AArch64: View the pseudo V registers as vectors
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* See frame.h */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275 m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286 }
287
288 /* Flag to control debugging. */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294 {
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al. */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304 {
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
308 value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315 {
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
318 value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
329 value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336 if (p)
337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338 else
339 fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345 fprintf_unfiltered (file, "{");
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355 fprintf_unfiltered (file, ",");
356
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
359
360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365 fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371 switch (type)
372 {
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
384 return;
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425 fprintf_unfiltered (file, "<unknown>");
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
470
471 return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485 }
486
487 /* See frame.h. */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492 while (get_frame_type (frame) == TAILCALL_FRAME)
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
500
501 return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533 frame. */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538 if (fi == NULL)
539 return null_frame_id;
540
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
561 return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567 return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573 struct frame_info *this_frame;
574
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
579
580 next_frame = skip_artificial_frames (next_frame);
581 if (next_frame == NULL)
582 return null_frame_id;
583
584 this_frame = get_prev_frame_always (next_frame);
585 if (this_frame)
586 return get_frame_id (skip_artificial_frames (this_frame));
587 else
588 return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_addr = stack_addr;
602 id.stack_status = FID_STACK_VALID;
603 id.code_addr = code_addr;
604 id.code_addr_p = 1;
605 id.special_addr = special_addr;
606 id.special_addr_p = 1;
607 return id;
608 }
609
610 /* See frame.h. */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 /* See frame.h. */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628 {
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642 struct frame_id id = null_frame_id;
643
644 id.stack_addr = stack_addr;
645 id.stack_status = FID_STACK_VALID;
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654 struct frame_id id = null_frame_id;
655
656 id.stack_addr = stack_addr;
657 id.stack_status = FID_STACK_VALID;
658 return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664 int p;
665
666 /* The frame is valid iff it has a valid stack address. */
667 p = l.stack_status != FID_STACK_INVALID;
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
677 return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683 if (!frame_id_p (l))
684 return 0;
685
686 return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692 int eq;
693
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
702 else if (l.stack_status == FID_STACK_INVALID
703 || r.stack_status == FID_STACK_INVALID)
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
706 eq = 0;
707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
713 eq = 0;
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
721 eq = 0;
722 else
723 /* Frames are equal. */
724 eq = 1;
725
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
734 return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
745 IDs in certain circumstances. Assuming that NEXT is the immediate
746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
765 its maximum stack size. In this case, certain compilers implement
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772 int inner;
773
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
777 inner = 0;
778 else if (l.artificial_depth > r.artificial_depth
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
785 const struct block *lb, *rb;
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
805 different .code and/or .special address). */
806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
815 return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821 struct frame_info *frame, *prev_frame;
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
825 if (!frame_id_p (id))
826 return NULL;
827
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
844 for (frame = get_current_frame (); ; frame = prev_frame)
845 {
846 struct frame_id self = get_frame_id (frame);
847
848 if (frame_id_eq (id, self))
849 /* An exact match. */
850 return frame;
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
862 && !frame_id_inner (get_frame_arch (frame), id, self)
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
865 return NULL;
866 }
867 return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873 if (this_frame->prev_pc.status == CC_UNKNOWN)
874 {
875 struct gdbarch *prev_gdbarch;
876 CORE_ADDR pc = 0;
877 int pc_p = 0;
878
879 /* The right way. The `pure' way. The one true way. This
880 method depends solely on the register-unwind code to
881 determine the value of registers in THIS frame, and hence
882 the value of this frame's PC (resume address). A typical
883 implementation is no more than:
884
885 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
886 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
887
888 Note: this method is very heavily dependent on a correct
889 register-unwind implementation, it pays to fix that
890 method first; this method is frame type agnostic, since
891 it only deals with register values, it works with any
892 frame. This is all in stark contrast to the old
893 FRAME_SAVED_PC which would try to directly handle all the
894 different ways that a PC could be unwound. */
895 prev_gdbarch = frame_unwind_arch (this_frame);
896
897 TRY
898 {
899 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
900 pc_p = 1;
901 }
902 CATCH (ex, RETURN_MASK_ERROR)
903 {
904 if (ex.error == NOT_AVAILABLE_ERROR)
905 {
906 this_frame->prev_pc.status = CC_UNAVAILABLE;
907
908 if (frame_debug)
909 fprintf_unfiltered (gdb_stdlog,
910 "{ frame_unwind_pc (this_frame=%d)"
911 " -> <unavailable> }\n",
912 this_frame->level);
913 }
914 else if (ex.error == OPTIMIZED_OUT_ERROR)
915 {
916 this_frame->prev_pc.status = CC_NOT_SAVED;
917
918 if (frame_debug)
919 fprintf_unfiltered (gdb_stdlog,
920 "{ frame_unwind_pc (this_frame=%d)"
921 " -> <not saved> }\n",
922 this_frame->level);
923 }
924 else
925 throw_exception (ex);
926 }
927 END_CATCH
928
929 if (pc_p)
930 {
931 this_frame->prev_pc.value = pc;
932 this_frame->prev_pc.status = CC_VALUE;
933 if (frame_debug)
934 fprintf_unfiltered (gdb_stdlog,
935 "{ frame_unwind_pc (this_frame=%d) "
936 "-> %s }\n",
937 this_frame->level,
938 hex_string (this_frame->prev_pc.value));
939 }
940 }
941
942 if (this_frame->prev_pc.status == CC_VALUE)
943 return this_frame->prev_pc.value;
944 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
945 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
946 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
947 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
948 else
949 internal_error (__FILE__, __LINE__,
950 "unexpected prev_pc status: %d",
951 (int) this_frame->prev_pc.status);
952 }
953
954 CORE_ADDR
955 frame_unwind_caller_pc (struct frame_info *this_frame)
956 {
957 this_frame = skip_artificial_frames (this_frame);
958
959 /* We must have a non-artificial frame. The caller is supposed to check
960 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
961 in this case. */
962 gdb_assert (this_frame != NULL);
963
964 return frame_unwind_pc (this_frame);
965 }
966
967 int
968 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
969 {
970 struct frame_info *next_frame = this_frame->next;
971
972 if (!next_frame->prev_func.p)
973 {
974 CORE_ADDR addr_in_block;
975
976 /* Make certain that this, and not the adjacent, function is
977 found. */
978 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
979 {
980 next_frame->prev_func.p = -1;
981 if (frame_debug)
982 fprintf_unfiltered (gdb_stdlog,
983 "{ get_frame_func (this_frame=%d)"
984 " -> unavailable }\n",
985 this_frame->level);
986 }
987 else
988 {
989 next_frame->prev_func.p = 1;
990 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
991 if (frame_debug)
992 fprintf_unfiltered (gdb_stdlog,
993 "{ get_frame_func (this_frame=%d) -> %s }\n",
994 this_frame->level,
995 hex_string (next_frame->prev_func.addr));
996 }
997 }
998
999 if (next_frame->prev_func.p < 0)
1000 {
1001 *pc = -1;
1002 return 0;
1003 }
1004 else
1005 {
1006 *pc = next_frame->prev_func.addr;
1007 return 1;
1008 }
1009 }
1010
1011 CORE_ADDR
1012 get_frame_func (struct frame_info *this_frame)
1013 {
1014 CORE_ADDR pc;
1015
1016 if (!get_frame_func_if_available (this_frame, &pc))
1017 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1018
1019 return pc;
1020 }
1021
1022 std::unique_ptr<readonly_detached_regcache>
1023 frame_save_as_regcache (struct frame_info *this_frame)
1024 {
1025 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1026 {
1027 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1028 return REG_UNAVAILABLE;
1029 else
1030 return REG_VALID;
1031 };
1032
1033 std::unique_ptr<readonly_detached_regcache> regcache
1034 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1035
1036 return regcache;
1037 }
1038
1039 void
1040 frame_pop (struct frame_info *this_frame)
1041 {
1042 struct frame_info *prev_frame;
1043
1044 if (get_frame_type (this_frame) == DUMMY_FRAME)
1045 {
1046 /* Popping a dummy frame involves restoring more than just registers.
1047 dummy_frame_pop does all the work. */
1048 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1049 return;
1050 }
1051
1052 /* Ensure that we have a frame to pop to. */
1053 prev_frame = get_prev_frame_always (this_frame);
1054
1055 if (!prev_frame)
1056 error (_("Cannot pop the initial frame."));
1057
1058 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1059 entering THISFRAME. */
1060 prev_frame = skip_tailcall_frames (prev_frame);
1061
1062 if (prev_frame == NULL)
1063 error (_("Cannot find the caller frame."));
1064
1065 /* Make a copy of all the register values unwound from this frame.
