ChangeLog:
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43
44 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
45
46 /* We keep a cache of stack frames, each of which is a "struct
47 frame_info". The innermost one gets allocated (in
48 wait_for_inferior) each time the inferior stops; current_frame
49 points to it. Additional frames get allocated (in get_prev_frame)
50 as needed, and are chained through the next and prev fields. Any
51 time that the frame cache becomes invalid (most notably when we
52 execute something, but also if we change how we interpret the
53 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
54 which reads new symbols)), we should call reinit_frame_cache. */
55
56 struct frame_info
57 {
58 /* Level of this frame. The inner-most (youngest) frame is at level
59 0. As you move towards the outer-most (oldest) frame, the level
60 increases. This is a cached value. It could just as easily be
61 computed by counting back from the selected frame to the inner
62 most frame. */
63 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
64 reserved to indicate a bogus frame - one that has been created
65 just to keep GDB happy (GDB always needs a frame). For the
66 moment leave this as speculation. */
67 int level;
68
69 /* The frame's low-level unwinder and corresponding cache. The
70 low-level unwinder is responsible for unwinding register values
71 for the previous frame. The low-level unwind methods are
72 selected based on the presence, or otherwise, of register unwind
73 information such as CFI. */
74 void *prologue_cache;
75 const struct frame_unwind *unwind;
76
77 /* Cached copy of the previous frame's resume address. */
78 struct {
79 int p;
80 CORE_ADDR value;
81 } prev_pc;
82
83 /* Cached copy of the previous frame's function address. */
84 struct
85 {
86 CORE_ADDR addr;
87 int p;
88 } prev_func;
89
90 /* This frame's ID. */
91 struct
92 {
93 int p;
94 struct frame_id value;
95 } this_id;
96
97 /* The frame's high-level base methods, and corresponding cache.
98 The high level base methods are selected based on the frame's
99 debug info. */
100 const struct frame_base *base;
101 void *base_cache;
102
103 /* Pointers to the next (down, inner, younger) and previous (up,
104 outer, older) frame_info's in the frame cache. */
105 struct frame_info *next; /* down, inner, younger */
106 int prev_p;
107 struct frame_info *prev; /* up, outer, older */
108
109 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
110 could. Only valid when PREV_P is set. */
111 enum unwind_stop_reason stop_reason;
112 };
113
114 /* Flag to control debugging. */
115
116 static int frame_debug;
117 static void
118 show_frame_debug (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
122 }
123
124 /* Flag to indicate whether backtraces should stop at main et.al. */
125
126 static int backtrace_past_main;
127 static void
128 show_backtrace_past_main (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("\
132 Whether backtraces should continue past \"main\" is %s.\n"),
133 value);
134 }
135
136 static int backtrace_past_entry;
137 static void
138 show_backtrace_past_entry (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("\
142 Whether backtraces should continue past the entry point of a program is %s.\n"),
143 value);
144 }
145
146 static int backtrace_limit = INT_MAX;
147 static void
148 show_backtrace_limit (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150 {
151 fprintf_filtered (file, _("\
152 An upper bound on the number of backtrace levels is %s.\n"),
153 value);
154 }
155
156
157 static void
158 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
159 {
160 if (p)
161 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
162 else
163 fprintf_unfiltered (file, "!%s", name);
164 }
165
166 void
167 fprint_frame_id (struct ui_file *file, struct frame_id id)
168 {
169 fprintf_unfiltered (file, "{");
170 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
171 fprintf_unfiltered (file, ",");
172 fprint_field (file, "code", id.code_addr_p, id.code_addr);
173 fprintf_unfiltered (file, ",");
174 fprint_field (file, "special", id.special_addr_p, id.special_addr);
175 fprintf_unfiltered (file, "}");
176 }
177
178 static void
179 fprint_frame_type (struct ui_file *file, enum frame_type type)
180 {
181 switch (type)
182 {
183 case NORMAL_FRAME:
184 fprintf_unfiltered (file, "NORMAL_FRAME");
185 return;
186 case DUMMY_FRAME:
187 fprintf_unfiltered (file, "DUMMY_FRAME");
188 return;
189 case SIGTRAMP_FRAME:
190 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
191 return;
192 default:
193 fprintf_unfiltered (file, "<unknown type>");
194 return;
195 };
196 }
197
198 static void
199 fprint_frame (struct ui_file *file, struct frame_info *fi)
200 {
201 if (fi == NULL)
202 {
203 fprintf_unfiltered (file, "<NULL frame>");
204 return;
205 }
206 fprintf_unfiltered (file, "{");
207 fprintf_unfiltered (file, "level=%d", fi->level);
208 fprintf_unfiltered (file, ",");
209 fprintf_unfiltered (file, "type=");
210 if (fi->unwind != NULL)
211 fprint_frame_type (file, fi->unwind->type);
212 else
213 fprintf_unfiltered (file, "<unknown>");
214 fprintf_unfiltered (file, ",");
215 fprintf_unfiltered (file, "unwind=");
216 if (fi->unwind != NULL)
217 gdb_print_host_address (fi->unwind, file);
218 else
219 fprintf_unfiltered (file, "<unknown>");
220 fprintf_unfiltered (file, ",");
221 fprintf_unfiltered (file, "pc=");
222 if (fi->next != NULL && fi->next->prev_pc.p)
223 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
224 else
225 fprintf_unfiltered (file, "<unknown>");
226 fprintf_unfiltered (file, ",");
227 fprintf_unfiltered (file, "id=");
228 if (fi->this_id.p)
229 fprint_frame_id (file, fi->this_id.value);
230 else
231 fprintf_unfiltered (file, "<unknown>");
232 fprintf_unfiltered (file, ",");
233 fprintf_unfiltered (file, "func=");
234 if (fi->next != NULL && fi->next->prev_func.p)
235 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
236 else
237 fprintf_unfiltered (file, "<unknown>");
238 fprintf_unfiltered (file, "}");
239 }
240
241 /* Return a frame uniq ID that can be used to, later, re-find the
242 frame. */
243
244 struct frame_id
245 get_frame_id (struct frame_info *fi)
246 {
247 if (fi == NULL)
248 {
249 return null_frame_id;
250 }
251 if (!fi->this_id.p)
252 {
253 if (frame_debug)
254 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
255 fi->level);
256 /* Find the unwinder. */
257 if (fi->unwind == NULL)
258 fi->unwind = frame_unwind_find_by_frame (fi->next,
259 &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi->next, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (get_frame_arch (frame), id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (this_frame->unwind == NULL)
431 this_frame->unwind
432 = frame_unwind_find_by_frame (this_frame->next,
433 &this_frame->prologue_cache);
434 if (this_frame->unwind->prev_pc != NULL)
435 /* A per-frame unwinder, prefer it. */
436 pc = this_frame->unwind->prev_pc (this_frame->next,
437 &this_frame->prologue_cache);
438 else if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
439 {
440 /* The right way. The `pure' way. The one true way. This
441 method depends solely on the register-unwind code to
442 determine the value of registers in THIS frame, and hence
