwound PC being
1984 dependent on this value). A potential improvement would be
1985 to have the frame prev_pc method and the gdbarch unwind_pc
1986 method set the same lval and location information as
1987 frame_register_unwind. */
1988 if (this_frame->level > 0
1989 && gdbarch_pc_regnum (gdbarch) >= 0
1990 && get_frame_type (this_frame) == NORMAL_FRAME
1991 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1992 || get_frame_type (this_frame->next) == INLINE_FRAME))
1993 {
1994 int optimized, realnum, nrealnum;
1995 enum lval_type lval, nlval;
1996 CORE_ADDR addr, naddr;
1997
1998 frame_register_unwind_location (this_frame,
1999 gdbarch_pc_regnum (gdbarch),
2000 &optimized, &lval, &addr, &realnum);
2001 frame_register_unwind_location (get_next_frame (this_frame),
2002 gdbarch_pc_regnum (gdbarch),
2003 &optimized, &nlval, &naddr, &nrealnum);
2004
2005 if ((lval == lval_memory && lval == nlval && addr == naddr)
2006 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2007 {
2008 if (frame_debug)
2009 {
2010 fprintf_unfiltered (gdb_stdlog, "-> ");
2011 fprint_frame (gdb_stdlog, NULL);
2012 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2013 }
2014
2015 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2016 this_frame->prev = NULL;
2017 return NULL;
2018 }
2019 }
2020
2021 return get_prev_frame_if_no_cycle (this_frame);
2022 }
2023
2024 /* Return a "struct frame_info" corresponding to the frame that called
2025 THIS_FRAME. Returns NULL if there is no such frame.
2026
2027 Unlike get_prev_frame, this function always tries to unwind the
2028 frame. */
2029
2030 struct frame_info *
2031 get_prev_frame_always (struct frame_info *this_frame)
2032 {
2033 struct frame_info *prev_frame = NULL;
2034
2035 TRY
2036 {
2037 prev_frame = get_prev_frame_always_1 (this_frame);
2038 }
2039 CATCH (ex, RETURN_MASK_ERROR)
2040 {
2041 if (ex.error == MEMORY_ERROR)
2042 {
2043 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2044 if (ex.message != NULL)
2045 {
2046 char *stop_string;
2047 size_t size;
2048
2049 /* The error needs to live as long as the frame does.
2050 Allocate using stack local STOP_STRING then assign the
2051 pointer to the frame, this allows the STOP_STRING on the
2052 frame to be of type 'const char *'. */
2053 size = strlen (ex.message) + 1;
2054 stop_string = (char *) frame_obstack_zalloc (size);
2055 memcpy (stop_string, ex.message, size);
2056 this_frame->stop_string = stop_string;
2057 }
2058 prev_frame = NULL;
2059 }
2060 else
2061 throw_exception (ex);
2062 }
2063 END_CATCH
2064
2065 return prev_frame;
2066 }
2067
2068 /* Construct a new "struct frame_info" and link it previous to
2069 this_frame. */
2070
2071 static struct frame_info *
2072 get_prev_frame_raw (struct frame_info *this_frame)
2073 {
2074 struct frame_info *prev_frame;
2075
2076 /* Allocate the new frame but do not wire it in to the frame chain.
2077 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2078 frame->next to pull some fancy tricks (of course such code is, by
2079 definition, recursive). Try to prevent it.
2080
2081 There is no reason to worry about memory leaks, should the
2082 remainder of the function fail. The allocated memory will be
2083 quickly reclaimed when the frame cache is flushed, and the `we've
2084 been here before' check above will stop repeated memory
2085 allocation calls. */
2086 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2087 prev_frame->level = this_frame->level + 1;
2088
2089 /* For now, assume we don't have frame chains crossing address
2090 spaces. */
2091 prev_frame->pspace = this_frame->pspace;
2092 prev_frame->aspace = this_frame->aspace;
2093
2094 /* Don't yet compute ->unwind (and hence ->type). It is computed
2095 on-demand in get_frame_type, frame_register_unwind, and
2096 get_frame_id. */
2097
2098 /* Don't yet compute the frame's ID. It is computed on-demand by
2099 get_frame_id(). */
2100
2101 /* The unwound frame ID is validate at the start of this function,
2102 as part of the logic to decide if that frame should be further
2103 unwound, and not here while the prev frame is being created.