1066 Save them in a scratch buffer so that there isn't a race between
1067 trying to extract the old values from the current regcache while
1068 at the same time writing new values into that same cache. */
1069 std::unique_ptr<readonly_detached_regcache> scratch
1070 = frame_save_as_regcache (prev_frame);
1071
1072 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1073 target's register cache that it is about to be hit with a burst
1074 register transfer and that the sequence of register writes should
1075 be batched. The pair target_prepare_to_store() and
1076 target_store_registers() kind of suggest this functionality.
1077 Unfortunately, they don't implement it. Their lack of a formal
1078 definition can lead to targets writing back bogus values
1079 (arguably a bug in the target code mind). */
1080 /* Now copy those saved registers into the current regcache. */
1081 get_current_regcache ()->restore (scratch.get ());
1082
1083 /* We've made right mess of GDB's local state, just discard
1084 everything. */
1085 reinit_frame_cache ();
1086 }
1087
1088 void
1089 frame_register_unwind (frame_info *next_frame, int regnum,
1090 int *optimizedp, int *unavailablep,
1091 enum lval_type *lvalp, CORE_ADDR *addrp,
1092 int *realnump, gdb_byte *bufferp)
1093 {
1094 struct value *value;
1095
1096 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1097 that the value proper does not need to be fetched. */
1098 gdb_assert (optimizedp != NULL);
1099 gdb_assert (lvalp != NULL);
1100 gdb_assert (addrp != NULL);
1101 gdb_assert (realnump != NULL);
1102 /* gdb_assert (bufferp != NULL); */
1103
1104 value = frame_unwind_register_value (next_frame, regnum);
1105
1106 gdb_assert (value != NULL);
1107
1108 *optimizedp = value_optimized_out (value);
1109 *unavailablep = !value_entirely_available (value);
1110 *lvalp = VALUE_LVAL (value);
1111 *addrp = value_address (value);
1112 if (*lvalp == lval_register)
1113 *realnump = VALUE_REGNUM (value);
1114 else
1115 *realnump = -1;
1116
1117 if (bufferp)
1118 {
1119 if (!*optimizedp && !*unavailablep)
1120 memcpy (bufferp, value_contents_all (value),
1121 TYPE_LENGTH (value_type (value)));
1122 else
1123 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1124 }
1125
1126 /* Dispose of the new value. This prevents watchpoints from
1127 trying to watch the saved frame pointer. */
1128 release_value (value);
1129 }
1130
1131 void
1132 frame_register (struct frame_info *frame, int regnum,
1133 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1134 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1135 {
1136 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1137 that the value proper does not need to be fetched. */
1138 gdb_assert (optimizedp != NULL);
1139 gdb_assert (lvalp != NULL);
1140 gdb_assert (addrp != NULL);
1141 gdb_assert (realnump != NULL);
1142 /* gdb_assert (bufferp != NULL); */
1143
1144 /* Obtain the register value by unwinding the register from the next
1145 (more inner frame). */
1146 gdb_assert (frame != NULL && frame->next != NULL);
1147 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1148 lvalp, addrp, realnump, bufferp);
1149 }
1150
1151 void
1152 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1153 {
1154 int optimized;
1155 int unavailable;
1156 CORE_ADDR addr;
1157 int realnum;
1158 enum lval_type lval;
1159
1160 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1161 &lval, &addr, &realnum, buf);
1162
1163 if (optimized)
1164 throw_error (OPTIMIZED_OUT_ERROR,
1165 _("Register %d was not saved"), regnum);
1166 if (unavailable)
1167 throw_error (NOT_AVAILABLE_ERROR,
1168 _("Register %d is not available"), regnum);
1169 }
1170
1171 void
1172 get_frame_register (struct frame_info *frame,
1173 int regnum, gdb_byte *buf)
1174 {
1175 frame_unwind_register (frame->next, regnum, buf);
1176 }
1177
1178 struct value *
1179 frame_unwind_register_value (frame_info *next_frame, int regnum)
1180 {
1181 struct gdbarch *gdbarch;
1182 struct value *value;
1183
1184 gdb_assert (next_frame != NULL);
1185 gdbarch = frame_unwind_arch (next_frame);
1186
1187 if (frame_debug)
1188 {
1189 fprintf_unfiltered (gdb_stdlog,
1190 "{ frame_unwind_register_value "
1191 "(frame=%d,regnum=%d(%s),...) ",
1192 next_frame->level, regnum,
1193 user_reg_map_regnum_to_name (gdbarch, regnum));
1194 }
1195
1196 /* Find the unwinder. */
1197 if (next_frame->unwind == NULL)
1198 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1199
1200 /* Ask this frame to unwind its register. */
1201 value = next_frame->unwind->prev_register (next_frame,
1202 &next_frame->prologue_cache,
1203 regnum);
1204
1205 if (frame_debug)
1206 {
1207 fprintf_unfiltered (gdb_stdlog, "->");
1208 if (value_optimized_out (value))
1209 {
1210 fprintf_unfiltered (gdb_stdlog, " ");
1211 val_print_optimized_out (value, gdb_stdlog);
1212 }
1213 else
1214 {
1215 if (VALUE_LVAL (value) == lval_register)
1216 fprintf_unfiltered (gdb_stdlog, " register=%d",
1217 VALUE_REGNUM (value));
1218 else if (VALUE_LVAL (value) == lval_memory)
1219 fprintf_unfiltered (gdb_stdlog, " address=%s",
1220 paddress (gdbarch,
1221 value_address (value)));
1222 else
1223 fprintf_unfiltered (gdb_stdlog, " computed");
1224
1225 if (value_lazy (value))
1226 fprintf_unfiltered (gdb_stdlog, " lazy");
1227 else
1228 {
1229 int i;
1230 const gdb_byte *buf = value_contents (value);
1231
1232 fprintf_unfiltered (gdb_stdlog, " bytes=");
1233 fprintf_unfiltered (gdb_stdlog, "[");
1234 for (i = 0; i < register_size (gdbarch, regnum); i++)
1235 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1236 fprintf_unfiltered (gdb_stdlog, "]");
1237 }
1238 }
1239
1240 fprintf_unfiltered (gdb_stdlog, " }\n");
1241 }
1242
1243 return value;
1244 }
1245
1246 struct value *
1247 get_frame_register_value (struct frame_info *frame, int regnum)
1248 {
1249 return frame_unwind_register_value (frame->next, regnum);
1250 }
1251
1252 LONGEST
1253 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1254 {
1255 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 int size = register_size (gdbarch, regnum);
1258 struct value *value = frame_unwind_register_value (next_frame, regnum);
1259
1260 gdb_assert (value != NULL);
1261
1262 if (value_optimized_out (value))
1263 {
1264 throw_error (OPTIMIZED_OUT_ERROR,
1265 _("Register %d was not saved"), regnum);
1266 }
1267 if (!value_entirely_available (value))
1268 {
1269 throw_error (NOT_AVAILABLE_ERROR,
1270 _("Register %d is not available"), regnum);
1271 }
1272
1273 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1274 byte_order);
1275
1276 release_value (value);
1277 return r;
1278 }
1279
1280 LONGEST
1281 get_frame_register_signed (struct frame_info *frame, int regnum)
1282 {
1283 return frame_unwind_register_signed (frame->next, regnum);
1284 }
1285
1286 ULONGEST
1287 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1288 {
1289 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1291 int size = register_size (gdbarch, regnum);
1292 struct value *value = frame_unwind_register_value (next_frame, regnum);
1293
1294 gdb_assert (value != NULL);
1295
1296 if (value_optimized_out (value))
1297 {
1298 throw_error (OPTIMIZED_OUT_ERROR,
1299 _("Register %d was not saved"), regnum);
1300 }
1301 if (!value_entirely_available (value))
1302 {
1303 throw_error (NOT_AVAILABLE_ERROR,
1304 _("Register %d is not available"), regnum);
1305 }
1306
1307 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1308 byte_order);
1309
1310 release_value (value);
1311 return r;
1312 }
1313
1314 ULONGEST
1315 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1316 {
1317 return frame_unwind_register_unsigned (frame->next, regnum);
1318 }
1319
1320 int
1321 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1322 ULONGEST *val)
1323 {
1324 struct value *regval = get_frame_register_value (frame, regnum);
1325
1326 if (!value_optimized_out (regval)
1327 && value_entirely_available (regval))
1328 {
1329 struct gdbarch *gdbarch = get_frame_arch (frame);
1330 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1331 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1332
1333 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1334 return 1;
1335 }
1336
1337 return 0;
1338 }
1339
1340 void
1341 put_frame_register (struct frame_info *frame, int regnum,
1342 const gdb_byte *buf)
1343 {
1344 struct gdbarch *gdbarch = get_frame_arch (frame);
1345 int realnum;
1346 int optim;
1347 int unavail;
1348 enum lval_type lval;
1349 CORE_ADDR addr;
1350
1351 frame_register (frame, regnum, &optim, &unavail,
1352 &lval, &addr, &realnum, NULL);
1353 if (optim)
1354 error (_("Attempt to assign to a register that was not saved."));
1355 switch (lval)
1356 {
1357 case lval_memory:
1358 {
1359 write_memory (addr, buf, register_size (gdbarch, regnum));
1360 break;
1361 }
1362 case lval_register:
1363 get_current_regcache ()->cooked_write (realnum, buf);
1364 break;
1365 default:
1366 error (_("Attempt to assign to an unmodifiable value."));
1367 }
1368 }
1369
1370 /* This function is deprecated. Use get_frame_register_value instead,
1371 which provides more accurate information.
