2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991, 1994-1996, 1998, 2000-2004,
4 2007-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. */
133
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash. */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143 frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153 return frame_stash;
154
155 return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it. */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163 frame_stash = NULL;
164 }
165
166 /* Flag to control debugging. */
167
168 int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al. */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file,
184 _("Whether backtraces should "
185 "continue past \"main\" is %s.\n"),
186 value);
187 }
188
189 static int backtrace_past_entry;
190 static void
191 show_backtrace_past_entry (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Whether backtraces should continue past the "
195 "entry point of a program is %s.\n"),
196 value);
197 }
198
199 static int backtrace_limit = INT_MAX;
200 static void
201 show_backtrace_limit (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file,
205 _("An upper bound on the number "
206 "of backtrace levels is %s.\n"),
207 value);
208 }
209
210
211 static void
212 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
213 {
214 if (p)
215 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
216 else
217 fprintf_unfiltered (file, "!%s", name);
218 }
219
220 void
221 fprint_frame_id (struct ui_file *file, struct frame_id id)
222 {
223 fprintf_unfiltered (file, "{");
224 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "code", id.code_addr_p, id.code_addr);
227 fprintf_unfiltered (file, ",");
228 fprint_field (file, "special", id.special_addr_p, id.special_addr);
229 if (id.inline_depth)
230 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
231 fprintf_unfiltered (file, "}");
232 }
233
234 static void
235 fprint_frame_type (struct ui_file *file, enum frame_type type)
236 {
237 switch (type)
238 {
239 case NORMAL_FRAME:
240 fprintf_unfiltered (file, "NORMAL_FRAME");
241 return;
242 case DUMMY_FRAME:
243 fprintf_unfiltered (file, "DUMMY_FRAME");
244 return;
245 case INLINE_FRAME:
246 fprintf_unfiltered (file, "INLINE_FRAME");
247 return;
248 case SENTINEL_FRAME:
249 fprintf_unfiltered (file, "SENTINEL_FRAME");
250 return;
251 case SIGTRAMP_FRAME:
252 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
253 return;
254 case ARCH_FRAME:
255 fprintf_unfiltered (file, "ARCH_FRAME");
256 return;
257 default:
258 fprintf_unfiltered (file, "<unknown type>");
259 return;
260 };
261 }
262
263 static void
264 fprint_frame (struct ui_file *file, struct frame_info *fi)
265 {
266 if (fi == NULL)
267 {
268 fprintf_unfiltered (file, "<NULL frame>");
269 return;
270 }
271 fprintf_unfiltered (file, "{");
272 fprintf_unfiltered (file, "level=%d", fi->level);
273 fprintf_unfiltered (file, ",");
274 fprintf_unfiltered (file, "type=");
275 if (fi->unwind != NULL)
276 fprint_frame_type (file, fi->unwind->type);
277 else
278 fprintf_unfiltered (file, "<unknown>");
279 fprintf_unfiltered (file, ",");
280 fprintf_unfiltered (file, "unwind=");
281 if (fi->unwind != NULL)
282 gdb_print_host_address (fi->unwind, file);
283 else
284 fprintf_unfiltered (file, "<unknown>");
285 fprintf_unfiltered (file, ",");
286 fprintf_unfiltered (file, "pc=");
287 if (fi->next != NULL && fi->next->prev_pc.p)
288 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
289 else
290 fprintf_unfiltered (file, "<unknown>");
291 fprintf_unfiltered (file, ",");
292 fprintf_unfiltered (file, "id=");
293 if (fi->this_id.p)
294 fprint_frame_id (file, fi->this_id.value);
295 else
296 fprintf_unfiltered (file, "<unknown>");
297 fprintf_unfiltered (file, ",");
298 fprintf_unfiltered (file, "func=");
299 if (fi->next != NULL && fi->next->prev_func.p)
300 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
301 else
302 fprintf_unfiltered (file, "<unknown>");
303 fprintf_unfiltered (file, "}");
304 }
305
306 /* Given FRAME, return the enclosing normal frame for inlined
307 function frames. Otherwise return the original frame. */
308
309 static struct frame_info *
310 skip_inlined_frames (struct frame_info *frame)
311 {
312 while (get_frame_type (frame) == INLINE_FRAME)
313 frame = get_prev_frame (frame);
314
315 return frame;
316 }
317
318 /* Return a frame uniq ID that can be used to, later, re-find the
319 frame. */
320
321 struct frame_id
322 get_frame_id (struct frame_info *fi)
323 {
324 if (fi == NULL)
325 return null_frame_id;
326
327 if (!fi->this_id.p)
328 {
329 if (frame_debug)
330 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
331 fi->level);
332 /* Find the unwinder. */
333 if (fi->unwind == NULL)
334 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
335 /* Find THIS frame's ID. */
336 /* Default to outermost if no ID is found. */
337 fi->this_id.value = outer_frame_id;
338 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
339 gdb_assert (frame_id_p (fi->this_id.value));
340 fi->this_id.p = 1;
341 if (frame_debug)
342 {
343 fprintf_unfiltered (gdb_stdlog, "-> ");
344 fprint_frame_id (gdb_stdlog, fi->this_id.value);
345 fprintf_unfiltered (gdb_stdlog, " }\n");
346 }
347 }
348
349 frame_stash_add (fi);
350
351 return fi->this_id.value;
352 }
353
354 struct frame_id
355 get_stack_frame_id (struct frame_info *next_frame)
356 {
357 return get_frame_id (skip_inlined_frames (next_frame));
358 }
359
360 struct frame_id
361 frame_unwind_caller_id (struct frame_info *next_frame)
362 {
363 struct frame_info *this_frame;
364
365 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
366 the frame chain, leading to this function unintentionally
367 returning a null_frame_id (e.g., when a caller requests the frame
368 ID of "main()"s caller. */
369
370 next_frame = skip_inlined_frames (next_frame);
371 this_frame = get_prev_frame_1 (next_frame);
372 if (this_frame)
373 return get_frame_id (skip_inlined_frames (this_frame));
374 else
375 return null_frame_id;
376 }
377
378 const struct frame_id null_frame_id; /* All zeros. */
379 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
380
381 struct frame_id
382 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
383 CORE_ADDR special_addr)
384 {
385 struct frame_id id = null_frame_id;
386
387 id.stack_addr = stack_addr;
388 id.stack_addr_p = 1;
389 id.code_addr = code_addr;
390 id.code_addr_p = 1;
391 id.special_addr = special_addr;
392 id.special_addr_p = 1;
393 return id;
394 }
395
396 struct frame_id
397 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
398 {
399 struct frame_id id = null_frame_id;
400
401 id.stack_addr = stack_addr;
402 id.stack_addr_p = 1;
403 id.code_addr = code_addr;
404 id.code_addr_p = 1;
405 return id;
406 }
407
408 struct frame_id
409 frame_id_build_wild (CORE_ADDR stack_addr)
410 {
411 struct frame_id id = null_frame_id;
412
413 id.stack_addr = stack_addr;
414 id.stack_addr_p = 1;
415 return id;
416 }
417
418 int
419 frame_id_p (struct frame_id l)
420 {
421 int p;
422
423 /* The frame is valid iff it has a valid stack address. */
424 p = l.stack_addr_p;
425 /* outer_frame_id is also valid. */
426 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
427 p = 1;
428 if (frame_debug)
429 {
430 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
431 fprint_frame_id (gdb_stdlog, l);
432 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
433 }
434 return p;
435 }
436
437 int
438 frame_id_inlined_p (struct frame_id l)
439 {
440 if (!frame_id_p (l))
441 return 0;
442
443 return (l.inline_depth != 0);
444 }
445
446 int
447 frame_id_eq (struct frame_id l, struct frame_id r)
448 {
449 int eq;
450
451 if (!l.stack_addr_p && l.special_addr_p
452 && !r.stack_addr_p && r.special_addr_p)
453 /* The outermost frame marker is equal to itself. This is the
454 dodgy thing about outer_frame_id, since between execution steps
455 we might step into another function - from which we can't
456 unwind either. More thought required to get rid of
457 outer_frame_id. */
458 eq = 1;
459 else if (!l.stack_addr_p || !r.stack_addr_p)
460 /* Like a NaN, if either ID is invalid, the result is false.
461 Note that a frame ID is invalid iff it is the null frame ID. */
462 eq = 0;
463 else if (l.stack_addr != r.stack_addr)
464 /* If .stack addresses are different, the frames are different. */
465 eq = 0;
466 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
467 /* An invalid code addr is a wild card. If .code addresses are
468 different, the frames are different. */
469 eq = 0;
470 else if (l.special_addr_p && r.special_addr_p
471 && l.special_addr != r.special_addr)
472 /* An invalid special addr is a wild card (or unused). Otherwise
473 if special addresses are different, the frames are different. */
474 eq = 0;
475 else if (l.inline_depth != r.inline_depth)
476 /* If inline depths are different, the frames must be different. */
477 eq = 0;
478 else
479 /* Frames are equal. */
480 eq = 1;
481
482 if (frame_debug)
483 {
484 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
485 fprint_frame_id (gdb_stdlog, l);
486 fprintf_unfiltered (gdb_stdlog, ",r=");
487 fprint_frame_id (gdb_stdlog, r);
488 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
489 }
490 return eq;
491 }
492
493 /* Safety net to check whether frame ID L should be inner to
494 frame ID R, according to their stack addresses.