443 the value of this frame's PC (resume address). A typical
444 implementation is no more than:
445
446 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
447 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
448
449 Note: this method is very heavily dependent on a correct
450 register-unwind implementation, it pays to fix that
451 method first; this method is frame type agnostic, since
452 it only deals with register values, it works with any
453 frame. This is all in stark contrast to the old
454 FRAME_SAVED_PC which would try to directly handle all the
455 different ways that a PC could be unwound. */
456 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
457 }
458 else
459 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
460 this_frame->prev_pc.value = pc;
461 this_frame->prev_pc.p = 1;
462 if (frame_debug)
463 fprintf_unfiltered (gdb_stdlog,
464 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
465 this_frame->level,
466 paddr_nz (this_frame->prev_pc.value));
467 }
468 return this_frame->prev_pc.value;
469 }
470
471 CORE_ADDR
472 frame_func_unwind (struct frame_info *fi, enum frame_type this_type)
473 {
474 if (!fi->prev_func.p)
475 {
476 /* Make certain that this, and not the adjacent, function is
477 found. */
478 CORE_ADDR addr_in_block = frame_unwind_address_in_block (fi, this_type);
479 fi->prev_func.p = 1;
480 fi->prev_func.addr = get_pc_function_start (addr_in_block);
481 if (frame_debug)
482 fprintf_unfiltered (gdb_stdlog,
483 "{ frame_func_unwind (fi=%d) -> 0x%s }\n",
484 fi->level, paddr_nz (fi->prev_func.addr));
485 }
486 return fi->prev_func.addr;
487 }
488
489 CORE_ADDR
490 get_frame_func (struct frame_info *fi)
491 {
492 return frame_func_unwind (fi->next, get_frame_type (fi));
493 }
494
495 static int
496 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
497 {
498 frame_register_read (src, regnum, buf);
499 return 1;
500 }
501
502 struct regcache *
503 frame_save_as_regcache (struct frame_info *this_frame)
504 {
505 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
506 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
507 regcache_save (regcache, do_frame_register_read, this_frame);
508 discard_cleanups (cleanups);
509 return regcache;
510 }
511
512 void
513 frame_pop (struct frame_info *this_frame)
514 {
515 struct frame_info *prev_frame;
516 struct regcache *scratch;
517 struct cleanup *cleanups;
518
519 /* Ensure that we have a frame to pop to. */
520 prev_frame = get_prev_frame_1 (this_frame);
521
522 if (!prev_frame)
523 error (_("Cannot pop the initial frame."));
524
525 /* Make a copy of all the register values unwound from this frame.
526 Save them in a scratch buffer so that there isn't a race between
527 trying to extract the old values from the current regcache while
528 at the same time writing new values into that same cache. */
529 scratch = frame_save_as_regcache (prev_frame);
530 cleanups = make_cleanup_regcache_xfree (scratch);
531
532 /* FIXME: cagney/2003-03-16: It should be possible to tell the
533 target's register cache that it is about to be hit with a burst
534 register transfer and that the sequence of register writes should
535 be batched. The pair target_prepare_to_store() and
536 target_store_registers() kind of suggest this functionality.
537 Unfortunately, they don't implement it. Their lack of a formal
538 definition can lead to targets writing back bogus values
539 (arguably a bug in the target code mind). */
540 /* Now copy those saved registers into the current regcache.
541 Here, regcache_cpy() calls regcache_restore(). */
542 regcache_cpy (get_current_regcache (), scratch);
543 do_cleanups (cleanups);
544
545 /* We've made right mess of GDB's local state, just discard
546 everything. */
547 reinit_frame_cache ();
548 }
549
550 void
551 frame_register_unwind (struct frame_info *frame, int regnum,
552 int *optimizedp, enum lval_type *lvalp,
553 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
554 {
555 struct frame_unwind_cache *cache;
556
557 if (frame_debug)
558 {
559 fprintf_unfiltered (gdb_stdlog, "\
560 { frame_register_unwind (frame=%d,regnum=%d(%s),...) ",
561 frame->level, regnum,
562 frame_map_regnum_to_name (frame, regnum));
563 }
564
565 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
566 that the value proper does not need to be fetched. */
567 gdb_assert (optimizedp != NULL);
568 gdb_assert (lvalp != NULL);
569 gdb_assert (addrp != NULL);
570 gdb_assert (realnump != NULL);
571 /* gdb_assert (bufferp != NULL); */
572
573 /* NOTE: cagney/2002-11-27: A program trying to unwind a NULL frame
574 is broken. There is always a frame. If there, for some reason,
575 isn't a frame, there is some pretty busted code as it should have
576 detected the problem before calling here. */
577 gdb_assert (frame != NULL);
578
579 /* Find the unwinder. */
580 if (frame->unwind == NULL)
581 frame->unwind = frame_unwind_find_by_frame (frame->next,
582 &frame->prologue_cache);
583
584 /* Ask this frame to unwind its register. See comment in
585 "frame-unwind.h" for why NEXT frame and this unwind cache are
586 passed in. */
587 frame->unwind->prev_register (frame->next, &frame->prologue_cache, regnum,
588 optimizedp, lvalp, addrp, realnump, bufferp);
589
590 if (frame_debug)
591 {
592 fprintf_unfiltered (gdb_stdlog, "->");
593 fprintf_unfiltered (gdb_stdlog, " *optimizedp=%d", (*optimizedp));
594 fprintf_unfiltered (gdb_stdlog, " *lvalp=%d", (int) (*lvalp));
595 fprintf_unfiltered (gdb_stdlog, " *addrp=0x%s", paddr_nz ((*addrp)));
596 fprintf_unfiltered (gdb_stdlog, " *bufferp=");
597 if (bufferp == NULL)
598 fprintf_unfiltered (gdb_stdlog, "<NULL>");
599 else
600 {
601 int i;
602 const unsigned char *buf = bufferp;
603 fprintf_unfiltered (gdb_stdlog, "[");
604 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
605 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
606 fprintf_unfiltered (gdb_stdlog, "]");
607 }
608 fprintf_unfiltered (gdb_stdlog, " }\n");
609 }
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 LONGEST
651 frame_unwind_register_signed (struct frame_info *frame, int regnum)
652 {
653 gdb_byte buf[MAX_REGISTER_SIZE];
654 frame_unwind_register (frame, regnum, buf);
655 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
656 regnum));
657 }
658
659 LONGEST
660 get_frame_register_signed (struct frame_info *frame, int regnum)
661 {
662 return frame_unwind_register_signed (frame->next, regnum);
663 }
664
665 ULONGEST
666 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
667 {
668 gdb_byte buf[MAX_REGISTER_SIZE];
669 frame_unwind_register (frame, regnum, buf);
670 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
671 regnum));
672 }
673
674 ULONGEST
675 get_frame_register_unsigned (struct frame_info *frame, int regnum)
676 {
677 return frame_unwind_register_unsigned (frame->next, regnum);
678 }
679
680 void
681 put_frame_register (struct frame_info *frame, int regnum,
682 const gdb_byte *buf)
683 {
684 struct gdbarch *gdbarch = get_frame_arch (frame);
685 int realnum;
686 int optim;
687 enum lval_type lval;
688 CORE_ADDR addr;
689 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
690 if (optim)
691 error (_("Attempt to assign to a value that was optimized out."));
692 switch (lval)
693 {
694 case lval_memory:
695 {
696 /* FIXME: write_memory doesn't yet take constant buffers.