1372
1373 Find and return the value of REGNUM for the specified stack frame.
1374 The number of bytes copied is REGISTER_SIZE (REGNUM).
1375
1376 Returns 0 if the register value could not be found. */
1377
1378 int
1379 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1380 gdb_byte *myaddr)
1381 {
1382 int optimized;
1383 int unavailable;
1384 enum lval_type lval;
1385 CORE_ADDR addr;
1386 int realnum;
1387
1388 frame_register (frame, regnum, &optimized, &unavailable,
1389 &lval, &addr, &realnum, myaddr);
1390
1391 return !optimized && !unavailable;
1392 }
1393
1394 int
1395 get_frame_register_bytes (struct frame_info *frame, int regnum,
1396 CORE_ADDR offset, int len, gdb_byte *myaddr,
1397 int *optimizedp, int *unavailablep)
1398 {
1399 struct gdbarch *gdbarch = get_frame_arch (frame);
1400 int i;
1401 int maxsize;
1402 int numregs;
1403
1404 /* Skip registers wholly inside of OFFSET. */
1405 while (offset >= register_size (gdbarch, regnum))
1406 {
1407 offset -= register_size (gdbarch, regnum);
1408 regnum++;
1409 }
1410
1411 /* Ensure that we will not read beyond the end of the register file.
1412 This can only ever happen if the debug information is bad. */
1413 maxsize = -offset;
1414 numregs = gdbarch_num_cooked_regs (gdbarch);
1415 for (i = regnum; i < numregs; i++)
1416 {
1417 int thissize = register_size (gdbarch, i);
1418
1419 if (thissize == 0)
1420 break; /* This register is not available on this architecture. */
1421 maxsize += thissize;
1422 }
1423 if (len > maxsize)
1424 error (_("Bad debug information detected: "
1425 "Attempt to read %d bytes from registers."), len);
1426
1427 /* Copy the data. */
1428 while (len > 0)
1429 {
1430 int curr_len = register_size (gdbarch, regnum) - offset;
1431
1432 if (curr_len > len)
1433 curr_len = len;
1434
1435 if (curr_len == register_size (gdbarch, regnum))
1436 {
1437 enum lval_type lval;
1438 CORE_ADDR addr;
1439 int realnum;
1440
1441 frame_register (frame, regnum, optimizedp, unavailablep,
1442 &lval, &addr, &realnum, myaddr);
1443 if (*optimizedp || *unavailablep)
1444 return 0;
1445 }
1446 else
1447 {
1448 struct value *value = frame_unwind_register_value (frame->next,
1449 regnum);
1450 gdb_assert (value != NULL);
1451 *optimizedp = value_optimized_out (value);
1452 *unavailablep = !value_entirely_available (value);
1453
1454 if (*optimizedp || *unavailablep)
1455 {
1456 release_value (value);
1457 return 0;
1458 }
1459 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1460 release_value (value);
1461 }
1462
1463 myaddr += curr_len;
1464 len -= curr_len;
1465 offset = 0;
1466 regnum++;
1467 }
1468
1469 *optimizedp = 0;
1470 *unavailablep = 0;
1471 return 1;
1472 }
1473
1474 void
1475 put_frame_register_bytes (struct frame_info *frame, int regnum,
1476 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1477 {
1478 struct gdbarch *gdbarch = get_frame_arch (frame);
1479
1480 /* Skip registers wholly inside of OFFSET. */
1481 while (offset >= register_size (gdbarch, regnum))
1482 {
1483 offset -= register_size (gdbarch, regnum);
1484 regnum++;
1485 }
1486
1487 /* Copy the data. */
1488 while (len > 0)
1489 {
1490 int curr_len = register_size (gdbarch, regnum) - offset;
1491
1492 if (curr_len > len)
1493 curr_len = len;
1494
1495 if (curr_len == register_size (gdbarch, regnum))
1496 {
1497 put_frame_register (frame, regnum, myaddr);
1498 }
1499 else
1500 {
1501 struct value *value = frame_unwind_register_value (frame->next,
1502 regnum);
1503 gdb_assert (value != NULL);
1504
1505 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1506 curr_len);
1507 put_frame_register (frame, regnum, value_contents_raw (value));
1508 release_value (value);
1509 }
1510
1511 myaddr += curr_len;
1512 len -= curr_len;
1513 offset = 0;
1514 regnum++;
1515 }
1516 }
1517
1518 /* Create a sentinel frame. */
1519
1520 static struct frame_info *
1521 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1522 {
1523 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1524
1525 frame->level = -1;
1526 frame->pspace = pspace;
1527 frame->aspace = regcache->aspace ();
1528 /* Explicitly initialize the sentinel frame's cache. Provide it
1529 with the underlying regcache. In the future additional
1530 information, such as the frame's thread will be added. */
1531 frame->prologue_cache = sentinel_frame_cache (regcache);
1532 /* For the moment there is only one sentinel frame implementation. */
1533 frame->unwind = &sentinel_frame_unwind;
1534 /* Link this frame back to itself. The frame is self referential
1535 (the unwound PC is the same as the pc), so make it so. */
1536 frame->next = frame;
1537 /* The sentinel frame has a special ID. */
1538 frame->this_id.p = 1;
1539 frame->this_id.value = sentinel_frame_id;
1540 if (frame_debug)
1541 {
1542 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1543 fprint_frame (gdb_stdlog, frame);
1544 fprintf_unfiltered (gdb_stdlog, " }\n");
1545 }
1546 return frame;
1547 }
1548
1549 /* Cache for frame addresses already read by gdb. Valid only while
1550 inferior is stopped. Control variables for the frame cache should
1551 be local to this module. */
1552
1553 static struct obstack frame_cache_obstack;
1554
1555 void *
1556 frame_obstack_zalloc (unsigned long size)
1557 {
1558 void *data = obstack_alloc (&frame_cache_obstack, size);
1559
1560 memset (data, 0, size);
1561 return data;
1562 }
1563
1564 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1565
1566 struct frame_info *
1567 get_current_frame (void)
1568 {
1569 struct frame_info *current_frame;
1570
1571 /* First check, and report, the lack of registers. Having GDB
1572 report "No stack!" or "No memory" when the target doesn't even
1573 have registers is very confusing. Besides, "printcmd.exp"
1574 explicitly checks that ``print $pc'' with no registers prints "No
1575 registers". */
1576 if (!target_has_registers)
1577 error (_("No registers."));
1578 if (!target_has_stack)
1579 error (_("No stack."));
1580 if (!target_has_memory)
1581 error (_("No memory."));
1582 /* Traceframes are effectively a substitute for the live inferior. */
1583 if (get_traceframe_number () < 0)
1584 validate_registers_access ();
1585
1586 if (sentinel_frame == NULL)
1587 sentinel_frame =
1588 create_sentinel_frame (current_program_space, get_current_regcache ());
1589
1590 /* Set the current frame before computing the frame id, to avoid
1591 recursion inside compute_frame_id, in case the frame's
1592 unwinder decides to do a symbol lookup (which depends on the
1593 selected frame's block).