495
496 This method cannot be used to compare arbitrary frames, as the
497 ranges of valid stack addresses may be discontiguous (e.g. due
498 to sigaltstack).
499
500 However, it can be used as safety net to discover invalid frame
501 IDs in certain circumstances. Assuming that NEXT is the immediate
502 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
503
504 * The stack address of NEXT must be inner-than-or-equal to the stack
505 address of THIS.
506
507 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
508 error has occurred.
509
510 * If NEXT and THIS have different stack addresses, no other frame
511 in the frame chain may have a stack address in between.
512
513 Therefore, if frame_id_inner (TEST, THIS) holds, but
514 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
515 to a valid frame in the frame chain.
516
517 The sanity checks above cannot be performed when a SIGTRAMP frame
518 is involved, because signal handlers might be executed on a different
519 stack than the stack used by the routine that caused the signal
520 to be raised. This can happen for instance when a thread exceeds
521 its maximum stack size. In this case, certain compilers implement
522 a stack overflow strategy that cause the handler to be run on a
523 different stack. */
524
525 static int
526 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
527 {
528 int inner;
529
530 if (!l.stack_addr_p || !r.stack_addr_p)
531 /* Like NaN, any operation involving an invalid ID always fails. */
532 inner = 0;
533 else if (l.inline_depth > r.inline_depth
534 && l.stack_addr == r.stack_addr
535 && l.code_addr_p == r.code_addr_p
536 && l.special_addr_p == r.special_addr_p
537 && l.special_addr == r.special_addr)
538 {
539 /* Same function, different inlined functions. */
540 struct block *lb, *rb;
541
542 gdb_assert (l.code_addr_p && r.code_addr_p);
543
544 lb = block_for_pc (l.code_addr);
545 rb = block_for_pc (r.code_addr);
546
547 if (lb == NULL || rb == NULL)
548 /* Something's gone wrong. */
549 inner = 0;
550 else
551 /* This will return true if LB and RB are the same block, or
552 if the block with the smaller depth lexically encloses the
553 block with the greater depth. */
554 inner = contained_in (lb, rb);
555 }
556 else
557 /* Only return non-zero when strictly inner than. Note that, per
558 comment in "frame.h", there is some fuzz here. Frameless
559 functions are not strictly inner than (same .stack but
560 different .code and/or .special address). */
561 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
562 if (frame_debug)
563 {
564 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
565 fprint_frame_id (gdb_stdlog, l);
566 fprintf_unfiltered (gdb_stdlog, ",r=");
567 fprint_frame_id (gdb_stdlog, r);
568 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
569 }
570 return inner;
571 }
572
573 struct frame_info *
574 frame_find_by_id (struct frame_id id)
575 {
576 struct frame_info *frame, *prev_frame;
577
578 /* ZERO denotes the null frame, let the caller decide what to do
579 about it. Should it instead return get_current_frame()? */
580 if (!frame_id_p (id))
581 return NULL;
582
583 /* Try using the frame stash first. Finding it there removes the need
584 to perform the search by looping over all frames, which can be very
585 CPU-intensive if the number of frames is very high (the loop is O(n)
586 and get_prev_frame performs a series of checks that are relatively
587 expensive). This optimization is particularly useful when this function
588 is called from another function (such as value_fetch_lazy, case
589 VALUE_LVAL (val) == lval_register) which already loops over all frames,
590 making the overall behavior O(n^2). */
591 frame = frame_stash_find (id);
592 if (frame)
593 return frame;
594
595 for (frame = get_current_frame (); ; frame = prev_frame)
596 {
597 struct frame_id this = get_frame_id (frame);
598
599 if (frame_id_eq (id, this))
600 /* An exact match. */
601 return frame;
602
603 prev_frame = get_prev_frame (frame);
604 if (!prev_frame)
605 return NULL;
606
607 /* As a safety net to avoid unnecessary backtracing while trying
608 to find an invalid ID, we check for a common situation where
609 we can detect from comparing stack addresses that no other
610 frame in the current frame chain can have this ID. See the
611 comment at frame_id_inner for details. */
612 if (get_frame_type (frame) == NORMAL_FRAME
613 && !frame_id_inner (get_frame_arch (frame), id, this)
614 && frame_id_inner (get_frame_arch (prev_frame), id,
615 get_frame_id (prev_frame)))
616 return NULL;
617 }
618 return NULL;
619 }
620
621 static int
622 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
623 {
624 if (!this_frame->prev_pc.p)
625 {
626 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
627 {
628 volatile struct gdb_exception ex;
629 struct gdbarch *prev_gdbarch;
630 CORE_ADDR pc = 0;
631
632 /* The right way. The `pure' way. The one true way. This
633 method depends solely on the register-unwind code to
634 determine the value of registers in THIS frame, and hence
635 the value of this frame's PC (resume address). A typical
636 implementation is no more than:
637
638 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
639 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
640
641 Note: this method is very heavily dependent on a correct
642 register-unwind implementation, it pays to fix that
643 method first; this method is frame type agnostic, since
644 it only deals with register values, it works with any
645 frame. This is all in stark contrast to the old
646 FRAME_SAVED_PC which would try to directly handle all the
647 different ways that a PC could be unwound. */
648 prev_gdbarch = frame_unwind_arch (this_frame);
649
650 TRY_CATCH (ex, RETURN_MASK_ERROR)
651 {
652 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
653 }
654 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
655 {
656 this_frame->prev_pc.p = -1;
657
658 if (frame_debug)
659 fprintf_unfiltered (gdb_stdlog,
660 "{ frame_unwind_pc (this_frame=%d)"
661 " -> <unavailable> }\n",
662 this_frame->level);
663 }
664 else if (ex.reason < 0)
665 {
666 throw_exception (ex);
667 }
668 else
669 {
670 this_frame->prev_pc.value = pc;
671 this_frame->prev_pc.p = 1;
672 if (frame_debug)
673 fprintf_unfiltered (gdb_stdlog,
674 "{ frame_unwind_pc (this_frame=%d) "
675 "-> %s }\n",
676 this_frame->level,
677 hex_string (this_frame->prev_pc.value));
678 }
679 }
680 else
681 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
682 }
683 if (this_frame->prev_pc.p < 0)
684 {
685 *pc = -1;
686 return 0;
687 }
688 else
689 {
690 *pc = this_frame->prev_pc.value;
691 return 1;
692 }
693 }
694
695 static CORE_ADDR
696 frame_unwind_pc (struct frame_info *this_frame)
697 {
698 CORE_ADDR pc;
699
700 if (!frame_unwind_pc_if_available (this_frame, &pc))
701 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
702 else
703 return pc;
704 }
705
706 CORE_ADDR
707 frame_unwind_caller_pc (struct frame_info *this_frame)
708 {
709 return frame_unwind_pc (skip_inlined_frames (this_frame));
710 }
711
712 int
713 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
714 CORE_ADDR *pc)
715 {
716 return frame_unwind_pc_if_available (skip_inlined_frames (this_frame), pc);
717 }
718
719 int
720 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
721 {
722 struct frame_info *next_frame = this_frame->next;
723
724 if (!next_frame->prev_func.p)
725 {
726 CORE_ADDR addr_in_block;
727
728 /* Make certain that this, and not the adjacent, function is
729 found. */
730 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
731 {
732 next_frame->prev_func.p = -1;
733 if (frame_debug)
734 fprintf_unfiltered (gdb_stdlog,
735 "{ get_frame_func (this_frame=%d)"
736 " -> unavailable }\n",
737 this_frame->level);
738 }
739 else
740 {
741 next_frame->prev_func.p = 1;
742 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
743 if (frame_debug)
744 fprintf_unfiltered (gdb_stdlog,
745 "{ get_frame_func (this_frame=%d) -> %s }\n",
746 this_frame->level,
747 hex_string (next_frame->prev_func.addr));
748 }
749 }
750
751 if (next_frame->prev_func.p < 0)
752 {
753 *pc = -1;
754 return 0;
755 }
756 else
757 {
758 *pc = next_frame->prev_func.addr;
759 return 1;
760 }
761 }
762
763 CORE_ADDR
764 get_frame_func (struct frame_info *this_frame)
765 {
766 CORE_ADDR pc;
767
768 if (!get_frame_func_if_available (this_frame, &pc))
769 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
770
771 return pc;
772 }
773
774 static enum register_status
775 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
776 {
777 if (!frame_register_read (src, regnum, buf))
778 return REG_UNAVAILABLE;
779 else
780 return REG_VALID;
781 }
782
783 struct regcache *
784 frame_save_as_regcache (struct frame_info *this_frame)
785 {
786 struct address_space *aspace = get_frame_address_space (this_frame);
787 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
788 aspace);
789 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
790
791 regcache_save (regcache, do_frame_register_read, this_frame);
792 discard_cleanups (cleanups);
793 return regcache;
794 }
795
796 void
797 frame_pop (struct frame_info *this_frame)
798 {
799 struct frame_info *prev_frame;
800 struct regcache *scratch;
801 struct cleanup *cleanups;
802
803 if (get_frame_type (this_frame) == DUMMY_FRAME)
804 {
805 /* Popping a dummy frame involves restoring more than just registers.