697 Arrrg! */
698 gdb_byte tmp[MAX_REGISTER_SIZE];
699 memcpy (tmp, buf, register_size (gdbarch, regnum));
700 write_memory (addr, tmp, register_size (gdbarch, regnum));
701 break;
702 }
703 case lval_register:
704 regcache_cooked_write (get_current_regcache (), realnum, buf);
705 break;
706 default:
707 error (_("Attempt to assign to an unmodifiable value."));
708 }
709 }
710
711 /* frame_register_read ()
712
713 Find and return the value of REGNUM for the specified stack frame.
714 The number of bytes copied is REGISTER_SIZE (REGNUM).
715
716 Returns 0 if the register value could not be found. */
717
718 int
719 frame_register_read (struct frame_info *frame, int regnum,
720 gdb_byte *myaddr)
721 {
722 int optimized;
723 enum lval_type lval;
724 CORE_ADDR addr;
725 int realnum;
726 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
727
728 return !optimized;
729 }
730
731 int
732 get_frame_register_bytes (struct frame_info *frame, int regnum,
733 CORE_ADDR offset, int len, gdb_byte *myaddr)
734 {
735 struct gdbarch *gdbarch = get_frame_arch (frame);
736
737 /* Skip registers wholly inside of OFFSET. */
738 while (offset >= register_size (gdbarch, regnum))
739 {
740 offset -= register_size (gdbarch, regnum);
741 regnum++;
742 }
743
744 /* Copy the data. */
745 while (len > 0)
746 {
747 int curr_len = register_size (gdbarch, regnum) - offset;
748 if (curr_len > len)
749 curr_len = len;
750
751 if (curr_len == register_size (gdbarch, regnum))
752 {
753 if (!frame_register_read (frame, regnum, myaddr))
754 return 0;
755 }
756 else
757 {
758 gdb_byte buf[MAX_REGISTER_SIZE];
759 if (!frame_register_read (frame, regnum, buf))
760 return 0;
761 memcpy (myaddr, buf + offset, curr_len);
762 }
763
764 myaddr += curr_len;
765 len -= curr_len;
766 offset = 0;
767 regnum++;
768 }
769
770 return 1;
771 }
772
773 void
774 put_frame_register_bytes (struct frame_info *frame, int regnum,
775 CORE_ADDR offset, int len, const gdb_byte *myaddr)
776 {
777 struct gdbarch *gdbarch = get_frame_arch (frame);
778
779 /* Skip registers wholly inside of OFFSET. */
780 while (offset >= register_size (gdbarch, regnum))
781 {
782 offset -= register_size (gdbarch, regnum);
783 regnum++;
784 }
785
786 /* Copy the data. */
787 while (len > 0)
788 {
789 int curr_len = register_size (gdbarch, regnum) - offset;
790 if (curr_len > len)
791 curr_len = len;
792
793 if (curr_len == register_size (gdbarch, regnum))
794 {
795 put_frame_register (frame, regnum, myaddr);
796 }
797 else
798 {
799 gdb_byte buf[MAX_REGISTER_SIZE];
800 frame_register_read (frame, regnum, buf);
801 memcpy (buf + offset, myaddr, curr_len);
802 put_frame_register (frame, regnum, buf);
803 }
804
805 myaddr += curr_len;
806 len -= curr_len;
807 offset = 0;
808 regnum++;
809 }
810 }
811
812 /* Map between a frame register number and its name. A frame register
813 space is a superset of the cooked register space --- it also
814 includes builtin registers. */
815
816 int
817 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
818 {
819 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
820 }
821
822 const char *
823 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
824 {
825 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
826 }
827
828 /* Create a sentinel frame. */
829
830 static struct frame_info *
831 create_sentinel_frame (struct regcache *regcache)
832 {
833 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
834 frame->level = -1;
835 /* Explicitly initialize the sentinel frame's cache. Provide it
836 with the underlying regcache. In the future additional
837 information, such as the frame's thread will be added. */
838 frame->prologue_cache = sentinel_frame_cache (regcache);
839 /* For the moment there is only one sentinel frame implementation. */
840 frame->unwind = sentinel_frame_unwind;
841 /* Link this frame back to itself. The frame is self referential
842 (the unwound PC is the same as the pc), so make it so. */
843 frame->next = frame;
844 /* Make the sentinel frame's ID valid, but invalid. That way all
845 comparisons with it should fail. */
846 frame->this_id.p = 1;
847 frame->this_id.value = null_frame_id;
848 if (frame_debug)
849 {
850 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
851 fprint_frame (gdb_stdlog, frame);
852 fprintf_unfiltered (gdb_stdlog, " }\n");
853 }
854 return frame;
855 }
856
857 /* Info about the innermost stack frame (contents of FP register) */
858
859 static struct frame_info *current_frame;
860
861 /* Cache for frame addresses already read by gdb. Valid only while
862 inferior is stopped. Control variables for the frame cache should
863 be local to this module. */
864
865 static struct obstack frame_cache_obstack;
866
867 void *
868 frame_obstack_zalloc (unsigned long size)
869 {
870 void *data = obstack_alloc (&frame_cache_obstack, size);
871 memset (data, 0, size);
872 return data;
873 }
874
875 /* Return the innermost (currently executing) stack frame. This is
876 split into two functions. The function unwind_to_current_frame()
877 is wrapped in catch exceptions so that, even when the unwind of the
878 sentinel frame fails, the function still returns a stack frame. */
879
880 static int
881 unwind_to_current_frame (struct ui_out *ui_out, void *args)
882 {
883 struct frame_info *frame = get_prev_frame (args);
884 /* A sentinel frame can fail to unwind, e.g., because its PC value
885 lands in somewhere like start. */
886 if (frame == NULL)
887 return 1;
888 current_frame = frame;
889 return 0;
890 }
891
892 struct frame_info *
893 get_current_frame (void)
894 {
895 /* First check, and report, the lack of registers. Having GDB
896 report "No stack!" or "No memory" when the target doesn't even
897 have registers is very confusing. Besides, "printcmd.exp"
898 explicitly checks that ``print $pc'' with no registers prints "No
899 registers". */
900 if (!target_has_registers)
901 error (_("No registers."));
902 if (!target_has_stack)
903 error (_("No stack."));
