fort_dyn_array: Enable dynamic member types inside a structure.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
47 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
48
49 /* Status of some values cached in the frame_info object. */
50
51 enum cached_copy_status
52 {
53 /* Value is unknown. */
54 CC_UNKNOWN,
55
56 /* We have a value. */
57 CC_VALUE,
58
59 /* Value was not saved. */
60 CC_NOT_SAVED,
61
62 /* Value is unavailable. */
63 CC_UNAVAILABLE
64 };
65
66 /* We keep a cache of stack frames, each of which is a "struct
67 frame_info". The innermost one gets allocated (in
68 wait_for_inferior) each time the inferior stops; current_frame
69 points to it. Additional frames get allocated (in get_prev_frame)
70 as needed, and are chained through the next and prev fields. Any
71 time that the frame cache becomes invalid (most notably when we
72 execute something, but also if we change how we interpret the
73 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
74 which reads new symbols)), we should call reinit_frame_cache. */
75
76 struct frame_info
77 {
78 /* Level of this frame. The inner-most (youngest) frame is at level
79 0. As you move towards the outer-most (oldest) frame, the level
80 increases. This is a cached value. It could just as easily be
81 computed by counting back from the selected frame to the inner
82 most frame. */
83 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
84 reserved to indicate a bogus frame - one that has been created
85 just to keep GDB happy (GDB always needs a frame). For the
86 moment leave this as speculation. */
87 int level;
88
89 /* The frame's program space. */
90 struct program_space *pspace;
91
92 /* The frame's address space. */
93 struct address_space *aspace;
94
95 /* The frame's low-level unwinder and corresponding cache. The
96 low-level unwinder is responsible for unwinding register values
97 for the previous frame. The low-level unwind methods are
98 selected based on the presence, or otherwise, of register unwind
99 information such as CFI. */
100 void *prologue_cache;
101 const struct frame_unwind *unwind;
102
103 /* Cached copy of the previous frame's architecture. */
104 struct
105 {
106 int p;
107 struct gdbarch *arch;
108 } prev_arch;
109
110 /* Cached copy of the previous frame's resume address. */
111 struct {
112 enum cached_copy_status status;
113 CORE_ADDR value;
114 } prev_pc;
115
116 /* Cached copy of the previous frame's function address. */
117 struct
118 {
119 CORE_ADDR addr;
120 int p;
121 } prev_func;
122
123 /* This frame's ID. */
124 struct
125 {
126 int p;
127 struct frame_id value;
128 } this_id;
129
130 /* The frame's high-level base methods, and corresponding cache.
131 The high level base methods are selected based on the frame's
132 debug info. */
133 const struct frame_base *base;
134 void *base_cache;
135
136 /* Pointers to the next (down, inner, younger) and previous (up,
137 outer, older) frame_info's in the frame cache. */
138 struct frame_info *next; /* down, inner, younger */
139 int prev_p;
140 struct frame_info *prev; /* up, outer, older */
141
142 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
143 could. Only valid when PREV_P is set. */
144 enum unwind_stop_reason stop_reason;
145
146 /* A frame specific string describing the STOP_REASON in more detail.
147 Only valid when PREV_P is set, but even then may still be NULL. */
148 const char *stop_string;
149 };
150
151 /* A frame stash used to speed up frame lookups. Create a hash table
152 to stash frames previously accessed from the frame cache for
153 quicker subsequent retrieval. The hash table is emptied whenever
154 the frame cache is invalidated. */
155
156 static htab_t frame_stash;
157
158 /* Internal function to calculate a hash from the frame_id addresses,
159 using as many valid addresses as possible. Frames below level 0
160 are not stored in the hash table. */
161
162 static hashval_t
163 frame_addr_hash (const void *ap)
164 {
165 const struct frame_info *frame = (const struct frame_info *) ap;
166 const struct frame_id f_id = frame->this_id.value;
167 hashval_t hash = 0;
168
169 gdb_assert (f_id.stack_status != FID_STACK_INVALID
170 || f_id.code_addr_p
171 || f_id.special_addr_p);
172
173 if (f_id.stack_status == FID_STACK_VALID)
174 hash = iterative_hash (&f_id.stack_addr,
175 sizeof (f_id.stack_addr), hash);
176 if (f_id.code_addr_p)
177 hash = iterative_hash (&f_id.code_addr,
178 sizeof (f_id.code_addr), hash);
179 if (f_id.special_addr_p)
180 hash = iterative_hash (&f_id.special_addr,
181 sizeof (f_id.special_addr), hash);
182
183 return hash;
184 }
185
186 /* Internal equality function for the hash table. This function
187 defers equality operations to frame_id_eq. */
188
189 static int
190 frame_addr_hash_eq (const void *a, const void *b)
191 {
192 const struct frame_info *f_entry = (const struct frame_info *) a;
193 const struct frame_info *f_element = (const struct frame_info *) b;
194
195 return frame_id_eq (f_entry->this_id.value,
196 f_element->this_id.value);
197 }
198
199 /* Internal function to create the frame_stash hash table. 100 seems
200 to be a good compromise to start the hash table at. */
201
202 static void
203 frame_stash_create (void)
204 {
205 frame_stash = htab_create (100,
206 frame_addr_hash,
207 frame_addr_hash_eq,
208 NULL);
209 }
210
211 /* Internal function to add a frame to the frame_stash hash table.
212 Returns false if a frame with the same ID was already stashed, true
213 otherwise. */
214
215 static int
216 frame_stash_add (struct frame_info *frame)
217 {
218 struct frame_info **slot;
219
220 /* Do not try to stash the sentinel frame. */
221 gdb_assert (frame->level >= 0);
222
223 slot = (struct frame_info **) htab_find_slot (frame_stash,
224 frame,
225 INSERT);
226
227 /* If we already have a frame in the stack with the same id, we
228 either have a stack cycle (corrupted stack?), or some bug
229 elsewhere in GDB. In any case, ignore the duplicate and return
230 an indication to the caller. */
231 if (*slot != NULL)
232 return 0;
233
234 *slot = frame;
235 return 1;
236 }
237
238 /* Internal function to search the frame stash for an entry with the
239 given frame ID. If found, return that frame. Otherwise return
240 NULL. */
241
242 static struct frame_info *
243 frame_stash_find (struct frame_id id)
244 {
245 struct frame_info dummy;
246 struct frame_info *frame;
247
248 dummy.this_id.value = id;
249 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
250 return frame;
251 }
252
253 /* Internal function to invalidate the frame stash by removing all
254 entries in it. This only occurs when the frame cache is
255 invalidated. */
256
257 static void
258 frame_stash_invalidate (void)
259 {
260 htab_empty (frame_stash);
261 }
262
263 /* Flag to control debugging. */
264
265 unsigned int frame_debug;
266 static void
267 show_frame_debug (struct ui_file *file, int from_tty,
268 struct cmd_list_element *c, const char *value)
269 {
270 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
271 }
272
273 /* Flag to indicate whether backtraces should stop at main et.al. */
274
275 static int backtrace_past_main;
276 static void
277 show_backtrace_past_main (struct ui_file *file, int from_tty,
278 struct cmd_list_element *c, const char *value)
279 {
280 fprintf_filtered (file,
281 _("Whether backtraces should "
282 "continue past \"main\" is %s.\n"),
283 value);
284 }
285
286 static int backtrace_past_entry;
287 static void
288 show_backtrace_past_entry (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Whether backtraces should continue past the "
292 "entry point of a program is %s.\n"),
293 value);
294 }
295
296 static unsigned int backtrace_limit = UINT_MAX;
297 static void
298 show_backtrace_limit (struct ui_file *file, int from_tty,
299 struct cmd_list_element *c, const char *value)
300 {
301 fprintf_filtered (file,
302 _("An upper bound on the number "
303 "of backtrace levels is %s.\n"),
304 value);
305 }
306
307
308 static void
309 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
310 {
311 if (p)
312 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
313 else
314 fprintf_unfiltered (file, "!%s", name);
315 }
316
317 void
318 fprint_frame_id (struct ui_file *file, struct frame_id id)
319 {
320 fprintf_unfiltered (file, "{");
321
322 if (id.stack_status == FID_STACK_INVALID)
323 fprintf_unfiltered (file, "!stack");
324 else if (id.stack_status == FID_STACK_UNAVAILABLE)
325 fprintf_unfiltered (file, "stack=<unavailable>");
326 else
327 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
328 fprintf_unfiltered (file, ",");
329
330 fprint_field (file, "code", id.code_addr_p, id.code_addr);
331 fprintf_unfiltered (file, ",");
332
333 fprint_field (file, "special", id.special_addr_p, id.special_addr);
334
335 if (id.artificial_depth)
336 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
337
338 fprintf_unfiltered (file, "}");
339 }
340
341 static void
342 fprint_frame_type (struct ui_file *file, enum frame_type type)
343 {
344 switch (type)
345 {
346 case NORMAL_FRAME:
347 fprintf_unfiltered (file, "NORMAL_FRAME");
348 return;
349 case DUMMY_FRAME:
350 fprintf_unfiltered (file, "DUMMY_FRAME");
351 return;
352 case INLINE_FRAME:
353 fprintf_unfiltered (file, "INLINE_FRAME");
354 return;
355 case TAILCALL_FRAME:
356 fprintf_unfiltered (file, "TAILCALL_FRAME");
357 return;
358 case SIGTRAMP_FRAME:
359 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
360 return;
361 case ARCH_FRAME:
362 fprintf_unfiltered (file, "ARCH_FRAME");
363 return;
364 case SENTINEL_FRAME:
365 fprintf_unfiltered (file, "SENTINEL_FRAME");
366 return;
367 default:
368 fprintf_unfiltered (file, "<unknown type>");
369 return;
370 };
371 }
372
373 static void
374 fprint_frame (struct ui_file *file, struct frame_info *fi)
375 {
376 if (fi == NULL)
377 {
378 fprintf_unfiltered (file, "<NULL frame>");
379 return;
380 }
381 fprintf_unfiltered (file, "{");
382 fprintf_unfiltered (file, "level=%d", fi->level);
383 fprintf_unfiltered (file, ",");
384 fprintf_unfiltered (file, "type=");
385 if (fi->unwind != NULL)
386 fprint_frame_type (file, fi->unwind->type);
387 else
388 fprintf_unfiltered (file, "<unknown>");
389 fprintf_unfiltered (file, ",");
390 fprintf_unfiltered (file, "unwind=");
391 if (fi->unwind != NULL)
392 gdb_print_host_address (fi->unwind, file);
393 else
394 fprintf_unfiltered (file, "<unknown>");
395 fprintf_unfiltered (file, ",");
396 fprintf_unfiltered (file, "pc=");
397 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
398 fprintf_unfiltered (file, "<unknown>");
399 else if (fi->next->prev_pc.status == CC_VALUE)
400 fprintf_unfiltered (file, "%s",
401 hex_string (fi->next->prev_pc.value));
402 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
403 val_print_not_saved (file);
404 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
405 val_print_unavailable (file);
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "id=");
408 if (fi->this_id.p)
409 fprint_frame_id (file, fi->this_id.value);
410 else
411 fprintf_unfiltered (file, "<unknown>");
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "func=");
414 if (fi->next != NULL && fi->next->prev_func.p)
415 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, "}");
419 }
420
421 /* Given FRAME, return the enclosing frame as found in real frames read-in from
422 inferior memory. Skip any previous frames which were made up by GDB.