806 dummy_frame_pop does all the work. */
807 dummy_frame_pop (get_frame_id (this_frame));
808 return;
809 }
810
811 /* Ensure that we have a frame to pop to. */
812 prev_frame = get_prev_frame_1 (this_frame);
813
814 if (!prev_frame)
815 error (_("Cannot pop the initial frame."));
816
817 /* Make a copy of all the register values unwound from this frame.
818 Save them in a scratch buffer so that there isn't a race between
819 trying to extract the old values from the current regcache while
820 at the same time writing new values into that same cache. */
821 scratch = frame_save_as_regcache (prev_frame);
822 cleanups = make_cleanup_regcache_xfree (scratch);
823
824 /* FIXME: cagney/2003-03-16: It should be possible to tell the
825 target's register cache that it is about to be hit with a burst
826 register transfer and that the sequence of register writes should
827 be batched. The pair target_prepare_to_store() and
828 target_store_registers() kind of suggest this functionality.
829 Unfortunately, they don't implement it. Their lack of a formal
830 definition can lead to targets writing back bogus values
831 (arguably a bug in the target code mind). */
832 /* Now copy those saved registers into the current regcache.
833 Here, regcache_cpy() calls regcache_restore(). */
834 regcache_cpy (get_current_regcache (), scratch);
835 do_cleanups (cleanups);
836
837 /* We've made right mess of GDB's local state, just discard
838 everything. */
839 reinit_frame_cache ();
840 }
841
842 void
843 frame_register_unwind (struct frame_info *frame, int regnum,
844 int *optimizedp, int *unavailablep,
845 enum lval_type *lvalp, CORE_ADDR *addrp,
846 int *realnump, gdb_byte *bufferp)
847 {
848 struct value *value;
849
850 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
851 that the value proper does not need to be fetched. */
852 gdb_assert (optimizedp != NULL);
853 gdb_assert (lvalp != NULL);
854 gdb_assert (addrp != NULL);
855 gdb_assert (realnump != NULL);
856 /* gdb_assert (bufferp != NULL); */
857
858 value = frame_unwind_register_value (frame, regnum);
859
860 gdb_assert (value != NULL);
861
862 *optimizedp = value_optimized_out (value);
863 *unavailablep = !value_entirely_available (value);
864 *lvalp = VALUE_LVAL (value);
865 *addrp = value_address (value);
866 *realnump = VALUE_REGNUM (value);
867
868 if (bufferp)
869 {
870 if (!*optimizedp && !*unavailablep)
871 memcpy (bufferp, value_contents_all (value),
872 TYPE_LENGTH (value_type (value)));
873 else
874 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
875 }
876
877 /* Dispose of the new value. This prevents watchpoints from
878 trying to watch the saved frame pointer. */
879 release_value (value);
880 value_free (value);
881 }
882
883 void
884 frame_register (struct frame_info *frame, int regnum,
885 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
886 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
887 {
888 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
889 that the value proper does not need to be fetched. */
890 gdb_assert (optimizedp != NULL);
891 gdb_assert (lvalp != NULL);
892 gdb_assert (addrp != NULL);
893 gdb_assert (realnump != NULL);
894 /* gdb_assert (bufferp != NULL); */
895
896 /* Obtain the register value by unwinding the register from the next
897 (more inner frame). */
898 gdb_assert (frame != NULL && frame->next != NULL);
899 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
900 lvalp, addrp, realnump, bufferp);
901 }
902
903 void
904 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
905 {
906 int optimized;
907 int unavailable;
908 CORE_ADDR addr;
909 int realnum;
910 enum lval_type lval;
911
912 frame_register_unwind (frame, regnum, &optimized, &unavailable,
913 &lval, &addr, &realnum, buf);
914
915 if (optimized)
916 error (_("Register %d was optimized out"), regnum);
917 if (unavailable)
918 throw_error (NOT_AVAILABLE_ERROR,
919 _("Register %d is not available"), regnum);
920 }
921
922 void
923 get_frame_register (struct frame_info *frame,
924 int regnum, gdb_byte *buf)
925 {
926 frame_unwind_register (frame->next, regnum, buf);
927 }
928
929 struct value *
930 frame_unwind_register_value (struct frame_info *frame, int regnum)
931 {
932 struct gdbarch *gdbarch;
933 struct value *value;
934
935 gdb_assert (frame != NULL);
936 gdbarch = frame_unwind_arch (frame);
937
938 if (frame_debug)
939 {
940 fprintf_unfiltered (gdb_stdlog,
941 "{ frame_unwind_register_value "
942 "(frame=%d,regnum=%d(%s),...) ",
943 frame->level, regnum,
944 user_reg_map_regnum_to_name (gdbarch, regnum));
945 }
946
947 /* Find the unwinder. */
948 if (frame->unwind == NULL)
949 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
950
951 /* Ask this frame to unwind its register. */
952 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
953
954 if (frame_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "->");
957 if (value_optimized_out (value))
958 fprintf_unfiltered (gdb_stdlog, " optimized out");
959 else
960 {
961 if (VALUE_LVAL (value) == lval_register)
962 fprintf_unfiltered (gdb_stdlog, " register=%d",
963 VALUE_REGNUM (value));
964 else if (VALUE_LVAL (value) == lval_memory)
965 fprintf_unfiltered (gdb_stdlog, " address=%s",
966 paddress (gdbarch,
967 value_address (value)));
968 else
969 fprintf_unfiltered (gdb_stdlog, " computed");
970
971 if (value_lazy (value))
972 fprintf_unfiltered (gdb_stdlog, " lazy");
973 else
974 {
975 int i;
976 const gdb_byte *buf = value_contents (value);
977
978 fprintf_unfiltered (gdb_stdlog, " bytes=");
979 fprintf_unfiltered (gdb_stdlog, "[");
980 for (i = 0; i < register_size (gdbarch, regnum); i++)
981 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
982 fprintf_unfiltered (gdb_stdlog, "]");
983 }
984 }
985
986 fprintf_unfiltered (gdb_stdlog, " }\n");
987 }
988
989 return value;
990 }
991
992 struct value *
993 get_frame_register_value (struct frame_info *frame, int regnum)
994 {
995 return frame_unwind_register_value (frame->next, regnum);
996 }
997
998 LONGEST
999 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1000 {
1001 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 int size = register_size (gdbarch, regnum);
1004 gdb_byte buf[MAX_REGISTER_SIZE];
1005
1006 frame_unwind_register (frame, regnum, buf);
1007 return extract_signed_integer (buf, size, byte_order);
1008 }
1009
1010 LONGEST
1011 get_frame_register_signed (struct frame_info *frame, int regnum)
1012 {
1013 return frame_unwind_register_signed (frame->next, regnum);
1014 }
1015
1016 ULONGEST
1017 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1018 {
1019 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1021 int size = register_size (gdbarch, regnum);
1022 gdb_byte buf[MAX_REGISTER_SIZE];
1023
1024 frame_unwind_register (frame, regnum, buf);
1025 return extract_unsigned_integer (buf, size, byte_order);
1026 }
1027
1028 ULONGEST
1029 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1030 {
1031 return frame_unwind_register_unsigned (frame->next, regnum);
1032 }
1033
1034 int
1035 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1036 ULONGEST *val)
1037 {
1038 struct value *regval = get_frame_register_value (frame, regnum);
1039
1040 if (!value_optimized_out (regval)
1041 && value_entirely_available (regval))
1042 {
1043 struct gdbarch *gdbarch = get_frame_arch (frame);
1044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1045 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1046
1047 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1048 return 1;
1049 }
1050
1051 return 0;
1052 }
1053
1054 void
1055 put_frame_register (struct frame_info *frame, int regnum,
1056 const gdb_byte *buf)
1057 {
1058 struct gdbarch *gdbarch = get_frame_arch (frame);
1059 int realnum;
1060 int optim;
1061 int unavail;
1062 enum lval_type lval;
1063 CORE_ADDR addr;
1064
1065 frame_register (frame, regnum, &optim, &unavail,
1066 &lval, &addr, &realnum, NULL);
1067 if (optim)
1068 error (_("Attempt to assign to a value that was optimized out."));
1069 switch (lval)
1070 {
1071 case lval_memory:
1072 {
1073 /* FIXME: write_memory doesn't yet take constant buffers.
1074 Arrrg! */
1075 gdb_byte tmp[MAX_REGISTER_SIZE];
1076
1077 memcpy (tmp, buf, register_size (gdbarch, regnum));
1078 write_memory (addr, tmp, register_size (gdbarch, regnum));
1079 break;
1080 }
1081 case lval_register:
1082 regcache_cooked_write (get_current_regcache (), realnum, buf);
1083 break;
1084 default:
1085 error (_("Attempt to assign to an unmodifiable value."));
1086 }
1087 }
1088
1089 /* frame_register_read ()
1090
1091 Find and return the value of REGNUM for the specified stack frame.
1092 The number of bytes copied is REGISTER_SIZE (REGNUM).
1093
1094 Returns 0 if the register value could not be found. */
1095
1096 int
1097 frame_register_read (struct frame_info *frame, int regnum,
1098 gdb_byte *myaddr)
1099 {
1100 int optimized;
1101 int unavailable;
1102 enum lval_type lval;
1103 CORE_ADDR addr;
1104 int realnum;
1105
1106 frame_register (frame, regnum, &optimized, &unavailable,
1107 &lval, &addr, &realnum, myaddr);
1108
1109 return !optimized && !unavailable;
1110 }
1111
1112 int
1113 get_frame_register_bytes (struct frame_info *frame, int regnum,
1114 CORE_ADDR offset, int len, gdb_byte *myaddr,
1115 int *optimizedp, int *unavailablep)
1116 {
1117 struct gdbarch *gdbarch = get_frame_arch (frame);
1118 int i;
1119 int maxsize;
1120 int numregs;
1121
1122 /* Skip registers wholly inside of OFFSET. */
1123 while (offset >= register_size (gdbarch, regnum))
1124 {
1125 offset -= register_size (gdbarch, regnum);
1126 regnum++;
1127 }
1128
1129 /* Ensure that we will not read beyond the end of the register file.