904 if (!target_has_memory)
905 error (_("No memory."));
906 if (current_frame == NULL)
907 {
908 struct frame_info *sentinel_frame =
909 create_sentinel_frame (get_current_regcache ());
910 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
911 RETURN_MASK_ERROR) != 0)
912 {
913 /* Oops! Fake a current frame? Is this useful? It has a PC
914 of zero, for instance. */
915 current_frame = sentinel_frame;
916 }
917 }
918 return current_frame;
919 }
920
921 /* The "selected" stack frame is used by default for local and arg
922 access. May be zero, for no selected frame. */
923
924 static struct frame_info *selected_frame;
925
926 /* Return the selected frame. Always non-NULL (unless there isn't an
927 inferior sufficient for creating a frame) in which case an error is
928 thrown. */
929
930 struct frame_info *
931 get_selected_frame (const char *message)
932 {
933 if (selected_frame == NULL)
934 {
935 if (message != NULL && (!target_has_registers
936 || !target_has_stack
937 || !target_has_memory))
938 error (("%s"), message);
939 /* Hey! Don't trust this. It should really be re-finding the
940 last selected frame of the currently selected thread. This,
941 though, is better than nothing. */
942 select_frame (get_current_frame ());
943 }
944 /* There is always a frame. */
945 gdb_assert (selected_frame != NULL);
946 return selected_frame;
947 }
948
949 /* This is a variant of get_selected_frame() which can be called when
950 the inferior does not have a frame; in that case it will return
951 NULL instead of calling error(). */
952
953 struct frame_info *
954 deprecated_safe_get_selected_frame (void)
955 {
956 if (!target_has_registers || !target_has_stack || !target_has_memory)
957 return NULL;
958 return get_selected_frame (NULL);
959 }
960
961 /* Select frame FI (or NULL - to invalidate the current frame). */
962
963 void
964 select_frame (struct frame_info *fi)
965 {
966 struct symtab *s;
967
968 selected_frame = fi;
969 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
970 frame is being invalidated. */
971 if (deprecated_selected_frame_level_changed_hook)
972 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
973
974 /* FIXME: kseitz/2002-08-28: It would be nice to call
975 selected_frame_level_changed_event() right here, but due to limitations
976 in the current interfaces, we would end up flooding UIs with events
977 because select_frame() is used extensively internally.
978
979 Once we have frame-parameterized frame (and frame-related) commands,
980 the event notification can be moved here, since this function will only
981 be called when the user's selected frame is being changed. */
982
983 /* Ensure that symbols for this frame are read in. Also, determine the
984 source language of this frame, and switch to it if desired. */
985 if (fi)
986 {
987 /* We retrieve the frame's symtab by using the frame PC. However
988 we cannot use the frame PC as-is, because it usually points to
989 the instruction following the "call", which is sometimes the
990 first instruction of another function. So we rely on
991 get_frame_address_in_block() which provides us with a PC which
992 is guaranteed to be inside the frame's code block. */
993 s = find_pc_symtab (get_frame_address_in_block (fi));
994 if (s
995 && s->language != current_language->la_language
996 && s->language != language_unknown
997 && language_mode == language_mode_auto)
998 {
999 set_language (s->language);
1000 }
1001 }
1002 }
1003
1004 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1005 Always returns a non-NULL value. */
1006
1007 struct frame_info *
1008 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1009 {
1010 struct frame_info *fi;
1011
1012 if (frame_debug)
1013 {
1014 fprintf_unfiltered (gdb_stdlog,
1015 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1016 paddr_nz (addr), paddr_nz (pc));
1017 }
1018
1019 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1020
1021 fi->next = create_sentinel_frame (get_current_regcache ());
1022
1023 /* Select/initialize both the unwind function and the frame's type
1024 based on the PC. */
1025 fi->unwind = frame_unwind_find_by_frame (fi->next, &fi->prologue_cache);
1026
1027 fi->this_id.p = 1;
1028 deprecated_update_frame_base_hack (fi, addr);
1029 deprecated_update_frame_pc_hack (fi, pc);
1030
1031 if (frame_debug)
1032 {
1033 fprintf_unfiltered (gdb_stdlog, "-> ");
1034 fprint_frame (gdb_stdlog, fi);
1035 fprintf_unfiltered (gdb_stdlog, " }\n");
1036 }
1037
1038 return fi;
1039 }
1040
1041 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1042 innermost frame). Be careful to not fall off the bottom of the
1043 frame chain and onto the sentinel frame. */
1044
1045 struct frame_info *
1046 get_next_frame (struct frame_info *this_frame)
1047 {
1048 if (this_frame->level > 0)
1049 return this_frame->next;
1050 else
1051 return NULL;
1052 }
1053
1054 /* Observer for the target_changed event. */
1055
1056 void
1057 frame_observer_target_changed (struct target_ops *target)
1058 {
1059 reinit_frame_cache ();
1060 }
1061
1062 /* Flush the entire frame cache. */
1063
1064 void
1065 reinit_frame_cache (void)
1066 {
1067 struct frame_info *fi;
1068
1069 /* Tear down all frame caches. */
1070 for (fi = current_frame; fi != NULL; fi = fi->prev)
1071 {
1072 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1073 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1074 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1075 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1076 }
1077
1078 /* Since we can't really be sure what the first object allocated was */
1079 obstack_free (&frame_cache_obstack, 0);
1080 obstack_init (&frame_cache_obstack);
1081
1082 current_frame = NULL; /* Invalidate cache */
1083 select_frame (NULL);
1084 annotate_frames_invalid ();
1085 if (frame_debug)
1086 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1087 }
1088
1089 /* Find where a register is saved (in memory or another register).
