dd3e34118e6aababb7971bf9deb2c6ecf8c53072
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397 static int
398 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399 {
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419 }
420
421 struct frame_info *
422 frame_find_by_id (struct frame_id id)
423 {
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454 }
455
456 CORE_ADDR
457 frame_pc_unwind (struct frame_info *this_frame)
458 {
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493 }
494
495 CORE_ADDR
496 get_frame_func (struct frame_info *this_frame)
497 {
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514 }
515
516 static int
517 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518 {
519 return frame_register_read (src, regnum, buf);
520 }
521
522 struct regcache *
523 frame_save_as_regcache (struct frame_info *this_frame)
524 {
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530 }
531
532 void
533 frame_pop (struct frame_info *this_frame)
534 {
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 /* Ensure that we have a frame to pop to. */
540 prev_frame = get_prev_frame_1 (this_frame);
541
542 if (!prev_frame)
543 error (_("Cannot pop the initial frame."));
544
545 /* Make a copy of all the register values unwound from this frame.
546 Save them in a scratch buffer so that there isn't a race between
547 trying to extract the old values from the current regcache while
548 at the same time writing new values into that same cache. */
549 scratch = frame_save_as_regcache (prev_frame);
550 cleanups = make_cleanup_regcache_xfree (scratch);
551
552 /* If we are popping a dummy frame, clean up the associated
553 data as well. */
554 if (get_frame_type (this_frame) == DUMMY_FRAME)
555 dummy_frame_pop (get_frame_id (this_frame));
556
557 /* FIXME: cagney/2003-03-16: It should be possible to tell the
558 target's register cache that it is about to be hit with a burst
559 register transfer and that the sequence of register writes should
560 be batched. The pair target_prepare_to_store() and
561 target_store_registers() kind of suggest this functionality.
562 Unfortunately, they don't implement it. Their lack of a formal
563 definition can lead to targets writing back bogus values
564 (arguably a bug in the target code mind). */
565 /* Now copy those saved registers into the current regcache.
566 Here, regcache_cpy() calls regcache_restore(). */
567 regcache_cpy (get_current_regcache (), scratch);
568 do_cleanups (cleanups);
569
570 /* We've made right mess of GDB's local state, just discard
571 everything. */
572 reinit_frame_cache ();
573 }
574
575 void
576 frame_register_unwind (struct frame_info *frame, int regnum,
577 int *optimizedp, enum lval_type *lvalp,
578 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
579 {
580 struct value *value;
581
582 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
583 that the value proper does not need to be fetched. */
584 gdb_assert (optimizedp != NULL);
585 gdb_assert (lvalp != NULL);
586 gdb_assert (addrp != NULL);
587 gdb_assert (realnump != NULL);
588 /* gdb_assert (bufferp != NULL); */
589
590 value = frame_unwind_register_value (frame, regnum);
591
592 gdb_assert (value != NULL);
593
594 *optimizedp = value_optimized_out (value);
595 *lvalp = VALUE_LVAL (value);
596 *addrp = VALUE_ADDRESS (value);
597 *realnump = VALUE_REGNUM (value);
598
599 if (bufferp)
600 memcpy (bufferp, value_contents_all (value),
601 TYPE_LENGTH (value_type (value)));
602
603 /* Dispose of the new value. This prevents watchpoints from
604 trying to watch the saved frame pointer. */
605 release_value (value);
606 value_free (value);
607 }
608
609 void
610 frame_register (struct frame_info *frame, int regnum,
611 int *optimizedp, enum lval_type *lvalp,
612 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
613 {
614 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
615 that the value proper does not need to be fetched. */
616 gdb_assert (optimizedp != NULL);
617 gdb_assert (lvalp != NULL);
618 gdb_assert (addrp != NULL);
619 gdb_assert (realnump != NULL);
620 /* gdb_assert (bufferp != NULL); */
621
622 /* Obtain the register value by unwinding the register from the next
623 (more inner frame). */
624 gdb_assert (frame != NULL && frame->next != NULL);
625 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
626 realnump, bufferp);
627 }
628
629 void
630 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
631 {
632 int optimized;
633 CORE_ADDR addr;
634 int realnum;
635 enum lval_type lval;
636 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
637 &realnum, buf);
638 }
639
640 void
641 get_frame_register (struct frame_info *frame,
642 int regnum, gdb_byte *buf)
643 {
644 frame_unwind_register (frame->next, regnum, buf);
645 }
646
647 struct value *
648 frame_unwind_register_value (struct frame_info *frame, int regnum)
649 {
650 struct value *value;
651
652 gdb_assert (frame != NULL);
653
654 if (frame_debug)
655 {
656 fprintf_unfiltered (gdb_stdlog, "\
657 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
658 frame->level, regnum,
659 user_reg_map_regnum_to_name
660 (get_frame_arch (frame), regnum));
661 }
662
663 /* Find the unwinder. */
664 if (frame->unwind == NULL)
665 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
666
667 /* Ask this frame to unwind its register. */
668 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
669
670 if (frame_debug)
671 {
672 fprintf_unfiltered (gdb_stdlog, "->");
673 if (value_optimized_out (value))
674 fprintf_unfiltered (gdb_stdlog, " optimized out");
675 else
676 {
677 if (VALUE_LVAL (value) == lval_register)
678 fprintf_unfiltered (gdb_stdlog, " register=%d",
679 VALUE_REGNUM (value));
680 else if (VALUE_LVAL (value) == lval_memory)
681 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
682 paddr_nz (VALUE_ADDRESS (value)));
683 else
684 fprintf_unfiltered (gdb_stdlog, " computed");
685
686 if (value_lazy (value))
687 fprintf_unfiltered (gdb_stdlog, " lazy");
688 else
689 {
690 int i;
691 const gdb_byte *buf = value_contents (value);
692
693 fprintf_unfiltered (gdb_stdlog, " bytes=");
694 fprintf_unfiltered (gdb_stdlog, "[");
695 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
696 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
697 fprintf_unfiltered (gdb_stdlog, "]");
698 }
699 }
700
701 fprintf_unfiltered (gdb_stdlog, " }\n");
702 }
703
704 return value;
705 }
706
707 struct value *
708 get_frame_register_value (struct frame_info *frame, int regnum)
709 {
710 return frame_unwind_register_value (frame->next, regnum);
711 }
712
713 LONGEST
714 frame_unwind_register_signed (struct frame_info *frame, int regnum)
715 {
716 gdb_byte buf[MAX_REGISTER_SIZE];
717 frame_unwind_register (frame, regnum, buf);
718 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
719 regnum));
720 }
721
722 LONGEST
723 get_frame_register_signed (struct frame_info *frame, int regnum)
724 {
725 return frame_unwind_register_signed (frame->next, regnum);
726 }
727
728 ULONGEST
729 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
730 {
731 gdb_byte buf[MAX_REGISTER_SIZE];
732 frame_unwind_register (frame, regnum, buf);
733 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
734 regnum));
735 }
736
737 ULONGEST
738 get_frame_register_unsigned (struct frame_info *frame, int regnum)
739 {
740 return frame_unwind_register_unsigned (frame->next, regnum);
741 }
742
743 void
744 put_frame_register (struct frame_info *frame, int regnum,
745 const gdb_byte *buf)
746 {
747 struct gdbarch *gdbarch = get_frame_arch (frame);
748 int realnum;
749 int optim;
750 enum lval_type lval;
751 CORE_ADDR addr;
752 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
753 if (optim)
754 error (_("Attempt to assign to a value that was optimized out."));
755 switch (lval)
756 {
757 case lval_memory:
758 {
759 /* FIXME: write_memory doesn't yet take constant buffers.