1130 This can only ever happen if the debug information is bad. */
1131 maxsize = -offset;
1132 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1133 for (i = regnum; i < numregs; i++)
1134 {
1135 int thissize = register_size (gdbarch, i);
1136
1137 if (thissize == 0)
1138 break; /* This register is not available on this architecture. */
1139 maxsize += thissize;
1140 }
1141 if (len > maxsize)
1142 error (_("Bad debug information detected: "
1143 "Attempt to read %d bytes from registers."), len);
1144
1145 /* Copy the data. */
1146 while (len > 0)
1147 {
1148 int curr_len = register_size (gdbarch, regnum) - offset;
1149
1150 if (curr_len > len)
1151 curr_len = len;
1152
1153 if (curr_len == register_size (gdbarch, regnum))
1154 {
1155 enum lval_type lval;
1156 CORE_ADDR addr;
1157 int realnum;
1158
1159 frame_register (frame, regnum, optimizedp, unavailablep,
1160 &lval, &addr, &realnum, myaddr);
1161 if (*optimizedp || *unavailablep)
1162 return 0;
1163 }
1164 else
1165 {
1166 gdb_byte buf[MAX_REGISTER_SIZE];
1167 enum lval_type lval;
1168 CORE_ADDR addr;
1169 int realnum;
1170
1171 frame_register (frame, regnum, optimizedp, unavailablep,
1172 &lval, &addr, &realnum, buf);
1173 if (*optimizedp || *unavailablep)
1174 return 0;
1175 memcpy (myaddr, buf + offset, curr_len);
1176 }
1177
1178 myaddr += curr_len;
1179 len -= curr_len;
1180 offset = 0;
1181 regnum++;
1182 }
1183
1184 *optimizedp = 0;
1185 *unavailablep = 0;
1186 return 1;
1187 }
1188
1189 void
1190 put_frame_register_bytes (struct frame_info *frame, int regnum,
1191 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1192 {
1193 struct gdbarch *gdbarch = get_frame_arch (frame);
1194
1195 /* Skip registers wholly inside of OFFSET. */
1196 while (offset >= register_size (gdbarch, regnum))
1197 {
1198 offset -= register_size (gdbarch, regnum);
1199 regnum++;
1200 }
1201
1202 /* Copy the data. */
1203 while (len > 0)
1204 {
1205 int curr_len = register_size (gdbarch, regnum) - offset;
1206
1207 if (curr_len > len)
1208 curr_len = len;
1209
1210 if (curr_len == register_size (gdbarch, regnum))
1211 {
1212 put_frame_register (frame, regnum, myaddr);
1213 }
1214 else
1215 {
1216 gdb_byte buf[MAX_REGISTER_SIZE];
1217
1218 frame_register_read (frame, regnum, buf);
1219 memcpy (buf + offset, myaddr, curr_len);
1220 put_frame_register (frame, regnum, buf);
1221 }
1222
1223 myaddr += curr_len;
1224 len -= curr_len;
1225 offset = 0;
1226 regnum++;
1227 }
1228 }
1229
1230 /* Create a sentinel frame. */
1231
1232 static struct frame_info *
1233 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1234 {
1235 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1236
1237 frame->level = -1;
1238 frame->pspace = pspace;
1239 frame->aspace = get_regcache_aspace (regcache);
1240 /* Explicitly initialize the sentinel frame's cache. Provide it
1241 with the underlying regcache. In the future additional
1242 information, such as the frame's thread will be added. */
1243 frame->prologue_cache = sentinel_frame_cache (regcache);
1244 /* For the moment there is only one sentinel frame implementation. */
1245 frame->unwind = &sentinel_frame_unwind;
1246 /* Link this frame back to itself. The frame is self referential
1247 (the unwound PC is the same as the pc), so make it so. */
1248 frame->next = frame;
1249 /* Make the sentinel frame's ID valid, but invalid. That way all
1250 comparisons with it should fail. */
1251 frame->this_id.p = 1;
1252 frame->this_id.value = null_frame_id;
1253 if (frame_debug)
1254 {
1255 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1256 fprint_frame (gdb_stdlog, frame);
1257 fprintf_unfiltered (gdb_stdlog, " }\n");
1258 }
1259 return frame;
1260 }
1261
1262 /* Info about the innermost stack frame (contents of FP register). */
1263
1264 static struct frame_info *current_frame;
1265
1266 /* Cache for frame addresses already read by gdb. Valid only while
1267 inferior is stopped. Control variables for the frame cache should
1268 be local to this module. */
1269
1270 static struct obstack frame_cache_obstack;
1271
1272 void *
1273 frame_obstack_zalloc (unsigned long size)
1274 {
1275 void *data = obstack_alloc (&frame_cache_obstack, size);
1276
1277 memset (data, 0, size);
1278 return data;
1279 }
1280
1281 /* Return the innermost (currently executing) stack frame. This is
1282 split into two functions. The function unwind_to_current_frame()
1283 is wrapped in catch exceptions so that, even when the unwind of the
1284 sentinel frame fails, the function still returns a stack frame. */
1285
1286 static int
1287 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1288 {
1289 struct frame_info *frame = get_prev_frame (args);
1290
1291 /* A sentinel frame can fail to unwind, e.g., because its PC value
1292 lands in somewhere like start. */
1293 if (frame == NULL)
1294 return 1;
1295 current_frame = frame;
1296 return 0;
1297 }
1298
1299 struct frame_info *
1300 get_current_frame (void)
1301 {
1302 /* First check, and report, the lack of registers. Having GDB
1303 report "No stack!" or "No memory" when the target doesn't even
1304 have registers is very confusing. Besides, "printcmd.exp"
1305 explicitly checks that ``print $pc'' with no registers prints "No
1306 registers". */
1307 if (!target_has_registers)
1308 error (_("No registers."));
1309 if (!target_has_stack)
1310 error (_("No stack."));
1311 if (!target_has_memory)
1312 error (_("No memory."));
1313 /* Traceframes are effectively a substitute for the live inferior. */
1314 if (get_traceframe_number () < 0)
1315 {
1316 if (ptid_equal (inferior_ptid, null_ptid))
1317 error (_("No selected thread."));
1318 if (is_exited (inferior_ptid))
1319 error (_("Invalid selected thread."));
1320 if (is_executing (inferior_ptid))
1321 error (_("Target is executing."));
1322 }
1323
1324 if (current_frame == NULL)
1325 {
1326 struct frame_info *sentinel_frame =
1327 create_sentinel_frame (current_program_space, get_current_regcache ());
1328 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1329 sentinel_frame, RETURN_MASK_ERROR) != 0)
1330 {
1331 /* Oops! Fake a current frame? Is this useful? It has a PC
1332 of zero, for instance. */
1333 current_frame = sentinel_frame;
1334 }
1335 }
1336 return current_frame;
1337 }
1338
1339 /* The "selected" stack frame is used by default for local and arg
1340 access. May be zero, for no selected frame. */
1341
1342 static struct frame_info *selected_frame;
1343
1344 int
1345 has_stack_frames (void)
1346 {
1347 if (!target_has_registers || !target_has_stack || !target_has_memory)
1348 return 0;
1349
1350 /* Traceframes are effectively a substitute for the live inferior. */
1351 if (get_traceframe_number () < 0)
1352 {
1353 /* No current inferior, no frame. */
1354 if (ptid_equal (inferior_ptid, null_ptid))
1355 return 0;
1356
1357 /* Don't try to read from a dead thread. */
1358 if (is_exited (inferior_ptid))
1359 return 0;
1360
1361 /* ... or from a spinning thread. */
1362 if (is_executing (inferior_ptid))
1363 return 0;
1364 }
1365
1366 return 1;
1367 }
1368
1369 /* Return the selected frame. Always non-NULL (unless there isn't an
1370 inferior sufficient for creating a frame) in which case an error is
1371 thrown. */
1372
1373 struct frame_info *
1374 get_selected_frame (const char *message)
1375 {
1376 if (selected_frame == NULL)
1377 {
1378 if (message != NULL && !has_stack_frames ())
1379 error (("%s"), message);
1380 /* Hey! Don't trust this. It should really be re-finding the
1381 last selected frame of the currently selected thread. This,
1382 though, is better than nothing. */
1383 select_frame (get_current_frame ());
1384 }
1385 /* There is always a frame. */
1386 gdb_assert (selected_frame != NULL);
1387 return selected_frame;
1388 }
1389
1390 /* If there is a selected frame, return it. Otherwise, return NULL. */
1391
1392 struct frame_info *
1393 get_selected_frame_if_set (void)
1394 {
1395 return selected_frame;
1396 }
1397
1398 /* This is a variant of get_selected_frame() which can be called when
1399 the inferior does not have a frame; in that case it will return
1400 NULL instead of calling error(). */
1401
1402 struct frame_info *
1403 deprecated_safe_get_selected_frame (void)
1404 {
1405 if (!has_stack_frames ())
1406 return NULL;
1407 return get_selected_frame (NULL);
1408 }
1409
1410 /* Select frame FI (or NULL - to invalidate the current frame). */
1411
1412 void
1413 select_frame (struct frame_info *fi)
1414 {
1415 selected_frame = fi;
1416 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1417 frame is being invalidated. */
1418 if (deprecated_selected_frame_level_changed_hook)
1419 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1420
1421 /* FIXME: kseitz/2002-08-28: It would be nice to call
1422 selected_frame_level_changed_event() right here, but due to limitations
1423 in the current interfaces, we would end up flooding UIs with events
1424 because select_frame() is used extensively internally.