2104 Doing this makes it possible for the user to examine a frame that
2105 has an invalid frame ID.
2106
2107 Some very old VAX code noted: [...] For the sake of argument,
2108 suppose that the stack is somewhat trashed (which is one reason
2109 that "info frame" exists). So, return 0 (indicating we don't
2110 know the address of the arglist) if we don't know what frame this
2111 frame calls. */
2112
2113 /* Link it in. */
2114 this_frame->prev = prev_frame;
2115 prev_frame->next = this_frame;
2116
2117 if (frame_debug)
2118 {
2119 fprintf_unfiltered (gdb_stdlog, "-> ");
2120 fprint_frame (gdb_stdlog, prev_frame);
2121 fprintf_unfiltered (gdb_stdlog, " }\n");
2122 }
2123
2124 return prev_frame;
2125 }
2126
2127 /* Debug routine to print a NULL frame being returned. */
2128
2129 static void
2130 frame_debug_got_null_frame (struct frame_info *this_frame,
2131 const char *reason)
2132 {
2133 if (frame_debug)
2134 {
2135 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2136 if (this_frame != NULL)
2137 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2138 else
2139 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2140 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2141 }
2142 }
2143
2144 /* Is this (non-sentinel) frame in the "main"() function? */
2145
2146 static int
2147 inside_main_func (struct frame_info *this_frame)
2148 {
2149 struct bound_minimal_symbol msymbol;
2150 CORE_ADDR maddr;
2151
2152 if (symfile_objfile == 0)
2153 return 0;
2154 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2155 if (msymbol.minsym == NULL)
2156 return 0;
2157 /* Make certain that the code, and not descriptor, address is
2158 returned. */
2159 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2160 BMSYMBOL_VALUE_ADDRESS (msymbol),
2161 &current_target);
2162 return maddr == get_frame_func (this_frame);
2163 }
2164
2165 /* Test whether THIS_FRAME is inside the process entry point function. */
2166
2167 static int
2168 inside_entry_func (struct frame_info *this_frame)
2169 {
2170 CORE_ADDR entry_point;
2171
2172 if (!entry_point_address_query (&entry_point))
2173 return 0;
2174
2175 return get_frame_func (this_frame) == entry_point;
2176 }
2177
2178 /* Return a structure containing various interesting information about
2179 the frame that called THIS_FRAME. Returns NULL if there is entier
2180 no such frame or the frame fails any of a set of target-independent
2181 condition that should terminate the frame chain (e.g., as unwinding
2182 past main()).