760 Arrrg! */
761 gdb_byte tmp[MAX_REGISTER_SIZE];
762 memcpy (tmp, buf, register_size (gdbarch, regnum));
763 write_memory (addr, tmp, register_size (gdbarch, regnum));
764 break;
765 }
766 case lval_register:
767 regcache_cooked_write (get_current_regcache (), realnum, buf);
768 break;
769 default:
770 error (_("Attempt to assign to an unmodifiable value."));
771 }
772 }
773
774 /* frame_register_read ()
775
776 Find and return the value of REGNUM for the specified stack frame.
777 The number of bytes copied is REGISTER_SIZE (REGNUM).
778
779 Returns 0 if the register value could not be found. */
780
781 int
782 frame_register_read (struct frame_info *frame, int regnum,
783 gdb_byte *myaddr)
784 {
785 int optimized;
786 enum lval_type lval;
787 CORE_ADDR addr;
788 int realnum;
789 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
790
791 return !optimized;
792 }
793
794 int
795 get_frame_register_bytes (struct frame_info *frame, int regnum,
796 CORE_ADDR offset, int len, gdb_byte *myaddr)
797 {
798 struct gdbarch *gdbarch = get_frame_arch (frame);
799 int i;
800 int maxsize;
801
802 /* Skip registers wholly inside of OFFSET. */
803 while (offset >= register_size (gdbarch, regnum))
804 {
805 offset -= register_size (gdbarch, regnum);
806 regnum++;
807 }
808
809 /* Ensure that we will not read beyond the end of the register file.
810 This can only ever happen if the debug information is bad. */
811 maxsize = -offset;
812 for (i = regnum; i < gdbarch_num_regs (gdbarch); i++)
813 {
814 int thissize = register_size (gdbarch, i);
815 if (thissize == 0)
816 break; /* This register is not available on this architecture. */
817 maxsize += thissize;
818 }
819 if (len > maxsize)
820 {
821 warning (_("Bad debug information detected: "
822 "Attempt to read %d bytes from registers."), len);
823 return 0;
824 }
825
826 /* Copy the data. */
827 while (len > 0)
828 {
829 int curr_len = register_size (gdbarch, regnum) - offset;
830 if (curr_len > len)
831 curr_len = len;
832
833 if (curr_len == register_size (gdbarch, regnum))
834 {
835 if (!frame_register_read (frame, regnum, myaddr))
836 return 0;
837 }
838 else
839 {
840 gdb_byte buf[MAX_REGISTER_SIZE];
841 if (!frame_register_read (frame, regnum, buf))
842 return 0;
843 memcpy (myaddr, buf + offset, curr_len);
844 }
845
846 myaddr += curr_len;
847 len -= curr_len;
848 offset = 0;
849 regnum++;
850 }
851
852 return 1;
853 }
854
855 void
856 put_frame_register_bytes (struct frame_info *frame, int regnum,
857 CORE_ADDR offset, int len, const gdb_byte *myaddr)
858 {
859 struct gdbarch *gdbarch = get_frame_arch (frame);
860
861 /* Skip registers wholly inside of OFFSET. */
862 while (offset >= register_size (gdbarch, regnum))
863 {
864 offset -= register_size (gdbarch, regnum);
865 regnum++;
866 }
867
868 /* Copy the data. */
869 while (len > 0)
870 {
871 int curr_len = register_size (gdbarch, regnum) - offset;
872 if (curr_len > len)
873 curr_len = len;
874
875 if (curr_len == register_size (gdbarch, regnum))
876 {
877 put_frame_register (frame, regnum, myaddr);
878 }
879 else
880 {
881 gdb_byte buf[MAX_REGISTER_SIZE];
882 frame_register_read (frame, regnum, buf);
883 memcpy (buf + offset, myaddr, curr_len);
884 put_frame_register (frame, regnum, buf);
885 }
886
887 myaddr += curr_len;
888 len -= curr_len;
889 offset = 0;
890 regnum++;
891 }
892 }
893
894 /* Create a sentinel frame. */
895
896 static struct frame_info *
897 create_sentinel_frame (struct regcache *regcache)
898 {
899 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
900 frame->level = -1;
901 /* Explicitly initialize the sentinel frame's cache. Provide it
902 with the underlying regcache. In the future additional
903 information, such as the frame's thread will be added. */
904 frame->prologue_cache = sentinel_frame_cache (regcache);
905 /* For the moment there is only one sentinel frame implementation. */
906 frame->unwind = sentinel_frame_unwind;
907 /* Link this frame back to itself. The frame is self referential
908 (the unwound PC is the same as the pc), so make it so. */
909 frame->next = frame;
910 /* Make the sentinel frame's ID valid, but invalid. That way all
911 comparisons with it should fail. */
912 frame->this_id.p = 1;
913 frame->this_id.value = null_frame_id;
914 if (frame_debug)
915 {
916 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
917 fprint_frame (gdb_stdlog, frame);
918 fprintf_unfiltered (gdb_stdlog, " }\n");