1594
1595 This call must always succeed. In particular, nothing inside
1596 get_prev_frame_always_1 should try to unwind from the
1597 sentinel frame, because that could fail/throw, and we always
1598 want to leave with the current frame created and linked in --
1599 we should never end up with the sentinel frame as outermost
1600 frame. */
1601 current_frame = get_prev_frame_always_1 (sentinel_frame);
1602 gdb_assert (current_frame != NULL);
1603
1604 return current_frame;
1605 }
1606
1607 /* The "selected" stack frame is used by default for local and arg
1608 access. May be zero, for no selected frame. */
1609
1610 static struct frame_info *selected_frame;
1611
1612 int
1613 has_stack_frames (void)
1614 {
1615 if (!target_has_registers || !target_has_stack || !target_has_memory)
1616 return 0;
1617
1618 /* Traceframes are effectively a substitute for the live inferior. */
1619 if (get_traceframe_number () < 0)
1620 {
1621 /* No current inferior, no frame. */
1622 if (inferior_ptid == null_ptid)
1623 return 0;
1624
1625 thread_info *tp = inferior_thread ();
1626 /* Don't try to read from a dead thread. */
1627 if (tp->state == THREAD_EXITED)
1628 return 0;
1629
1630 /* ... or from a spinning thread. */
1631 if (tp->executing)
1632 return 0;
1633 }
1634
1635 return 1;
1636 }
1637
1638 /* Return the selected frame. Always non-NULL (unless there isn't an
1639 inferior sufficient for creating a frame) in which case an error is
1640 thrown. */
1641
1642 struct frame_info *
1643 get_selected_frame (const char *message)
1644 {
1645 if (selected_frame == NULL)
1646 {
1647 if (message != NULL && !has_stack_frames ())
1648 error (("%s"), message);
1649 /* Hey! Don't trust this. It should really be re-finding the
1650 last selected frame of the currently selected thread. This,
1651 though, is better than nothing. */
1652 select_frame (get_current_frame ());
1653 }
1654 /* There is always a frame. */
1655 gdb_assert (selected_frame != NULL);
1656 return selected_frame;
1657 }
1658
1659 /* If there is a selected frame, return it. Otherwise, return NULL. */
1660
1661 struct frame_info *
1662 get_selected_frame_if_set (void)
1663 {
1664 return selected_frame;
1665 }
1666
1667 /* This is a variant of get_selected_frame() which can be called when
1668 the inferior does not have a frame; in that case it will return
1669 NULL instead of calling error(). */
1670
1671 struct frame_info *
1672 deprecated_safe_get_selected_frame (void)
1673 {
1674 if (!has_stack_frames ())
1675 return NULL;
1676 return get_selected_frame (NULL);
1677 }
1678
1679 /* Select frame FI (or NULL - to invalidate the current frame). */
1680
1681 void
1682 select_frame (struct frame_info *fi)
1683 {
1684 selected_frame = fi;
1685 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1686 frame is being invalidated. */
1687
1688 /* FIXME: kseitz/2002-08-28: It would be nice to call
1689 selected_frame_level_changed_event() right here, but due to limitations
1690 in the current interfaces, we would end up flooding UIs with events
1691 because select_frame() is used extensively internally.
1692
1693 Once we have frame-parameterized frame (and frame-related) commands,
1694 the event notification can be moved here, since this function will only
1695 be called when the user's selected frame is being changed. */
1696
1697 /* Ensure that symbols for this frame are read in. Also, determine the
1698 source language of this frame, and switch to it if desired. */
1699 if (fi)
1700 {
1701 CORE_ADDR pc;
1702
1703 /* We retrieve the frame's symtab by using the frame PC.
1704 However we cannot use the frame PC as-is, because it usually
1705 points to the instruction following the "call", which is
1706 sometimes the first instruction of another function. So we
1707 rely on get_frame_address_in_block() which provides us with a
1708 PC which is guaranteed to be inside the frame's code
1709 block. */
1710 if (get_frame_address_in_block_if_available (fi, &pc))
1711 {
1712 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1713
1714 if (cust != NULL
1715 && compunit_language (cust) != current_language->la_language
1716 && compunit_language (cust) != language_unknown
1717 && language_mode == language_mode_auto)
1718 set_language (compunit_language (cust));
1719 }
1720 }
1721 }
1722
1723 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1724 Always returns a non-NULL value. */
1725
1726 struct frame_info *
1727 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1728 {
1729 struct frame_info *fi;
1730
1731 if (frame_debug)
1732 {
1733 fprintf_unfiltered (gdb_stdlog,
1734 "{ create_new_frame (addr=%s, pc=%s) ",
1735 hex_string (addr), hex_string (pc));
1736 }
1737
1738 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1739
1740 fi->next = create_sentinel_frame (current_program_space,
1741 get_current_regcache ());
1742
1743 /* Set/update this frame's cached PC value, found in the next frame.
1744 Do this before looking for this frame's unwinder. A sniffer is
1745 very likely to read this, and the corresponding unwinder is
1746 entitled to rely that the PC doesn't magically change. */
1747 fi->next->prev_pc.value = pc;
1748 fi->next->prev_pc.status = CC_VALUE;
1749
1750 /* We currently assume that frame chain's can't cross spaces. */
1751 fi->pspace = fi->next->pspace;
1752 fi->aspace = fi->next->aspace;
1753
1754 /* Select/initialize both the unwind function and the frame's type
1755 based on the PC. */
1756 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1757
1758 fi->this_id.p = 1;
1759 fi->this_id.value = frame_id_build (addr, pc);
1760
1761 if (frame_debug)
1762 {
1763 fprintf_unfiltered (gdb_stdlog, "-> ");
1764 fprint_frame (gdb_stdlog, fi);
1765 fprintf_unfiltered (gdb_stdlog, " }\n");
1766 }
1767
1768 return fi;
1769 }
1770
1771 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1772 innermost frame). Be careful to not fall off the bottom of the
1773 frame chain and onto the sentinel frame. */
1774
1775 struct frame_info *
1776 get_next_frame (struct frame_info *this_frame)
1777 {
1778 if (this_frame->level > 0)
1779 return this_frame->next;
1780 else
1781 return NULL;
1782 }
1783
1784 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1785 innermost (i.e. current) frame, return the sentinel frame. Thus,
1786 unlike get_next_frame(), NULL will never be returned. */
1787
1788 struct frame_info *
1789 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1790 {
1791 gdb_assert (this_frame != NULL);
1792
1793 /* Note that, due to the manner in which the sentinel frame is
1794 constructed, this_frame->next still works even when this_frame
1795 is the sentinel frame. But we disallow it here anyway because
1796 calling get_next_frame_sentinel_okay() on the sentinel frame
1797 is likely a coding error. */
1798 gdb_assert (this_frame != sentinel_frame);
1799
1800 return this_frame->next;
1801 }
1802
1803 /* Observer for the target_changed event. */
1804
1805 static void
1806 frame_observer_target_changed (struct target_ops *target)
1807 {
1808 reinit_frame_cache ();
1809 }
1810
1811 /* Flush the entire frame cache. */
1812
1813 void
1814 reinit_frame_cache (void)
1815 {
1816 struct frame_info *fi;
1817
1818 /* Tear down all frame caches. */
1819 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1820 {
1821 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1822 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1823 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1824 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1825 }
1826
1827 /* Since we can't really be sure what the first object allocated was. */
1828 obstack_free (&frame_cache_obstack, 0);
1829 obstack_init (&frame_cache_obstack);
1830
1831 if (sentinel_frame != NULL)
1832 annotate_frames_invalid ();
1833
1834 sentinel_frame = NULL; /* Invalidate cache */
1835 select_frame (NULL);
1836 frame_stash_invalidate ();
1837 if (frame_debug)
1838 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1839 }
1840
1841 /* Find where a register is saved (in memory or another register).