2183
2184 This function should not contain target-dependent tests, such as
2185 checking whether the program-counter is zero. */
2186
2187 struct frame_info *
2188 get_prev_frame (struct frame_info *this_frame)
2189 {
2190 CORE_ADDR frame_pc;
2191 int frame_pc_p;
2192
2193 /* There is always a frame. If this assertion fails, suspect that
2194 something should be calling get_selected_frame() or
2195 get_current_frame(). */
2196 gdb_assert (this_frame != NULL);
2197 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2198
2199 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2200 sense to stop unwinding at a dummy frame. One place where a dummy
2201 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2202 pcsqh register (space register for the instruction at the head of the
2203 instruction queue) cannot be written directly; the only way to set it
2204 is to branch to code that is in the target space. In order to implement
2205 frame dummies on HPUX, the called function is made to jump back to where
2206 the inferior was when the user function was called. If gdb was inside
2207 the main function when we created the dummy frame, the dummy frame will
2208 point inside the main function. */
2209 if (this_frame->level >= 0
2210 && get_frame_type (this_frame) == NORMAL_FRAME
2211 && !backtrace_past_main
2212 && frame_pc_p
2213 && inside_main_func (this_frame))
2214 /* Don't unwind past main(). Note, this is done _before_ the
2215 frame has been marked as previously unwound. That way if the
2216 user later decides to enable unwinds past main(), that will
2217 automatically happen. */
2218 {
2219 frame_debug_got_null_frame (this_frame, "inside main func");
2220 return NULL;
2221 }
2222
2223 /* If the user's backtrace limit has been exceeded, stop. We must
2224 add two to the current level; one of those accounts for backtrace_limit
2225 being 1-based and the level being 0-based, and the other accounts for
2226 the level of the new frame instead of the level of the current
2227 frame. */
2228 if (this_frame->level + 2 > backtrace_limit)
2229 {
2230 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2231 return NULL;
2232 }
2233
2234 /* If we're already inside the entry function for the main objfile,
2235 then it isn't valid. Don't apply this test to a dummy frame -
2236 dummy frame PCs typically land in the entry func. Don't apply
2237 this test to the sentinel frame. Sentinel frames should always
2238 be allowed to unwind. */
2239 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2240 wasn't checking for "main" in the minimal symbols. With that
2241 fixed asm-source tests now stop in "main" instead of halting the
2242 backtrace in weird and wonderful ways somewhere inside the entry
2243 file. Suspect that tests for inside the entry file/func were
2244 added to work around that (now fixed) case. */
2245 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2246 suggested having the inside_entry_func test use the
2247 inside_main_func() msymbol trick (along with entry_point_address()
2248 I guess) to determine the address range of the start function.
2249 That should provide a far better stopper than the current
2250 heuristics. */
2251 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2252 applied tail-call optimizations to main so that a function called
2253 from main returns directly to the caller of main. Since we don't
2254 stop at main, we should at least stop at the entry point of the
2255 application. */
2256 if (this_frame->level >= 0
2257 && get_frame_type (this_frame) == NORMAL_FRAME
2258 && !backtrace_past_entry
2259 && frame_pc_p
2260 && inside_entry_func (this_frame))
2261 {
2262 frame_debug_got_null_frame (this_frame, "inside entry func");
2263 return NULL;
2264 }
2265
2266 /* Assume that the only way to get a zero PC is through something
2267 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2268 will never unwind a zero PC. */
2269 if (this_frame->level > 0
2270 && (get_frame_type (this_frame) == NORMAL_FRAME
2271 || get_frame_type (this_frame) == INLINE_FRAME)
2272 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2273 && frame_pc_p && frame_pc == 0)
2274 {
2275 frame_debug_got_null_frame (this_frame, "zero PC");
2276 return NULL;
2277 }
2278
2279 return get_prev_frame_always (this_frame);
2280 }
2281
2282 CORE_ADDR
2283 get_frame_pc (struct frame_info *frame)
2284 {
2285 gdb_assert (frame->next != NULL);
2286 return frame_unwind_pc (frame->next);
2287 }
2288
2289 int
2290 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2291 {
2292
2293 gdb_assert (frame->next != NULL);
2294
2295 TRY
2296 {
2297 *pc = frame_unwind_pc (frame->next);
2298 }
2299 CATCH (ex, RETURN_MASK_ERROR)
2300 {
2301 if (ex.error == NOT_AVAILABLE_ERROR)
2302 return 0;
2303 else
2304 throw_exception (ex);
2305 }
2306 END_CATCH
2307
2308 return 1;
2309 }
2310
2311 /* Return an address that falls within THIS_FRAME's code block. */
2312
2313 CORE_ADDR
2314 get_frame_address_in_block (struct frame_info *this_frame)
2315 {
2316 /* A draft address. */
2317 CORE_ADDR pc = get_frame_pc (this_frame);
2318
2319 struct frame_info *next_frame = this_frame->next;
2320
2321 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2322 Normally the resume address is inside the body of the function
2323 associated with THIS_FRAME, but there is a special case: when
2324 calling a function which the compiler knows will never return
2325 (for instance abort), the call may be the very last instruction
2326 in the calling function. The resume address will point after the
2327 call and may be at the beginning of a different function
2328 entirely.