423 Return FRAME if FRAME is a non-artificial frame.
424 Return NULL if FRAME is the start of an artificial-only chain. */
425
426 static struct frame_info *
427 skip_artificial_frames (struct frame_info *frame)
428 {
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
432 sets a backtrace limit).
433
434 Note that for record targets we may get a frame chain that consists
435 of artificial frames only. */
436 while (get_frame_type (frame) == INLINE_FRAME
437 || get_frame_type (frame) == TAILCALL_FRAME)
438 {
439 frame = get_prev_frame_always (frame);
440 if (frame == NULL)
441 break;
442 }
443
444 return frame;
445 }
446
447 /* See frame.h. */
448
449 struct frame_info *
450 skip_tailcall_frames (struct frame_info *frame)
451 {
452 while (get_frame_type (frame) == TAILCALL_FRAME)
453 {
454 /* Note that for record targets we may get a frame chain that consists of
455 tailcall frames only. */
456 frame = get_prev_frame (frame);
457 if (frame == NULL)
458 break;
459 }
460
461 return frame;
462 }
463
464 /* Compute the frame's uniq ID that can be used to, later, re-find the
465 frame. */
466
467 static void
468 compute_frame_id (struct frame_info *fi)
469 {
470 gdb_assert (!fi->this_id.p);
471
472 if (frame_debug)
473 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
474 fi->level);
475 /* Find the unwinder. */
476 if (fi->unwind == NULL)
477 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
478 /* Find THIS frame's ID. */
479 /* Default to outermost if no ID is found. */
480 fi->this_id.value = outer_frame_id;
481 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
482 gdb_assert (frame_id_p (fi->this_id.value));
483 fi->this_id.p = 1;
484 if (frame_debug)
485 {
486 fprintf_unfiltered (gdb_stdlog, "-> ");
487 fprint_frame_id (gdb_stdlog, fi->this_id.value);
488 fprintf_unfiltered (gdb_stdlog, " }\n");
489 }
490 }
491
492 /* Return a frame uniq ID that can be used to, later, re-find the
493 frame. */
494
495 struct frame_id
496 get_frame_id (struct frame_info *fi)
497 {
498 if (fi == NULL)
499 return null_frame_id;
500
501 gdb_assert (fi->this_id.p);
502 return fi->this_id.value;
503 }
504
505 struct frame_id
506 get_stack_frame_id (struct frame_info *next_frame)
507 {
508 return get_frame_id (skip_artificial_frames (next_frame));
509 }
510
511 struct frame_id
512 frame_unwind_caller_id (struct frame_info *next_frame)
513 {
514 struct frame_info *this_frame;
515
516 /* Use get_prev_frame_always, and not get_prev_frame. The latter
517 will truncate the frame chain, leading to this function
518 unintentionally returning a null_frame_id (e.g., when a caller
519 requests the frame ID of "main()"s caller. */
520
521 next_frame = skip_artificial_frames (next_frame);
522 if (next_frame == NULL)
523 return null_frame_id;
524
525 this_frame = get_prev_frame_always (next_frame);
526 if (this_frame)
527 return get_frame_id (skip_artificial_frames (this_frame));
528 else
529 return null_frame_id;
530 }
531
532 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
533 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
534
535 struct frame_id
536 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
537 CORE_ADDR special_addr)
538 {
539 struct frame_id id = null_frame_id;
540
541 id.stack_addr = stack_addr;
542 id.stack_status = FID_STACK_VALID;
543 id.code_addr = code_addr;
544 id.code_addr_p = 1;
545 id.special_addr = special_addr;
546 id.special_addr_p = 1;
547 return id;
548 }
549
550 /* See frame.h. */
551
552 struct frame_id
553 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
554 {
555 struct frame_id id = null_frame_id;
556
557 id.stack_status = FID_STACK_UNAVAILABLE;
558 id.code_addr = code_addr;
559 id.code_addr_p = 1;
560 return id;
561 }
562
563 /* See frame.h. */
564
565 struct frame_id
566 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
567 CORE_ADDR special_addr)
568 {
569 struct frame_id id = null_frame_id;
570
571 id.stack_status = FID_STACK_UNAVAILABLE;
572 id.code_addr = code_addr;
573 id.code_addr_p = 1;
574 id.special_addr = special_addr;
575 id.special_addr_p = 1;
576 return id;
577 }
578
579 struct frame_id
580 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
581 {
582 struct frame_id id = null_frame_id;
583
584 id.stack_addr = stack_addr;
585 id.stack_status = FID_STACK_VALID;
586 id.code_addr = code_addr;
587 id.code_addr_p = 1;
588 return id;
589 }
590
591 struct frame_id
592 frame_id_build_wild (CORE_ADDR stack_addr)
593 {
594 struct frame_id id = null_frame_id;
595
596 id.stack_addr = stack_addr;
597 id.stack_status = FID_STACK_VALID;
598 return id;
599 }
600
601 int
602 frame_id_p (struct frame_id l)
603 {
604 int p;
605
606 /* The frame is valid iff it has a valid stack address. */
607 p = l.stack_status != FID_STACK_INVALID;
608 /* outer_frame_id is also valid. */
609 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
610 p = 1;
611 if (frame_debug)
612 {
613 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
614 fprint_frame_id (gdb_stdlog, l);
615 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
616 }
617 return p;
618 }
619
620 int
621 frame_id_artificial_p (struct frame_id l)
622 {
623 if (!frame_id_p (l))
624 return 0;
625
626 return (l.artificial_depth != 0);
627 }
628
629 int
630 frame_id_eq (struct frame_id l, struct frame_id r)
631 {
632 int eq;
633
634 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
635 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
636 /* The outermost frame marker is equal to itself. This is the
637 dodgy thing about outer_frame_id, since between execution steps
638 we might step into another function - from which we can't
639 unwind either. More thought required to get rid of
640 outer_frame_id. */
641 eq = 1;
642 else if (l.stack_status == FID_STACK_INVALID
643 || r.stack_status == FID_STACK_INVALID)
644 /* Like a NaN, if either ID is invalid, the result is false.
645 Note that a frame ID is invalid iff it is the null frame ID. */
646 eq = 0;
647 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
648 /* If .stack addresses are different, the frames are different. */
649 eq = 0;
650 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
651 /* An invalid code addr is a wild card. If .code addresses are
652 different, the frames are different. */
653 eq = 0;
654 else if (l.special_addr_p && r.special_addr_p
655 && l.special_addr != r.special_addr)
656 /* An invalid special addr is a wild card (or unused). Otherwise
657 if special addresses are different, the frames are different. */
658 eq = 0;
659 else if (l.artificial_depth != r.artificial_depth)
660 /* If artifical depths are different, the frames must be different. */
661 eq = 0;
662 else
663 /* Frames are equal. */
664 eq = 1;
665
666 if (frame_debug)
667 {
668 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
669 fprint_frame_id (gdb_stdlog, l);
670 fprintf_unfiltered (gdb_stdlog, ",r=");
671 fprint_frame_id (gdb_stdlog, r);
672 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
673 }
674 return eq;
675 }
676
677 /* Safety net to check whether frame ID L should be inner to
678 frame ID R, according to their stack addresses.
679
680 This method cannot be used to compare arbitrary frames, as the
681 ranges of valid stack addresses may be discontiguous (e.g. due
682 to sigaltstack).
683
684 However, it can be used as safety net to discover invalid frame
685 IDs in certain circumstances. Assuming that NEXT is the immediate
686 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
687
688 * The stack address of NEXT must be inner-than-or-equal to the stack
689 address of THIS.
690
691 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
692 error has occurred.
693
694 * If NEXT and THIS have different stack addresses, no other frame
695 in the frame chain may have a stack address in between.
696
697 Therefore, if frame_id_inner (TEST, THIS) holds, but
698 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
699 to a valid frame in the frame chain.
700
701 The sanity checks above cannot be performed when a SIGTRAMP frame
702 is involved, because signal handlers might be executed on a different
703 stack than the stack used by the routine that caused the signal
704 to be raised. This can happen for instance when a thread exceeds
705 its maximum stack size. In this case, certain compilers implement
706 a stack overflow strategy that cause the handler to be run on a
707 different stack. */
708
709 static int
710 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
711 {
712 int inner;
713
714 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
715 /* Like NaN, any operation involving an invalid ID always fails.