1842 The result of frame_register_unwind is just where it is saved
1843 relative to this particular frame. */
1844
1845 static void
1846 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1847 int *optimizedp, enum lval_type *lvalp,
1848 CORE_ADDR *addrp, int *realnump)
1849 {
1850 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1851
1852 while (this_frame != NULL)
1853 {
1854 int unavailable;
1855
1856 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1857 lvalp, addrp, realnump, NULL);
1858
1859 if (*optimizedp)
1860 break;
1861
1862 if (*lvalp != lval_register)
1863 break;
1864
1865 regnum = *realnump;
1866 this_frame = get_next_frame (this_frame);
1867 }
1868 }
1869
1870 /* Get the previous raw frame, and check that it is not identical to
1871 same other frame frame already in the chain. If it is, there is
1872 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1873 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1874 validity tests, that compare THIS_FRAME and the next frame, we do
1875 this right after creating the previous frame, to avoid ever ending
1876 up with two frames with the same id in the frame chain. */
1877
1878 static struct frame_info *
1879 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1880 {
1881 struct frame_info *prev_frame;
1882
1883 prev_frame = get_prev_frame_raw (this_frame);
1884
1885 /* Don't compute the frame id of the current frame yet. Unwinding
1886 the sentinel frame can fail (e.g., if the thread is gone and we
1887 can't thus read its registers). If we let the cycle detection
1888 code below try to compute a frame ID, then an error thrown from
1889 within the frame ID computation would result in the sentinel
1890 frame as outermost frame, which is bogus. Instead, we'll compute
1891 the current frame's ID lazily in get_frame_id. Note that there's
1892 no point in doing cycle detection when there's only one frame, so
1893 nothing is lost here. */
1894 if (prev_frame->level == 0)
1895 return prev_frame;
1896
1897 TRY
1898 {
1899 compute_frame_id (prev_frame);
1900 if (!frame_stash_add (prev_frame))
1901 {
1902 /* Another frame with the same id was already in the stash. We just
1903 detected a cycle. */
1904 if (frame_debug)
1905 {
1906 fprintf_unfiltered (gdb_stdlog, "-> ");
1907 fprint_frame (gdb_stdlog, NULL);
1908 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1909 }
1910 this_frame->stop_reason = UNWIND_SAME_ID;
1911 /* Unlink. */
1912 prev_frame->next = NULL;
1913 this_frame->prev = NULL;
1914 prev_frame = NULL;
1915 }
1916 }
1917 CATCH (ex, RETURN_MASK_ALL)
1918 {
1919 prev_frame->next = NULL;
1920 this_frame->prev = NULL;
1921
1922 throw_exception (ex);
1923 }
1924 END_CATCH
1925
1926 return prev_frame;
1927 }
1928
1929 /* Helper function for get_prev_frame_always, this is called inside a
1930 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1931 there is no such frame. This may throw an exception. */
1932
1933 static struct frame_info *
1934 get_prev_frame_always_1 (struct frame_info *this_frame)
1935 {
1936 struct gdbarch *gdbarch;
1937
1938 gdb_assert (this_frame != NULL);
1939 gdbarch = get_frame_arch (this_frame);
1940
1941 if (frame_debug)
1942 {
1943 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1944 if (this_frame != NULL)
1945 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1946 else
1947 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1948 fprintf_unfiltered (gdb_stdlog, ") ");
1949 }
1950
1951 /* Only try to do the unwind once. */
1952 if (this_frame->prev_p)
1953 {
1954 if (frame_debug)
1955 {
1956 fprintf_unfiltered (gdb_stdlog, "-> ");
1957 fprint_frame (gdb_stdlog, this_frame->prev);
1958 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1959 }
1960 return this_frame->prev;
1961 }
1962
1963 /* If the frame unwinder hasn't been selected yet, we must do so
1964 before setting prev_p; otherwise the check for misbehaved
1965 sniffers will think that this frame's sniffer tried to unwind
1966 further (see frame_cleanup_after_sniffer). */
1967 if (this_frame->unwind == NULL)
1968 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1969
1970 this_frame->prev_p = 1;
1971 this_frame->stop_reason = UNWIND_NO_REASON;
1972
1973 /* If we are unwinding from an inline frame, all of the below tests
1974 were already performed when we unwound from the next non-inline
1975 frame. We must skip them, since we can not get THIS_FRAME's ID
1976 until we have unwound all the way down to the previous non-inline
1977 frame. */
1978 if (get_frame_type (this_frame) == INLINE_FRAME)
1979 return get_prev_frame_if_no_cycle (this_frame);
1980
1981 /* Check that this frame is unwindable. If it isn't, don't try to
1982 unwind to the prev frame. */
1983 this_frame->stop_reason
1984 = this_frame->unwind->stop_reason (this_frame,
1985 &this_frame->prologue_cache);
1986
1987 if (this_frame->stop_reason != UNWIND_NO_REASON)
1988 {
1989 if (frame_debug)
1990 {
1991 enum unwind_stop_reason reason = this_frame->stop_reason;
1992
1993 fprintf_unfiltered (gdb_stdlog, "-> ");
1994 fprint_frame (gdb_stdlog, NULL);
1995 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1996 frame_stop_reason_symbol_string (reason));
1997 }
1998 return NULL;
1999 }
2000
2001 /* Check that this frame's ID isn't inner to (younger, below, next)
2002 the next frame. This happens when a frame unwind goes backwards.
2003 This check is valid only if this frame and the next frame are NORMAL.
2004 See the comment at frame_id_inner for details. */
2005 if (get_frame_type (this_frame) == NORMAL_FRAME
2006 && this_frame->next->unwind->type == NORMAL_FRAME
2007 && frame_id_inner (get_frame_arch (this_frame->next),
2008 get_frame_id (this_frame),
2009 get_frame_id (this_frame->next)))
2010 {
2011 CORE_ADDR this_pc_in_block;
2012 struct minimal_symbol *morestack_msym;
2013 const char *morestack_name = NULL;
2014
2015 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2016 this_pc_in_block = get_frame_address_in_block (this_frame);
2017 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2018 if (morestack_msym)
2019 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2020 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2021 {
2022 if (frame_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog, "-> ");
2025 fprint_frame (gdb_stdlog, NULL);
2026 fprintf_unfiltered (gdb_stdlog,
2027 " // this frame ID is inner }\n");
2028 }
2029 this_frame->stop_reason = UNWIND_INNER_ID;
2030 return NULL;
2031 }
2032 }
2033
2034 /* Check that this and the next frame do not unwind the PC register
2035 to the same memory location. If they do, then even though they
2036 have different frame IDs, the new frame will be bogus; two
2037 functions can't share a register save slot for the PC. This can
2038 happen when the prologue analyzer finds a stack adjustment, but
2039 no PC save.
2040
2041 This check does assume that the "PC register" is roughly a
2042 traditional PC, even if the gdbarch_unwind_pc method adjusts
2043 it (we do not rely on the value, only on the unwound PC being
2044 dependent on this value). A potential improvement would be
2045 to have the frame prev_pc method and the gdbarch unwind_pc
2046 method set the same lval and location information as
2047 frame_register_unwind. */
2048 if (this_frame->level > 0
2049 && gdbarch_pc_regnum (gdbarch) >= 0
2050 && get_frame_type (this_frame) == NORMAL_FRAME
2051 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2052 || get_frame_type (this_frame->next) == INLINE_FRAME))
2053 {
2054 int optimized, realnum, nrealnum;
2055 enum lval_type lval, nlval;
2056 CORE_ADDR addr, naddr;
2057
2058 frame_register_unwind_location (this_frame,
2059 gdbarch_pc_regnum (gdbarch),
2060 &optimized, &lval, &addr, &realnum);
2061 frame_register_unwind_location (get_next_frame (this_frame),
2062 gdbarch_pc_regnum (gdbarch),
2063 &optimized, &nlval, &naddr, &nrealnum);
2064
2065 if ((lval == lval_memory && lval == nlval && addr == naddr)
2066 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2067 {
2068 if (frame_debug)
2069 {
2070 fprintf_unfiltered (gdb_stdlog, "-> ");
2071 fprint_frame (gdb_stdlog, NULL);
2072 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2073 }
2074
2075 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2076 this_frame->prev = NULL;
2077 return NULL;
2078 }
2079 }
2080
2081 return get_prev_frame_if_no_cycle (this_frame);
2082 }
2083
2084 /* Return a "struct frame_info" corresponding to the frame that called
2085 THIS_FRAME. Returns NULL if there is no such frame.
2086
2087 Unlike get_prev_frame, this function always tries to unwind the
2088 frame. */
2089
2090 struct frame_info *
2091 get_prev_frame_always (struct frame_info *this_frame)
2092 {
2093 struct frame_info *prev_frame = NULL;
2094
2095 TRY
2096 {
2097 prev_frame = get_prev_frame_always_1 (this_frame);
2098 }
2099 CATCH (ex, RETURN_MASK_ERROR)
2100 {
2101 if (ex.error == MEMORY_ERROR)
2102 {
2103 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2104 if (ex.message != NULL)
2105 {
2106 char *stop_string;
2107 size_t size;
2108
2109 /* The error needs to live as long as the frame does.
2110 Allocate using stack local STOP_STRING then assign the
2111 pointer to the frame, this allows the STOP_STRING on the
2112 frame to be of type 'const char *'. */
2113 size = strlen (ex.message) + 1;
2114 stop_string = (char *) frame_obstack_zalloc (size);
2115 memcpy (stop_string, ex.message, size);
2116 this_frame->stop_string = stop_string;
2117 }
2118 prev_frame = NULL;
2119 }
2120 else
2121 throw_exception (ex);
2122 }
2123 END_CATCH
2124
2125 return prev_frame;
2126 }
2127
2128 /* Construct a new "struct frame_info" and link it previous to
2129 this_frame. */
2130
2131 static struct frame_info *
2132 get_prev_frame_raw (struct frame_info *this_frame)
2133 {
2134 struct frame_info *prev_frame;
2135
2136 /* Allocate the new frame but do not wire it in to the frame chain.
2137 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2138 frame->next to pull some fancy tricks (of course such code is, by
2139 definition, recursive). Try to prevent it.
2140
2141 There is no reason to worry about memory leaks, should the
2142 remainder of the function fail. The allocated memory will be
2143 quickly reclaimed when the frame cache is flushed, and the `we've
2144 been here before' check above will stop repeated memory
2145 allocation calls. */
2146 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2147 prev_frame->level = this_frame->level + 1;
2148
2149 /* For now, assume we don't have frame chains crossing address
2150 spaces. */
2151 prev_frame->pspace = this_frame->pspace;
2152 prev_frame->aspace = this_frame->aspace;
2153
2154 /* Don't yet compute ->unwind (and hence ->type). It is computed
2155 on-demand in get_frame_type, frame_register_unwind, and
2156 get_frame_id. */
2157
2158 /* Don't yet compute the frame's ID. It is computed on-demand by
2159 get_frame_id(). */
2160
2161 /* The unwound frame ID is validate at the start of this function,
2162 as part of the logic to decide if that frame should be further
2163 unwound, and not here while the prev frame is being created.
2164 Doing this makes it possible for the user to examine a frame that
2165 has an invalid frame ID.
