* frame.c (has_stack_frames): Make public.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 /* Safety net to check whether frame ID L should be inner to
372 frame ID R, according to their stack addresses.
373
374 This method cannot be used to compare arbitrary frames, as the
375 ranges of valid stack addresses may be discontiguous (e.g. due
376 to sigaltstack).
377
378 However, it can be used as safety net to discover invalid frame
379 IDs in certain circumstances.
380
381 * If frame NEXT is the immediate inner frame to THIS, and NEXT
382 is a NORMAL frame, then the stack address of NEXT must be
383 inner-than-or-equal to the stack address of THIS.
384
385 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
386 error has occurred.
387
388 * If frame NEXT is the immediate inner frame to THIS, and NEXT
389 is a NORMAL frame, and NEXT and THIS have different stack
390 addresses, no other frame in the frame chain may have a stack
391 address in between.
392
393 Therefore, if frame_id_inner (TEST, THIS) holds, but
394 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
395 to a valid frame in the frame chain. */
396
397 static int
398 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
399 {
400 int inner;
401 if (!l.stack_addr_p || !r.stack_addr_p)
402 /* Like NaN, any operation involving an invalid ID always fails. */
403 inner = 0;
404 else
405 /* Only return non-zero when strictly inner than. Note that, per
406 comment in "frame.h", there is some fuzz here. Frameless
407 functions are not strictly inner than (same .stack but
408 different .code and/or .special address). */
409 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
410 if (frame_debug)
411 {
412 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
413 fprint_frame_id (gdb_stdlog, l);
414 fprintf_unfiltered (gdb_stdlog, ",r=");
415 fprint_frame_id (gdb_stdlog, r);
416 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
417 }
418 return inner;
419 }
420
421 struct frame_info *
422 frame_find_by_id (struct frame_id id)
423 {
424 struct frame_info *frame, *prev_frame;
425
426 /* ZERO denotes the null frame, let the caller decide what to do
427 about it. Should it instead return get_current_frame()? */
428 if (!frame_id_p (id))
429 return NULL;
430
431 for (frame = get_current_frame (); ; frame = prev_frame)
432 {
433 struct frame_id this = get_frame_id (frame);
434 if (frame_id_eq (id, this))
435 /* An exact match. */
436 return frame;
437
438 prev_frame = get_prev_frame (frame);
439 if (!prev_frame)
440 return NULL;
441
442 /* As a safety net to avoid unnecessary backtracing while trying
443 to find an invalid ID, we check for a common situation where
444 we can detect from comparing stack addresses that no other
445 frame in the current frame chain can have this ID. See the
446 comment at frame_id_inner for details. */
447 if (get_frame_type (frame) == NORMAL_FRAME
448 && !frame_id_inner (get_frame_arch (frame), id, this)
449 && frame_id_inner (get_frame_arch (prev_frame), id,
450 get_frame_id (prev_frame)))
451 return NULL;
452 }
453 return NULL;
454 }
455
456 CORE_ADDR
457 frame_pc_unwind (struct frame_info *this_frame)
458 {
459 if (!this_frame->prev_pc.p)
460 {
461 CORE_ADDR pc;
462 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
463 {
464 /* The right way. The `pure' way. The one true way. This
465 method depends solely on the register-unwind code to
466 determine the value of registers in THIS frame, and hence
467 the value of this frame's PC (resume address). A typical
468 implementation is no more than:
469
470 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
471 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
472
473 Note: this method is very heavily dependent on a correct
474 register-unwind implementation, it pays to fix that
475 method first; this method is frame type agnostic, since
476 it only deals with register values, it works with any
477 frame. This is all in stark contrast to the old
478 FRAME_SAVED_PC which would try to directly handle all the
479 different ways that a PC could be unwound. */
480 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
481 }
482 else
483 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
484 this_frame->prev_pc.value = pc;
485 this_frame->prev_pc.p = 1;
486 if (frame_debug)
487 fprintf_unfiltered (gdb_stdlog,
488 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
489 this_frame->level,
490 paddr_nz (this_frame->prev_pc.value));
491 }
492 return this_frame->prev_pc.value;
493 }
494
495 CORE_ADDR
496 get_frame_func (struct frame_info *this_frame)
497 {
498 struct frame_info *next_frame = this_frame->next;
499
500 if (!next_frame->prev_func.p)
501 {
502 /* Make certain that this, and not the adjacent, function is
503 found. */
504 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
505 next_frame->prev_func.p = 1;
506 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
507 if (frame_debug)
508 fprintf_unfiltered (gdb_stdlog,
509 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
510 this_frame->level,
511 paddr_nz (next_frame->prev_func.addr));
512 }
513 return next_frame->prev_func.addr;
514 }
515
516 static int
517 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
518 {
519 return frame_register_read (src, regnum, buf);
520 }
521
522 struct regcache *
523 frame_save_as_regcache (struct frame_info *this_frame)
524 {
525 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
526 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
527 regcache_save (regcache, do_frame_register_read, this_frame);
528 discard_cleanups (cleanups);
529 return regcache;
530 }
531
532 void
533 frame_pop (struct frame_info *this_frame)
534 {
535 struct frame_info *prev_frame;
536 struct regcache *scratch;
537 struct cleanup *cleanups;
538
539 if (get_frame_type (this_frame) == DUMMY_FRAME)
540 {
541 /* Popping a dummy frame involves restoring more than just registers.