919 }
920 return frame;
921 }
922
923 /* Info about the innermost stack frame (contents of FP register) */
924
925 static struct frame_info *current_frame;
926
927 /* Cache for frame addresses already read by gdb. Valid only while
928 inferior is stopped. Control variables for the frame cache should
929 be local to this module. */
930
931 static struct obstack frame_cache_obstack;
932
933 void *
934 frame_obstack_zalloc (unsigned long size)
935 {
936 void *data = obstack_alloc (&frame_cache_obstack, size);
937 memset (data, 0, size);
938 return data;
939 }
940
941 /* Return the innermost (currently executing) stack frame. This is
942 split into two functions. The function unwind_to_current_frame()
943 is wrapped in catch exceptions so that, even when the unwind of the
944 sentinel frame fails, the function still returns a stack frame. */
945
946 static int
947 unwind_to_current_frame (struct ui_out *ui_out, void *args)
948 {
949 struct frame_info *frame = get_prev_frame (args);
950 /* A sentinel frame can fail to unwind, e.g., because its PC value
951 lands in somewhere like start. */
952 if (frame == NULL)
953 return 1;
954 current_frame = frame;
955 return 0;
956 }
957
958 struct frame_info *
959 get_current_frame (void)
960 {
961 /* First check, and report, the lack of registers. Having GDB
962 report "No stack!" or "No memory" when the target doesn't even
963 have registers is very confusing. Besides, "printcmd.exp"
964 explicitly checks that ``print $pc'' with no registers prints "No
965 registers". */
966 if (!target_has_registers)
967 error (_("No registers."));
968 if (!target_has_stack)
969 error (_("No stack."));
970 if (!target_has_memory)
971 error (_("No memory."));
972 if (is_executing (inferior_ptid))
973 error (_("Target is executing."));
974
975 if (current_frame == NULL)
976 {
977 struct frame_info *sentinel_frame =
978 create_sentinel_frame (get_current_regcache ());
979 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
980 RETURN_MASK_ERROR) != 0)
981 {
982 /* Oops! Fake a current frame? Is this useful? It has a PC
983 of zero, for instance. */
984 current_frame = sentinel_frame;
985 }
986 }
987 return current_frame;
988 }
989
990 /* The "selected" stack frame is used by default for local and arg
991 access. May be zero, for no selected frame. */
992
993 static struct frame_info *selected_frame;
994
995 static int
996 has_stack_frames (void)
997 {
998 if (!target_has_registers || !target_has_stack || !target_has_memory)
999 return 0;
1000
1001 /* If the current thread is executing, don't try to read from
1002 it. */
1003 if (is_executing (inferior_ptid))
1004 return 0;
1005
1006 return 1;
1007 }
1008
1009 /* Return the selected frame. Always non-NULL (unless there isn't an
1010 inferior sufficient for creating a frame) in which case an error is
1011 thrown. */
1012
1013 struct frame_info *
1014 get_selected_frame (const char *message)
1015 {
1016 if (selected_frame == NULL)
1017 {
1018 if (message != NULL && !has_stack_frames ())
1019 error (("%s"), message);
1020 /* Hey! Don't trust this. It should really be re-finding the
1021 last selected frame of the currently selected thread. This,
1022 though, is better than nothing. */
1023 select_frame (get_current_frame ());
1024 }
1025 /* There is always a frame. */
1026 gdb_assert (selected_frame != NULL);
1027 return selected_frame;
1028 }
1029
1030 /* This is a variant of get_selected_frame() which can be called when
1031 the inferior does not have a frame; in that case it will return
1032 NULL instead of calling error(). */
1033
1034 struct frame_info *
1035 deprecated_safe_get_selected_frame (void)
1036 {
1037 if (!has_stack_frames ())
1038 return NULL;
1039 return get_selected_frame (NULL);
1040 }
1041
1042 /* Select frame FI (or NULL - to invalidate the current frame). */
1043
1044 void
1045 select_frame (struct frame_info *fi)
1046 {
1047 struct symtab *s;
1048
1049 selected_frame = fi;
1050 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1051 frame is being invalidated. */
1052 if (deprecated_selected_frame_level_changed_hook)
1053 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1054
1055 /* FIXME: kseitz/2002-08-28: It would be nice to call
1056 selected_frame_level_changed_event() right here, but due to limitations
1057 in the current interfaces, we would end up flooding UIs with events
1058 because select_frame() is used extensively internally.