1425
1426 Once we have frame-parameterized frame (and frame-related) commands,
1427 the event notification can be moved here, since this function will only
1428 be called when the user's selected frame is being changed. */
1429
1430 /* Ensure that symbols for this frame are read in. Also, determine the
1431 source language of this frame, and switch to it if desired. */
1432 if (fi)
1433 {
1434 CORE_ADDR pc;
1435
1436 /* We retrieve the frame's symtab by using the frame PC.
1437 However we cannot use the frame PC as-is, because it usually
1438 points to the instruction following the "call", which is
1439 sometimes the first instruction of another function. So we
1440 rely on get_frame_address_in_block() which provides us with a
1441 PC which is guaranteed to be inside the frame's code
1442 block. */
1443 if (get_frame_address_in_block_if_available (fi, &pc))
1444 {
1445 struct symtab *s = find_pc_symtab (pc);
1446
1447 if (s
1448 && s->language != current_language->la_language
1449 && s->language != language_unknown
1450 && language_mode == language_mode_auto)
1451 set_language (s->language);
1452 }
1453 }
1454 }
1455
1456 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1457 Always returns a non-NULL value. */
1458
1459 struct frame_info *
1460 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1461 {
1462 struct frame_info *fi;
1463
1464 if (frame_debug)
1465 {
1466 fprintf_unfiltered (gdb_stdlog,
1467 "{ create_new_frame (addr=%s, pc=%s) ",
1468 hex_string (addr), hex_string (pc));
1469 }
1470
1471 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1472
1473 fi->next = create_sentinel_frame (current_program_space,
1474 get_current_regcache ());
1475
1476 /* Set/update this frame's cached PC value, found in the next frame.
1477 Do this before looking for this frame's unwinder. A sniffer is
1478 very likely to read this, and the corresponding unwinder is
1479 entitled to rely that the PC doesn't magically change. */
1480 fi->next->prev_pc.value = pc;
1481 fi->next->prev_pc.p = 1;
1482
1483 /* We currently assume that frame chain's can't cross spaces. */
1484 fi->pspace = fi->next->pspace;
1485 fi->aspace = fi->next->aspace;
1486
1487 /* Select/initialize both the unwind function and the frame's type
1488 based on the PC. */
1489 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1490
1491 fi->this_id.p = 1;
1492 fi->this_id.value = frame_id_build (addr, pc);
1493
1494 if (frame_debug)
1495 {
1496 fprintf_unfiltered (gdb_stdlog, "-> ");
1497 fprint_frame (gdb_stdlog, fi);
1498 fprintf_unfiltered (gdb_stdlog, " }\n");
1499 }
1500
1501 return fi;
1502 }
1503
1504 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1505 innermost frame). Be careful to not fall off the bottom of the
1506 frame chain and onto the sentinel frame. */
1507
1508 struct frame_info *
1509 get_next_frame (struct frame_info *this_frame)
1510 {
1511 if (this_frame->level > 0)
1512 return this_frame->next;
1513 else
1514 return NULL;
1515 }
1516
1517 /* Observer for the target_changed event. */
1518
1519 static void
1520 frame_observer_target_changed (struct target_ops *target)
1521 {
1522 reinit_frame_cache ();
1523 }
1524
1525 /* Flush the entire frame cache. */
1526
1527 void
1528 reinit_frame_cache (void)
1529 {
1530 struct frame_info *fi;
1531
1532 /* Tear down all frame caches. */
1533 for (fi = current_frame; fi != NULL; fi = fi->prev)
1534 {
1535 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1536 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1537 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1538 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1539 }
1540
1541 /* Since we can't really be sure what the first object allocated was. */
1542 obstack_free (&frame_cache_obstack, 0);
1543 obstack_init (&frame_cache_obstack);
1544
1545 if (current_frame != NULL)
1546 annotate_frames_invalid ();
1547
1548 current_frame = NULL; /* Invalidate cache */
1549 select_frame (NULL);
1550 frame_stash_invalidate ();
1551 if (frame_debug)
1552 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1553 }
1554
1555 /* Find where a register is saved (in memory or another register).
1556 The result of frame_register_unwind is just where it is saved
1557 relative to this particular frame. */
1558
1559 static void
1560 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1561 int *optimizedp, enum lval_type *lvalp,
1562 CORE_ADDR *addrp, int *realnump)
1563 {
1564 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1565
1566 while (this_frame != NULL)
1567 {
1568 int unavailable;
1569
1570 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1571 lvalp, addrp, realnump, NULL);
1572
1573 if (*optimizedp)
1574 break;
1575
1576 if (*lvalp != lval_register)
1577 break;
1578
1579 regnum = *realnump;
1580 this_frame = get_next_frame (this_frame);
1581 }
1582 }
1583
1584 /* Return a "struct frame_info" corresponding to the frame that called
1585 THIS_FRAME. Returns NULL if there is no such frame.
1586
1587 Unlike get_prev_frame, this function always tries to unwind the
1588 frame. */
1589
1590 static struct frame_info *
1591 get_prev_frame_1 (struct frame_info *this_frame)
1592 {
1593 struct frame_id this_id;
1594 struct gdbarch *gdbarch;
1595
1596 gdb_assert (this_frame != NULL);
1597 gdbarch = get_frame_arch (this_frame);
1598
1599 if (frame_debug)
1600 {
1601 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1602 if (this_frame != NULL)
1603 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1604 else
1605 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1606 fprintf_unfiltered (gdb_stdlog, ") ");
1607 }
1608
1609 /* Only try to do the unwind once. */
1610 if (this_frame->prev_p)
1611 {
1612 if (frame_debug)
1613 {
1614 fprintf_unfiltered (gdb_stdlog, "-> ");
1615 fprint_frame (gdb_stdlog, this_frame->prev);
1616 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1617 }
1618 return this_frame->prev;
1619 }
1620
1621 /* If the frame unwinder hasn't been selected yet, we must do so
1622 before setting prev_p; otherwise the check for misbehaved
1623 sniffers will think that this frame's sniffer tried to unwind
1624 further (see frame_cleanup_after_sniffer). */
1625 if (this_frame->unwind == NULL)
1626 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1627
1628 this_frame->prev_p = 1;
1629 this_frame->stop_reason = UNWIND_NO_REASON;
1630
1631 /* If we are unwinding from an inline frame, all of the below tests
1632 were already performed when we unwound from the next non-inline
1633 frame. We must skip them, since we can not get THIS_FRAME's ID
1634 until we have unwound all the way down to the previous non-inline
1635 frame. */
1636 if (get_frame_type (this_frame) == INLINE_FRAME)
1637 return get_prev_frame_raw (this_frame);
1638
1639 /* Check that this frame is unwindable. If it isn't, don't try to
1640 unwind to the prev frame. */
1641 this_frame->stop_reason
1642 = this_frame->unwind->stop_reason (this_frame,
1643 &this_frame->prologue_cache);
1644
1645 if (this_frame->stop_reason != UNWIND_NO_REASON)
1646 return NULL;
1647
1648 /* Check that this frame's ID was valid. If it wasn't, don't try to
1649 unwind to the prev frame. Be careful to not apply this test to
1650 the sentinel frame. */
1651 this_id = get_frame_id (this_frame);
1652 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1653 {
1654 if (frame_debug)
1655 {
1656 fprintf_unfiltered (gdb_stdlog, "-> ");
1657 fprint_frame (gdb_stdlog, NULL);
1658 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1659 }
1660 this_frame->stop_reason = UNWIND_NULL_ID;
1661 return NULL;
1662 }
1663
1664 /* Check that this frame's ID isn't inner to (younger, below, next)
1665 the next frame. This happens when a frame unwind goes backwards.
1666 This check is valid only if this frame and the next frame are NORMAL.
1667 See the comment at frame_id_inner for details. */
1668 if (get_frame_type (this_frame) == NORMAL_FRAME
1669 && this_frame->next->unwind->type == NORMAL_FRAME
1670 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1671 get_frame_id (this_frame->next)))
1672 {
1673 CORE_ADDR this_pc_in_block;
1674 struct minimal_symbol *morestack_msym;
1675 const char *morestack_name = NULL;
1676
1677 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1678 this_pc_in_block = get_frame_address_in_block (this_frame);
1679 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1680 if (morestack_msym)
1681 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1682 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1683 {
1684 if (frame_debug)
1685 {
1686 fprintf_unfiltered (gdb_stdlog, "-> ");
1687 fprint_frame (gdb_stdlog, NULL);
1688 fprintf_unfiltered (gdb_stdlog,
1689 " // this frame ID is inner }\n");
1690 }
1691 this_frame->stop_reason = UNWIND_INNER_ID;
1692 return NULL;
1693 }
1694 }
1695
1696 /* Check that this and the next frame are not identical. If they
1697 are, there is most likely a stack cycle. As with the inner-than
1698 test above, avoid comparing the inner-most and sentinel frames. */
1699 if (this_frame->level > 0
1700 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1701 {
1702 if (frame_debug)
1703 {
1704 fprintf_unfiltered (gdb_stdlog, "-> ");
1705 fprint_frame (gdb_stdlog, NULL);
1706 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1707 }
1708 this_frame->stop_reason = UNWIND_SAME_ID;
1709 return NULL;
1710 }
1711
1712 /* Check that this and the next frame do not unwind the PC register
1713 to the same memory location. If they do, then even though they
1714 have different frame IDs, the new frame will be bogus; two
1715 functions can't share a register save slot for the PC. This can
1716 happen when the prologue analyzer finds a stack adjustment, but
1717 no PC save.