542 dummy_frame_pop does all the work. */
543 dummy_frame_pop (get_frame_id (this_frame));
544 return;
545 }
546
547 /* Ensure that we have a frame to pop to. */
548 prev_frame = get_prev_frame_1 (this_frame);
549
550 if (!prev_frame)
551 error (_("Cannot pop the initial frame."));
552
553 /* Make a copy of all the register values unwound from this frame.
554 Save them in a scratch buffer so that there isn't a race between
555 trying to extract the old values from the current regcache while
556 at the same time writing new values into that same cache. */
557 scratch = frame_save_as_regcache (prev_frame);
558 cleanups = make_cleanup_regcache_xfree (scratch);
559
560 /* FIXME: cagney/2003-03-16: It should be possible to tell the
561 target's register cache that it is about to be hit with a burst
562 register transfer and that the sequence of register writes should
563 be batched. The pair target_prepare_to_store() and
564 target_store_registers() kind of suggest this functionality.
565 Unfortunately, they don't implement it. Their lack of a formal
566 definition can lead to targets writing back bogus values
567 (arguably a bug in the target code mind). */
568 /* Now copy those saved registers into the current regcache.
569 Here, regcache_cpy() calls regcache_restore(). */
570 regcache_cpy (get_current_regcache (), scratch);
571 do_cleanups (cleanups);
572
573 /* We've made right mess of GDB's local state, just discard
574 everything. */
575 reinit_frame_cache ();
576 }
577
578 void
579 frame_register_unwind (struct frame_info *frame, int regnum,
580 int *optimizedp, enum lval_type *lvalp,
581 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
582 {
583 struct value *value;
584
585 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
586 that the value proper does not need to be fetched. */
587 gdb_assert (optimizedp != NULL);
588 gdb_assert (lvalp != NULL);
589 gdb_assert (addrp != NULL);
590 gdb_assert (realnump != NULL);
591 /* gdb_assert (bufferp != NULL); */
592
593 value = frame_unwind_register_value (frame, regnum);
594
595 gdb_assert (value != NULL);
596
597 *optimizedp = value_optimized_out (value);
598 *lvalp = VALUE_LVAL (value);
599 *addrp = VALUE_ADDRESS (value);
600 *realnump = VALUE_REGNUM (value);
601
602 if (bufferp)
603 memcpy (bufferp, value_contents_all (value),
604 TYPE_LENGTH (value_type (value)));
605
606 /* Dispose of the new value. This prevents watchpoints from
607 trying to watch the saved frame pointer. */
608 release_value (value);
609 value_free (value);
610 }
611
612 void
613 frame_register (struct frame_info *frame, int regnum,
614 int *optimizedp, enum lval_type *lvalp,
615 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
616 {
617 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
618 that the value proper does not need to be fetched. */
619 gdb_assert (optimizedp != NULL);
620 gdb_assert (lvalp != NULL);
621 gdb_assert (addrp != NULL);
622 gdb_assert (realnump != NULL);
623 /* gdb_assert (bufferp != NULL); */
624
625 /* Obtain the register value by unwinding the register from the next
626 (more inner frame). */
627 gdb_assert (frame != NULL && frame->next != NULL);
628 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
629 realnump, bufferp);
630 }
631
632 void
633 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
634 {
635 int optimized;
636 CORE_ADDR addr;
637 int realnum;
638 enum lval_type lval;
639 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
640 &realnum, buf);
641 }
642
643 void
644 get_frame_register (struct frame_info *frame,
645 int regnum, gdb_byte *buf)
646 {
647 frame_unwind_register (frame->next, regnum, buf);
648 }
649
650 struct value *
651 frame_unwind_register_value (struct frame_info *frame, int regnum)
652 {
653 struct value *value;
654
655 gdb_assert (frame != NULL);
656
657 if (frame_debug)
658 {
659 fprintf_unfiltered (gdb_stdlog, "\
660 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
661 frame->level, regnum,
662 user_reg_map_regnum_to_name
663 (get_frame_arch (frame), regnum));
664 }
665
666 /* Find the unwinder. */