716 Likewise if either ID has an unavailable stack address. */
717 inner = 0;
718 else if (l.artificial_depth > r.artificial_depth
719 && l.stack_addr == r.stack_addr
720 && l.code_addr_p == r.code_addr_p
721 && l.special_addr_p == r.special_addr_p
722 && l.special_addr == r.special_addr)
723 {
724 /* Same function, different inlined functions. */
725 const struct block *lb, *rb;
726
727 gdb_assert (l.code_addr_p && r.code_addr_p);
728
729 lb = block_for_pc (l.code_addr);
730 rb = block_for_pc (r.code_addr);
731
732 if (lb == NULL || rb == NULL)
733 /* Something's gone wrong. */
734 inner = 0;
735 else
736 /* This will return true if LB and RB are the same block, or
737 if the block with the smaller depth lexically encloses the
738 block with the greater depth. */
739 inner = contained_in (lb, rb);
740 }
741 else
742 /* Only return non-zero when strictly inner than. Note that, per
743 comment in "frame.h", there is some fuzz here. Frameless
744 functions are not strictly inner than (same .stack but
745 different .code and/or .special address). */
746 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
747 if (frame_debug)
748 {
749 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
750 fprint_frame_id (gdb_stdlog, l);
751 fprintf_unfiltered (gdb_stdlog, ",r=");
752 fprint_frame_id (gdb_stdlog, r);
753 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
754 }
755 return inner;
756 }
757
758 struct frame_info *
759 frame_find_by_id (struct frame_id id)
760 {
761 struct frame_info *frame, *prev_frame;
762
763 /* ZERO denotes the null frame, let the caller decide what to do
764 about it. Should it instead return get_current_frame()? */
765 if (!frame_id_p (id))
766 return NULL;
767
768 /* Try using the frame stash first. Finding it there removes the need
769 to perform the search by looping over all frames, which can be very
770 CPU-intensive if the number of frames is very high (the loop is O(n)
771 and get_prev_frame performs a series of checks that are relatively
772 expensive). This optimization is particularly useful when this function
773 is called from another function (such as value_fetch_lazy, case
774 VALUE_LVAL (val) == lval_register) which already loops over all frames,
775 making the overall behavior O(n^2). */
776 frame = frame_stash_find (id);
777 if (frame)
778 return frame;
779
780 for (frame = get_current_frame (); ; frame = prev_frame)
781 {
782 struct frame_id self = get_frame_id (frame);
783
784 if (frame_id_eq (id, self))
785 /* An exact match. */
786 return frame;
787
788 prev_frame = get_prev_frame (frame);
789 if (!prev_frame)
790 return NULL;
791
792 /* As a safety net to avoid unnecessary backtracing while trying
793 to find an invalid ID, we check for a common situation where
794 we can detect from comparing stack addresses that no other
795 frame in the current frame chain can have this ID. See the
796 comment at frame_id_inner for details. */
797 if (get_frame_type (frame) == NORMAL_FRAME
798 && !frame_id_inner (get_frame_arch (frame), id, self)
799 && frame_id_inner (get_frame_arch (prev_frame), id,
800 get_frame_id (prev_frame)))
801 return NULL;
802 }
803 return NULL;
804 }
805
806 static CORE_ADDR
807 frame_unwind_pc (struct frame_info *this_frame)
808 {
809 if (this_frame->prev_pc.status == CC_UNKNOWN)
810 {
811 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
812 {
813 struct gdbarch *prev_gdbarch;
814 CORE_ADDR pc = 0;
815 int pc_p = 0;
816
817 /* The right way. The `pure' way. The one true way. This
818 method depends solely on the register-unwind code to
819 determine the value of registers in THIS frame, and hence
820 the value of this frame's PC (resume address). A typical
821 implementation is no more than:
822
823 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
824 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
825
826 Note: this method is very heavily dependent on a correct
827 register-unwind implementation, it pays to fix that
828 method first; this method is frame type agnostic, since
829 it only deals with register values, it works with any
830 frame. This is all in stark contrast to the old
831 FRAME_SAVED_PC which would try to directly handle all the
832 different ways that a PC could be unwound. */
833 prev_gdbarch = frame_unwind_arch (this_frame);
834
835 TRY
836 {
837 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
838 pc_p = 1;
839 }
840 CATCH (ex, RETURN_MASK_ERROR)
841 {
842 if (ex.error == NOT_AVAILABLE_ERROR)
843 {
844 this_frame->prev_pc.status = CC_UNAVAILABLE;
845
846 if (frame_debug)
847 fprintf_unfiltered (gdb_stdlog,
848 "{ frame_unwind_pc (this_frame=%d)"
849 " -> <unavailable> }\n",
850 this_frame->level);
851 }
852 else if (ex.error == OPTIMIZED_OUT_ERROR)
853 {
854 this_frame->prev_pc.status = CC_NOT_SAVED;
855
856 if (frame_debug)
857 fprintf_unfiltered (gdb_stdlog,
858 "{ frame_unwind_pc (this_frame=%d)"
859 " -> <not saved> }\n",
860 this_frame->level);
861 }
862 else
863 throw_exception (ex);
864 }
865 END_CATCH
866
867 if (pc_p)
868 {
869 this_frame->prev_pc.value = pc;
870 this_frame->prev_pc.status = CC_VALUE;
871 if (frame_debug)
872 fprintf_unfiltered (gdb_stdlog,
873 "{ frame_unwind_pc (this_frame=%d) "
874 "-> %s }\n",
875 this_frame->level,
876 hex_string (this_frame->prev_pc.value));
877 }
878 }
879 else
880 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
881 }
882
883 if (this_frame->prev_pc.status == CC_VALUE)
884 return this_frame->prev_pc.value;
885 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
886 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
887 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
888 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
889 else
890 internal_error (__FILE__, __LINE__,
891 "unexpected prev_pc status: %d",
892 (int) this_frame->prev_pc.status);
893 }
894
895 CORE_ADDR
896 frame_unwind_caller_pc (struct frame_info *this_frame)
897 {
898 this_frame = skip_artificial_frames (this_frame);
899
900 /* We must have a non-artificial frame. The caller is supposed to check
901 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
902 in this case. */
903 gdb_assert (this_frame != NULL);
904
905 return frame_unwind_pc (this_frame);
906 }
907
908 int
909 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
910 {
911 struct frame_info *next_frame = this_frame->next;
912
913 if (!next_frame->prev_func.p)
914 {
915 CORE_ADDR addr_in_block;
916
917 /* Make certain that this, and not the adjacent, function is
918 found. */
919 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
920 {
921 next_frame->prev_func.p = -1;
922 if (frame_debug)
923 fprintf_unfiltered (gdb_stdlog,
924 "{ get_frame_func (this_frame=%d)"
925 " -> unavailable }\n",
926 this_frame->level);
927 }
928 else
929 {
930 next_frame->prev_func.p = 1;
931 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
932 if (frame_debug)
933 fprintf_unfiltered (gdb_stdlog,
934 "{ get_frame_func (this_frame=%d) -> %s }\n",
935 this_frame->level,
936 hex_string (next_frame->prev_func.addr));
937 }
938 }
939
940 if (next_frame->prev_func.p < 0)
941 {
942 *pc = -1;
943 return 0;
944 }
945 else
946 {
947 *pc = next_frame->prev_func.addr;
948 return 1;
949 }
950 }
951
952 CORE_ADDR
953 get_frame_func (struct frame_info *this_frame)
954 {
955 CORE_ADDR pc;
956
957 if (!get_frame_func_if_available (this_frame, &pc))
958 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
959
960 return pc;
961 }
962
963 static enum register_status
964 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
965 {
966 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
967 return REG_UNAVAILABLE;
968 else
969 return REG_VALID;
970 }
971
972 struct regcache *
973 frame_save_as_regcache (struct frame_info *this_frame)
974 {
975 struct address_space *aspace = get_frame_address_space (this_frame);
976 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
977 aspace);
978 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
979
980 regcache_save (regcache, do_frame_register_read, this_frame);
981 discard_cleanups (cleanups);
982 return regcache;
983 }
984
985 void
986 frame_pop (struct frame_info *this_frame)
987 {
988 struct frame_info *prev_frame;
989 struct regcache *scratch;
990 struct cleanup *cleanups;
991
992 if (get_frame_type (this_frame) == DUMMY_FRAME)
993 {
994 /* Popping a dummy frame involves restoring more than just registers.
995 dummy_frame_pop does all the work. */
996 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
997 return;
998 }
999
1000 /* Ensure that we have a frame to pop to. */
1001 prev_frame = get_prev_frame_always (this_frame);
1002
1003 if (!prev_frame)
1004 error (_("Cannot pop the initial frame."));
1005
1006 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1007 entering THISFRAME. */
1008 prev_frame = skip_tailcall_frames (prev_frame);
1009
1010 if (prev_frame == NULL)
1011 error (_("Cannot find the caller frame."));
1012
1013 /* Make a copy of all the register values unwound from this frame.
1014 Save them in a scratch buffer so that there isn't a race between
1015 trying to extract the old values from the current regcache while
1016 at the same time writing new values into that same cache. */
1017 scratch = frame_save_as_regcache (prev_frame);
1018 cleanups = make_cleanup_regcache_xfree (scratch);
1019
1020 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1021 target's register cache that it is about to be hit with a burst
1022 register transfer and that the sequence of register writes should
1023 be batched. The pair target_prepare_to_store() and
1024 target_store_registers() kind of suggest this functionality.
1025 Unfortunately, they don't implement it. Their lack of a formal
1026 definition can lead to targets writing back bogus values
1027 (arguably a bug in the target code mind). */
1028 /* Now copy those saved registers into the current regcache.
1029 Here, regcache_cpy() calls regcache_restore(). */
1030 regcache_cpy (get_current_regcache (), scratch);
1031 do_cleanups (cleanups);
1032
1033 /* We've made right mess of GDB's local state, just discard
1034 everything. */
1035 reinit_frame_cache ();
1036 }
1037
1038 void
1039 frame_register_unwind (struct frame_info *frame, int regnum,
1040 int *optimizedp, int *unavailablep,
1041 enum lval_type *lvalp, CORE_ADDR *addrp,
1042 int *realnump, gdb_byte *bufferp)
1043 {
1044 struct value *value;
1045
1046 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1047 that the value proper does not need to be fetched. */
1048 gdb_assert (optimizedp != NULL);
1049 gdb_assert (lvalp != NULL);
1050 gdb_assert (addrp != NULL);
1051 gdb_assert (realnump != NULL);
1052 /* gdb_assert (bufferp != NULL); */
1053
1054 value = frame_unwind_register_value (frame, regnum);
1055
1056 gdb_assert (value != NULL);
1057
1058 *optimizedp = value_optimized_out (value);
1059 *unavailablep = !value_entirely_available (value);
1060 *lvalp = VALUE_LVAL (value);
1061 *addrp = value_address (value);
1062 *realnump = VALUE_REGNUM (value);
1063
1064 if (bufferp)
1065 {
1066 if (!*optimizedp && !*unavailablep)
1067 memcpy (bufferp, value_contents_all (value),
1068 TYPE_LENGTH (value_type (value)));
1069 else
1070 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1071 }
1072
1073 /* Dispose of the new value. This prevents watchpoints from
1074 trying to watch the saved frame pointer. */
1075 release_value (value);
1076 value_free (value);
1077 }
1078
1079 void
1080 frame_register (struct frame_info *frame, int regnum,
1081 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1082 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1083 {
1084 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1085 that the value proper does not need to be fetched. */
1086 gdb_assert (optimizedp != NULL);
1087 gdb_assert (lvalp != NULL);
1088 gdb_assert (addrp != NULL);
1089 gdb_assert (realnump != NULL);
1090 /* gdb_assert (bufferp != NULL); */
1091
1092 /* Obtain the register value by unwinding the register from the next
1093 (more inner frame). */
1094 gdb_assert (frame != NULL && frame->next != NULL);
1095 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1096 lvalp, addrp, realnump, bufferp);
1097 }
1098
1099 void
1100 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1101 {
1102 int optimized;
1103 int unavailable;
1104 CORE_ADDR addr;
1105 int realnum;
1106 enum lval_type lval;
1107
1108 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1109 &lval, &addr, &realnum, buf);
1110
1111 if (optimized)
1112 throw_error (OPTIMIZED_OUT_ERROR,
1113 _("Register %d was not saved"), regnum);
1114 if (unavailable)
1115 throw_error (NOT_AVAILABLE_ERROR,
1116 _("Register %d is not available"), regnum);
1117 }
1118
1119 void
1120 get_frame_register (struct frame_info *frame,
1121 int regnum, gdb_byte *buf)
1122 {
1123 frame_unwind_register (frame->next, regnum, buf);
1124 }
1125
1126 struct value *
1127 frame_unwind_register_value (struct frame_info *frame, int regnum)
1128 {
1129 struct gdbarch *gdbarch;
1130 struct value *value;
1131
1132 gdb_assert (frame != NULL);
1133 gdbarch = frame_unwind_arch (frame);
1134
1135 if (frame_debug)
1136 {
1137 fprintf_unfiltered (gdb_stdlog,
1138 "{ frame_unwind_register_value "
1139 "(frame=%d,regnum=%d(%s),...) ",
1140 frame->level, regnum,
1141 user_reg_map_regnum_to_name (gdbarch, regnum));
1142 }
1143
1144 /* Find the unwinder. */
1145 if (frame->unwind == NULL)
1146 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1147
1148 /* Ask this frame to unwind its register. */
1149 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1150