1059
1060 Once we have frame-parameterized frame (and frame-related) commands,
1061 the event notification can be moved here, since this function will only
1062 be called when the user's selected frame is being changed. */
1063
1064 /* Ensure that symbols for this frame are read in. Also, determine the
1065 source language of this frame, and switch to it if desired. */
1066 if (fi)
1067 {
1068 /* We retrieve the frame's symtab by using the frame PC. However
1069 we cannot use the frame PC as-is, because it usually points to
1070 the instruction following the "call", which is sometimes the
1071 first instruction of another function. So we rely on
1072 get_frame_address_in_block() which provides us with a PC which
1073 is guaranteed to be inside the frame's code block. */
1074 s = find_pc_symtab (get_frame_address_in_block (fi));
1075 if (s
1076 && s->language != current_language->la_language
1077 && s->language != language_unknown
1078 && language_mode == language_mode_auto)
1079 {
1080 set_language (s->language);
1081 }
1082 }
1083 }
1084
1085 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1086 Always returns a non-NULL value. */
1087
1088 struct frame_info *
1089 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1090 {
1091 struct frame_info *fi;
1092
1093 if (frame_debug)
1094 {
1095 fprintf_unfiltered (gdb_stdlog,
1096 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1097 paddr_nz (addr), paddr_nz (pc));
1098 }
1099
1100 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1101
1102 fi->next = create_sentinel_frame (get_current_regcache ());
1103
1104 /* Select/initialize both the unwind function and the frame's type
1105 based on the PC. */
1106 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1107
1108 fi->this_id.p = 1;
1109 deprecated_update_frame_base_hack (fi, addr);
1110 deprecated_update_frame_pc_hack (fi, pc);
1111
1112 if (frame_debug)
1113 {
1114 fprintf_unfiltered (gdb_stdlog, "-> ");
1115 fprint_frame (gdb_stdlog, fi);
1116 fprintf_unfiltered (gdb_stdlog, " }\n");
1117 }
1118
1119 return fi;
1120 }
1121
1122 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1123 innermost frame). Be careful to not fall off the bottom of the
1124 frame chain and onto the sentinel frame. */
1125
1126 struct frame_info *
1127 get_next_frame (struct frame_info *this_frame)
1128 {
1129 if (this_frame->level > 0)
1130 return this_frame->next;
1131 else
1132 return NULL;
1133 }
1134
1135 /* Observer for the target_changed event. */
1136
1137 void
1138 frame_observer_target_changed (struct target_ops *target)
1139 {
1140 reinit_frame_cache ();
1141 }
1142
1143 /* Flush the entire frame cache. */
1144
1145 void
1146 reinit_frame_cache (void)
1147 {
1148 struct frame_info *fi;
1149
1150 /* Tear down all frame caches. */
1151 for (fi = current_frame; fi != NULL; fi = fi->prev)
1152 {
1153 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1154 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1155 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1156 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1157 }
1158
1159 /* Since we can't really be sure what the first object allocated was */
1160 obstack_free (&frame_cache_obstack, 0);
1161 obstack_init (&frame_cache_obstack);
1162
1163 if (current_frame != NULL)
1164 annotate_frames_invalid ();
1165
1166 current_frame = NULL; /* Invalidate cache */
1167 select_frame (NULL);
1168 if (frame_debug)
1169 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1170 }
1171
1172 /* Find where a register is saved (in memory or another register).
1173 The result of frame_register_unwind is just where it is saved
1174 relative to this particular frame. */
1175
1176 static void
1177 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1178 int *optimizedp, enum lval_type *lvalp,
1179 CORE_ADDR *addrp, int *realnump)
1180 {
1181 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1182
1183 while (this_frame != NULL)
1184 {
1185 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1186 addrp, realnump, NULL);
1187
1188 if (*optimizedp)
1189 break;
1190
1191 if (*lvalp != lval_register)
1192 break;
1193
1194 regnum = *realnump;
1195 this_frame = get_next_frame (this_frame);
1196 }
1197 }
1198
1199 /* Return a "struct frame_info" corresponding to the frame that called
1200 THIS_FRAME. Returns NULL if there is no such frame.
1201
1202 Unlike get_prev_frame, this function always tries to unwind the
1203 frame. */
1204
1205 static struct frame_info *
1206 get_prev_frame_1 (struct frame_info *this_frame)
1207 {
1208 struct frame_info *prev_frame;
1209 struct frame_id this_id;
1210 struct gdbarch *gdbarch;
1211
1212 gdb_assert (this_frame != NULL);
1213 gdbarch = get_frame_arch (this_frame);
1214
1215 if (frame_debug)
1216 {
1217 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1218 if (this_frame != NULL)
1219 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1220 else
1221 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1222 fprintf_unfiltered (gdb_stdlog, ") ");
1223 }
1224
1225 /* Only try to do the unwind once. */
1226 if (this_frame->prev_p)
1227 {
1228 if (frame_debug)
1229 {
1230 fprintf_unfiltered (gdb_stdlog, "-> ");
1231 fprint_frame (gdb_stdlog, this_frame->prev);
1232 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1233 }
1234 return this_frame->prev;
1235 }
1236
1237 /* If the frame unwinder hasn't been selected yet, we must do so
1238 before setting prev_p; otherwise the check for misbehaved
1239 sniffers will think that this frame's sniffer tried to unwind
1240 further (see frame_cleanup_after_sniffer). */
1241 if (this_frame->unwind == NULL)
1242 this_frame->unwind
1243 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1244
1245 this_frame->prev_p = 1;
1246 this_frame->stop_reason = UNWIND_NO_REASON;
1247
1248 /* Check that this frame's ID was valid. If it wasn't, don't try to
1249 unwind to the prev frame. Be careful to not apply this test to
1250 the sentinel frame. */
1251 this_id = get_frame_id (this_frame);
1252 if (this_frame->level >= 0 && !frame_id_p (this_id))
1253 {
1254 if (frame_debug)
1255 {
1256 fprintf_unfiltered (gdb_stdlog, "-> ");
1257 fprint_frame (gdb_stdlog, NULL);
1258 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1259 }
1260 this_frame->stop_reason = UNWIND_NULL_ID;
1261 return NULL;
1262 }
1263
1264 /* Check that this frame's ID isn't inner to (younger, below, next)
1265 the next frame. This happens when a frame unwind goes backwards.
1266 This check is valid only if the next frame is NORMAL. See the
1267 comment at frame_id_inner for details. */
1268 if (this_frame->next->unwind->type == NORMAL_FRAME
1269 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1270 get_frame_id (this_frame->next)))
1271 {
1272 if (frame_debug)
1273 {
1274 fprintf_unfiltered (gdb_stdlog, "-> ");
1275 fprint_frame (gdb_stdlog, NULL);
1276 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1277 }
1278 this_frame->stop_reason = UNWIND_INNER_ID;
1279 return NULL;
1280 }
1281
1282 /* Check that this and the next frame are not identical. If they
1283 are, there is most likely a stack cycle. As with the inner-than
1284 test above, avoid comparing the inner-most and sentinel frames. */
1285 if (this_frame->level > 0
1286 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1287 {
1288 if (frame_debug)
1289 {
1290 fprintf_unfiltered (gdb_stdlog, "-> ");
1291 fprint_frame (gdb_stdlog, NULL);
1292 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1293 }
1294 this_frame->stop_reason = UNWIND_SAME_ID;
1295 return NULL;
1296 }
1297
1298 /* Check that this and the next frame do not unwind the PC register
1299 to the same memory location. If they do, then even though they
1300 have different frame IDs, the new frame will be bogus; two
1301 functions can't share a register save slot for the PC. This can
1302 happen when the prologue analyzer finds a stack adjustment, but
1303 no PC save.