1090 The result of frame_register_unwind is just where it is saved
1091 relative to this particular frame. */
1092
1093 static void
1094 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1095 int *optimizedp, enum lval_type *lvalp,
1096 CORE_ADDR *addrp, int *realnump)
1097 {
1098 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1099
1100 while (this_frame != NULL)
1101 {
1102 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1103 addrp, realnump, NULL);
1104
1105 if (*optimizedp)
1106 break;
1107
1108 if (*lvalp != lval_register)
1109 break;
1110
1111 regnum = *realnump;
1112 this_frame = get_next_frame (this_frame);
1113 }
1114 }
1115
1116 /* Return a "struct frame_info" corresponding to the frame that called
1117 THIS_FRAME. Returns NULL if there is no such frame.
1118
1119 Unlike get_prev_frame, this function always tries to unwind the
1120 frame. */
1121
1122 static struct frame_info *
1123 get_prev_frame_1 (struct frame_info *this_frame)
1124 {
1125 struct frame_info *prev_frame;
1126 struct frame_id this_id;
1127 struct gdbarch *gdbarch;
1128
1129 gdb_assert (this_frame != NULL);
1130 gdbarch = get_frame_arch (this_frame);
1131
1132 if (frame_debug)
1133 {
1134 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1135 if (this_frame != NULL)
1136 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1137 else
1138 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1139 fprintf_unfiltered (gdb_stdlog, ") ");
1140 }
1141
1142 /* Only try to do the unwind once. */
1143 if (this_frame->prev_p)
1144 {
1145 if (frame_debug)
1146 {
1147 fprintf_unfiltered (gdb_stdlog, "-> ");
1148 fprint_frame (gdb_stdlog, this_frame->prev);
1149 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1150 }
1151 return this_frame->prev;
1152 }
1153 this_frame->prev_p = 1;
1154 this_frame->stop_reason = UNWIND_NO_REASON;
1155
1156 /* Check that this frame's ID was valid. If it wasn't, don't try to
1157 unwind to the prev frame. Be careful to not apply this test to
1158 the sentinel frame. */
1159 this_id = get_frame_id (this_frame);
1160 if (this_frame->level >= 0 && !frame_id_p (this_id))
1161 {
1162 if (frame_debug)
1163 {
1164 fprintf_unfiltered (gdb_stdlog, "-> ");
1165 fprint_frame (gdb_stdlog, NULL);
1166 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1167 }
1168 this_frame->stop_reason = UNWIND_NULL_ID;
1169 return NULL;
1170 }
1171
1172 /* Check that this frame's ID isn't inner to (younger, below, next)
1173 the next frame. This happens when a frame unwind goes backwards.
1174 Exclude signal trampolines (due to sigaltstack the frame ID can
1175 go backwards) and sentinel frames (the test is meaningless). */
1176 if (this_frame->next->level >= 0
1177 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1178 && frame_id_inner (get_frame_arch (this_frame), this_id,
1179 get_frame_id (this_frame->next)))
1180 {
1181 if (frame_debug)
1182 {
1183 fprintf_unfiltered (gdb_stdlog, "-> ");
1184 fprint_frame (gdb_stdlog, NULL);
1185 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1186 }
1187 this_frame->stop_reason = UNWIND_INNER_ID;
1188 return NULL;
1189 }
1190
1191 /* Check that this and the next frame are not identical. If they
1192 are, there is most likely a stack cycle. As with the inner-than
1193 test above, avoid comparing the inner-most and sentinel frames. */
1194 if (this_frame->level > 0
1195 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1196 {
1197 if (frame_debug)
1198 {
1199 fprintf_unfiltered (gdb_stdlog, "-> ");
1200 fprint_frame (gdb_stdlog, NULL);
1201 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1202 }
1203 this_frame->stop_reason = UNWIND_SAME_ID;
1204 return NULL;
1205 }
1206
1207 /* Check that this and the next frame do not unwind the PC register
1208 to the same memory location. If they do, then even though they
1209 have different frame IDs, the new frame will be bogus; two
1210 functions can't share a register save slot for the PC. This can
1211 happen when the prologue analyzer finds a stack adjustment, but
1212 no PC save.
1213
1214 This check does assume that the "PC register" is roughly a
1215 traditional PC, even if the gdbarch_unwind_pc method adjusts
1216 it (we do not rely on the value, only on the unwound PC being
1217 dependent on this value). A potential improvement would be
1218 to have the frame prev_pc method and the gdbarch unwind_pc
1219 method set the same lval and location information as
1220 frame_register_unwind. */
1221 if (this_frame->level > 0
1222 && gdbarch_pc_regnum (gdbarch) >= 0
1223 && get_frame_type (this_frame) == NORMAL_FRAME
1224 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1225 {
1226 int optimized, realnum, nrealnum;
1227 enum lval_type lval, nlval;
1228 CORE_ADDR addr, naddr;
1229
1230 frame_register_unwind_location (this_frame,
1231 gdbarch_pc_regnum (gdbarch),
1232 &optimized, &lval, &addr, &realnum);
1233 frame_register_unwind_location (get_next_frame (this_frame),
1234 gdbarch_pc_regnum (gdbarch),
1235 &optimized, &nlval, &naddr, &nrealnum);
1236
1237 if ((lval == lval_memory && lval == nlval && addr == naddr)
1238 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1239 {
1240 if (frame_debug)
1241 {
1242 fprintf_unfiltered (gdb_stdlog, "-> ");
1243 fprint_frame (gdb_stdlog, NULL);
1244 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1245 }
1246
1247 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1248 this_frame->prev = NULL;
1249 return NULL;
1250 }
1251 }
1252
1253 /* Allocate the new frame but do not wire it in to the frame chain.
1254 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1255 frame->next to pull some fancy tricks (of course such code is, by
1256 definition, recursive). Try to prevent it.
1257
1258 There is no reason to worry about memory leaks, should the
1259 remainder of the function fail. The allocated memory will be
1260 quickly reclaimed when the frame cache is flushed, and the `we've
1261 been here before' check above will stop repeated memory
1262 allocation calls. */
1263 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1264 prev_frame->level = this_frame->level + 1;
1265
1266 /* Don't yet compute ->unwind (and hence ->type). It is computed
1267 on-demand in get_frame_type, frame_register_unwind, and
1268 get_frame_id. */
1269
1270 /* Don't yet compute the frame's ID. It is computed on-demand by
1271 get_frame_id(). */
1272
1273 /* The unwound frame ID is validate at the start of this function,
1274 as part of the logic to decide if that frame should be further
1275 unwound, and not here while the prev frame is being created.
1276 Doing this makes it possible for the user to examine a frame that
1277 has an invalid frame ID.