1151 if (frame_debug)
1152 {
1153 fprintf_unfiltered (gdb_stdlog, "->");
1154 if (value_optimized_out (value))
1155 {
1156 fprintf_unfiltered (gdb_stdlog, " ");
1157 val_print_optimized_out (value, gdb_stdlog);
1158 }
1159 else
1160 {
1161 if (VALUE_LVAL (value) == lval_register)
1162 fprintf_unfiltered (gdb_stdlog, " register=%d",
1163 VALUE_REGNUM (value));
1164 else if (VALUE_LVAL (value) == lval_memory)
1165 fprintf_unfiltered (gdb_stdlog, " address=%s",
1166 paddress (gdbarch,
1167 value_address (value)));
1168 else
1169 fprintf_unfiltered (gdb_stdlog, " computed");
1170
1171 if (value_lazy (value))
1172 fprintf_unfiltered (gdb_stdlog, " lazy");
1173 else
1174 {
1175 int i;
1176 const gdb_byte *buf = value_contents (value);
1177
1178 fprintf_unfiltered (gdb_stdlog, " bytes=");
1179 fprintf_unfiltered (gdb_stdlog, "[");
1180 for (i = 0; i < register_size (gdbarch, regnum); i++)
1181 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1182 fprintf_unfiltered (gdb_stdlog, "]");
1183 }
1184 }
1185
1186 fprintf_unfiltered (gdb_stdlog, " }\n");
1187 }
1188
1189 return value;
1190 }
1191
1192 struct value *
1193 get_frame_register_value (struct frame_info *frame, int regnum)
1194 {
1195 return frame_unwind_register_value (frame->next, regnum);
1196 }
1197
1198 LONGEST
1199 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1200 {
1201 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1203 int size = register_size (gdbarch, regnum);
1204 gdb_byte buf[MAX_REGISTER_SIZE];
1205
1206 frame_unwind_register (frame, regnum, buf);
1207 return extract_signed_integer (buf, size, byte_order);
1208 }
1209
1210 LONGEST
1211 get_frame_register_signed (struct frame_info *frame, int regnum)
1212 {
1213 return frame_unwind_register_signed (frame->next, regnum);
1214 }
1215
1216 ULONGEST
1217 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1218 {
1219 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1221 int size = register_size (gdbarch, regnum);
1222 gdb_byte buf[MAX_REGISTER_SIZE];
1223
1224 frame_unwind_register (frame, regnum, buf);
1225 return extract_unsigned_integer (buf, size, byte_order);
1226 }
1227
1228 ULONGEST
1229 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1230 {
1231 return frame_unwind_register_unsigned (frame->next, regnum);
1232 }
1233
1234 int
1235 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1236 ULONGEST *val)
1237 {
1238 struct value *regval = get_frame_register_value (frame, regnum);
1239
1240 if (!value_optimized_out (regval)
1241 && value_entirely_available (regval))
1242 {
1243 struct gdbarch *gdbarch = get_frame_arch (frame);
1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1245 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1246
1247 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1248 return 1;
1249 }
1250
1251 return 0;
1252 }
1253
1254 void
1255 put_frame_register (struct frame_info *frame, int regnum,
1256 const gdb_byte *buf)
1257 {
1258 struct gdbarch *gdbarch = get_frame_arch (frame);
1259 int realnum;
1260 int optim;
1261 int unavail;
1262 enum lval_type lval;
1263 CORE_ADDR addr;
1264
1265 frame_register (frame, regnum, &optim, &unavail,
1266 &lval, &addr, &realnum, NULL);
1267 if (optim)
1268 error (_("Attempt to assign to a register that was not saved."));
1269 switch (lval)
1270 {
1271 case lval_memory:
1272 {
1273 write_memory (addr, buf, register_size (gdbarch, regnum));
1274 break;
1275 }
1276 case lval_register:
1277 regcache_cooked_write (get_current_regcache (), realnum, buf);
1278 break;
1279 default:
1280 error (_("Attempt to assign to an unmodifiable value."));
1281 }
1282 }
1283
1284 /* This function is deprecated. Use get_frame_register_value instead,
1285 which provides more accurate information.
1286
1287 Find and return the value of REGNUM for the specified stack frame.
1288 The number of bytes copied is REGISTER_SIZE (REGNUM).
1289
1290 Returns 0 if the register value could not be found. */
1291
1292 int
1293 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1294 gdb_byte *myaddr)
1295 {
1296 int optimized;
1297 int unavailable;
1298 enum lval_type lval;
1299 CORE_ADDR addr;
1300 int realnum;
1301
1302 frame_register (frame, regnum, &optimized, &unavailable,
1303 &lval, &addr, &realnum, myaddr);
1304
1305 return !optimized && !unavailable;
1306 }
1307
1308 int
1309 get_frame_register_bytes (struct frame_info *frame, int regnum,
1310 CORE_ADDR offset, int len, gdb_byte *myaddr,
1311 int *optimizedp, int *unavailablep)
1312 {
1313 struct gdbarch *gdbarch = get_frame_arch (frame);
1314 int i;
1315 int maxsize;
1316 int numregs;
1317
1318 /* Skip registers wholly inside of OFFSET. */
1319 while (offset >= register_size (gdbarch, regnum))
1320 {
1321 offset -= register_size (gdbarch, regnum);
1322 regnum++;
1323 }
1324
1325 /* Ensure that we will not read beyond the end of the register file.
1326 This can only ever happen if the debug information is bad. */
1327 maxsize = -offset;
1328 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1329 for (i = regnum; i < numregs; i++)
1330 {
1331 int thissize = register_size (gdbarch, i);
1332
1333 if (thissize == 0)
1334 break; /* This register is not available on this architecture. */
1335 maxsize += thissize;
1336 }
1337 if (len > maxsize)
1338 error (_("Bad debug information detected: "
1339 "Attempt to read %d bytes from registers."), len);
1340
1341 /* Copy the data. */
1342 while (len > 0)
1343 {
1344 int curr_len = register_size (gdbarch, regnum) - offset;
1345
1346 if (curr_len > len)
1347 curr_len = len;
1348
1349 if (curr_len == register_size (gdbarch, regnum))
1350 {
1351 enum lval_type lval;
1352 CORE_ADDR addr;
1353 int realnum;
1354
1355 frame_register (frame, regnum, optimizedp, unavailablep,
1356 &lval, &addr, &realnum, myaddr);
1357 if (*optimizedp || *unavailablep)
1358 return 0;
1359 }
1360 else
1361 {
1362 gdb_byte buf[MAX_REGISTER_SIZE];
1363 enum lval_type lval;
1364 CORE_ADDR addr;
1365 int realnum;
1366
1367 frame_register (frame, regnum, optimizedp, unavailablep,
1368 &lval, &addr, &realnum, buf);
1369 if (*optimizedp || *unavailablep)
1370 return 0;
1371 memcpy (myaddr, buf + offset, curr_len);
1372 }
1373
1374 myaddr += curr_len;
1375 len -= curr_len;
1376 offset = 0;
1377 regnum++;
1378 }
1379
1380 *optimizedp = 0;
1381 *unavailablep = 0;
1382 return 1;
1383 }
1384
1385 void
1386 put_frame_register_bytes (struct frame_info *frame, int regnum,
1387 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1388 {
1389 struct gdbarch *gdbarch = get_frame_arch (frame);
1390
1391 /* Skip registers wholly inside of OFFSET. */
1392 while (offset >= register_size (gdbarch, regnum))
1393 {
1394 offset -= register_size (gdbarch, regnum);
1395 regnum++;
1396 }
1397
1398 /* Copy the data. */
1399 while (len > 0)
1400 {
1401 int curr_len = register_size (gdbarch, regnum) - offset;
1402
1403 if (curr_len > len)
1404 curr_len = len;
1405
1406 if (curr_len == register_size (gdbarch, regnum))
1407 {
1408 put_frame_register (frame, regnum, myaddr);
1409 }
1410 else
1411 {
1412 gdb_byte buf[MAX_REGISTER_SIZE];
1413
1414 deprecated_frame_register_read (frame, regnum, buf);
1415 memcpy (buf + offset, myaddr, curr_len);
1416 put_frame_register (frame, regnum, buf);
1417 }
1418
1419 myaddr += curr_len;
1420 len -= curr_len;
1421 offset = 0;
1422 regnum++;
1423 }
1424 }
1425
1426 /* Create a sentinel frame. */
1427
1428 static struct frame_info *
1429 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1430 {
1431 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1432
1433 frame->level = -1;
1434 frame->pspace = pspace;
1435 frame->aspace = get_regcache_aspace (regcache);
1436 /* Explicitly initialize the sentinel frame's cache. Provide it
1437 with the underlying regcache. In the future additional
1438 information, such as the frame's thread will be added. */
1439 frame->prologue_cache = sentinel_frame_cache (regcache);
1440 /* For the moment there is only one sentinel frame implementation. */
1441 frame->unwind = &sentinel_frame_unwind;
1442 /* Link this frame back to itself. The frame is self referential
1443 (the unwound PC is the same as the pc), so make it so. */
1444 frame->next = frame;
1445 /* Make the sentinel frame's ID valid, but invalid. That way all
1446 comparisons with it should fail. */
1447 frame->this_id.p = 1;
1448 frame->this_id.value = null_frame_id;
1449 if (frame_debug)
1450 {
1451 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1452 fprint_frame (gdb_stdlog, frame);
1453 fprintf_unfiltered (gdb_stdlog, " }\n");
1454 }
1455 return frame;
1456 }
1457
1458 /* Info about the innermost stack frame (contents of FP register). */
1459
1460 static struct frame_info *current_frame;
1461
1462 /* Cache for frame addresses already read by gdb. Valid only while
1463 inferior is stopped. Control variables for the frame cache should
1464 be local to this module. */
1465
1466 static struct obstack frame_cache_obstack;
1467
1468 void *
1469 frame_obstack_zalloc (unsigned long size)
1470 {
1471 void *data = obstack_alloc (&frame_cache_obstack, size);
1472
1473 memset (data, 0, size);
1474 return data;
1475 }
1476
1477 /* Return the innermost (currently executing) stack frame. This is
1478 split into two functions. The function unwind_to_current_frame()
1479 is wrapped in catch exceptions so that, even when the unwind of the
1480 sentinel frame fails, the function still returns a stack frame. */
1481
1482 static int
1483 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1484 {
1485 struct frame_info *frame = get_prev_frame ((struct frame_info *) args);
1486
1487 /* A sentinel frame can fail to unwind, e.g., because its PC value
1488 lands in somewhere like start. */
1489 if (frame == NULL)
1490 return 1;
1491 current_frame = frame;
1492 return 0;
1493 }
1494
1495 struct frame_info *
1496 get_current_frame (void)
1497 {
1498 /* First check, and report, the lack of registers. Having GDB
1499 report "No stack!" or "No memory" when the target doesn't even
1500 have registers is very confusing. Besides, "printcmd.exp"
1501 explicitly checks that ``print $pc'' with no registers prints "No
1502 registers". */
1503 if (!target_has_registers)
1504 error (_("No registers."));
1505 if (!target_has_stack)
1506 error (_("No stack."));
1507 if (!target_has_memory)
1508 error (_("No memory."));
1509 /* Traceframes are effectively a substitute for the live inferior. */
1510 if (get_traceframe_number () < 0)
1511 validate_registers_access ();
1512
1513 if (current_frame == NULL)
1514 {
1515 struct frame_info *sentinel_frame =
1516 create_sentinel_frame (current_program_space, get_current_regcache ());
1517 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1518 sentinel_frame, RETURN_MASK_ERROR) != 0)
1519 {
1520 /* Oops! Fake a current frame? Is this useful? It has a PC
1521 of zero, for instance. */
1522 current_frame = sentinel_frame;
1523 }
1524 }
1525 return current_frame;
1526 }
1527
1528 /* The "selected" stack frame is used by default for local and arg
1529 access. May be zero, for no selected frame. */
1530
1531 static struct frame_info *selected_frame;
1532
1533 int
1534 has_stack_frames (void)
1535 {
1536 if (!target_has_registers || !target_has_stack || !target_has_memory)
1537 return 0;
1538
1539 /* Traceframes are effectively a substitute for the live inferior. */
1540 if (get_traceframe_number () < 0)
1541 {
1542 /* No current inferior, no frame. */
1543 if (ptid_equal (inferior_ptid, null_ptid))
1544 return 0;
1545
1546 /* Don't try to read from a dead thread. */
1547 if (is_exited (inferior_ptid))
1548 return 0;
1549
1550 /* ... or from a spinning thread. */
1551 if (is_executing (inferior_ptid))
1552 return 0;
1553 }
1554
1555 return 1;
1556 }
1557
1558 /* Return the selected frame. Always non-NULL (unless there isn't an
1559 inferior sufficient for creating a frame) in which case an error is
1560 thrown. */
1561
1562 struct frame_info *
1563 get_selected_frame (const char *message)
1564 {
1565 if (selected_frame == NULL)
1566 {
1567 if (message != NULL && !has_stack_frames ())
1568 error (("%s"), message);
1569 /* Hey! Don't trust this. It should really be re-finding the
1570 last selected frame of the currently selected thread. This,
1571 though, is better than nothing. */
1572 select_frame (get_current_frame ());
1573 }
1574 /* There is always a frame. */
1575 gdb_assert (selected_frame != NULL);
1576 return selected_frame;
1577 }
1578
1579 /* If there is a selected frame, return it. Otherwise, return NULL. */
1580
1581 struct frame_info *
1582 get_selected_frame_if_set (void)
1583 {
1584 return selected_frame;
1585 }
1586
1587 /* This is a variant of get_selected_frame() which can be called when
1588 the inferior does not have a frame; in that case it will return
1589 NULL instead of calling error(). */
1590
1591 struct frame_info *
1592 deprecated_safe_get_selected_frame (void)
1593 {
1594 if (!has_stack_frames ())
1595 return NULL;
1596 return get_selected_frame (NULL);
1597 }
1598
1599 /* Select frame FI (or NULL - to invalidate the current frame). */
1600
1601 void
1602 select_frame (struct frame_info *fi)
1603 {
1604 selected_frame = fi;
1605 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1606 frame is being invalidated. */
1607
1608 /* FIXME: kseitz/2002-08-28: It would be nice to call
1609 selected_frame_level_changed_event() right here, but due to limitations
1610 in the current interfaces, we would end up flooding UIs with events
1611 because select_frame() is used extensively internally.