1304
1305 This check does assume that the "PC register" is roughly a
1306 traditional PC, even if the gdbarch_unwind_pc method adjusts
1307 it (we do not rely on the value, only on the unwound PC being
1308 dependent on this value). A potential improvement would be
1309 to have the frame prev_pc method and the gdbarch unwind_pc
1310 method set the same lval and location information as
1311 frame_register_unwind. */
1312 if (this_frame->level > 0
1313 && gdbarch_pc_regnum (gdbarch) >= 0
1314 && get_frame_type (this_frame) == NORMAL_FRAME
1315 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1316 {
1317 int optimized, realnum, nrealnum;
1318 enum lval_type lval, nlval;
1319 CORE_ADDR addr, naddr;
1320
1321 frame_register_unwind_location (this_frame,
1322 gdbarch_pc_regnum (gdbarch),
1323 &optimized, &lval, &addr, &realnum);
1324 frame_register_unwind_location (get_next_frame (this_frame),
1325 gdbarch_pc_regnum (gdbarch),
1326 &optimized, &nlval, &naddr, &nrealnum);
1327
1328 if ((lval == lval_memory && lval == nlval && addr == naddr)
1329 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1330 {
1331 if (frame_debug)
1332 {
1333 fprintf_unfiltered (gdb_stdlog, "-> ");
1334 fprint_frame (gdb_stdlog, NULL);
1335 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1336 }
1337
1338 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1339 this_frame->prev = NULL;
1340 return NULL;
1341 }
1342 }
1343
1344 /* Allocate the new frame but do not wire it in to the frame chain.
1345 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1346 frame->next to pull some fancy tricks (of course such code is, by
1347 definition, recursive). Try to prevent it.
1348
1349 There is no reason to worry about memory leaks, should the
1350 remainder of the function fail. The allocated memory will be
1351 quickly reclaimed when the frame cache is flushed, and the `we've
1352 been here before' check above will stop repeated memory
1353 allocation calls. */
1354 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1355 prev_frame->level = this_frame->level + 1;
1356
1357 /* Don't yet compute ->unwind (and hence ->type). It is computed
1358 on-demand in get_frame_type, frame_register_unwind, and
1359 get_frame_id. */
1360
1361 /* Don't yet compute the frame's ID. It is computed on-demand by
1362 get_frame_id(). */
1363
1364 /* The unwound frame ID is validate at the start of this function,
1365 as part of the logic to decide if that frame should be further
1366 unwound, and not here while the prev frame is being created.
1367 Doing this makes it possible for the user to examine a frame that
1368 has an invalid frame ID.
1369
1370 Some very old VAX code noted: [...] For the sake of argument,
1371 suppose that the stack is somewhat trashed (which is one reason
1372 that "info frame" exists). So, return 0 (indicating we don't
1373 know the address of the arglist) if we don't know what frame this
1374 frame calls. */
1375
1376 /* Link it in. */
1377 this_frame->prev = prev_frame;
1378 prev_frame->next = this_frame;
1379
1380 if (frame_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog, "-> ");
1383 fprint_frame (gdb_stdlog, prev_frame);
1384 fprintf_unfiltered (gdb_stdlog, " }\n");
1385 }
1386
1387 return prev_frame;
1388 }
1389
1390 /* Debug routine to print a NULL frame being returned. */
1391
1392 static void
1393 frame_debug_got_null_frame (struct ui_file *file,
1394 struct frame_info *this_frame,
1395 const char *reason)
1396 {
1397 if (frame_debug)
1398 {
1399 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1400 if (this_frame != NULL)
1401 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1402 else
1403 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1404 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1405 }
1406 }
1407
1408 /* Is this (non-sentinel) frame in the "main"() function? */
1409
1410 static int
1411 inside_main_func (struct frame_info *this_frame)
1412 {
1413 struct minimal_symbol *msymbol;
1414 CORE_ADDR maddr;
1415
1416 if (symfile_objfile == 0)
1417 return 0;
1418 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1419 if (msymbol == NULL)
1420 return 0;
1421 /* Make certain that the code, and not descriptor, address is
1422 returned. */
1423 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1424 SYMBOL_VALUE_ADDRESS (msymbol),
1425 &current_target);
1426 return maddr == get_frame_func (this_frame);
1427 }
1428
1429 /* Test whether THIS_FRAME is inside the process entry point function. */
1430
1431 static int
1432 inside_entry_func (struct frame_info *this_frame)
1433 {
1434 return (get_frame_func (this_frame) == entry_point_address ());
1435 }
1436
1437 /* Return a structure containing various interesting information about
1438 the frame that called THIS_FRAME. Returns NULL if there is entier
1439 no such frame or the frame fails any of a set of target-independent
1440 condition that should terminate the frame chain (e.g., as unwinding
1441 past main()).
1442
1443 This function should not contain target-dependent tests, such as
1444 checking whether the program-counter is zero. */
1445
1446 struct frame_info *
1447 get_prev_frame (struct frame_info *this_frame)
1448 {
1449 struct frame_info *prev_frame;
1450
1451 /* Return the inner-most frame, when the caller passes in NULL. */
1452 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1453 caller should have previously obtained a valid frame using
1454 get_selected_frame() and then called this code - only possibility
1455 I can think of is code behaving badly.
1456
1457 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1458 block_innermost_frame(). It does the sequence: frame = NULL;
1459 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1460 it couldn't be written better, I don't know.
1461
1462 NOTE: cagney/2003-01-11: I suspect what is happening in
1463 block_innermost_frame() is, when the target has no state
1464 (registers, memory, ...), it is still calling this function. The
1465 assumption being that this function will return NULL indicating
1466 that a frame isn't possible, rather than checking that the target
1467 has state and then calling get_current_frame() and
1468 get_prev_frame(). This is a guess mind. */
1469 if (this_frame == NULL)
1470 {
1471 /* NOTE: cagney/2002-11-09: There was a code segment here that
1472 would error out when CURRENT_FRAME was NULL. The comment
1473 that went with it made the claim ...