1278
1279 Some very old VAX code noted: [...] For the sake of argument,
1280 suppose that the stack is somewhat trashed (which is one reason
1281 that "info frame" exists). So, return 0 (indicating we don't
1282 know the address of the arglist) if we don't know what frame this
1283 frame calls. */
1284
1285 /* Link it in. */
1286 this_frame->prev = prev_frame;
1287 prev_frame->next = this_frame;
1288
1289 if (frame_debug)
1290 {
1291 fprintf_unfiltered (gdb_stdlog, "-> ");
1292 fprint_frame (gdb_stdlog, prev_frame);
1293 fprintf_unfiltered (gdb_stdlog, " }\n");
1294 }
1295
1296 return prev_frame;
1297 }
1298
1299 /* Debug routine to print a NULL frame being returned. */
1300
1301 static void
1302 frame_debug_got_null_frame (struct ui_file *file,
1303 struct frame_info *this_frame,
1304 const char *reason)
1305 {
1306 if (frame_debug)
1307 {
1308 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1309 if (this_frame != NULL)
1310 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1311 else
1312 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1313 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1314 }
1315 }
1316
1317 /* Is this (non-sentinel) frame in the "main"() function? */
1318
1319 static int
1320 inside_main_func (struct frame_info *this_frame)
1321 {
1322 struct minimal_symbol *msymbol;
1323 CORE_ADDR maddr;
1324
1325 if (symfile_objfile == 0)
1326 return 0;
1327 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1328 if (msymbol == NULL)
1329 return 0;
1330 /* Make certain that the code, and not descriptor, address is
1331 returned. */
1332 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1333 SYMBOL_VALUE_ADDRESS (msymbol),
1334 &current_target);
1335 return maddr == get_frame_func (this_frame);
1336 }
1337
1338 /* Test whether THIS_FRAME is inside the process entry point function. */
1339
1340 static int
1341 inside_entry_func (struct frame_info *this_frame)
1342 {
1343 return (get_frame_func (this_frame) == entry_point_address ());
1344 }
1345
1346 /* Return a structure containing various interesting information about
1347 the frame that called THIS_FRAME. Returns NULL if there is entier
1348 no such frame or the frame fails any of a set of target-independent
1349 condition that should terminate the frame chain (e.g., as unwinding
1350 past main()).
1351
1352 This function should not contain target-dependent tests, such as
1353 checking whether the program-counter is zero. */
1354
1355 struct frame_info *
1356 get_prev_frame (struct frame_info *this_frame)
1357 {
1358 struct frame_info *prev_frame;
1359
1360 /* Return the inner-most frame, when the caller passes in NULL. */
1361 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1362 caller should have previously obtained a valid frame using
1363 get_selected_frame() and then called this code - only possibility
1364 I can think of is code behaving badly.
1365
1366 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1367 block_innermost_frame(). It does the sequence: frame = NULL;
1368 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1369 it couldn't be written better, I don't know.
1370
1371 NOTE: cagney/2003-01-11: I suspect what is happening in
1372 block_innermost_frame() is, when the target has no state
1373 (registers, memory, ...), it is still calling this function. The
1374 assumption being that this function will return NULL indicating
1375 that a frame isn't possible, rather than checking that the target
1376 has state and then calling get_current_frame() and
1377 get_prev_frame(). This is a guess mind. */
1378 if (this_frame == NULL)
1379 {
1380 /* NOTE: cagney/2002-11-09: There was a code segment here that
1381 would error out when CURRENT_FRAME was NULL. The comment
1382 that went with it made the claim ...
1383
1384 ``This screws value_of_variable, which just wants a nice
1385 clean NULL return from block_innermost_frame if there are no
1386 frames. I don't think I've ever seen this message happen
1387 otherwise. And returning NULL here is a perfectly legitimate
1388 thing to do.''
1389
1390 Per the above, this code shouldn't even be called with a NULL
1391 THIS_FRAME. */
1392 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1393 return current_frame;
1394 }
1395
1396 /* There is always a frame. If this assertion fails, suspect that
1397 something should be calling get_selected_frame() or
1398 get_current_frame(). */
1399 gdb_assert (this_frame != NULL);
1400
1401 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1402 sense to stop unwinding at a dummy frame. One place where a dummy
1403 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1404 pcsqh register (space register for the instruction at the head of the
1405 instruction queue) cannot be written directly; the only way to set it
1406 is to branch to code that is in the target space. In order to implement
1407 frame dummies on HPUX, the called function is made to jump back to where
1408 the inferior was when the user function was called. If gdb was inside
1409 the main function when we created the dummy frame, the dummy frame will
1410 point inside the main function. */
1411 if (this_frame->level >= 0
1412 && get_frame_type (this_frame) != DUMMY_FRAME
1413 && !backtrace_past_main
1414 && inside_main_func (this_frame))
1415 /* Don't unwind past main(). Note, this is done _before_ the
1416 frame has been marked as previously unwound. That way if the
1417 user later decides to enable unwinds past main(), that will
1418 automatically happen. */
1419 {
1420 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1421 return NULL;
1422 }
1423
1424 /* If the user's backtrace limit has been exceeded, stop. We must
1425 add two to the current level; one of those accounts for backtrace_limit
1426 being 1-based and the level being 0-based, and the other accounts for
1427 the level of the new frame instead of the level of the current
1428 frame. */
1429 if (this_frame->level + 2 > backtrace_limit)
1430 {
1431 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1432 "backtrace limit exceeded");
1433 return NULL;
1434 }
1435
1436 /* If we're already inside the entry function for the main objfile,
1437 then it isn't valid. Don't apply this test to a dummy frame -
1438 dummy frame PCs typically land in the entry func. Don't apply
1439 this test to the sentinel frame. Sentinel frames should always
1440 be allowed to unwind. */
1441 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1442 wasn't checking for "main" in the minimal symbols. With that
1443 fixed asm-source tests now stop in "main" instead of halting the
1444 backtrace in weird and wonderful ways somewhere inside the entry
1445 file. Suspect that tests for inside the entry file/func were
1446 added to work around that (now fixed) case. */
1447 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1448 suggested having the inside_entry_func test use the
1449 inside_main_func() msymbol trick (along with entry_point_address()