2166
2167 Some very old VAX code noted: [...] For the sake of argument,
2168 suppose that the stack is somewhat trashed (which is one reason
2169 that "info frame" exists). So, return 0 (indicating we don't
2170 know the address of the arglist) if we don't know what frame this
2171 frame calls. */
2172
2173 /* Link it in. */
2174 this_frame->prev = prev_frame;
2175 prev_frame->next = this_frame;
2176
2177 if (frame_debug)
2178 {
2179 fprintf_unfiltered (gdb_stdlog, "-> ");
2180 fprint_frame (gdb_stdlog, prev_frame);
2181 fprintf_unfiltered (gdb_stdlog, " }\n");
2182 }
2183
2184 return prev_frame;
2185 }
2186
2187 /* Debug routine to print a NULL frame being returned. */
2188
2189 static void
2190 frame_debug_got_null_frame (struct frame_info *this_frame,
2191 const char *reason)
2192 {
2193 if (frame_debug)
2194 {
2195 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2196 if (this_frame != NULL)
2197 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2198 else
2199 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2200 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2201 }
2202 }
2203
2204 /* Is this (non-sentinel) frame in the "main"() function? */
2205
2206 static int
2207 inside_main_func (struct frame_info *this_frame)
2208 {
2209 struct bound_minimal_symbol msymbol;
2210 CORE_ADDR maddr;
2211
2212 if (symfile_objfile == 0)
2213 return 0;
2214 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2215 if (msymbol.minsym == NULL)
2216 return 0;
2217 /* Make certain that the code, and not descriptor, address is
2218 returned. */
2219 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2220 BMSYMBOL_VALUE_ADDRESS (msymbol),
2221 current_top_target ());
2222 return maddr == get_frame_func (this_frame);
2223 }
2224
2225 /* Test whether THIS_FRAME is inside the process entry point function. */
2226
2227 static int
2228 inside_entry_func (struct frame_info *this_frame)
2229 {
2230 CORE_ADDR entry_point;
2231
2232 if (!entry_point_address_query (&entry_point))
2233 return 0;
2234
2235 return get_frame_func (this_frame) == entry_point;
2236 }
2237
2238 /* Return a structure containing various interesting information about
2239 the frame that called THIS_FRAME. Returns NULL if there is entier
2240 no such frame or the frame fails any of a set of target-independent
2241 condition that should terminate the frame chain (e.g., as unwinding
2242 past main()).
2243
2244 This function should not contain target-dependent tests, such as
2245 checking whether the program-counter is zero. */
2246
2247 struct frame_info *
2248 get_prev_frame (struct frame_info *this_frame)
2249 {
2250 CORE_ADDR frame_pc;
2251 int frame_pc_p;
2252
2253 /* There is always a frame. If this assertion fails, suspect that
2254 something should be calling get_selected_frame() or
2255 get_current_frame(). */
2256 gdb_assert (this_frame != NULL);
2257
2258 /* If this_frame is the current frame, then compute and stash
2259 its frame id prior to fetching and computing the frame id of the
2260 previous frame. Otherwise, the cycle detection code in
2261 get_prev_frame_if_no_cycle() will not work correctly. When
2262 get_frame_id() is called later on, an assertion error will
2263 be triggered in the event of a cycle between the current
2264 frame and its previous frame. */
2265 if (this_frame->level == 0)
2266 get_frame_id (this_frame);
2267
2268 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2269
2270 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2271 sense to stop unwinding at a dummy frame. One place where a dummy
2272 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2273 pcsqh register (space register for the instruction at the head of the
2274 instruction queue) cannot be written directly; the only way to set it
2275 is to branch to code that is in the target space. In order to implement
2276 frame dummies on HPUX, the called function is made to jump back to where
2277 the inferior was when the user function was called. If gdb was inside
2278 the main function when we created the dummy frame, the dummy frame will
2279 point inside the main function. */
2280 if (this_frame->level >= 0
2281 && get_frame_type (this_frame) == NORMAL_FRAME
2282 && !backtrace_past_main
2283 && frame_pc_p
2284 && inside_main_func (this_frame))
2285 /* Don't unwind past main(). Note, this is done _before_ the
2286 frame has been marked as previously unwound. That way if the
2287 user later decides to enable unwinds past main(), that will
2288 automatically happen. */
2289 {
2290 frame_debug_got_null_frame (this_frame, "inside main func");
2291 return NULL;
2292 }
2293
2294 /* If the user's backtrace limit has been exceeded, stop. We must
2295 add two to the current level; one of those accounts for backtrace_limit
2296 being 1-based and the level being 0-based, and the other accounts for
2297 the level of the new frame instead of the level of the current
2298 frame. */
2299 if (this_frame->level + 2 > backtrace_limit)
2300 {
2301 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2302 return NULL;
2303 }
2304
2305 /* If we're already inside the entry function for the main objfile,
2306 then it isn't valid. Don't apply this test to a dummy frame -
2307 dummy frame PCs typically land in the entry func. Don't apply
2308 this test to the sentinel frame. Sentinel frames should always
2309 be allowed to unwind. */
2310 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2311 wasn't checking for "main" in the minimal symbols. With that
2312 fixed asm-source tests now stop in "main" instead of halting the
2313 backtrace in weird and wonderful ways somewhere inside the entry
2314 file. Suspect that tests for inside the entry file/func were
2315 added to work around that (now fixed) case. */
2316 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2317 suggested having the inside_entry_func test use the
2318 inside_main_func() msymbol trick (along with entry_point_address()
2319 I guess) to determine the address range of the start function.
2320 That should provide a far better stopper than the current
2321 heuristics. */
2322 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2323 applied tail-call optimizations to main so that a function called
2324 from main returns directly to the caller of main. Since we don't
2325 stop at main, we should at least stop at the entry point of the
2326 application. */
2327 if (this_frame->level >= 0
2328 && get_frame_type (this_frame) == NORMAL_FRAME
2329 && !backtrace_past_entry
2330 && frame_pc_p
2331 && inside_entry_func (this_frame))
2332 {
2333 frame_debug_got_null_frame (this_frame, "inside entry func");
2334 return NULL;
2335 }
2336
2337 /* Assume that the only way to get a zero PC is through something
2338 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2339 will never unwind a zero PC. */
2340 if (this_frame->level > 0
2341 && (get_frame_type (this_frame) == NORMAL_FRAME
2342 || get_frame_type (this_frame) == INLINE_FRAME)
2343 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2344 && frame_pc_p && frame_pc == 0)
2345 {
2346 frame_debug_got_null_frame (this_frame, "zero PC");
2347 return NULL;
2348 }
2349
2350 return get_prev_frame_always (this_frame);
2351 }
2352
2353 struct frame_id
2354 get_prev_frame_id_by_id (struct frame_id id)
2355 {
2356 struct frame_id prev_id;
2357 struct frame_info *frame;
2358
2359 frame = frame_find_by_id (id);
2360
2361 if (frame != NULL)
2362 prev_id = get_frame_id (get_prev_frame (frame));
2363 else
2364 prev_id = null_frame_id;
2365
2366 return prev_id;
2367 }
2368
2369 CORE_ADDR
2370 get_frame_pc (struct frame_info *frame)
2371 {
2372 gdb_assert (frame->next != NULL);
2373 return frame_unwind_pc (frame->next);
2374 }
2375
2376 int
2377 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2378 {
2379
2380 gdb_assert (frame->next != NULL);
2381
2382 TRY
2383 {
2384 *pc = frame_unwind_pc (frame->next);
2385 }
2386 CATCH (ex, RETURN_MASK_ERROR)
2387 {
2388 if (ex.error == NOT_AVAILABLE_ERROR)
2389 return 0;
2390 else
2391 throw_exception (ex);
2392 }
2393 END_CATCH
2394
2395 return 1;
2396 }
2397
2398 /* Return an address that falls within THIS_FRAME's code block. */
2399
2400 CORE_ADDR
2401 get_frame_address_in_block (struct frame_info *this_frame)
2402 {
2403 /* A draft address. */
2404 CORE_ADDR pc = get_frame_pc (this_frame);
2405
2406 struct frame_info *next_frame = this_frame->next;
2407
2408 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2409 Normally the resume address is inside the body of the function
2410 associated with THIS_FRAME, but there is a special case: when
2411 calling a function which the compiler knows will never return
2412 (for instance abort), the call may be the very last instruction
2413 in the calling function. The resume address will point after the
2414 call and may be at the beginning of a different function
2415 entirely.
2416
2417 If THIS_FRAME is a signal frame or dummy frame, then we should
2418 not adjust the unwound PC. For a dummy frame, GDB pushed the
2419 resume address manually onto the stack. For a signal frame, the
2420 OS may have pushed the resume address manually and invoked the
2421 handler (e.g. GNU/Linux), or invoked the trampoline which called
2422 the signal handler - but in either case the signal handler is
2423 expected to return to the trampoline. So in both of these
2424 cases we know that the resume address is executable and
2425 related. So we only need to adjust the PC if THIS_FRAME
2426 is a normal function.