2329
2330 If THIS_FRAME is a signal frame or dummy frame, then we should
2331 not adjust the unwound PC. For a dummy frame, GDB pushed the
2332 resume address manually onto the stack. For a signal frame, the
2333 OS may have pushed the resume address manually and invoked the
2334 handler (e.g. GNU/Linux), or invoked the trampoline which called
2335 the signal handler - but in either case the signal handler is
2336 expected to return to the trampoline. So in both of these
2337 cases we know that the resume address is executable and
2338 related. So we only need to adjust the PC if THIS_FRAME
2339 is a normal function.
2340
2341 If the program has been interrupted while THIS_FRAME is current,
2342 then clearly the resume address is inside the associated
2343 function. There are three kinds of interruption: debugger stop
2344 (next frame will be SENTINEL_FRAME), operating system
2345 signal or exception (next frame will be SIGTRAMP_FRAME),
2346 or debugger-induced function call (next frame will be
2347 DUMMY_FRAME). So we only need to adjust the PC if
2348 NEXT_FRAME is a normal function.
2349
2350 We check the type of NEXT_FRAME first, since it is already
2351 known; frame type is determined by the unwinder, and since
2352 we have THIS_FRAME we've already selected an unwinder for
2353 NEXT_FRAME.
2354
2355 If the next frame is inlined, we need to keep going until we find
2356 the real function - for instance, if a signal handler is invoked
2357 while in an inlined function, then the code address of the
2358 "calling" normal function should not be adjusted either. */
2359
2360 while (get_frame_type (next_frame) == INLINE_FRAME)
2361 next_frame = next_frame->next;
2362
2363 if ((get_frame_type (next_frame) == NORMAL_FRAME
2364 || get_frame_type (next_frame) == TAILCALL_FRAME)
2365 && (get_frame_type (this_frame) == NORMAL_FRAME
2366 || get_frame_type (this_frame) == TAILCALL_FRAME
2367 || get_frame_type (this_frame) == INLINE_FRAME))
2368 return pc - 1;
2369
2370 return pc;
2371 }
2372
2373 int
2374 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2375 CORE_ADDR *pc)
2376 {
2377
2378 TRY
2379 {
2380 *pc = get_frame_address_in_block (this_frame);
2381 }
2382 CATCH (ex, RETURN_MASK_ERROR)
2383 {
2384 if (ex.error == NOT_AVAILABLE_ERROR)
2385 return 0;
2386 throw_exception (ex);
2387 }
2388 END_CATCH
2389
2390 return 1;
2391 }
2392
2393 void
2394 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2395 {
2396 struct frame_info *next_frame;
2397 int notcurrent;
2398 CORE_ADDR pc;
2399
2400 /* If the next frame represents an inlined function call, this frame's
2401 sal is the "call site" of that inlined function, which can not
2402 be inferred from get_frame_pc. */
2403 next_frame = get_next_frame (frame);
2404 if (frame_inlined_callees (frame) > 0)
2405 {
2406 struct symbol *sym;
2407
2408 if (next_frame)
2409 sym = get_frame_function (next_frame);
2410 else
2411 sym = inline_skipped_symbol (inferior_ptid);
2412
2413 /* If frame is inline, it certainly has symbols. */
2414 gdb_assert (sym);
2415 init_sal (sal);
2416 if (SYMBOL_LINE (sym) != 0)
2417 {
2418 sal->symtab = symbol_symtab (sym);
2419 sal->line = SYMBOL_LINE (sym);
2420 }
2421 else
2422 /* If the symbol does not have a location, we don't know where
2423 the call site is. Do not pretend to. This is jarring, but
2424 we can't do much better. */
2425 sal->pc = get_frame_pc (frame);
2426
2427 sal->pspace = get_frame_program_space (frame);
2428
2429 return;
2430 }
2431
2432 /* If FRAME is not the innermost frame, that normally means that
2433 FRAME->pc points at the return instruction (which is *after* the
2434 call instruction), and we want to get the line containing the
2435 call (because the call is where the user thinks the program is).