1450 I guess) to determine the address range of the start function.
1451 That should provide a far better stopper than the current
1452 heuristics. */
1453 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1454 applied tail-call optimizations to main so that a function called
1455 from main returns directly to the caller of main. Since we don't
1456 stop at main, we should at least stop at the entry point of the
1457 application. */
1458 if (!backtrace_past_entry
1459 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1460 && inside_entry_func (this_frame))
1461 {
1462 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1463 return NULL;
1464 }
1465
1466 /* Assume that the only way to get a zero PC is through something
1467 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1468 will never unwind a zero PC. */
1469 if (this_frame->level > 0
1470 && get_frame_type (this_frame) == NORMAL_FRAME
1471 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1472 && get_frame_pc (this_frame) == 0)
1473 {
1474 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1475 return NULL;
1476 }
1477
1478 return get_prev_frame_1 (this_frame);
1479 }
1480
1481 CORE_ADDR
1482 get_frame_pc (struct frame_info *frame)
1483 {
1484 gdb_assert (frame->next != NULL);
1485 return frame_pc_unwind (frame->next);
1486 }
1487
1488 /* Return an address that falls within NEXT_FRAME's caller's code
1489 block, assuming that the caller is a THIS_TYPE frame. */
1490
1491 CORE_ADDR
1492 frame_unwind_address_in_block (struct frame_info *next_frame,
1493 enum frame_type this_type)
1494 {
1495 /* A draft address. */
1496 CORE_ADDR pc = frame_pc_unwind (next_frame);
1497
1498 /* If NEXT_FRAME was called by a signal frame or dummy frame, then
1499 we shold not adjust the unwound PC. These frames may not call
1500 their next frame in the normal way; the operating system or GDB
1501 may have pushed their resume address manually onto the stack, so
1502 it may be the very first instruction. Even if the resume address
1503 was not manually pushed, they expect to be returned to. */
1504 if (this_type != NORMAL_FRAME)
1505 return pc;
1506
1507 /* If THIS frame is not inner most (i.e., NEXT isn't the sentinel),
1508 and NEXT is `normal' (i.e., not a sigtramp, dummy, ....) THIS
1509 frame's PC ends up pointing at the instruction fallowing the
1510 "call". Adjust that PC value so that it falls on the call
1511 instruction (which, hopefully, falls within THIS frame's code
1512 block). So far it's proved to be a very good approximation. See
1513 get_frame_type() for why ->type can't be used. */
1514 if (next_frame->level >= 0
1515 && get_frame_type (next_frame) == NORMAL_FRAME)
1516 --pc;
1517 return pc;
1518 }
1519
1520 CORE_ADDR
1521 get_frame_address_in_block (struct frame_info *this_frame)
1522 {
1523 return frame_unwind_address_in_block (this_frame->next,
1524 get_frame_type (this_frame));
1525 }
1526
1527 static int
1528 pc_notcurrent (struct frame_info *frame)
1529 {
1530 /* If FRAME is not the innermost frame, that normally means that
1531 FRAME->pc points at the return instruction (which is *after* the
1532 call instruction), and we want to get the line containing the
1533 call (because the call is where the user thinks the program is).
1534 However, if the next frame is either a SIGTRAMP_FRAME or a
1535 DUMMY_FRAME, then the next frame will contain a saved interrupt
1536 PC and such a PC indicates the current (rather than next)
1537 instruction/line, consequently, for such cases, want to get the
1538 line containing fi->pc. */
1539 struct frame_info *next = get_next_frame (frame);
1540 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1541 return notcurrent;
1542 }
1543
1544 void
1545 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1546 {
1547 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1548 }
1549
1550 /* Per "frame.h", return the ``address'' of the frame. Code should
1551 really be using get_frame_id(). */
1552 CORE_ADDR
1553 get_frame_base (struct frame_info *fi)
1554 {
1555 return get_frame_id (fi).stack_addr;
1556 }
1557
1558 /* High-level offsets into the frame. Used by the debug info. */
1559
1560 CORE_ADDR
1561 get_frame_base_address (struct frame_info *fi)
1562 {
1563 if (get_frame_type (fi) != NORMAL_FRAME)
1564 return 0;
1565 if (fi->base == NULL)
1566 fi->base = frame_base_find_by_frame (fi->next);
1567 /* Sneaky: If the low-level unwind and high-level base code share a
1568 common unwinder, let them share the prologue cache. */
1569 if (fi->base->unwind == fi->unwind)
1570 return fi->base->this_base (fi->next, &fi->prologue_cache);
1571 return fi->base->this_base (fi->next, &fi->base_cache);
1572 }
1573
1574 CORE_ADDR
1575 get_frame_locals_address (struct frame_info *fi)
1576 {
1577 void **cache;
1578 if (get_frame_type (fi) != NORMAL_FRAME)
1579 return 0;
1580 /* If there isn't a frame address method, find it. */
1581 if (fi->base == NULL)
1582 fi->base = frame_base_find_by_frame (fi->next);
1583 /* Sneaky: If the low-level unwind and high-level base code share a
1584 common unwinder, let them share the prologue cache. */
1585 if (fi->base->unwind == fi->unwind)
1586 cache = &fi->prologue_cache;
1587 else
1588 cache = &fi->base_cache;
1589 return fi->base->this_locals (fi->next, cache);
1590 }
1591
1592 CORE_ADDR
1593 get_frame_args_address (struct frame_info *fi)
1594 {
1595 void **cache;
1596 if (get_frame_type (fi) != NORMAL_FRAME)
1597 return 0;
1598 /* If there isn't a frame address method, find it. */
1599 if (fi->base == NULL)
1600 fi->base = frame_base_find_by_frame (fi->next);
1601 /* Sneaky: If the low-level unwind and high-level base code share a
1602 common unwinder, let them share the prologue cache. */
1603 if (fi->base->unwind == fi->unwind)
1604 cache = &fi->prologue_cache;
1605 else
1606 cache = &fi->base_cache;
1607 return fi->base->this_args (fi->next, cache);
1608 }
1609
1610 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1611 or -1 for a NULL frame. */
1612
1613 int
1614 frame_relative_level (struct frame_info *fi)
1615 {
1616 if (fi == NULL)
1617 return -1;
1618 else
1619 return fi->level;
1620 }
1621
1622 enum frame_type
1623 get_frame_type (struct frame_info *frame)
1624 {
1625 if (frame->unwind == NULL)
1626 /* Initialize the frame's unwinder because that's what
1627 provides the frame's type. */
1628 frame->unwind = frame_unwind_find_by_frame (frame->next,
1629 &frame->prologue_cache);
1630 return frame->unwind->type;
1631 }
1632
1633 void
1634 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1635 {
1636 if (frame_debug)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1639 frame->level, paddr_nz (pc));