1718
1719 This check does assume that the "PC register" is roughly a
1720 traditional PC, even if the gdbarch_unwind_pc method adjusts
1721 it (we do not rely on the value, only on the unwound PC being
1722 dependent on this value). A potential improvement would be
1723 to have the frame prev_pc method and the gdbarch unwind_pc
1724 method set the same lval and location information as
1725 frame_register_unwind. */
1726 if (this_frame->level > 0
1727 && gdbarch_pc_regnum (gdbarch) >= 0
1728 && get_frame_type (this_frame) == NORMAL_FRAME
1729 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1730 || get_frame_type (this_frame->next) == INLINE_FRAME))
1731 {
1732 int optimized, realnum, nrealnum;
1733 enum lval_type lval, nlval;
1734 CORE_ADDR addr, naddr;
1735
1736 frame_register_unwind_location (this_frame,
1737 gdbarch_pc_regnum (gdbarch),
1738 &optimized, &lval, &addr, &realnum);
1739 frame_register_unwind_location (get_next_frame (this_frame),
1740 gdbarch_pc_regnum (gdbarch),
1741 &optimized, &nlval, &naddr, &nrealnum);
1742
1743 if ((lval == lval_memory && lval == nlval && addr == naddr)
1744 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1745 {
1746 if (frame_debug)
1747 {
1748 fprintf_unfiltered (gdb_stdlog, "-> ");
1749 fprint_frame (gdb_stdlog, NULL);
1750 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1751 }
1752
1753 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1754 this_frame->prev = NULL;
1755 return NULL;
1756 }
1757 }
1758
1759 return get_prev_frame_raw (this_frame);
1760 }
1761
1762 /* Construct a new "struct frame_info" and link it previous to
1763 this_frame. */
1764
1765 static struct frame_info *
1766 get_prev_frame_raw (struct frame_info *this_frame)
1767 {
1768 struct frame_info *prev_frame;
1769
1770 /* Allocate the new frame but do not wire it in to the frame chain.
1771 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1772 frame->next to pull some fancy tricks (of course such code is, by
1773 definition, recursive). Try to prevent it.
1774
1775 There is no reason to worry about memory leaks, should the
1776 remainder of the function fail. The allocated memory will be
1777 quickly reclaimed when the frame cache is flushed, and the `we've
1778 been here before' check above will stop repeated memory
1779 allocation calls. */
1780 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1781 prev_frame->level = this_frame->level + 1;
1782
1783 /* For now, assume we don't have frame chains crossing address
1784 spaces. */
1785 prev_frame->pspace = this_frame->pspace;
1786 prev_frame->aspace = this_frame->aspace;
1787
1788 /* Don't yet compute ->unwind (and hence ->type). It is computed
1789 on-demand in get_frame_type, frame_register_unwind, and
1790 get_frame_id. */
1791
1792 /* Don't yet compute the frame's ID. It is computed on-demand by
1793 get_frame_id(). */
1794
1795 /* The unwound frame ID is validate at the start of this function,
1796 as part of the logic to decide if that frame should be further
1797 unwound, and not here while the prev frame is being created.
1798 Doing this makes it possible for the user to examine a frame that
1799 has an invalid frame ID.
1800
1801 Some very old VAX code noted: [...] For the sake of argument,
1802 suppose that the stack is somewhat trashed (which is one reason
1803 that "info frame" exists). So, return 0 (indicating we don't
1804 know the address of the arglist) if we don't know what frame this
1805 frame calls. */
1806
1807 /* Link it in. */
1808 this_frame->prev = prev_frame;
1809 prev_frame->next = this_frame;
1810
1811 if (frame_debug)
1812 {
1813 fprintf_unfiltered (gdb_stdlog, "-> ");
1814 fprint_frame (gdb_stdlog, prev_frame);
1815 fprintf_unfiltered (gdb_stdlog, " }\n");
1816 }
1817
1818 return prev_frame;
1819 }
1820
1821 /* Debug routine to print a NULL frame being returned. */
1822
1823 static void
1824 frame_debug_got_null_frame (struct frame_info *this_frame,
1825 const char *reason)
1826 {
1827 if (frame_debug)
1828 {
1829 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1830 if (this_frame != NULL)
1831 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1832 else
1833 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1834 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1835 }
1836 }
1837
1838 /* Is this (non-sentinel) frame in the "main"() function? */
1839
1840 static int
1841 inside_main_func (struct frame_info *this_frame)
1842 {
1843 struct minimal_symbol *msymbol;
1844 CORE_ADDR maddr;
1845
1846 if (symfile_objfile == 0)
1847 return 0;
1848 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1849 if (msymbol == NULL)
1850 return 0;
1851 /* Make certain that the code, and not descriptor, address is
1852 returned. */
1853 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1854 SYMBOL_VALUE_ADDRESS (msymbol),
1855 &current_target);
1856 return maddr == get_frame_func (this_frame);
1857 }
1858
1859 /* Test whether THIS_FRAME is inside the process entry point function. */
1860
1861 static int
1862 inside_entry_func (struct frame_info *this_frame)
1863 {
1864 CORE_ADDR entry_point;
1865
1866 if (!entry_point_address_query (&entry_point))
1867 return 0;
1868
1869 return get_frame_func (this_frame) == entry_point;
1870 }
1871
1872 /* Return a structure containing various interesting information about
1873 the frame that called THIS_FRAME. Returns NULL if there is entier
1874 no such frame or the frame fails any of a set of target-independent
1875 condition that should terminate the frame chain (e.g., as unwinding
1876 past main()).
1877
1878 This function should not contain target-dependent tests, such as
1879 checking whether the program-counter is zero. */
1880
1881 struct frame_info *
1882 get_prev_frame (struct frame_info *this_frame)
1883 {
1884 CORE_ADDR frame_pc;
1885 int frame_pc_p;
1886
1887 /* There is always a frame. If this assertion fails, suspect that
1888 something should be calling get_selected_frame() or
1889 get_current_frame(). */
1890 gdb_assert (this_frame != NULL);
1891 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1892
1893 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1894 sense to stop unwinding at a dummy frame. One place where a dummy
1895 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1896 pcsqh register (space register for the instruction at the head of the
1897 instruction queue) cannot be written directly; the only way to set it
1898 is to branch to code that is in the target space. In order to implement
1899 frame dummies on HPUX, the called function is made to jump back to where
1900 the inferior was when the user function was called. If gdb was inside
1901 the main function when we created the dummy frame, the dummy frame will
1902 point inside the main function. */
1903 if (this_frame->level >= 0
1904 && get_frame_type (this_frame) == NORMAL_FRAME
1905 && !backtrace_past_main
1906 && frame_pc_p
1907 && inside_main_func (this_frame))
1908 /* Don't unwind past main(). Note, this is done _before_ the
1909 frame has been marked as previously unwound. That way if the
1910 user later decides to enable unwinds past main(), that will
1911 automatically happen. */
1912 {
1913 frame_debug_got_null_frame (this_frame, "inside main func");
1914 return NULL;
1915 }
1916
1917 /* If the user's backtrace limit has been exceeded, stop. We must
1918 add two to the current level; one of those accounts for backtrace_limit
1919 being 1-based and the level being 0-based, and the other accounts for
1920 the level of the new frame instead of the level of the current
1921 frame. */
1922 if (this_frame->level + 2 > backtrace_limit)
1923 {
1924 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1925 return NULL;
1926 }
1927
1928 /* If we're already inside the entry function for the main objfile,
1929 then it isn't valid. Don't apply this test to a dummy frame -
1930 dummy frame PCs typically land in the entry func. Don't apply
1931 this test to the sentinel frame. Sentinel frames should always
1932 be allowed to unwind. */
1933 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1934 wasn't checking for "main" in the minimal symbols. With that
1935 fixed asm-source tests now stop in "main" instead of halting the
1936 backtrace in weird and wonderful ways somewhere inside the entry
1937 file. Suspect that tests for inside the entry file/func were
1938 added to work around that (now fixed) case. */
1939 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1940 suggested having the inside_entry_func test use the
1941 inside_main_func() msymbol trick (along with entry_point_address()