2427
2428 If the program has been interrupted while THIS_FRAME is current,
2429 then clearly the resume address is inside the associated
2430 function. There are three kinds of interruption: debugger stop
2431 (next frame will be SENTINEL_FRAME), operating system
2432 signal or exception (next frame will be SIGTRAMP_FRAME),
2433 or debugger-induced function call (next frame will be
2434 DUMMY_FRAME). So we only need to adjust the PC if
2435 NEXT_FRAME is a normal function.
2436
2437 We check the type of NEXT_FRAME first, since it is already
2438 known; frame type is determined by the unwinder, and since
2439 we have THIS_FRAME we've already selected an unwinder for
2440 NEXT_FRAME.
2441
2442 If the next frame is inlined, we need to keep going until we find
2443 the real function - for instance, if a signal handler is invoked
2444 while in an inlined function, then the code address of the
2445 "calling" normal function should not be adjusted either. */
2446
2447 while (get_frame_type (next_frame) == INLINE_FRAME)
2448 next_frame = next_frame->next;
2449
2450 if ((get_frame_type (next_frame) == NORMAL_FRAME
2451 || get_frame_type (next_frame) == TAILCALL_FRAME)
2452 && (get_frame_type (this_frame) == NORMAL_FRAME
2453 || get_frame_type (this_frame) == TAILCALL_FRAME
2454 || get_frame_type (this_frame) == INLINE_FRAME))
2455 return pc - 1;
2456
2457 return pc;
2458 }
2459
2460 int
2461 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2462 CORE_ADDR *pc)
2463 {
2464
2465 TRY
2466 {
2467 *pc = get_frame_address_in_block (this_frame);
2468 }
2469 CATCH (ex, RETURN_MASK_ERROR)
2470 {
2471 if (ex.error == NOT_AVAILABLE_ERROR)
2472 return 0;
2473 throw_exception (ex);
2474 }
2475 END_CATCH
2476
2477 return 1;
2478 }
2479
2480 symtab_and_line
2481 find_frame_sal (frame_info *frame)
2482 {
2483 struct frame_info *next_frame;
2484 int notcurrent;
2485 CORE_ADDR pc;
2486
2487 /* If the next frame represents an inlined function call, this frame's
2488 sal is the "call site" of that inlined function, which can not
2489 be inferred from get_frame_pc. */
2490 next_frame = get_next_frame (frame);
2491 if (frame_inlined_callees (frame) > 0)
2492 {
2493 struct symbol *sym;
2494
2495 if (next_frame)
2496 sym = get_frame_function (next_frame);
2497 else
2498 sym = inline_skipped_symbol (inferior_thread ());
2499
2500 /* If frame is inline, it certainly has symbols. */
2501 gdb_assert (sym);
2502
2503 symtab_and_line sal;
2504 if (SYMBOL_LINE (sym) != 0)
2505 {
2506 sal.symtab = symbol_symtab (sym);
2507 sal.line = SYMBOL_LINE (sym);
2508 }
2509 else
2510 /* If the symbol does not have a location, we don't know where
2511 the call site is. Do not pretend to. This is jarring, but
2512 we can't do much better. */
2513 sal.pc = get_frame_pc (frame);
2514
2515 sal.pspace = get_frame_program_space (frame);
2516 return sal;
2517 }
2518
2519 /* If FRAME is not the innermost frame, that normally means that
2520 FRAME->pc points at the return instruction (which is *after* the
2521 call instruction), and we want to get the line containing the
2522 call (because the call is where the user thinks the program is).
2523 However, if the next frame is either a SIGTRAMP_FRAME or a
2524 DUMMY_FRAME, then the next frame will contain a saved interrupt
2525 PC and such a PC indicates the current (rather than next)
2526 instruction/line, consequently, for such cases, want to get the
2527 line containing fi->pc. */
2528 if (!get_frame_pc_if_available (frame, &pc))
2529 return {};
2530
2531 notcurrent = (pc != get_frame_address_in_block (frame));
2532 return find_pc_line (pc, notcurrent);
2533 }
2534
2535 /* Per "frame.h", return the ``address'' of the frame. Code should
2536 really be using get_frame_id(). */
2537 CORE_ADDR
2538 get_frame_base (struct frame_info *fi)
2539 {
2540 return get_frame_id (fi).stack_addr;
2541 }
2542
2543 /* High-level offsets into the frame. Used by the debug info. */
2544
2545 CORE_ADDR
2546 get_frame_base_address (struct frame_info *fi)
2547 {
2548 if (get_frame_type (fi) != NORMAL_FRAME)
2549 return 0;
2550 if (fi->base == NULL)
2551 fi->base = frame_base_find_by_frame (fi);
2552 /* Sneaky: If the low-level unwind and high-level base code share a
2553 common unwinder, let them share the prologue cache. */
2554 if (fi->base->unwind == fi->unwind)
2555 return fi->base->this_base (fi, &fi->prologue_cache);
2556 return fi->base->this_base (fi, &fi->base_cache);
2557 }
2558
2559 CORE_ADDR
2560 get_frame_locals_address (struct frame_info *fi)
2561 {
2562 if (get_frame_type (fi) != NORMAL_FRAME)
2563 return 0;
2564 /* If there isn't a frame address method, find it. */
2565 if (fi->base == NULL)
2566 fi->base = frame_base_find_by_frame (fi);
2567 /* Sneaky: If the low-level unwind and high-level base code share a
2568 common unwinder, let them share the prologue cache. */
2569 if (fi->base->unwind == fi->unwind)
2570 return fi->base->this_locals (fi, &fi->prologue_cache);
2571 return fi->base->this_locals (fi, &fi->base_cache);
2572 }
2573
2574 CORE_ADDR
2575 get_frame_args_address (struct frame_info *fi)
2576 {
2577 if (get_frame_type (fi) != NORMAL_FRAME)
2578 return 0;
2579 /* If there isn't a frame address method, find it. */
2580 if (fi->base == NULL)
2581 fi->base = frame_base_find_by_frame (fi);
2582 /* Sneaky: If the low-level unwind and high-level base code share a
2583 common unwinder, let them share the prologue cache. */
2584 if (fi->base->unwind == fi->unwind)
2585 return fi->base->this_args (fi, &fi->prologue_cache);
2586 return fi->base->this_args (fi, &fi->base_cache);
2587 }
2588
2589 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2590 otherwise. */
2591
2592 int
2593 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2594 {
2595 if (fi->unwind == NULL)
2596 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2597 return fi->unwind == unwinder;
2598 }
2599
2600 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2601 or -1 for a NULL frame. */
2602
2603 int
2604 frame_relative_level (struct frame_info *fi)
2605 {
2606 if (fi == NULL)
2607 return -1;
2608 else
2609 return fi->level;
2610 }
2611
2612 enum frame_type
2613 get_frame_type (struct frame_info *frame)
2614 {
2615 if (frame->unwind == NULL)
2616 /* Initialize the frame's unwinder because that's what
2617 provides the frame's type. */
2618 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2619 return frame->unwind->type;
2620 }
2621
2622 struct program_space *
2623 get_frame_program_space (struct frame_info *frame)
2624 {
2625 return frame->pspace;
2626 }
2627
2628 struct program_space *
2629 frame_unwind_program_space (struct frame_info *this_frame)
2630 {
2631 gdb_assert (this_frame);
2632
2633 /* This is really a placeholder to keep the API consistent --- we
2634 assume for now that we don't have frame chains crossing
2635 spaces. */
2636 return this_frame->pspace;
2637 }
2638
2639 const address_space *
2640 get_frame_address_space (struct frame_info *frame)
2641 {
2642 return frame->aspace;
2643 }
2644
2645 /* Memory access methods. */
2646
2647 void
2648 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2649 gdb_byte *buf, int len)
2650 {
2651 read_memory (addr, buf, len);
2652 }
2653
2654 LONGEST
2655 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2656 int len)
2657 {
2658 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2659 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2660
2661 return read_memory_integer (addr, len, byte_order);
2662 }
2663
2664 ULONGEST
2665 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2666 int len)
2667 {
2668 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2669 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2670
2671 return read_memory_unsigned_integer (addr, len, byte_order);
2672 }
2673
2674 int
2675 safe_frame_unwind_memory (struct frame_info *this_frame,
2676 CORE_ADDR addr, gdb_byte *buf, int len)
2677 {
2678 /* NOTE: target_read_memory returns zero on success! */
2679 return !target_read_memory (addr, buf, len);
2680 }
2681
2682 /* Architecture methods. */
2683
2684 struct gdbarch *
2685 get_frame_arch (struct frame_info *this_frame)
2686 {
2687 return frame_unwind_arch (this_frame->next);
2688 }
2689
2690 struct gdbarch *
2691 frame_unwind_arch (struct frame_info *next_frame)
2692 {
2693 if (!next_frame->prev_arch.p)
2694 {
2695 struct gdbarch *arch;
2696
2697 if (next_frame->unwind == NULL)