1640 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1641 maintaining a locally allocated frame object. Since such frames
1642 are not in the frame chain, it isn't possible to assume that the
1643 frame has a next. Sigh. */
1644 if (frame->next != NULL)
1645 {
1646 /* While we're at it, update this frame's cached PC value, found
1647 in the next frame. Oh for the day when "struct frame_info"
1648 is opaque and this hack on hack can just go away. */
1649 frame->next->prev_pc.value = pc;
1650 frame->next->prev_pc.p = 1;
1651 }
1652 }
1653
1654 void
1655 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1656 {
1657 if (frame_debug)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1660 frame->level, paddr_nz (base));
1661 /* See comment in "frame.h". */
1662 frame->this_id.value.stack_addr = base;
1663 }
1664
1665 /* Memory access methods. */
1666
1667 void
1668 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1669 gdb_byte *buf, int len)
1670 {
1671 read_memory (addr, buf, len);
1672 }
1673
1674 LONGEST
1675 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1676 int len)
1677 {
1678 return read_memory_integer (addr, len);
1679 }
1680
1681 ULONGEST
1682 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1683 int len)
1684 {
1685 return read_memory_unsigned_integer (addr, len);
1686 }
1687
1688 int
1689 safe_frame_unwind_memory (struct frame_info *this_frame,
1690 CORE_ADDR addr, gdb_byte *buf, int len)
1691 {
1692 /* NOTE: read_memory_nobpt returns zero on success! */
1693 return !read_memory_nobpt (addr, buf, len);
1694 }
1695
1696 /* Architecture method. */
1697
1698 struct gdbarch *
1699 get_frame_arch (struct frame_info *this_frame)
1700 {
1701 return current_gdbarch;
1702 }
1703
1704 /* Stack pointer methods. */
1705
1706 CORE_ADDR
1707 get_frame_sp (struct frame_info *this_frame)
1708 {
1709 return frame_sp_unwind (this_frame->next);
1710 }
1711
1712 CORE_ADDR
1713 frame_sp_unwind (struct frame_info *next_frame)
1714 {
1715 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1716 /* Normality - an architecture that provides a way of obtaining any
1717 frame inner-most address. */
1718 if (gdbarch_unwind_sp_p (gdbarch))
1719 return gdbarch_unwind_sp (gdbarch, next_frame);
1720 /* Now things are really are grim. Hope that the value returned by
1721 the gdbarch_sp_regnum register is meaningful. */
1722 if (gdbarch_sp_regnum (gdbarch) >= 0)
1723 return frame_unwind_register_unsigned (next_frame,
1724 gdbarch_sp_regnum (gdbarch));
1725 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1726 }
1727
1728 /* Return the reason why we can't unwind past FRAME. */
1729
1730 enum unwind_stop_reason
1731 get_frame_unwind_stop_reason (struct frame_info *frame)
1732 {
1733 /* If we haven't tried to unwind past this point yet, then assume
1734 that unwinding would succeed. */
1735 if (frame->prev_p == 0)
1736 return UNWIND_NO_REASON;
1737
1738 /* Otherwise, we set a reason when we succeeded (or failed) to
1739 unwind. */
1740 return frame->stop_reason;
1741 }
1742
1743 /* Return a string explaining REASON. */
1744
1745 const char *
1746 frame_stop_reason_string (enum unwind_stop_reason reason)
1747 {
1748 switch (reason)
1749 {
1750 case UNWIND_NULL_ID:
1751 return _("unwinder did not report frame ID");
1752
1753 case UNWIND_INNER_ID:
1754 return _("previous frame inner to this frame (corrupt stack?)");
1755
1756 case UNWIND_SAME_ID:
1757 return _("previous frame identical to this frame (corrupt stack?)");
1758
1759 case UNWIND_NO_SAVED_PC:
1760 return _("frame did not save the PC");
1761
1762 case UNWIND_NO_REASON:
1763 case UNWIND_FIRST_ERROR:
1764 default:
1765 internal_error (__FILE__, __LINE__,
1766 "Invalid frame stop reason");
1767 }
1768 }
1769
1770 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1771
1772 static struct cmd_list_element *set_backtrace_cmdlist;
1773 static struct cmd_list_element *show_backtrace_cmdlist;
1774
1775 static void
1776 set_backtrace_cmd (char *args, int from_tty)
1777 {
1778 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1779 }
1780
1781 static void
1782 show_backtrace_cmd (char *args, int from_tty)
1783 {
1784 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1785 }
1786
1787 void
1788 _initialize_frame (void)
1789 {
1790 obstack_init (&frame_cache_obstack);
1791
1792 observer_attach_target_changed (frame_observer_target_changed);
1793
1794 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1795 Set backtrace specific variables.\n\
1796 Configure backtrace variables such as the backtrace limit"),
1797 &set_backtrace_cmdlist, "set backtrace ",
1798 0/*allow-unknown*/, &setlist);
1799 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1800 Show backtrace specific variables\n\
1801 Show backtrace variables such as the backtrace limit"),
1802 &show_backtrace_cmdlist, "show backtrace ",
1803 0/*allow-unknown*/, &showlist);
1804
1805 add_setshow_boolean_cmd ("past-main", class_obscure,
1806 &backtrace_past_main, _("\
1807 Set whether backtraces should continue past \"main\"."), _("\
1808 Show whether backtraces should continue past \"main\"."), _("\
1809 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1810 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1811 of the stack trace."),
1812 NULL,
1813 show_backtrace_past_main,
1814 &set_backtrace_cmdlist,
1815 &show_backtrace_cmdlist);
1816
1817 add_setshow_boolean_cmd ("past-entry", class_obscure,
1818 &backtrace_past_entry, _("\
1819 Set whether backtraces should continue past the entry point of a program."),
1820 _("\
1821 Show whether backtraces should continue past the entry point of a program."),
1822 _("\
1823 Normally there are no callers beyond the entry point of a program, so GDB\n\
1824 will terminate the backtrace there. Set this variable if you need to see \n\
1825 the rest of the stack trace."),
1826 NULL,
1827 show_backtrace_past_entry,
1828 &set_backtrace_cmdlist,
1829 &show_backtrace_cmdlist);
1830
1831 add_setshow_integer_cmd ("limit", class_obscure,
1832 &backtrace_limit, _("\
1833 Set an upper bound on the number of backtrace levels."), _("\
1834 Show the upper bound on the number of backtrace levels."), _("\
1835 No more than the specified number of frames can be displayed or examined.\n\
1836 Zero is unlimited."),
1837 NULL,
1838 show_backtrace_limit,
1839 &set_backtrace_cmdlist,
1840 &show_backtrace_cmdlist);
1841
1842 /* Debug this files internals. */
1843 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1844 Set frame debugging."), _("\
1845 Show frame debugging."), _("\
1846 When non-zero, frame specific internal debugging is enabled."),
1847 NULL,
1848 show_frame_debug,
1849 &setdebuglist, &showdebuglist);
1850 }
This page took 0.066614 seconds and 4 git commands to generate.