1612
1613 Once we have frame-parameterized frame (and frame-related) commands,
1614 the event notification can be moved here, since this function will only
1615 be called when the user's selected frame is being changed. */
1616
1617 /* Ensure that symbols for this frame are read in. Also, determine the
1618 source language of this frame, and switch to it if desired. */
1619 if (fi)
1620 {
1621 CORE_ADDR pc;
1622
1623 /* We retrieve the frame's symtab by using the frame PC.
1624 However we cannot use the frame PC as-is, because it usually
1625 points to the instruction following the "call", which is
1626 sometimes the first instruction of another function. So we
1627 rely on get_frame_address_in_block() which provides us with a
1628 PC which is guaranteed to be inside the frame's code
1629 block. */
1630 if (get_frame_address_in_block_if_available (fi, &pc))
1631 {
1632 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1633
1634 if (cust != NULL
1635 && compunit_language (cust) != current_language->la_language
1636 && compunit_language (cust) != language_unknown
1637 && language_mode == language_mode_auto)
1638 set_language (compunit_language (cust));
1639 }
1640 }
1641 }
1642
1643 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1644 Always returns a non-NULL value. */
1645
1646 struct frame_info *
1647 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1648 {
1649 struct frame_info *fi;
1650
1651 if (frame_debug)
1652 {
1653 fprintf_unfiltered (gdb_stdlog,
1654 "{ create_new_frame (addr=%s, pc=%s) ",
1655 hex_string (addr), hex_string (pc));
1656 }
1657
1658 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1659
1660 fi->next = create_sentinel_frame (current_program_space,
1661 get_current_regcache ());
1662
1663 /* Set/update this frame's cached PC value, found in the next frame.
1664 Do this before looking for this frame's unwinder. A sniffer is
1665 very likely to read this, and the corresponding unwinder is
1666 entitled to rely that the PC doesn't magically change. */
1667 fi->next->prev_pc.value = pc;
1668 fi->next->prev_pc.status = CC_VALUE;
1669
1670 /* We currently assume that frame chain's can't cross spaces. */
1671 fi->pspace = fi->next->pspace;
1672 fi->aspace = fi->next->aspace;
1673
1674 /* Select/initialize both the unwind function and the frame's type
1675 based on the PC. */
1676 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1677
1678 fi->this_id.p = 1;
1679 fi->this_id.value = frame_id_build (addr, pc);
1680
1681 if (frame_debug)
1682 {
1683 fprintf_unfiltered (gdb_stdlog, "-> ");
1684 fprint_frame (gdb_stdlog, fi);
1685 fprintf_unfiltered (gdb_stdlog, " }\n");
1686 }
1687
1688 return fi;
1689 }
1690
1691 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1692 innermost frame). Be careful to not fall off the bottom of the
1693 frame chain and onto the sentinel frame. */
1694
1695 struct frame_info *
1696 get_next_frame (struct frame_info *this_frame)
1697 {
1698 if (this_frame->level > 0)
1699 return this_frame->next;
1700 else
1701 return NULL;
1702 }
1703
1704 /* Observer for the target_changed event. */
1705
1706 static void
1707 frame_observer_target_changed (struct target_ops *target)
1708 {
1709 reinit_frame_cache ();
1710 }
1711
1712 /* Flush the entire frame cache. */
1713
1714 void
1715 reinit_frame_cache (void)
1716 {
1717 struct frame_info *fi;
1718
1719 /* Tear down all frame caches. */
1720 for (fi = current_frame; fi != NULL; fi = fi->prev)
1721 {
1722 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1723 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1724 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1725 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1726 }
1727
1728 /* Since we can't really be sure what the first object allocated was. */
1729 obstack_free (&frame_cache_obstack, 0);
1730 obstack_init (&frame_cache_obstack);
1731
1732 if (current_frame != NULL)
1733 annotate_frames_invalid ();
1734
1735 current_frame = NULL; /* Invalidate cache */
1736 select_frame (NULL);
1737 frame_stash_invalidate ();
1738 if (frame_debug)
1739 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1740 }
1741
1742 /* Find where a register is saved (in memory or another register).
1743 The result of frame_register_unwind is just where it is saved
1744 relative to this particular frame. */
1745
1746 static void
1747 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1748 int *optimizedp, enum lval_type *lvalp,
1749 CORE_ADDR *addrp, int *realnump)
1750 {
1751 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1752
1753 while (this_frame != NULL)
1754 {
1755 int unavailable;
1756
1757 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1758 lvalp, addrp, realnump, NULL);
1759
1760 if (*optimizedp)
1761 break;
1762
1763 if (*lvalp != lval_register)
1764 break;
1765
1766 regnum = *realnump;
1767 this_frame = get_next_frame (this_frame);
1768 }
1769 }
1770
1771 /* Called during frame unwinding to remove a previous frame pointer from a
1772 frame passed in ARG. */
1773
1774 static void
1775 remove_prev_frame (void *arg)
1776 {
1777 struct frame_info *this_frame, *prev_frame;
1778
1779 this_frame = (struct frame_info *) arg;
1780 prev_frame = this_frame->prev;
1781 gdb_assert (prev_frame != NULL);
1782
1783 prev_frame->next = NULL;
1784 this_frame->prev = NULL;
1785 }
1786
1787 /* Get the previous raw frame, and check that it is not identical to
1788 same other frame frame already in the chain. If it is, there is
1789 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1790 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1791 validity tests, that compare THIS_FRAME and the next frame, we do
1792 this right after creating the previous frame, to avoid ever ending
1793 up with two frames with the same id in the frame chain. */
1794
1795 static struct frame_info *
1796 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1797 {
1798 struct frame_info *prev_frame;
1799 struct cleanup *prev_frame_cleanup;
1800
1801 prev_frame = get_prev_frame_raw (this_frame);
1802 if (prev_frame == NULL)
1803 return NULL;
1804
1805 /* The cleanup will remove the previous frame that get_prev_frame_raw
1806 linked onto THIS_FRAME. */
1807 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1808
1809 compute_frame_id (prev_frame);
1810 if (!frame_stash_add (prev_frame))
1811 {
1812 /* Another frame with the same id was already in the stash. We just
1813 detected a cycle. */
1814 if (frame_debug)
1815 {
1816 fprintf_unfiltered (gdb_stdlog, "-> ");
1817 fprint_frame (gdb_stdlog, NULL);
1818 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1819 }
1820 this_frame->stop_reason = UNWIND_SAME_ID;
1821 /* Unlink. */
1822 prev_frame->next = NULL;
1823 this_frame->prev = NULL;
1824 prev_frame = NULL;
1825 }
1826
1827 discard_cleanups (prev_frame_cleanup);
1828 return prev_frame;
1829 }
1830
1831 /* Helper function for get_prev_frame_always, this is called inside a
1832 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1833 there is no such frame. This may throw an exception. */
1834
1835 static struct frame_info *
1836 get_prev_frame_always_1 (struct frame_info *this_frame)
1837 {
1838 struct gdbarch *gdbarch;
1839
1840 gdb_assert (this_frame != NULL);
1841 gdbarch = get_frame_arch (this_frame);
1842
1843 if (frame_debug)
1844 {
1845 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1846 if (this_frame != NULL)
1847 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1848 else
1849 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1850 fprintf_unfiltered (gdb_stdlog, ") ");
1851 }
1852
1853 /* Only try to do the unwind once. */
1854 if (this_frame->prev_p)
1855 {
1856 if (frame_debug)
1857 {
1858 fprintf_unfiltered (gdb_stdlog, "-> ");
1859 fprint_frame (gdb_stdlog, this_frame->prev);
1860 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1861 }
1862 return this_frame->prev;
1863 }
1864
1865 /* If the frame unwinder hasn't been selected yet, we must do so
1866 before setting prev_p; otherwise the check for misbehaved
1867 sniffers will think that this frame's sniffer tried to unwind
1868 further (see frame_cleanup_after_sniffer). */
1869 if (this_frame->unwind == NULL)
1870 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1871
1872 this_frame->prev_p = 1;
1873 this_frame->stop_reason = UNWIND_NO_REASON;
1874
1875 /* If we are unwinding from an inline frame, all of the below tests
1876 were already performed when we unwound from the next non-inline
1877 frame. We must skip them, since we can not get THIS_FRAME's ID
1878 until we have unwound all the way down to the previous non-inline
1879 frame. */
1880 if (get_frame_type (this_frame) == INLINE_FRAME)
1881 return get_prev_frame_if_no_cycle (this_frame);
1882
1883 /* Check that this frame is unwindable. If it isn't, don't try to
1884 unwind to the prev frame. */
1885 this_frame->stop_reason
1886 = this_frame->unwind->stop_reason (this_frame,
1887 &this_frame->prologue_cache);
1888
1889 if (this_frame->stop_reason != UNWIND_NO_REASON)
1890 {
1891 if (frame_debug)
1892 {
1893 enum unwind_stop_reason reason = this_frame->stop_reason;
1894
1895 fprintf_unfiltered (gdb_stdlog, "-> ");
1896 fprint_frame (gdb_stdlog, NULL);
1897 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1898 frame_stop_reason_symbol_string (reason));
1899 }
1900 return NULL;
1901 }
1902
1903 /* Check that this frame's ID isn't inner to (younger, below, next)
1904 the next frame. This happens when a frame unwind goes backwards.