1942 I guess) to determine the address range of the start function.
1943 That should provide a far better stopper than the current
1944 heuristics. */
1945 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1946 applied tail-call optimizations to main so that a function called
1947 from main returns directly to the caller of main. Since we don't
1948 stop at main, we should at least stop at the entry point of the
1949 application. */
1950 if (this_frame->level >= 0
1951 && get_frame_type (this_frame) == NORMAL_FRAME
1952 && !backtrace_past_entry
1953 && frame_pc_p
1954 && inside_entry_func (this_frame))
1955 {
1956 frame_debug_got_null_frame (this_frame, "inside entry func");
1957 return NULL;
1958 }
1959
1960 /* Assume that the only way to get a zero PC is through something
1961 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1962 will never unwind a zero PC. */
1963 if (this_frame->level > 0
1964 && (get_frame_type (this_frame) == NORMAL_FRAME
1965 || get_frame_type (this_frame) == INLINE_FRAME)
1966 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1967 && frame_pc_p && frame_pc == 0)
1968 {
1969 frame_debug_got_null_frame (this_frame, "zero PC");
1970 return NULL;
1971 }
1972
1973 return get_prev_frame_1 (this_frame);
1974 }
1975
1976 CORE_ADDR
1977 get_frame_pc (struct frame_info *frame)
1978 {
1979 gdb_assert (frame->next != NULL);
1980 return frame_unwind_pc (frame->next);
1981 }
1982
1983 int
1984 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1985 {
1986 volatile struct gdb_exception ex;
1987
1988 gdb_assert (frame->next != NULL);
1989
1990 TRY_CATCH (ex, RETURN_MASK_ERROR)
1991 {
1992 *pc = frame_unwind_pc (frame->next);
1993 }
1994 if (ex.reason < 0)
1995 {
1996 if (ex.error == NOT_AVAILABLE_ERROR)
1997 return 0;
1998 else
1999 throw_exception (ex);
2000 }
2001
2002 return 1;
2003 }
2004
2005 /* Return an address that falls within THIS_FRAME's code block. */
2006
2007 CORE_ADDR
2008 get_frame_address_in_block (struct frame_info *this_frame)
2009 {
2010 /* A draft address. */
2011 CORE_ADDR pc = get_frame_pc (this_frame);
2012
2013 struct frame_info *next_frame = this_frame->next;
2014
2015 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2016 Normally the resume address is inside the body of the function
2017 associated with THIS_FRAME, but there is a special case: when
2018 calling a function which the compiler knows will never return
2019 (for instance abort), the call may be the very last instruction
2020 in the calling function. The resume address will point after the
2021 call and may be at the beginning of a different function
2022 entirely.
2023
2024 If THIS_FRAME is a signal frame or dummy frame, then we should
2025 not adjust the unwound PC. For a dummy frame, GDB pushed the
2026 resume address manually onto the stack. For a signal frame, the
2027 OS may have pushed the resume address manually and invoked the
2028 handler (e.g. GNU/Linux), or invoked the trampoline which called
2029 the signal handler - but in either case the signal handler is
2030 expected to return to the trampoline. So in both of these
2031 cases we know that the resume address is executable and
2032 related. So we only need to adjust the PC if THIS_FRAME
2033 is a normal function.
2034
2035 If the program has been interrupted while THIS_FRAME is current,
2036 then clearly the resume address is inside the associated
2037 function. There are three kinds of interruption: debugger stop
2038 (next frame will be SENTINEL_FRAME), operating system
2039 signal or exception (next frame will be SIGTRAMP_FRAME),
2040 or debugger-induced function call (next frame will be
2041 DUMMY_FRAME). So we only need to adjust the PC if
2042 NEXT_FRAME is a normal function.
2043
2044 We check the type of NEXT_FRAME first, since it is already
2045 known; frame type is determined by the unwinder, and since
2046 we have THIS_FRAME we've already selected an unwinder for
2047 NEXT_FRAME.
2048
2049 If the next frame is inlined, we need to keep going until we find
2050 the real function - for instance, if a signal handler is invoked
2051 while in an inlined function, then the code address of the
2052 "calling" normal function should not be adjusted either. */
2053
2054 while (get_frame_type (next_frame) == INLINE_FRAME)
2055 next_frame = next_frame->next;
2056
2057 if ((get_frame_type (next_frame) == NORMAL_FRAME
2058 || get_frame_type (next_frame) == TAILCALL_FRAME)
2059 && (get_frame_type (this_frame) == NORMAL_FRAME
2060 || get_frame_type (this_frame) == TAILCALL_FRAME
2061 || get_frame_type (this_frame) == INLINE_FRAME))
2062 return pc - 1;
2063
2064 return pc;
2065 }
2066
2067 int
2068 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2069 CORE_ADDR *pc)
2070 {
2071 volatile struct gdb_exception ex;
2072
2073 TRY_CATCH (ex, RETURN_MASK_ERROR)
2074 {
2075 *pc = get_frame_address_in_block (this_frame);
2076 }
2077 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2078 return 0;
2079 else if (ex.reason < 0)
2080 throw_exception (ex);
2081 else
2082 return 1;
2083 }
2084
2085 void
2086 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2087 {
2088 struct frame_info *next_frame;
2089 int notcurrent;
2090 CORE_ADDR pc;
2091
2092 /* If the next frame represents an inlined function call, this frame's
2093 sal is the "call site" of that inlined function, which can not
2094 be inferred from get_frame_pc. */
2095 next_frame = get_next_frame (frame);
2096 if (frame_inlined_callees (frame) > 0)
2097 {
2098 struct symbol *sym;
2099
2100 if (next_frame)
2101 sym = get_frame_function (next_frame);
2102 else
2103 sym = inline_skipped_symbol (inferior_ptid);
2104
2105 /* If frame is inline, it certainly has symbols. */
2106 gdb_assert (sym);
2107 init_sal (sal);
2108 if (SYMBOL_LINE (sym) != 0)
2109 {
2110 sal->symtab = SYMBOL_SYMTAB (sym);
2111 sal->line = SYMBOL_LINE (sym);
2112 }
2113 else
2114 /* If the symbol does not have a location, we don't know where
2115 the call site is. Do not pretend to. This is jarring, but
2116 we can't do much better. */
2117 sal->pc = get_frame_pc (frame);
2118
2119 sal->pspace = get_frame_program_space (frame);
2120
2121 return;
2122 }
2123
2124 /* If FRAME is not the innermost frame, that normally means that
2125 FRAME->pc points at the return instruction (which is *after* the
2126 call instruction), and we want to get the line containing the
2127 call (because the call is where the user thinks the program is).
2128 However, if the next frame is either a SIGTRAMP_FRAME or a
2129 DUMMY_FRAME, then the next frame will contain a saved interrupt
2130 PC and such a PC indicates the current (rather than next)
2131 instruction/line, consequently, for such cases, want to get the
2132 line containing fi->pc. */
2133 if (!get_frame_pc_if_available (frame, &pc))
2134 {
2135 init_sal (sal);
2136 return;
2137 }
2138
2139 notcurrent = (pc != get_frame_address_in_block (frame));
2140 (*sal) = find_pc_line (pc, notcurrent);
2141 }
2142
2143 /* Per "frame.h", return the ``address'' of the frame. Code should
2144 really be using get_frame_id(). */
2145 CORE_ADDR
2146 get_frame_base (struct frame_info *fi)
2147 {
2148 return get_frame_id (fi).stack_addr;
2149 }
2150
2151 /* High-level offsets into the frame. Used by the debug info. */
2152
2153 CORE_ADDR
2154 get_frame_base_address (struct frame_info *fi)
2155 {
2156 if (get_frame_type (fi) != NORMAL_FRAME)
2157 return 0;
2158 if (fi->base == NULL)
2159 fi->base = frame_base_find_by_frame (fi);
2160 /* Sneaky: If the low-level unwind and high-level base code share a
2161 common unwinder, let them share the prologue cache. */
2162 if (fi->base->unwind == fi->unwind)
2163 return fi->base->this_base (fi, &fi->prologue_cache);
2164 return fi->base->this_base (fi, &fi->base_cache);
2165 }
2166
2167 CORE_ADDR
2168 get_frame_locals_address (struct frame_info *fi)
2169 {
2170 if (get_frame_type (fi) != NORMAL_FRAME)
2171 return 0;
2172 /* If there isn't a frame address method, find it. */
2173 if (fi->base == NULL)
2174 fi->base = frame_base_find_by_frame (fi);
2175 /* Sneaky: If the low-level unwind and high-level base code share a
2176 common unwinder, let them share the prologue cache. */
2177 if (fi->base->unwind == fi->unwind)
2178 return fi->base->this_locals (fi, &fi->prologue_cache);
2179 return fi->base->this_locals (fi, &fi->base_cache);
2180 }
2181
2182 CORE_ADDR
2183 get_frame_args_address (struct frame_info *fi)
2184 {
2185 if (get_frame_type (fi) != NORMAL_FRAME)
2186 return 0;
2187 /* If there isn't a frame address method, find it. */
2188 if (fi->base == NULL)
2189 fi->base = frame_base_find_by_frame (fi);
2190 /* Sneaky: If the low-level unwind and high-level base code share a
2191 common unwinder, let them share the prologue cache. */
2192 if (fi->base->unwind == fi->unwind)
2193 return fi->base->this_args (fi, &fi->prologue_cache);
2194 return fi->base->this_args (fi, &fi->base_cache);
2195 }
2196
2197 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2198 otherwise. */
2199
2200 int
2201 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2202 {
2203 if (fi->unwind == NULL)
2204 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2205 return fi->unwind == unwinder;
2206 }
2207