2436 However, if the next frame is either a SIGTRAMP_FRAME or a
2437 DUMMY_FRAME, then the next frame will contain a saved interrupt
2438 PC and such a PC indicates the current (rather than next)
2439 instruction/line, consequently, for such cases, want to get the
2440 line containing fi->pc. */
2441 if (!get_frame_pc_if_available (frame, &pc))
2442 {
2443 init_sal (sal);
2444 return;
2445 }
2446
2447 notcurrent = (pc != get_frame_address_in_block (frame));
2448 (*sal) = find_pc_line (pc, notcurrent);
2449 }
2450
2451 /* Per "frame.h", return the ``address'' of the frame. Code should
2452 really be using get_frame_id(). */
2453 CORE_ADDR
2454 get_frame_base (struct frame_info *fi)
2455 {
2456 return get_frame_id (fi).stack_addr;
2457 }
2458
2459 /* High-level offsets into the frame. Used by the debug info. */
2460
2461 CORE_ADDR
2462 get_frame_base_address (struct frame_info *fi)
2463 {
2464 if (get_frame_type (fi) != NORMAL_FRAME)
2465 return 0;
2466 if (fi->base == NULL)
2467 fi->base = frame_base_find_by_frame (fi);
2468 /* Sneaky: If the low-level unwind and high-level base code share a
2469 common unwinder, let them share the prologue cache. */
2470 if (fi->base->unwind == fi->unwind)
2471 return fi->base->this_base (fi, &fi->prologue_cache);
2472 return fi->base->this_base (fi, &fi->base_cache);
2473 }
2474
2475 CORE_ADDR
2476 get_frame_locals_address (struct frame_info *fi)
2477 {
2478 if (get_frame_type (fi) != NORMAL_FRAME)
2479 return 0;
2480 /* If there isn't a frame address method, find it. */
2481 if (fi->base == NULL)
2482 fi->base = frame_base_find_by_frame (fi);
2483 /* Sneaky: If the low-level unwind and high-level base code share a
2484 common unwinder, let them share the prologue cache. */
2485 if (fi->base->unwind == fi->unwind)
2486 return fi->base->this_locals (fi, &fi->prologue_cache);
2487 return fi->base->this_locals (fi, &fi->base_cache);
2488 }
2489
2490 CORE_ADDR
2491 get_frame_args_address (struct frame_info *fi)
2492 {
2493 if (get_frame_type (fi) != NORMAL_FRAME)
2494 return 0;
2495 /* If there isn't a frame address method, find it. */
2496 if (fi->base == NULL)
2497 fi->base = frame_base_find_by_frame (fi);
2498 /* Sneaky: If the low-level unwind and high-level base code share a
2499 common unwinder, let them share the prologue cache. */
2500 if (fi->base->unwind == fi->unwind)
2501 return fi->base->this_args (fi, &fi->prologue_cache);
2502 return fi->base->this_args (fi, &fi->base_cache);
2503 }
2504
2505 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2506 otherwise. */
2507
2508 int
2509 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2510 {
2511 if (fi->unwind == NULL)
2512 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2513 return fi->unwind == unwinder;
2514 }
2515
2516 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2517 or -1 for a NULL frame. */
2518
2519 int
2520 frame_relative_level (struct frame_info *fi)
2521 {
2522 if (fi == NULL)
2523 return -1;
2524 else
2525 return fi->level;
2526 }
2527
2528 enum frame_type
2529 get_frame_type (struct frame_info *frame)
2530 {
2531 if (frame->unwind == NULL)
2532 /* Initialize the frame's unwinder because that's what
2533 provides the frame's type. */
2534 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2535 return frame->unwind->type;
2536 }
2537
2538 struct program_space *
2539 get_frame_program_space (struct frame_info *frame)
2540 {
2541 return frame->pspace;