2698 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2699
2700 if (next_frame->unwind->prev_arch != NULL)
2701 arch = next_frame->unwind->prev_arch (next_frame,
2702 &next_frame->prologue_cache);
2703 else
2704 arch = get_frame_arch (next_frame);
2705
2706 next_frame->prev_arch.arch = arch;
2707 next_frame->prev_arch.p = 1;
2708 if (frame_debug)
2709 fprintf_unfiltered (gdb_stdlog,
2710 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2711 next_frame->level,
2712 gdbarch_bfd_arch_info (arch)->printable_name);
2713 }
2714
2715 return next_frame->prev_arch.arch;
2716 }
2717
2718 struct gdbarch *
2719 frame_unwind_caller_arch (struct frame_info *next_frame)
2720 {
2721 next_frame = skip_artificial_frames (next_frame);
2722
2723 /* We must have a non-artificial frame. The caller is supposed to check
2724 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2725 in this case. */
2726 gdb_assert (next_frame != NULL);
2727
2728 return frame_unwind_arch (next_frame);
2729 }
2730
2731 /* Gets the language of FRAME. */
2732
2733 enum language
2734 get_frame_language (struct frame_info *frame)
2735 {
2736 CORE_ADDR pc = 0;
2737 int pc_p = 0;
2738
2739 gdb_assert (frame!= NULL);
2740
2741 /* We determine the current frame language by looking up its
2742 associated symtab. To retrieve this symtab, we use the frame
2743 PC. However we cannot use the frame PC as is, because it
2744 usually points to the instruction following the "call", which
2745 is sometimes the first instruction of another function. So
2746 we rely on get_frame_address_in_block(), it provides us with
2747 a PC that is guaranteed to be inside the frame's code
2748 block. */
2749
2750 TRY
2751 {
2752 pc = get_frame_address_in_block (frame);
2753 pc_p = 1;
2754 }
2755 CATCH (ex, RETURN_MASK_ERROR)
2756 {
2757 if (ex.error != NOT_AVAILABLE_ERROR)
2758 throw_exception (ex);
2759 }
2760 END_CATCH
2761
2762 if (pc_p)
2763 {
2764 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2765
2766 if (cust != NULL)
2767 return compunit_language (cust);
2768 }
2769
2770 return language_unknown;
2771 }
2772
2773 /* Stack pointer methods. */
2774
2775 CORE_ADDR
2776 get_frame_sp (struct frame_info *this_frame)
2777 {
2778 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2779
2780 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2781 operate on THIS_FRAME now. */
2782 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2783 }
2784
2785 /* Return the reason why we can't unwind past FRAME. */
2786
2787 enum unwind_stop_reason
2788 get_frame_unwind_stop_reason (struct frame_info *frame)
2789 {
2790 /* Fill-in STOP_REASON. */
2791 get_prev_frame_always (frame);
2792 gdb_assert (frame->prev_p);
2793
2794 return frame->stop_reason;
2795 }
2796
2797 /* Return a string explaining REASON. */
2798
2799 const char *
2800 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2801 {
2802 switch (reason)
2803 {
2804 #define SET(name, description) \
2805 case name: return _(description);
2806 #include "unwind_stop_reasons.def"
2807 #undef SET
2808
2809 default:
2810 internal_error (__FILE__, __LINE__,
2811 "Invalid frame stop reason");
2812 }
2813 }
2814
2815 const char *
2816 frame_stop_reason_string (struct frame_info *fi)
2817 {
2818 gdb_assert (fi->prev_p);
2819 gdb_assert (fi->prev == NULL);
2820
2821 /* Return the specific string if we have one. */
2822 if (fi->stop_string != NULL)
2823 return fi->stop_string;
2824
2825 /* Return the generic string if we have nothing better. */
2826 return unwind_stop_reason_to_string (fi->stop_reason);
2827 }
2828
2829 /* Return the enum symbol name of REASON as a string, to use in debug
2830 output. */
2831
2832 static const char *
2833 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2834 {
2835 switch (reason)
2836 {
2837 #define SET(name, description) \
2838 case name: return #name;
2839 #include "unwind_stop_reasons.def"
2840 #undef SET
2841
2842 default:
2843 internal_error (__FILE__, __LINE__,
2844 "Invalid frame stop reason");
2845 }
2846 }
2847
2848 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2849 FRAME. */
2850
2851 void
2852 frame_cleanup_after_sniffer (struct frame_info *frame)
2853 {
2854 /* The sniffer should not allocate a prologue cache if it did not
2855 match this frame. */
2856 gdb_assert (frame->prologue_cache == NULL);
2857
2858 /* No sniffer should extend the frame chain; sniff based on what is
2859 already certain. */
2860 gdb_assert (!frame->prev_p);
2861
2862 /* The sniffer should not check the frame's ID; that's circular. */
2863 gdb_assert (!frame->this_id.p);
2864
2865 /* Clear cached fields dependent on the unwinder.
2866
2867 The previous PC is independent of the unwinder, but the previous
2868 function is not (see get_frame_address_in_block). */
2869 frame->prev_func.p = 0;
2870 frame->prev_func.addr = 0;
2871
2872 /* Discard the unwinder last, so that we can easily find it if an assertion
2873 in this function triggers. */
2874 frame->unwind = NULL;
2875 }
2876
2877 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2878 If sniffing fails, the caller should be sure to call
2879 frame_cleanup_after_sniffer. */
2880
2881 void
2882 frame_prepare_for_sniffer (struct frame_info *frame,
2883 const struct frame_unwind *unwind)
2884 {
2885 gdb_assert (frame->unwind == NULL);
2886 frame->unwind = unwind;
2887 }
2888
2889 static struct cmd_list_element *set_backtrace_cmdlist;
2890 static struct cmd_list_element *show_backtrace_cmdlist;
2891
2892 static void
2893 set_backtrace_cmd (const char *args, int from_tty)
2894 {
2895 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2896 gdb_stdout);
2897 }
2898
2899 static void
2900 show_backtrace_cmd (const char *args, int from_tty)
2901 {
2902 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2903 }
2904
2905 void
2906 _initialize_frame (void)
2907 {
2908 obstack_init (&frame_cache_obstack);
2909
2910 frame_stash_create ();
2911
2912 gdb::observers::target_changed.attach (frame_observer_target_changed);
2913
2914 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2915 Set backtrace specific variables.\n\
2916 Configure backtrace variables such as the backtrace limit"),
2917 &set_backtrace_cmdlist, "set backtrace ",
2918 0/*allow-unknown*/, &setlist);
2919 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2920 Show backtrace specific variables\n\
2921 Show backtrace variables such as the backtrace limit"),
2922 &show_backtrace_cmdlist, "show backtrace ",
2923 0/*allow-unknown*/, &showlist);
2924
2925 add_setshow_boolean_cmd ("past-main", class_obscure,
2926 &backtrace_past_main, _("\
2927 Set whether backtraces should continue past \"main\"."), _("\
2928 Show whether backtraces should continue past \"main\"."), _("\
2929 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2930 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2931 of the stack trace."),
2932 NULL,
2933 show_backtrace_past_main,
2934 &set_backtrace_cmdlist,
2935 &show_backtrace_cmdlist);
2936
2937 add_setshow_boolean_cmd ("past-entry", class_obscure,
2938 &backtrace_past_entry, _("\
2939 Set whether backtraces should continue past the entry point of a program."),
2940 _("\
2941 Show whether backtraces should continue past the entry point of a program."),
2942 _("\
2943 Normally there are no callers beyond the entry point of a program, so GDB\n\
2944 will terminate the backtrace there. Set this variable if you need to see\n\
2945 the rest of the stack trace."),
2946 NULL,
2947 show_backtrace_past_entry,
2948 &set_backtrace_cmdlist,
2949 &show_backtrace_cmdlist);
2950
2951 add_setshow_uinteger_cmd ("limit", class_obscure,
2952 &backtrace_limit, _("\
2953 Set an upper bound on the number of backtrace levels."), _("\
2954 Show the upper bound on the number of backtrace levels."), _("\
2955 No more than the specified number of frames can be displayed or examined.\n\
2956 Literal \"unlimited\" or zero means no limit."),
2957 NULL,
2958 show_backtrace_limit,
2959 &set_backtrace_cmdlist,
2960 &show_backtrace_cmdlist);
2961
2962 /* Debug this files internals. */
2963 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2964 Set frame debugging."), _("\
2965 Show frame debugging."), _("\
2966 When non-zero, frame specific internal debugging is enabled."),
2967 NULL,
2968 show_frame_debug,
2969 &setdebuglist, &showdebuglist);
2970 }
This page took 0.094947 seconds and 4 git commands to generate.