667 if (frame->unwind == NULL)
668 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
669
670 /* Ask this frame to unwind its register. */
671 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
672
673 if (frame_debug)
674 {
675 fprintf_unfiltered (gdb_stdlog, "->");
676 if (value_optimized_out (value))
677 fprintf_unfiltered (gdb_stdlog, " optimized out");
678 else
679 {
680 if (VALUE_LVAL (value) == lval_register)
681 fprintf_unfiltered (gdb_stdlog, " register=%d",
682 VALUE_REGNUM (value));
683 else if (VALUE_LVAL (value) == lval_memory)
684 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
685 paddr_nz (VALUE_ADDRESS (value)));
686 else
687 fprintf_unfiltered (gdb_stdlog, " computed");
688
689 if (value_lazy (value))
690 fprintf_unfiltered (gdb_stdlog, " lazy");
691 else
692 {
693 int i;
694 const gdb_byte *buf = value_contents (value);
695
696 fprintf_unfiltered (gdb_stdlog, " bytes=");
697 fprintf_unfiltered (gdb_stdlog, "[");
698 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
699 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
700 fprintf_unfiltered (gdb_stdlog, "]");
701 }
702 }
703
704 fprintf_unfiltered (gdb_stdlog, " }\n");
705 }
706
707 return value;
708 }
709
710 struct value *
711 get_frame_register_value (struct frame_info *frame, int regnum)
712 {
713 return frame_unwind_register_value (frame->next, regnum);
714 }
715
716 LONGEST
717 frame_unwind_register_signed (struct frame_info *frame, int regnum)
718 {
719 gdb_byte buf[MAX_REGISTER_SIZE];
720 frame_unwind_register (frame, regnum, buf);
721 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
722 regnum));
723 }
724
725 LONGEST
726 get_frame_register_signed (struct frame_info *frame, int regnum)
727 {
728 return frame_unwind_register_signed (frame->next, regnum);
729 }
730
731 ULONGEST
732 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
733 {
734 gdb_byte buf[MAX_REGISTER_SIZE];
735 frame_unwind_register (frame, regnum, buf);
736 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
737 regnum));
738 }
739
740 ULONGEST
741 get_frame_register_unsigned (struct frame_info *frame, int regnum)
742 {
743 return frame_unwind_register_unsigned (frame->next, regnum);
744 }
745
746 void
747 put_frame_register (struct frame_info *frame, int regnum,
748 const gdb_byte *buf)
749 {
750 struct gdbarch *gdbarch = get_frame_arch (frame);
751 int realnum;
752 int optim;
753 enum lval_type lval;
754 CORE_ADDR addr;
755 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
756 if (optim)
757 error (_("Attempt to assign to a value that was optimized out."));
758 switch (lval)
759 {
760 case lval_memory:
761 {
762 /* FIXME: write_memory doesn't yet take constant buffers.
763 Arrrg! */
764 gdb_byte tmp[MAX_REGISTER_SIZE];
765 memcpy (tmp, buf, register_size (gdbarch, regnum));
766 write_memory (addr, tmp, register_size (gdbarch, regnum));
767 break;
768 }
769 case lval_register:
770 regcache_cooked_write (get_current_regcache (), realnum, buf);
771 break;
772 default:
773 error (_("Attempt to assign to an unmodifiable value."));
774 }
775 }
776
777 /* frame_register_read ()
778
779 Find and return the value of REGNUM for the specified stack frame.
780 The number of bytes copied is REGISTER_SIZE (REGNUM).
781
782 Returns 0 if the register value could not be found. */
783
784 int
785 frame_register_read (struct frame_info *frame, int regnum,
786 gdb_byte *myaddr)
787 {
788 int optimized;
789 enum lval_type lval;
790 CORE_ADDR addr;
791 int realnum;
792 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
793
794 return !optimized;
795 }
796
797 int
798 get_frame_register_bytes (struct frame_info *frame, int regnum,
799 CORE_ADDR offset, int len, gdb_byte *myaddr)
800 {
801 struct gdbarch *gdbarch = get_frame_arch (frame);
802 int i;
803 int maxsize;
804 int numregs;
805
806 /* Skip registers wholly inside of OFFSET. */
807 while (offset >= register_size (gdbarch, regnum))
808 {
809 offset -= register_size (gdbarch, regnum);
810 regnum++;
811 }
812
813 /* Ensure that we will not read beyond the end of the register file.