2542 }
2543
2544 struct program_space *
2545 frame_unwind_program_space (struct frame_info *this_frame)
2546 {
2547 gdb_assert (this_frame);
2548
2549 /* This is really a placeholder to keep the API consistent --- we
2550 assume for now that we don't have frame chains crossing
2551 spaces. */
2552 return this_frame->pspace;
2553 }
2554
2555 struct address_space *
2556 get_frame_address_space (struct frame_info *frame)
2557 {
2558 return frame->aspace;
2559 }
2560
2561 /* Memory access methods. */
2562
2563 void
2564 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2565 gdb_byte *buf, int len)
2566 {
2567 read_memory (addr, buf, len);
2568 }
2569
2570 LONGEST
2571 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2572 int len)
2573 {
2574 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2576
2577 return read_memory_integer (addr, len, byte_order);
2578 }
2579
2580 ULONGEST
2581 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2582 int len)
2583 {
2584 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2586
2587 return read_memory_unsigned_integer (addr, len, byte_order);
2588 }
2589
2590 int
2591 safe_frame_unwind_memory (struct frame_info *this_frame,
2592 CORE_ADDR addr, gdb_byte *buf, int len)
2593 {
2594 /* NOTE: target_read_memory returns zero on success! */
2595 return !target_read_memory (addr, buf, len);
2596 }
2597
2598 /* Architecture methods. */
2599
2600 struct gdbarch *
2601 get_frame_arch (struct frame_info *this_frame)
2602 {
2603 return frame_unwind_arch (this_frame->next);
2604 }
2605
2606 struct gdbarch *
2607 frame_unwind_arch (struct frame_info *next_frame)
2608 {
2609 if (!next_frame->prev_arch.p)
2610 {
2611 struct gdbarch *arch;
2612
2613 if (next_frame->unwind == NULL)
2614 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2615
2616 if (next_frame->unwind->prev_arch != NULL)
2617 arch = next_frame->unwind->prev_arch (next_frame,
2618 &next_frame->prologue_cache);
2619 else
2620 arch = get_frame_arch (next_frame);
2621
2622 next_frame->prev_arch.arch = arch;
2623 next_frame->prev_arch.p = 1;
2624 if (frame_debug)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2627 next_frame->level,
2628 gdbarch_bfd_arch_info (arch)->printable_name);
2629 }
2630
2631 return next_frame->prev_arch.arch;
2632 }
2633
2634 struct gdbarch *
2635 frame_unwind_caller_arch (struct frame_info *next_frame)
2636 {
2637 next_frame = skip_artificial_frames (next_frame);
2638
2639 /* We must have a non-artificial frame. The caller is supposed to check
2640 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2641 in this case. */
2642 gdb_assert (next_frame != NULL);
2643
2644 return frame_unwind_arch (next_frame);
2645 }
2646
2647 /* Gets the language of FRAME. */
2648
2649 enum language
2650 get_frame_language (struct frame_info *frame)
2651 {
2652 CORE_ADDR pc = 0;
2653 int pc_p = 0;
2654
2655 gdb_assert (frame!= NULL);
2656
2657 /* We determine the current frame language by looking up its
2658 associated symtab. To retrieve this symtab, we use the frame
2659 PC. However we cannot use the frame PC as is, because it
2660 usually points to the instruction following the "call", which
2661 is sometimes the first instruction of another function. So
2662 we rely on get_frame_address_in_block(), it provides us with
2663 a PC that is guaranteed to be inside the frame's code
2664 block. */
2665
2666 TRY
2667 {
2668 pc = get_frame_address_in_block (frame);