1474
1475 ``This screws value_of_variable, which just wants a nice
1476 clean NULL return from block_innermost_frame if there are no
1477 frames. I don't think I've ever seen this message happen
1478 otherwise. And returning NULL here is a perfectly legitimate
1479 thing to do.''
1480
1481 Per the above, this code shouldn't even be called with a NULL
1482 THIS_FRAME. */
1483 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1484 return current_frame;
1485 }
1486
1487 /* There is always a frame. If this assertion fails, suspect that
1488 something should be calling get_selected_frame() or
1489 get_current_frame(). */
1490 gdb_assert (this_frame != NULL);
1491
1492 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1493 sense to stop unwinding at a dummy frame. One place where a dummy
1494 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1495 pcsqh register (space register for the instruction at the head of the
1496 instruction queue) cannot be written directly; the only way to set it
1497 is to branch to code that is in the target space. In order to implement
1498 frame dummies on HPUX, the called function is made to jump back to where
1499 the inferior was when the user function was called. If gdb was inside
1500 the main function when we created the dummy frame, the dummy frame will
1501 point inside the main function. */
1502 if (this_frame->level >= 0
1503 && get_frame_type (this_frame) != DUMMY_FRAME
1504 && !backtrace_past_main
1505 && inside_main_func (this_frame))
1506 /* Don't unwind past main(). Note, this is done _before_ the
1507 frame has been marked as previously unwound. That way if the
1508 user later decides to enable unwinds past main(), that will
1509 automatically happen. */
1510 {
1511 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1512 return NULL;
1513 }
1514
1515 /* If the user's backtrace limit has been exceeded, stop. We must
1516 add two to the current level; one of those accounts for backtrace_limit
1517 being 1-based and the level being 0-based, and the other accounts for
1518 the level of the new frame instead of the level of the current
1519 frame. */
1520 if (this_frame->level + 2 > backtrace_limit)
1521 {
1522 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1523 "backtrace limit exceeded");
1524 return NULL;
1525 }
1526
1527 /* If we're already inside the entry function for the main objfile,
1528 then it isn't valid. Don't apply this test to a dummy frame -
1529 dummy frame PCs typically land in the entry func. Don't apply
1530 this test to the sentinel frame. Sentinel frames should always
1531 be allowed to unwind. */
1532 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1533 wasn't checking for "main" in the minimal symbols. With that
1534 fixed asm-source tests now stop in "main" instead of halting the
1535 backtrace in weird and wonderful ways somewhere inside the entry
1536 file. Suspect that tests for inside the entry file/func were
1537 added to work around that (now fixed) case. */
1538 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1539 suggested having the inside_entry_func test use the
1540 inside_main_func() msymbol trick (along with entry_point_address()
1541 I guess) to determine the address range of the start function.
1542 That should provide a far better stopper than the current
1543 heuristics. */
1544 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1545 applied tail-call optimizations to main so that a function called
1546 from main returns directly to the caller of main. Since we don't
1547 stop at main, we should at least stop at the entry point of the
1548 application. */
1549 if (!backtrace_past_entry
1550 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1551 && inside_entry_func (this_frame))
1552 {
1553 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1554 return NULL;
1555 }
1556
1557 /* Assume that the only way to get a zero PC is through something
1558 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1559 will never unwind a zero PC. */
1560 if (this_frame->level > 0
1561 && get_frame_type (this_frame) == NORMAL_FRAME
1562 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1563 && get_frame_pc (this_frame) == 0)
1564 {
1565 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1566 return NULL;
1567 }
1568
1569 return get_prev_frame_1 (this_frame);
1570 }
1571
1572 CORE_ADDR
1573 get_frame_pc (struct frame_info *frame)
1574 {
1575 gdb_assert (frame->next != NULL);
1576 return frame_pc_unwind (frame->next);
1577 }
1578
1579 /* Return an address that falls within THIS_FRAME's code block. */
1580
1581 CORE_ADDR
1582 get_frame_address_in_block (struct frame_info *this_frame)
1583 {
1584 /* A draft address. */
1585 CORE_ADDR pc = get_frame_pc (this_frame);
1586
1587 struct frame_info *next_frame = this_frame->next;
1588
1589 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1590 Normally the resume address is inside the body of the function
1591 associated with THIS_FRAME, but there is a special case: when
1592 calling a function which the compiler knows will never return
1593 (for instance abort), the call may be the very last instruction
1594 in the calling function. The resume address will point after the
1595 call and may be at the beginning of a different function
1596 entirely.
1597
1598 If THIS_FRAME is a signal frame or dummy frame, then we should
1599 not adjust the unwound PC. For a dummy frame, GDB pushed the
1600 resume address manually onto the stack. For a signal frame, the
1601 OS may have pushed the resume address manually and invoked the
1602 handler (e.g. GNU/Linux), or invoked the trampoline which called
1603 the signal handler - but in either case the signal handler is
1604 expected to return to the trampoline. So in both of these
1605 cases we know that the resume address is executable and
1606 related. So we only need to adjust the PC if THIS_FRAME
1607 is a normal function.
1608
1609 If the program has been interrupted while THIS_FRAME is current,
1610 then clearly the resume address is inside the associated
1611 function. There are three kinds of interruption: debugger stop
1612 (next frame will be SENTINEL_FRAME), operating system
1613 signal or exception (next frame will be SIGTRAMP_FRAME),
1614 or debugger-induced function call (next frame will be
1615 DUMMY_FRAME). So we only need to adjust the PC if
1616 NEXT_FRAME is a normal function.
1617
1618 We check the type of NEXT_FRAME first, since it is already
1619 known; frame type is determined by the unwinder, and since
1620 we have THIS_FRAME we've already selected an unwinder for
1621 NEXT_FRAME. */
1622 if (get_frame_type (next_frame) == NORMAL_FRAME
1623 && get_frame_type (this_frame) == NORMAL_FRAME)
1624 return pc - 1;
1625
1626 return pc;
1627 }
1628
1629 static int
1630 pc_notcurrent (struct frame_info *frame)
1631 {
1632 /* If FRAME is not the innermost frame, that normally means that
1633 FRAME->pc points at the return instruction (which is *after* the
1634 call instruction), and we want to get the line containing the
1635 call (because the call is where the user thinks the program is).