2208 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2209 or -1 for a NULL frame. */
2210
2211 int
2212 frame_relative_level (struct frame_info *fi)
2213 {
2214 if (fi == NULL)
2215 return -1;
2216 else
2217 return fi->level;
2218 }
2219
2220 enum frame_type
2221 get_frame_type (struct frame_info *frame)
2222 {
2223 if (frame->unwind == NULL)
2224 /* Initialize the frame's unwinder because that's what
2225 provides the frame's type. */
2226 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2227 return frame->unwind->type;
2228 }
2229
2230 struct program_space *
2231 get_frame_program_space (struct frame_info *frame)
2232 {
2233 return frame->pspace;
2234 }
2235
2236 struct program_space *
2237 frame_unwind_program_space (struct frame_info *this_frame)
2238 {
2239 gdb_assert (this_frame);
2240
2241 /* This is really a placeholder to keep the API consistent --- we
2242 assume for now that we don't have frame chains crossing
2243 spaces. */
2244 return this_frame->pspace;
2245 }
2246
2247 struct address_space *
2248 get_frame_address_space (struct frame_info *frame)
2249 {
2250 return frame->aspace;
2251 }
2252
2253 /* Memory access methods. */
2254
2255 void
2256 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2257 gdb_byte *buf, int len)
2258 {
2259 read_memory (addr, buf, len);
2260 }
2261
2262 LONGEST
2263 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2264 int len)
2265 {
2266 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2268
2269 return read_memory_integer (addr, len, byte_order);
2270 }
2271
2272 ULONGEST
2273 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2274 int len)
2275 {
2276 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2278
2279 return read_memory_unsigned_integer (addr, len, byte_order);
2280 }
2281
2282 int
2283 safe_frame_unwind_memory (struct frame_info *this_frame,
2284 CORE_ADDR addr, gdb_byte *buf, int len)
2285 {
2286 /* NOTE: target_read_memory returns zero on success! */
2287 return !target_read_memory (addr, buf, len);
2288 }
2289
2290 /* Architecture methods. */
2291
2292 struct gdbarch *
2293 get_frame_arch (struct frame_info *this_frame)
2294 {
2295 return frame_unwind_arch (this_frame->next);
2296 }
2297
2298 struct gdbarch *
2299 frame_unwind_arch (struct frame_info *next_frame)
2300 {
2301 if (!next_frame->prev_arch.p)
2302 {
2303 struct gdbarch *arch;
2304
2305 if (next_frame->unwind == NULL)
2306 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2307
2308 if (next_frame->unwind->prev_arch != NULL)
2309 arch = next_frame->unwind->prev_arch (next_frame,
2310 &next_frame->prologue_cache);
2311 else
2312 arch = get_frame_arch (next_frame);
2313
2314 next_frame->prev_arch.arch = arch;
2315 next_frame->prev_arch.p = 1;
2316 if (frame_debug)
2317 fprintf_unfiltered (gdb_stdlog,
2318 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2319 next_frame->level,
2320 gdbarch_bfd_arch_info (arch)->printable_name);
2321 }
2322
2323 return next_frame->prev_arch.arch;
2324 }
2325
2326 struct gdbarch *
2327 frame_unwind_caller_arch (struct frame_info *next_frame)
2328 {
2329 return frame_unwind_arch (skip_inlined_frames (next_frame));
2330 }
2331
2332 /* Stack pointer methods. */
2333
2334 CORE_ADDR
2335 get_frame_sp (struct frame_info *this_frame)
2336 {
2337 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2338
2339 /* Normality - an architecture that provides a way of obtaining any
2340 frame inner-most address. */
2341 if (gdbarch_unwind_sp_p (gdbarch))
2342 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2343 operate on THIS_FRAME now. */
2344 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2345 /* Now things are really are grim. Hope that the value returned by
2346 the gdbarch_sp_regnum register is meaningful. */
2347 if (gdbarch_sp_regnum (gdbarch) >= 0)
2348 return get_frame_register_unsigned (this_frame,
2349 gdbarch_sp_regnum (gdbarch));
2350 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2351 }
2352
2353 /* Return the reason why we can't unwind past FRAME. */
2354
2355 enum unwind_stop_reason
2356 get_frame_unwind_stop_reason (struct frame_info *frame)
2357 {
2358 /* If we haven't tried to unwind past this point yet, then assume
2359 that unwinding would succeed. */
2360 if (frame->prev_p == 0)
2361 return UNWIND_NO_REASON;
2362
2363 /* Otherwise, we set a reason when we succeeded (or failed) to
2364 unwind. */
2365 return frame->stop_reason;
2366 }
2367
2368 /* Return a string explaining REASON. */
2369
2370 const char *
2371 frame_stop_reason_string (enum unwind_stop_reason reason)
2372 {
2373 switch (reason)
2374 {
2375 #define SET(name, description) \
2376 case name: return _(description);
2377 #include "unwind_stop_reasons.def"
2378 #undef SET
2379
2380 default:
2381 internal_error (__FILE__, __LINE__,
2382 "Invalid frame stop reason");
2383 }
2384 }
2385
2386 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2387 FRAME. */
2388
2389 static void
2390 frame_cleanup_after_sniffer (void *arg)
2391 {
2392 struct frame_info *frame = arg;
2393
2394 /* The sniffer should not allocate a prologue cache if it did not
2395 match this frame. */
2396 gdb_assert (frame->prologue_cache == NULL);
2397
2398 /* No sniffer should extend the frame chain; sniff based on what is
2399 already certain. */
2400 gdb_assert (!frame->prev_p);
2401
2402 /* The sniffer should not check the frame's ID; that's circular. */
2403 gdb_assert (!frame->this_id.p);
2404
2405 /* Clear cached fields dependent on the unwinder.
2406
2407 The previous PC is independent of the unwinder, but the previous
2408 function is not (see get_frame_address_in_block). */
2409 frame->prev_func.p = 0;
2410 frame->prev_func.addr = 0;
2411
2412 /* Discard the unwinder last, so that we can easily find it if an assertion
2413 in this function triggers. */
2414 frame->unwind = NULL;
2415 }
2416
2417 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2418 Return a cleanup which should be called if unwinding fails, and
2419 discarded if it succeeds. */
2420
2421 struct cleanup *
2422 frame_prepare_for_sniffer (struct frame_info *frame,
2423 const struct frame_unwind *unwind)
2424 {
2425 gdb_assert (frame->unwind == NULL);
2426 frame->unwind = unwind;
2427 return make_cleanup (frame_cleanup_after_sniffer, frame);
2428 }
2429
2430 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2431
2432 static struct cmd_list_element *set_backtrace_cmdlist;
2433 static struct cmd_list_element *show_backtrace_cmdlist;
2434
2435 static void
2436 set_backtrace_cmd (char *args, int from_tty)
2437 {
2438 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2439 }
2440
2441 static void
2442 show_backtrace_cmd (char *args, int from_tty)
2443 {
2444 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2445 }
2446
2447 void
2448 _initialize_frame (void)
2449 {
2450 obstack_init (&frame_cache_obstack);
2451
2452 observer_attach_target_changed (frame_observer_target_changed);
2453
2454 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2455 Set backtrace specific variables.\n\
2456 Configure backtrace variables such as the backtrace limit"),
2457 &set_backtrace_cmdlist, "set backtrace ",
2458 0/*allow-unknown*/, &setlist);
2459 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2460 Show backtrace specific variables\n\
2461 Show backtrace variables such as the backtrace limit"),
2462 &show_backtrace_cmdlist, "show backtrace ",
2463 0/*allow-unknown*/, &showlist);
2464
2465 add_setshow_boolean_cmd ("past-main", class_obscure,
2466 &backtrace_past_main, _("\
2467 Set whether backtraces should continue past \"main\"."), _("\
2468 Show whether backtraces should continue past \"main\"."), _("\
2469 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2470 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2471 of the stack trace."),
2472 NULL,
2473 show_backtrace_past_main,
2474 &set_backtrace_cmdlist,
2475 &show_backtrace_cmdlist);
2476
2477 add_setshow_boolean_cmd ("past-entry", class_obscure,
2478 &backtrace_past_entry, _("\
2479 Set whether backtraces should continue past the entry point of a program."),
2480 _("\
2481 Show whether backtraces should continue past the entry point of a program."),
2482 _("\
2483 Normally there are no callers beyond the entry point of a program, so GDB\n\
2484 will terminate the backtrace there. Set this variable if you need to see\n\
2485 the rest of the stack trace."),
2486 NULL,
2487 show_backtrace_past_entry,
2488 &set_backtrace_cmdlist,
2489 &show_backtrace_cmdlist);
2490
2491 add_setshow_integer_cmd ("limit", class_obscure,
2492 &backtrace_limit, _("\
2493 Set an upper bound on the number of backtrace levels."), _("\
2494 Show the upper bound on the number of backtrace levels."), _("\
2495 No more than the specified number of frames can be displayed or examined.\n\
2496 Zero is unlimited."),
2497 NULL,
2498 show_backtrace_limit,
2499 &set_backtrace_cmdlist,
2500 &show_backtrace_cmdlist);
2501
2502 /* Debug this files internals. */
2503 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2504 Set frame debugging."), _("\
2505 Show frame debugging."), _("\
2506 When non-zero, frame specific internal debugging is enabled."),
2507 NULL,
2508 show_frame_debug,
2509 &setdebuglist, &showdebuglist);
2510 }
This page took 0.081602 seconds and 4 git commands to generate.