1905 This check is valid only if this frame and the next frame are NORMAL.
1906 See the comment at frame_id_inner for details. */
1907 if (get_frame_type (this_frame) == NORMAL_FRAME
1908 && this_frame->next->unwind->type == NORMAL_FRAME
1909 && frame_id_inner (get_frame_arch (this_frame->next),
1910 get_frame_id (this_frame),
1911 get_frame_id (this_frame->next)))
1912 {
1913 CORE_ADDR this_pc_in_block;
1914 struct minimal_symbol *morestack_msym;
1915 const char *morestack_name = NULL;
1916
1917 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1918 this_pc_in_block = get_frame_address_in_block (this_frame);
1919 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1920 if (morestack_msym)
1921 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1922 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1923 {
1924 if (frame_debug)
1925 {
1926 fprintf_unfiltered (gdb_stdlog, "-> ");
1927 fprint_frame (gdb_stdlog, NULL);
1928 fprintf_unfiltered (gdb_stdlog,
1929 " // this frame ID is inner }\n");
1930 }
1931 this_frame->stop_reason = UNWIND_INNER_ID;
1932 return NULL;
1933 }
1934 }
1935
1936 /* Check that this and the next frame do not unwind the PC register
1937 to the same memory location. If they do, then even though they
1938 have different frame IDs, the new frame will be bogus; two
1939 functions can't share a register save slot for the PC. This can
1940 happen when the prologue analyzer finds a stack adjustment, but
1941 no PC save.
1942
1943 This check does assume that the "PC register" is roughly a
1944 traditional PC, even if the gdbarch_unwind_pc method adjusts
1945 it (we do not rely on the value, only on the unwound PC being
1946 dependent on this value). A potential improvement would be
1947 to have the frame prev_pc method and the gdbarch unwind_pc
1948 method set the same lval and location information as
1949 frame_register_unwind. */
1950 if (this_frame->level > 0
1951 && gdbarch_pc_regnum (gdbarch) >= 0
1952 && get_frame_type (this_frame) == NORMAL_FRAME
1953 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1954 || get_frame_type (this_frame->next) == INLINE_FRAME))
1955 {
1956 int optimized, realnum, nrealnum;
1957 enum lval_type lval, nlval;
1958 CORE_ADDR addr, naddr;
1959
1960 frame_register_unwind_location (this_frame,
1961 gdbarch_pc_regnum (gdbarch),
1962 &optimized, &lval, &addr, &realnum);
1963 frame_register_unwind_location (get_next_frame (this_frame),
1964 gdbarch_pc_regnum (gdbarch),
1965 &optimized, &nlval, &naddr, &nrealnum);
1966
1967 if ((lval == lval_memory && lval == nlval && addr == naddr)
1968 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1969 {
1970 if (frame_debug)
1971 {
1972 fprintf_unfiltered (gdb_stdlog, "-> ");
1973 fprint_frame (gdb_stdlog, NULL);
1974 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1975 }
1976
1977 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1978 this_frame->prev = NULL;
1979 return NULL;
1980 }
1981 }
1982
1983 return get_prev_frame_if_no_cycle (this_frame);
1984 }
1985
1986 /* Return a "struct frame_info" corresponding to the frame that called
1987 THIS_FRAME. Returns NULL if there is no such frame.
1988
1989 Unlike get_prev_frame, this function always tries to unwind the
1990 frame. */
1991
1992 struct frame_info *
1993 get_prev_frame_always (struct frame_info *this_frame)
1994 {
1995 struct frame_info *prev_frame = NULL;
1996
1997 TRY
1998 {
1999 prev_frame = get_prev_frame_always_1 (this_frame);
2000 }
2001 CATCH (ex, RETURN_MASK_ERROR)
2002 {
2003 if (ex.error == MEMORY_ERROR)
2004 {
2005 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2006 if (ex.message != NULL)
2007 {
2008 char *stop_string;
2009 size_t size;
2010
2011 /* The error needs to live as long as the frame does.
2012 Allocate using stack local STOP_STRING then assign the
2013 pointer to the frame, this allows the STOP_STRING on the
2014 frame to be of type 'const char *'. */
2015 size = strlen (ex.message) + 1;
2016 stop_string = (char *) frame_obstack_zalloc (size);
2017 memcpy (stop_string, ex.message, size);
2018 this_frame->stop_string = stop_string;
2019 }
2020 prev_frame = NULL;
2021 }
2022 else
2023 throw_exception (ex);
2024 }
2025 END_CATCH
2026
2027 return prev_frame;
2028 }
2029
2030 /* Construct a new "struct frame_info" and link it previous to
2031 this_frame. */
2032
2033 static struct frame_info *
2034 get_prev_frame_raw (struct frame_info *this_frame)
2035 {
2036 struct frame_info *prev_frame;
2037
2038 /* Allocate the new frame but do not wire it in to the frame chain.
2039 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2040 frame->next to pull some fancy tricks (of course such code is, by
2041 definition, recursive). Try to prevent it.
2042
2043 There is no reason to worry about memory leaks, should the
2044 remainder of the function fail. The allocated memory will be
2045 quickly reclaimed when the frame cache is flushed, and the `we've
2046 been here before' check above will stop repeated memory
2047 allocation calls. */
2048 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2049 prev_frame->level = this_frame->level + 1;
2050
2051 /* For now, assume we don't have frame chains crossing address
2052 spaces. */
2053 prev_frame->pspace = this_frame->pspace;
2054 prev_frame->aspace = this_frame->aspace;
2055
2056 /* Don't yet compute ->unwind (and hence ->type). It is computed
2057 on-demand in get_frame_type, frame_register_unwind, and
2058 get_frame_id. */
2059
2060 /* Don't yet compute the frame's ID. It is computed on-demand by
2061 get_frame_id(). */
2062
2063 /* The unwound frame ID is validate at the start of this function,
2064 as part of the logic to decide if that frame should be further
2065 unwound, and not here while the prev frame is being created.
2066 Doing this makes it possible for the user to examine a frame that
2067 has an invalid frame ID.
2068
2069 Some very old VAX code noted: [...] For the sake of argument,
2070 suppose that the stack is somewhat trashed (which is one reason
2071 that "info frame" exists). So, return 0 (indicating we don't
2072 know the address of the arglist) if we don't know what frame this
2073 frame calls. */
2074
2075 /* Link it in. */
2076 this_frame->prev = prev_frame;
2077 prev_frame->next = this_frame;
2078
2079 if (frame_debug)
2080 {
2081 fprintf_unfiltered (gdb_stdlog, "-> ");
2082 fprint_frame (gdb_stdlog, prev_frame);
2083 fprintf_unfiltered (gdb_stdlog, " }\n");
2084 }
2085
2086 return prev_frame;
2087 }
2088
2089 /* Debug routine to print a NULL frame being returned. */
2090
2091 static void
2092 frame_debug_got_null_frame (struct frame_info *this_frame,
2093 const char *reason)
2094 {
2095 if (frame_debug)
2096 {
2097 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2098 if (this_frame != NULL)
2099 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2100 else
2101 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2102 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2103 }
2104 }
2105
2106 /* Is this (non-sentinel) frame in the "main"() function? */
2107
2108 static int
2109 inside_main_func (struct frame_info *this_frame)
2110 {
2111 struct bound_minimal_symbol msymbol;
2112 CORE_ADDR maddr;
2113
2114 if (symfile_objfile == 0)
2115 return 0;
2116 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2117 if (msymbol.minsym == NULL)
2118 return 0;
2119 /* Make certain that the code, and not descriptor, address is
2120 returned. */
2121 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2122 BMSYMBOL_VALUE_ADDRESS (msymbol),
2123 &current_target);
2124 return maddr == get_frame_func (this_frame);
2125 }
2126
2127 /* Test whether THIS_FRAME is inside the process entry point function. */
2128
2129 static int
2130 inside_entry_func (struct frame_info *this_frame)
2131 {
2132 CORE_ADDR entry_point;
2133
2134 if (!entry_point_address_query (&entry_point))
2135 return 0;
2136
2137 return get_frame_func (this_frame) == entry_point;
2138 }
2139
2140 /* Return a structure containing various interesting information about
2141 the frame that called THIS_FRAME. Returns NULL if there is entier
2142 no such frame or the frame fails any of a set of target-independent
2143 condition that should terminate the frame chain (e.g., as unwinding
2144 past main()).