1636 However, if the next frame is either a SIGTRAMP_FRAME or a
1637 DUMMY_FRAME, then the next frame will contain a saved interrupt
1638 PC and such a PC indicates the current (rather than next)
1639 instruction/line, consequently, for such cases, want to get the
1640 line containing fi->pc. */
1641 struct frame_info *next = get_next_frame (frame);
1642 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1643 return notcurrent;
1644 }
1645
1646 void
1647 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1648 {
1649 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1650 }
1651
1652 /* Per "frame.h", return the ``address'' of the frame. Code should
1653 really be using get_frame_id(). */
1654 CORE_ADDR
1655 get_frame_base (struct frame_info *fi)
1656 {
1657 return get_frame_id (fi).stack_addr;
1658 }
1659
1660 /* High-level offsets into the frame. Used by the debug info. */
1661
1662 CORE_ADDR
1663 get_frame_base_address (struct frame_info *fi)
1664 {
1665 if (get_frame_type (fi) != NORMAL_FRAME)
1666 return 0;
1667 if (fi->base == NULL)
1668 fi->base = frame_base_find_by_frame (fi);
1669 /* Sneaky: If the low-level unwind and high-level base code share a
1670 common unwinder, let them share the prologue cache. */
1671 if (fi->base->unwind == fi->unwind)
1672 return fi->base->this_base (fi, &fi->prologue_cache);
1673 return fi->base->this_base (fi, &fi->base_cache);
1674 }
1675
1676 CORE_ADDR
1677 get_frame_locals_address (struct frame_info *fi)
1678 {
1679 void **cache;
1680 if (get_frame_type (fi) != NORMAL_FRAME)
1681 return 0;
1682 /* If there isn't a frame address method, find it. */
1683 if (fi->base == NULL)
1684 fi->base = frame_base_find_by_frame (fi);
1685 /* Sneaky: If the low-level unwind and high-level base code share a
1686 common unwinder, let them share the prologue cache. */
1687 if (fi->base->unwind == fi->unwind)
1688 return fi->base->this_locals (fi, &fi->prologue_cache);
1689 return fi->base->this_locals (fi, &fi->base_cache);
1690 }
1691
1692 CORE_ADDR
1693 get_frame_args_address (struct frame_info *fi)
1694 {
1695 void **cache;
1696 if (get_frame_type (fi) != NORMAL_FRAME)
1697 return 0;
1698 /* If there isn't a frame address method, find it. */
1699 if (fi->base == NULL)
1700 fi->base = frame_base_find_by_frame (fi);
1701 /* Sneaky: If the low-level unwind and high-level base code share a
1702 common unwinder, let them share the prologue cache. */
1703 if (fi->base->unwind == fi->unwind)
1704 return fi->base->this_args (fi, &fi->prologue_cache);
1705 return fi->base->this_args (fi, &fi->base_cache);
1706 }
1707
1708 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1709 or -1 for a NULL frame. */
1710
1711 int
1712 frame_relative_level (struct frame_info *fi)
1713 {
1714 if (fi == NULL)
1715 return -1;
1716 else
1717 return fi->level;
1718 }
1719
1720 enum frame_type
1721 get_frame_type (struct frame_info *frame)
1722 {
1723 if (frame->unwind == NULL)
1724 /* Initialize the frame's unwinder because that's what
1725 provides the frame's type. */
1726 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1727 return frame->unwind->type;
1728 }
1729
1730 void
1731 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1732 {
1733 if (frame_debug)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1736 frame->level, paddr_nz (pc));
1737 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1738 maintaining a locally allocated frame object. Since such frames
1739 are not in the frame chain, it isn't possible to assume that the
1740 frame has a next. Sigh. */
1741 if (frame->next != NULL)
1742 {
1743 /* While we're at it, update this frame's cached PC value, found
1744 in the next frame. Oh for the day when "struct frame_info"
1745 is opaque and this hack on hack can just go away. */
1746 frame->next->prev_pc.value = pc;
1747 frame->next->prev_pc.p = 1;
1748 }
1749 }
1750
1751 void
1752 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1753 {
1754 if (frame_debug)
1755 fprintf_unfiltered (gdb_stdlog,
1756 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1757 frame->level, paddr_nz (base));
1758 /* See comment in "frame.h". */
1759 frame->this_id.value.stack_addr = base;
1760 }
1761
1762 /* Memory access methods. */
1763
1764 void
1765 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1766 gdb_byte *buf, int len)
1767 {
1768 read_memory (addr, buf, len);
1769 }
1770
1771 LONGEST
1772 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1773 int len)
1774 {
1775 return read_memory_integer (addr, len);
1776 }
1777
1778 ULONGEST
1779 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1780 int len)
1781 {
1782 return read_memory_unsigned_integer (addr, len);
1783 }
1784
1785 int
1786 safe_frame_unwind_memory (struct frame_info *this_frame,
1787 CORE_ADDR addr, gdb_byte *buf, int len)
1788 {
1789 /* NOTE: target_read_memory returns zero on success! */
1790 return !target_read_memory (addr, buf, len);
1791 }
1792
1793 /* Architecture method. */
1794
1795 struct gdbarch *
1796 get_frame_arch (struct frame_info *this_frame)
1797 {
1798 return current_gdbarch;
1799 }
1800
1801 /* Stack pointer methods. */
1802
1803 CORE_ADDR
1804 get_frame_sp (struct frame_info *this_frame)
1805 {
1806 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1807 /* Normality - an architecture that provides a way of obtaining any
1808 frame inner-most address. */
1809 if (gdbarch_unwind_sp_p (gdbarch))
1810 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1811 operate on THIS_FRAME now. */
1812 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1813 /* Now things are really are grim. Hope that the value returned by
1814 the gdbarch_sp_regnum register is meaningful. */
1815 if (gdbarch_sp_regnum (gdbarch) >= 0)