2669 pc_p = 1;
2670 }
2671 CATCH (ex, RETURN_MASK_ERROR)
2672 {
2673 if (ex.error != NOT_AVAILABLE_ERROR)
2674 throw_exception (ex);
2675 }
2676 END_CATCH
2677
2678 if (pc_p)
2679 {
2680 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2681
2682 if (cust != NULL)
2683 return compunit_language (cust);
2684 }
2685
2686 return language_unknown;
2687 }
2688
2689 /* Stack pointer methods. */
2690
2691 CORE_ADDR
2692 get_frame_sp (struct frame_info *this_frame)
2693 {
2694 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2695
2696 /* Normality - an architecture that provides a way of obtaining any
2697 frame inner-most address. */
2698 if (gdbarch_unwind_sp_p (gdbarch))
2699 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2700 operate on THIS_FRAME now. */
2701 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2702 /* Now things are really are grim. Hope that the value returned by
2703 the gdbarch_sp_regnum register is meaningful. */
2704 if (gdbarch_sp_regnum (gdbarch) >= 0)
2705 return get_frame_register_unsigned (this_frame,
2706 gdbarch_sp_regnum (gdbarch));
2707 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2708 }
2709
2710 /* Return the reason why we can't unwind past FRAME. */
2711
2712 enum unwind_stop_reason
2713 get_frame_unwind_stop_reason (struct frame_info *frame)
2714 {
2715 /* Fill-in STOP_REASON. */
2716 get_prev_frame_always (frame);
2717 gdb_assert (frame->prev_p);
2718
2719 return frame->stop_reason;
2720 }
2721
2722 /* Return a string explaining REASON. */
2723
2724 const char *
2725 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2726 {
2727 switch (reason)
2728 {
2729 #define SET(name, description) \
2730 case name: return _(description);
2731 #include "unwind_stop_reasons.def"
2732 #undef SET
2733
2734 default:
2735 internal_error (__FILE__, __LINE__,
2736 "Invalid frame stop reason");
2737 }
2738 }
2739
2740 const char *
2741 frame_stop_reason_string (struct frame_info *fi)
2742 {
2743 gdb_assert (fi->prev_p);
2744 gdb_assert (fi->prev == NULL);
2745
2746 /* Return the specific string if we have one. */
2747 if (fi->stop_string != NULL)
2748 return fi->stop_string;
2749
2750 /* Return the generic string if we have nothing better. */
2751 return unwind_stop_reason_to_string (fi->stop_reason);
2752 }
2753
2754 /* Return the enum symbol name of REASON as a string, to use in debug
2755 output. */
2756
2757 static const char *
2758 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2759 {
2760 switch (reason)
2761 {
2762 #define SET(name, description) \
2763 case name: return #name;
2764 #include "unwind_stop_reasons.def"
2765 #undef SET
2766
2767 default:
2768 internal_error (__FILE__, __LINE__,
2769 "Invalid frame stop reason");
2770 }
2771 }
2772
2773 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2774 FRAME. */
2775
2776 static void
2777 frame_cleanup_after_sniffer (void *arg)
2778 {
2779 struct frame_info *frame = (struct frame_info *) arg;
2780
2781 /* The sniffer should not allocate a prologue cache if it did not
2782 match this frame. */
2783 gdb_assert (frame->prologue_cache == NULL);
2784
2785 /* No sniffer should extend the frame chain; sniff based on what is
2786 already certain. */
2787 gdb_assert (!frame->prev_p);
2788
2789 /* The sniffer should not check the frame's ID; that's circular. */
2790 gdb_assert (!frame->this_id.p);
2791
2792 /* Clear cached fields dependent on the unwinder.