2145
2146 This function should not contain target-dependent tests, such as
2147 checking whether the program-counter is zero. */
2148
2149 struct frame_info *
2150 get_prev_frame (struct frame_info *this_frame)
2151 {
2152 CORE_ADDR frame_pc;
2153 int frame_pc_p;
2154
2155 /* There is always a frame. If this assertion fails, suspect that
2156 something should be calling get_selected_frame() or
2157 get_current_frame(). */
2158 gdb_assert (this_frame != NULL);
2159 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2160
2161 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2162 sense to stop unwinding at a dummy frame. One place where a dummy
2163 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2164 pcsqh register (space register for the instruction at the head of the
2165 instruction queue) cannot be written directly; the only way to set it
2166 is to branch to code that is in the target space. In order to implement
2167 frame dummies on HPUX, the called function is made to jump back to where
2168 the inferior was when the user function was called. If gdb was inside
2169 the main function when we created the dummy frame, the dummy frame will
2170 point inside the main function. */
2171 if (this_frame->level >= 0
2172 && get_frame_type (this_frame) == NORMAL_FRAME
2173 && !backtrace_past_main
2174 && frame_pc_p
2175 && inside_main_func (this_frame))
2176 /* Don't unwind past main(). Note, this is done _before_ the
2177 frame has been marked as previously unwound. That way if the
2178 user later decides to enable unwinds past main(), that will
2179 automatically happen. */
2180 {
2181 frame_debug_got_null_frame (this_frame, "inside main func");
2182 return NULL;
2183 }
2184
2185 /* If the user's backtrace limit has been exceeded, stop. We must
2186 add two to the current level; one of those accounts for backtrace_limit
2187 being 1-based and the level being 0-based, and the other accounts for
2188 the level of the new frame instead of the level of the current
2189 frame. */
2190 if (this_frame->level + 2 > backtrace_limit)
2191 {
2192 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2193 return NULL;
2194 }
2195
2196 /* If we're already inside the entry function for the main objfile,
2197 then it isn't valid. Don't apply this test to a dummy frame -
2198 dummy frame PCs typically land in the entry func. Don't apply
2199 this test to the sentinel frame. Sentinel frames should always
2200 be allowed to unwind. */
2201 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2202 wasn't checking for "main" in the minimal symbols. With that
2203 fixed asm-source tests now stop in "main" instead of halting the
2204 backtrace in weird and wonderful ways somewhere inside the entry
2205 file. Suspect that tests for inside the entry file/func were
2206 added to work around that (now fixed) case. */
2207 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2208 suggested having the inside_entry_func test use the
2209 inside_main_func() msymbol trick (along with entry_point_address()
2210 I guess) to determine the address range of the start function.
2211 That should provide a far better stopper than the current
2212 heuristics. */
2213 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2214 applied tail-call optimizations to main so that a function called
2215 from main returns directly to the caller of main. Since we don't
2216 stop at main, we should at least stop at the entry point of the
2217 application. */
2218 if (this_frame->level >= 0
2219 && get_frame_type (this_frame) == NORMAL_FRAME
2220 && !backtrace_past_entry
2221 && frame_pc_p
2222 && inside_entry_func (this_frame))
2223 {
2224 frame_debug_got_null_frame (this_frame, "inside entry func");
2225 return NULL;
2226 }
2227
2228 /* Assume that the only way to get a zero PC is through something
2229 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2230 will never unwind a zero PC. */
2231 if (this_frame->level > 0
2232 && (get_frame_type (this_frame) == NORMAL_FRAME
2233 || get_frame_type (this_frame) == INLINE_FRAME)
2234 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2235 && frame_pc_p && frame_pc == 0)
2236 {
2237 frame_debug_got_null_frame (this_frame, "zero PC");
2238 return NULL;
2239 }
2240
2241 return get_prev_frame_always (this_frame);
2242 }
2243
2244 CORE_ADDR
2245 get_frame_pc (struct frame_info *frame)
2246 {
2247 gdb_assert (frame->next != NULL);
2248 return frame_unwind_pc (frame->next);
2249 }
2250
2251 int
2252 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2253 {
2254
2255 gdb_assert (frame->next != NULL);
2256
2257 TRY
2258 {
2259 *pc = frame_unwind_pc (frame->next);
2260 }
2261 CATCH (ex, RETURN_MASK_ERROR)
2262 {
2263 if (ex.error == NOT_AVAILABLE_ERROR)
2264 return 0;
2265 else
2266 throw_exception (ex);
2267 }
2268 END_CATCH
2269
2270 return 1;
2271 }
2272
2273 /* Return an address that falls within THIS_FRAME's code block. */
2274
2275 CORE_ADDR
2276 get_frame_address_in_block (struct frame_info *this_frame)
2277 {
2278 /* A draft address. */
2279 CORE_ADDR pc = get_frame_pc (this_frame);
2280
2281 struct frame_info *next_frame = this_frame->next;
2282
2283 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2284 Normally the resume address is inside the body of the function
2285 associated with THIS_FRAME, but there is a special case: when
2286 calling a function which the compiler knows will never return
2287 (for instance abort), the call may be the very last instruction
2288 in the calling function. The resume address will point after the
2289 call and may be at the beginning of a different function
2290 entirely.
2291
2292 If THIS_FRAME is a signal frame or dummy frame, then we should
2293 not adjust the unwound PC. For a dummy frame, GDB pushed the
2294 resume address manually onto the stack. For a signal frame, the
2295 OS may have pushed the resume address manually and invoked the
2296 handler (e.g. GNU/Linux), or invoked the trampoline which called
2297 the signal handler - but in either case the signal handler is
2298 expected to return to the trampoline. So in both of these
2299 cases we know that the resume address is executable and
2300 related. So we only need to adjust the PC if THIS_FRAME
2301 is a normal function.
2302
2303 If the program has been interrupted while THIS_FRAME is current,
2304 then clearly the resume address is inside the associated
2305 function. There are three kinds of interruption: debugger stop
2306 (next frame will be SENTINEL_FRAME), operating system
2307 signal or exception (next frame will be SIGTRAMP_FRAME),
2308 or debugger-induced function call (next frame will be
2309 DUMMY_FRAME). So we only need to adjust the PC if
2310 NEXT_FRAME is a normal function.
2311
2312 We check the type of NEXT_FRAME first, since it is already
2313 known; frame type is determined by the unwinder, and since
2314 we have THIS_FRAME we've already selected an unwinder for
2315 NEXT_FRAME.
2316
2317 If the next frame is inlined, we need to keep going until we find
2318 the real function - for instance, if a signal handler is invoked
2319 while in an inlined function, then the code address of the
2320 "calling" normal function should not be adjusted either. */
2321
2322 while (get_frame_type (next_frame) == INLINE_FRAME)
2323 next_frame = next_frame->next;
2324
2325 if ((get_frame_type (next_frame) == NORMAL_FRAME
2326 || get_frame_type (next_frame) == TAILCALL_FRAME)
2327 && (get_frame_type (this_frame) == NORMAL_FRAME
2328 || get_frame_type (this_frame) == TAILCALL_FRAME
2329 || get_frame_type (this_frame) == INLINE_FRAME))
2330 return pc - 1;
2331
2332 return pc;
2333 }
2334
2335 int
2336 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2337 CORE_ADDR *pc)
2338 {
2339
2340 TRY
2341 {
2342 *pc = get_frame_address_in_block (this_frame);
2343 }
2344 CATCH (ex, RETURN_MASK_ERROR)
2345 {
2346 if (ex.error == NOT_AVAILABLE_ERROR)
2347 return 0;
2348 throw_exception (ex);
2349 }
2350 END_CATCH
2351
2352 return 1;
2353 }
2354
2355 void
2356 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2357 {
2358 struct frame_info *next_frame;
2359 int notcurrent;
2360 CORE_ADDR pc;
2361
2362 /* If the next frame represents an inlined function call, this frame's
2363 sal is the "call site" of that inlined function, which can not
2364 be inferred from get_frame_pc. */
2365 next_frame = get_next_frame (frame);
2366 if (frame_inlined_callees (frame) > 0)
2367 {
2368 struct symbol *sym;
2369
2370 if (next_frame)
2371 sym = get_frame_function (next_frame);
2372 else
2373 sym = inline_skipped_symbol (inferior_ptid);
2374
2375 /* If frame is inline, it certainly has symbols. */
2376 gdb_assert (sym);
2377 init_sal (sal);
2378 if (SYMBOL_LINE (sym) != 0)
2379 {
2380 sal->symtab = symbol_symtab (sym);
2381 sal->line = SYMBOL_LINE (sym);
2382 }
2383 else
2384 /* If the symbol does not have a location, we don't know where
2385 the call site is. Do not pretend to. This is jarring, but
2386 we can't do much better. */
2387 sal->pc = get_frame_pc (frame);
2388
2389 sal->pspace = get_frame_program_space (frame);
2390
2391 return;
2392 }
2393
2394 /* If FRAME is not the innermost frame, that normally means that
2395 FRAME->pc points at the return instruction (which is *after* the
2396 call instruction), and we want to get the line containing the
2397 call (because the call is where the user thinks the program is).
2398 However, if the next frame is either a SIGTRAMP_FRAME or a
2399 DUMMY_FRAME, then the next frame will contain a saved interrupt
2400 PC and such a PC indicates the current (rather than next)
2401 instruction/line, consequently, for such cases, want to get the
2402 line containing fi->pc. */
2403 if (!get_frame_pc_if_available (frame, &pc))
2404 {
2405 init_sal (sal);
2406 return;
2407 }
2408
2409 notcurrent = (pc != get_frame_address_in_block (frame));
2410 (*sal) = find_pc_line (pc, notcurrent);
2411 }
2412
2413 /* Per "frame.h", return the ``address'' of the frame. Code should
2414 really be using get_frame_id(). */
2415 CORE_ADDR
2416 get_frame_base (struct frame_info *fi)
2417 {
2418 return get_frame_id (fi).stack_addr;
2419 }
2420
2421 /* High-level offsets into the frame. Used by the debug info. */
2422
2423 CORE_ADDR
2424 get_frame_base_address (struct frame_info *fi)
2425 {
2426 if (get_frame_type (fi) != NORMAL_FRAME)
2427 return 0;
2428 if (fi->base == NULL)
2429 fi->base = frame_base_find_by_frame (fi);
2430 /* Sneaky: If the low-level unwind and high-level base code share a
2431 common unwinder, let them share the prologue cache. */
2432 if (fi->base->unwind == fi->unwind)
2433 return fi->base->this_base (fi, &fi->prologue_cache);
2434 return fi->base->this_base (fi, &fi->base_cache);
2435 }
2436
2437 CORE_ADDR
2438 get_frame_locals_address (struct frame_info *fi)
2439 {
2440 if (get_frame_type (fi) != NORMAL_FRAME)
2441 return 0;
2442 /* If there isn't a frame address method, find it. */
2443 if (fi->base == NULL)
2444 fi->base = frame_base_find_by_frame (fi);
2445 /* Sneaky: If the low-level unwind and high-level base code share a
2446 common unwinder, let them share the prologue cache. */
2447 if (fi->base->unwind == fi->unwind)
2448 return fi->base->this_locals (fi, &fi->prologue_cache);
2449 return fi->base->this_locals (fi, &fi->base_cache);
2450 }
2451
2452 CORE_ADDR
2453 get_frame_args_address (struct frame_info *fi)
2454 {
2455 if (get_frame_type (fi) != NORMAL_FRAME)
2456 return 0;
2457 /* If there isn't a frame address method, find it. */
2458 if (fi->base == NULL)
2459 fi->base = frame_base_find_by_frame (fi);
2460 /* Sneaky: If the low-level unwind and high-level base code share a
2461 common unwinder, let them share the prologue cache. */
2462 if (fi->base->unwind == fi->unwind)
2463 return fi->base->this_args (fi, &fi->prologue_cache);