1816 return get_frame_register_unsigned (this_frame,
1817 gdbarch_sp_regnum (gdbarch));
1818 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1819 }
1820
1821 /* Return the reason why we can't unwind past FRAME. */
1822
1823 enum unwind_stop_reason
1824 get_frame_unwind_stop_reason (struct frame_info *frame)
1825 {
1826 /* If we haven't tried to unwind past this point yet, then assume
1827 that unwinding would succeed. */
1828 if (frame->prev_p == 0)
1829 return UNWIND_NO_REASON;
1830
1831 /* Otherwise, we set a reason when we succeeded (or failed) to
1832 unwind. */
1833 return frame->stop_reason;
1834 }
1835
1836 /* Return a string explaining REASON. */
1837
1838 const char *
1839 frame_stop_reason_string (enum unwind_stop_reason reason)
1840 {
1841 switch (reason)
1842 {
1843 case UNWIND_NULL_ID:
1844 return _("unwinder did not report frame ID");
1845
1846 case UNWIND_INNER_ID:
1847 return _("previous frame inner to this frame (corrupt stack?)");
1848
1849 case UNWIND_SAME_ID:
1850 return _("previous frame identical to this frame (corrupt stack?)");
1851
1852 case UNWIND_NO_SAVED_PC:
1853 return _("frame did not save the PC");
1854
1855 case UNWIND_NO_REASON:
1856 case UNWIND_FIRST_ERROR:
1857 default:
1858 internal_error (__FILE__, __LINE__,
1859 "Invalid frame stop reason");
1860 }
1861 }
1862
1863 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1864 FRAME. */
1865
1866 static void
1867 frame_cleanup_after_sniffer (void *arg)
1868 {
1869 struct frame_info *frame = arg;
1870
1871 /* The sniffer should not allocate a prologue cache if it did not
1872 match this frame. */
1873 gdb_assert (frame->prologue_cache == NULL);
1874
1875 /* No sniffer should extend the frame chain; sniff based on what is
1876 already certain. */
1877 gdb_assert (!frame->prev_p);
1878
1879 /* The sniffer should not check the frame's ID; that's circular. */
1880 gdb_assert (!frame->this_id.p);
1881
1882 /* Clear cached fields dependent on the unwinder.
1883
1884 The previous PC is independent of the unwinder, but the previous
1885 function is not (see get_frame_address_in_block). */
1886 frame->prev_func.p = 0;
1887 frame->prev_func.addr = 0;
1888
1889 /* Discard the unwinder last, so that we can easily find it if an assertion
1890 in this function triggers. */
1891 frame->unwind = NULL;
1892 }
1893
1894 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1895 Return a cleanup which should be called if unwinding fails, and
1896 discarded if it succeeds. */
1897
1898 struct cleanup *
1899 frame_prepare_for_sniffer (struct frame_info *frame,
1900 const struct frame_unwind *unwind)
1901 {
1902 gdb_assert (frame->unwind == NULL);
1903 frame->unwind = unwind;
1904 return make_cleanup (frame_cleanup_after_sniffer, frame);
1905 }
1906
1907 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1908
1909 static struct cmd_list_element *set_backtrace_cmdlist;
1910 static struct cmd_list_element *show_backtrace_cmdlist;
1911
1912 static void
1913 set_backtrace_cmd (char *args, int from_tty)
1914 {
1915 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1916 }
1917
1918 static void
1919 show_backtrace_cmd (char *args, int from_tty)
1920 {
1921 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1922 }
1923
1924 void
1925 _initialize_frame (void)
1926 {
1927 obstack_init (&frame_cache_obstack);
1928
1929 observer_attach_target_changed (frame_observer_target_changed);
1930
1931 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1932 Set backtrace specific variables.\n\
1933 Configure backtrace variables such as the backtrace limit"),
1934 &set_backtrace_cmdlist, "set backtrace ",
1935 0/*allow-unknown*/, &setlist);
1936 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1937 Show backtrace specific variables\n\
1938 Show backtrace variables such as the backtrace limit"),
1939 &show_backtrace_cmdlist, "show backtrace ",
1940 0/*allow-unknown*/, &showlist);
1941
1942 add_setshow_boolean_cmd ("past-main", class_obscure,
1943 &backtrace_past_main, _("\
1944 Set whether backtraces should continue past \"main\"."), _("\
1945 Show whether backtraces should continue past \"main\"."), _("\
1946 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1947 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1948 of the stack trace."),
1949 NULL,
1950 show_backtrace_past_main,
1951 &set_backtrace_cmdlist,
1952 &show_backtrace_cmdlist);
1953
1954 add_setshow_boolean_cmd ("past-entry", class_obscure,
1955 &backtrace_past_entry, _("\
1956 Set whether backtraces should continue past the entry point of a program."),
1957 _("\
1958 Show whether backtraces should continue past the entry point of a program."),
1959 _("\
1960 Normally there are no callers beyond the entry point of a program, so GDB\n\
1961 will terminate the backtrace there. Set this variable if you need to see \n\
1962 the rest of the stack trace."),
1963 NULL,
1964 show_backtrace_past_entry,
1965 &set_backtrace_cmdlist,
1966 &show_backtrace_cmdlist);
1967
1968 add_setshow_integer_cmd ("limit", class_obscure,
1969 &backtrace_limit, _("\
1970 Set an upper bound on the number of backtrace levels."), _("\
1971 Show the upper bound on the number of backtrace levels."), _("\
1972 No more than the specified number of frames can be displayed or examined.\n\
1973 Zero is unlimited."),
1974 NULL,
1975 show_backtrace_limit,
1976 &set_backtrace_cmdlist,
1977 &show_backtrace_cmdlist);
1978
1979 /* Debug this files internals. */
1980 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1981 Set frame debugging."), _("\
1982 Show frame debugging."), _("\
1983 When non-zero, frame specific internal debugging is enabled."),
1984 NULL,
1985 show_frame_debug,
1986 &setdebuglist, &showdebuglist);
1987 }
This page took 0.092544 seconds and 4 git commands to generate.