2793
2794 The previous PC is independent of the unwinder, but the previous
2795 function is not (see get_frame_address_in_block). */
2796 frame->prev_func.p = 0;
2797 frame->prev_func.addr = 0;
2798
2799 /* Discard the unwinder last, so that we can easily find it if an assertion
2800 in this function triggers. */
2801 frame->unwind = NULL;
2802 }
2803
2804 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2805 Return a cleanup which should be called if unwinding fails, and
2806 discarded if it succeeds. */
2807
2808 struct cleanup *
2809 frame_prepare_for_sniffer (struct frame_info *frame,
2810 const struct frame_unwind *unwind)
2811 {
2812 gdb_assert (frame->unwind == NULL);
2813 frame->unwind = unwind;
2814 return make_cleanup (frame_cleanup_after_sniffer, frame);
2815 }
2816
2817 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2818
2819 static struct cmd_list_element *set_backtrace_cmdlist;
2820 static struct cmd_list_element *show_backtrace_cmdlist;
2821
2822 static void
2823 set_backtrace_cmd (char *args, int from_tty)
2824 {
2825 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2826 gdb_stdout);
2827 }
2828
2829 static void
2830 show_backtrace_cmd (char *args, int from_tty)
2831 {
2832 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2833 }
2834
2835 void
2836 _initialize_frame (void)
2837 {
2838 obstack_init (&frame_cache_obstack);
2839
2840 frame_stash_create ();
2841
2842 observer_attach_target_changed (frame_observer_target_changed);
2843
2844 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2845 Set backtrace specific variables.\n\
2846 Configure backtrace variables such as the backtrace limit"),
2847 &set_backtrace_cmdlist, "set backtrace ",
2848 0/*allow-unknown*/, &setlist);
2849 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2850 Show backtrace specific variables\n\
2851 Show backtrace variables such as the backtrace limit"),
2852 &show_backtrace_cmdlist, "show backtrace ",
2853 0/*allow-unknown*/, &showlist);
2854
2855 add_setshow_boolean_cmd ("past-main", class_obscure,
2856 &backtrace_past_main, _("\
2857 Set whether backtraces should continue past \"main\"."), _("\
2858 Show whether backtraces should continue past \"main\"."), _("\
2859 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2860 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2861 of the stack trace."),
2862 NULL,
2863 show_backtrace_past_main,
2864 &set_backtrace_cmdlist,
2865 &show_backtrace_cmdlist);
2866
2867 add_setshow_boolean_cmd ("past-entry", class_obscure,
2868 &backtrace_past_entry, _("\
2869 Set whether backtraces should continue past the entry point of a program."),
2870 _("\
2871 Show whether backtraces should continue past the entry point of a program."),
2872 _("\
2873 Normally there are no callers beyond the entry point of a program, so GDB\n\
2874 will terminate the backtrace there. Set this variable if you need to see\n\
2875 the rest of the stack trace."),
2876 NULL,
2877 show_backtrace_past_entry,
2878 &set_backtrace_cmdlist,
2879 &show_backtrace_cmdlist);
2880
2881 add_setshow_uinteger_cmd ("limit", class_obscure,
2882 &backtrace_limit, _("\
2883 Set an upper bound on the number of backtrace levels."), _("\
2884 Show the upper bound on the number of backtrace levels."), _("\
2885 No more than the specified number of frames can be displayed or examined.\n\
2886 Literal \"unlimited\" or zero means no limit."),
2887 NULL,
2888 show_backtrace_limit,
2889 &set_backtrace_cmdlist,
2890 &show_backtrace_cmdlist);
2891
2892 /* Debug this files internals. */
2893 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2894 Set frame debugging."), _("\
2895 Show frame debugging."), _("\
2896 When non-zero, frame specific internal debugging is enabled."),
2897 NULL,
2898 show_frame_debug,
2899 &setdebuglist, &showdebuglist);
2900 }
This page took 0.0911650000000001 seconds and 4 git commands to generate.