2464 return fi->base->this_args (fi, &fi->base_cache);
2465 }
2466
2467 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2468 otherwise. */
2469
2470 int
2471 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2472 {
2473 if (fi->unwind == NULL)
2474 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2475 return fi->unwind == unwinder;
2476 }
2477
2478 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2479 or -1 for a NULL frame. */
2480
2481 int
2482 frame_relative_level (struct frame_info *fi)
2483 {
2484 if (fi == NULL)
2485 return -1;
2486 else
2487 return fi->level;
2488 }
2489
2490 enum frame_type
2491 get_frame_type (struct frame_info *frame)
2492 {
2493 if (frame->unwind == NULL)
2494 /* Initialize the frame's unwinder because that's what
2495 provides the frame's type. */
2496 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2497 return frame->unwind->type;
2498 }
2499
2500 struct program_space *
2501 get_frame_program_space (struct frame_info *frame)
2502 {
2503 return frame->pspace;
2504 }
2505
2506 struct program_space *
2507 frame_unwind_program_space (struct frame_info *this_frame)
2508 {
2509 gdb_assert (this_frame);
2510
2511 /* This is really a placeholder to keep the API consistent --- we
2512 assume for now that we don't have frame chains crossing
2513 spaces. */
2514 return this_frame->pspace;
2515 }
2516
2517 struct address_space *
2518 get_frame_address_space (struct frame_info *frame)
2519 {
2520 return frame->aspace;
2521 }
2522
2523 /* Memory access methods. */
2524
2525 void
2526 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2527 gdb_byte *buf, int len)
2528 {
2529 read_memory (addr, buf, len);
2530 }
2531
2532 LONGEST
2533 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2534 int len)
2535 {
2536 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2538
2539 return read_memory_integer (addr, len, byte_order);
2540 }
2541
2542 ULONGEST
2543 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2544 int len)
2545 {
2546 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2548
2549 return read_memory_unsigned_integer (addr, len, byte_order);
2550 }
2551
2552 int
2553 safe_frame_unwind_memory (struct frame_info *this_frame,
2554 CORE_ADDR addr, gdb_byte *buf, int len)
2555 {
2556 /* NOTE: target_read_memory returns zero on success! */
2557 return !target_read_memory (addr, buf, len);
2558 }
2559
2560 /* Architecture methods. */
2561
2562 struct gdbarch *
2563 get_frame_arch (struct frame_info *this_frame)
2564 {
2565 return frame_unwind_arch (this_frame->next);
2566 }
2567
2568 struct gdbarch *
2569 frame_unwind_arch (struct frame_info *next_frame)
2570 {
2571 if (!next_frame->prev_arch.p)
2572 {
2573 struct gdbarch *arch;
2574
2575 if (next_frame->unwind == NULL)
2576 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2577
2578 if (next_frame->unwind->prev_arch != NULL)
2579 arch = next_frame->unwind->prev_arch (next_frame,
2580 &next_frame->prologue_cache);
2581 else
2582 arch = get_frame_arch (next_frame);
2583
2584 next_frame->prev_arch.arch = arch;
2585 next_frame->prev_arch.p = 1;
2586 if (frame_debug)
2587 fprintf_unfiltered (gdb_stdlog,
2588 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2589 next_frame->level,
2590 gdbarch_bfd_arch_info (arch)->printable_name);
2591 }
2592
2593 return next_frame->prev_arch.arch;
2594 }
2595
2596 struct gdbarch *
2597 frame_unwind_caller_arch (struct frame_info *next_frame)
2598 {
2599 next_frame = skip_artificial_frames (next_frame);
2600
2601 /* We must have a non-artificial frame. The caller is supposed to check
2602 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2603 in this case. */
2604 gdb_assert (next_frame != NULL);
2605
2606 return frame_unwind_arch (next_frame);
2607 }
2608
2609 /* Gets the language of FRAME. */
2610
2611 enum language
2612 get_frame_language (struct frame_info *frame)
2613 {
2614 CORE_ADDR pc = 0;
2615 int pc_p = 0;
2616
2617 gdb_assert (frame!= NULL);
2618
2619 /* We determine the current frame language by looking up its
2620 associated symtab. To retrieve this symtab, we use the frame
2621 PC. However we cannot use the frame PC as is, because it
2622 usually points to the instruction following the "call", which
2623 is sometimes the first instruction of another function. So
2624 we rely on get_frame_address_in_block(), it provides us with
2625 a PC that is guaranteed to be inside the frame's code
2626 block. */
2627
2628 TRY
2629 {
2630 pc = get_frame_address_in_block (frame);
2631 pc_p = 1;
2632 }
2633 CATCH (ex, RETURN_MASK_ERROR)
2634 {
2635 if (ex.error != NOT_AVAILABLE_ERROR)
2636 throw_exception (ex);
2637 }
2638 END_CATCH
2639
2640 if (pc_p)
2641 {
2642 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2643
2644 if (cust != NULL)
2645 return compunit_language (cust);
2646 }
2647
2648 return language_unknown;
2649 }
2650
2651 /* Stack pointer methods. */
2652
2653 CORE_ADDR
2654 get_frame_sp (struct frame_info *this_frame)
2655 {
2656 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2657
2658 /* Normality - an architecture that provides a way of obtaining any
2659 frame inner-most address. */
2660 if (gdbarch_unwind_sp_p (gdbarch))
2661 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2662 operate on THIS_FRAME now. */
2663 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2664 /* Now things are really are grim. Hope that the value returned by
2665 the gdbarch_sp_regnum register is meaningful. */
2666 if (gdbarch_sp_regnum (gdbarch) >= 0)
2667 return get_frame_register_unsigned (this_frame,
2668 gdbarch_sp_regnum (gdbarch));
2669 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2670 }
2671
2672 /* Return the reason why we can't unwind past FRAME. */
2673
2674 enum unwind_stop_reason
2675 get_frame_unwind_stop_reason (struct frame_info *frame)
2676 {
2677 /* Fill-in STOP_REASON. */
2678 get_prev_frame_always (frame);
2679 gdb_assert (frame->prev_p);
2680
2681 return frame->stop_reason;
2682 }
2683
2684 /* Return a string explaining REASON. */
2685
2686 const char *
2687 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2688 {
2689 switch (reason)
2690 {
2691 #define SET(name, description) \
2692 case name: return _(description);
2693 #include "unwind_stop_reasons.def"
2694 #undef SET
2695
2696 default:
2697 internal_error (__FILE__, __LINE__,
2698 "Invalid frame stop reason");
2699 }
2700 }
2701
2702 const char *
2703 frame_stop_reason_string (struct frame_info *fi)
2704 {
2705 gdb_assert (fi->prev_p);
2706 gdb_assert (fi->prev == NULL);
2707
2708 /* Return the specific string if we have one. */
2709 if (fi->stop_string != NULL)
2710 return fi->stop_string;
2711
2712 /* Return the generic string if we have nothing better. */
2713 return unwind_stop_reason_to_string (fi->stop_reason);
2714 }
2715
2716 /* Return the enum symbol name of REASON as a string, to use in debug
2717 output. */
2718
2719 static const char *
2720 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2721 {
2722 switch (reason)
2723 {
2724 #define SET(name, description) \
2725 case name: return #name;
2726 #include "unwind_stop_reasons.def"
2727 #undef SET
2728
2729 default:
2730 internal_error (__FILE__, __LINE__,
2731 "Invalid frame stop reason");
2732 }
2733 }
2734
2735 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2736 FRAME. */
2737
2738 static void
2739 frame_cleanup_after_sniffer (void *arg)
2740 {
2741 struct frame_info *frame = (struct frame_info *) arg;
2742
2743 /* The sniffer should not allocate a prologue cache if it did not
2744 match this frame. */
2745 gdb_assert (frame->prologue_cache == NULL);
2746
2747 /* No sniffer should extend the frame chain; sniff based on what is
2748 already certain. */
2749 gdb_assert (!frame->prev_p);
2750
2751 /* The sniffer should not check the frame's ID; that's circular. */
2752 gdb_assert (!frame->this_id.p);
2753
2754 /* Clear cached fields dependent on the unwinder.
2755
2756 The previous PC is independent of the unwinder, but the previous
2757 function is not (see get_frame_address_in_block). */
2758 frame->prev_func.p = 0;
2759 frame->prev_func.addr = 0;
2760
2761 /* Discard the unwinder last, so that we can easily find it if an assertion
2762 in this function triggers. */
2763 frame->unwind = NULL;
2764 }
2765
2766 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2767 Return a cleanup which should be called if unwinding fails, and
2768 discarded if it succeeds. */
2769
2770 struct cleanup *
2771 frame_prepare_for_sniffer (struct frame_info *frame,
2772 const struct frame_unwind *unwind)
2773 {
2774 gdb_assert (frame->unwind == NULL);
2775 frame->unwind = unwind;
2776 return make_cleanup (frame_cleanup_after_sniffer, frame);
2777 }
2778
2779 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2780
2781 static struct cmd_list_element *set_backtrace_cmdlist;
2782 static struct cmd_list_element *show_backtrace_cmdlist;
2783
2784 static void
2785 set_backtrace_cmd (char *args, int from_tty)
2786 {
2787 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2788 gdb_stdout);
2789 }
2790
2791 static void
2792 show_backtrace_cmd (char *args, int from_tty)
2793 {
2794 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2795 }
2796
2797 void
2798 _initialize_frame (void)
2799 {
2800 obstack_init (&frame_cache_obstack);
2801
2802 frame_stash_create ();
2803
2804 observer_attach_target_changed (frame_observer_target_changed);
2805
2806 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2807 Set backtrace specific variables.\n\
2808 Configure backtrace variables such as the backtrace limit"),
2809 &set_backtrace_cmdlist, "set backtrace ",
2810 0/*allow-unknown*/, &setlist);
2811 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2812 Show backtrace specific variables\n\
2813 Show backtrace variables such as the backtrace limit"),
2814 &show_backtrace_cmdlist, "show backtrace ",
2815 0/*allow-unknown*/, &showlist);
2816
2817 add_setshow_boolean_cmd ("past-main", class_obscure,
2818 &backtrace_past_main, _("\
2819 Set whether backtraces should continue past \"main\"."), _("\
2820 Show whether backtraces should continue past \"main\"."), _("\
2821 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2822 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2823 of the stack trace."),
2824 NULL,
2825 show_backtrace_past_main,
2826 &set_backtrace_cmdlist,
2827 &show_backtrace_cmdlist);
2828
2829 add_setshow_boolean_cmd ("past-entry", class_obscure,
2830 &backtrace_past_entry, _("\
2831 Set whether backtraces should continue past the entry point of a program."),
2832 _("\
2833 Show whether backtraces should continue past the entry point of a program."),
2834 _("\
2835 Normally there are no callers beyond the entry point of a program, so GDB\n\
2836 will terminate the backtrace there. Set this variable if you need to see\n\
2837 the rest of the stack trace."),
2838 NULL,
2839 show_backtrace_past_entry,
2840 &set_backtrace_cmdlist,
2841 &show_backtrace_cmdlist);
2842
2843 add_setshow_uinteger_cmd ("limit", class_obscure,
2844 &backtrace_limit, _("\
2845 Set an upper bound on the number of backtrace levels."), _("\
2846 Show the upper bound on the number of backtrace levels."), _("\
2847 No more than the specified number of frames can be displayed or examined.\n\
2848 Literal \"unlimited\" or zero means no limit."),
2849 NULL,
2850 show_backtrace_limit,
2851 &set_backtrace_cmdlist,
2852 &show_backtrace_cmdlist);
2853
2854 /* Debug this files internals. */
2855 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2856 Set frame debugging."), _("\
2857 Show frame debugging."), _("\
2858 When non-zero, frame specific internal debugging is enabled."),
2859 NULL,
2860 show_frame_debug,
2861 &setdebuglist, &showdebuglist);
2862 }
This page took 0.092709 seconds and 4 git commands to generate.