814 This can only ever happen if the debug information is bad. */
815 maxsize = -offset;
816 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
817 for (i = regnum; i < numregs; i++)
818 {
819 int thissize = register_size (gdbarch, i);
820 if (thissize == 0)
821 break; /* This register is not available on this architecture. */
822 maxsize += thissize;
823 }
824 if (len > maxsize)
825 {
826 warning (_("Bad debug information detected: "
827 "Attempt to read %d bytes from registers."), len);
828 return 0;
829 }
830
831 /* Copy the data. */
832 while (len > 0)
833 {
834 int curr_len = register_size (gdbarch, regnum) - offset;
835 if (curr_len > len)
836 curr_len = len;
837
838 if (curr_len == register_size (gdbarch, regnum))
839 {
840 if (!frame_register_read (frame, regnum, myaddr))
841 return 0;
842 }
843 else
844 {
845 gdb_byte buf[MAX_REGISTER_SIZE];
846 if (!frame_register_read (frame, regnum, buf))
847 return 0;
848 memcpy (myaddr, buf + offset, curr_len);
849 }
850
851 myaddr += curr_len;
852 len -= curr_len;
853 offset = 0;
854 regnum++;
855 }
856
857 return 1;
858 }
859
860 void
861 put_frame_register_bytes (struct frame_info *frame, int regnum,
862 CORE_ADDR offset, int len, const gdb_byte *myaddr)
863 {
864 struct gdbarch *gdbarch = get_frame_arch (frame);
865
866 /* Skip registers wholly inside of OFFSET. */
867 while (offset >= register_size (gdbarch, regnum))
868 {
869 offset -= register_size (gdbarch, regnum);
870 regnum++;
871 }
872
873 /* Copy the data. */
874 while (len > 0)
875 {
876 int curr_len = register_size (gdbarch, regnum) - offset;
877 if (curr_len > len)
878 curr_len = len;
879
880 if (curr_len == register_size (gdbarch, regnum))
881 {
882 put_frame_register (frame, regnum, myaddr);
883 }
884 else
885 {
886 gdb_byte buf[MAX_REGISTER_SIZE];
887 frame_register_read (frame, regnum, buf);
888 memcpy (buf + offset, myaddr, curr_len);
889 put_frame_register (frame, regnum, buf);
890 }
891
892 myaddr += curr_len;
893 len -= curr_len;
894 offset = 0;
895 regnum++;
896 }
897 }
898
899 /* Create a sentinel frame. */
900
901 static struct frame_info *
902 create_sentinel_frame (struct regcache *regcache)
903 {
904 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
905 frame->level = -1;
906 /* Explicitly initialize the sentinel frame's cache. Provide it
907 with the underlying regcache. In the future additional
908 information, such as the frame's thread will be added. */
909 frame->prologue_cache = sentinel_frame_cache (regcache);
910 /* For the moment there is only one sentinel frame implementation. */
911 frame->unwind = sentinel_frame_unwind;
912 /* Link this frame back to itself. The frame is self referential
913 (the unwound PC is the same as the pc), so make it so. */
914 frame->next = frame;
915 /* Make the sentinel frame's ID valid, but invalid. That way all
916 comparisons with it should fail. */
917 frame->this_id.p = 1;
918 frame->this_id.value = null_frame_id;
919 if (frame_debug)
920 {
921 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
922 fprint_frame (gdb_stdlog, frame);
923 fprintf_unfiltered (gdb_stdlog, " }\n");
924 }
925 return frame;
926 }
927
928 /* Info about the innermost stack frame (contents of FP register) */
929
930 static struct frame_info *current_frame;
931
932 /* Cache for frame addresses already read by gdb. Valid only while
933 inferior is stopped. Control variables for the frame cache should
934 be local to this module. */
935
936 static struct obstack frame_cache_obstack;
937
938 void *
939 frame_obstack_zalloc (unsigned long size)
940 {
941 void *data = obstack_alloc (&frame_cache_obstack, size);
942 memset (data, 0, size);
943 return data;
944 }
945
946 /* Return the innermost (currently executing) stack frame. This is
947 split into two functions. The function unwind_to_current_frame()
948 is wrapped in catch exceptions so that, even when the unwind of the
949 sentinel frame fails, the function still returns a stack frame. */
950
951 static int
952 unwind_to_current_frame (struct ui_out *ui_out, void *args)
953 {
954 struct frame_info *frame = get_prev_frame (args);
955 /* A sentinel frame can fail to unwind, e.g., because its PC value
956 lands in somewhere like start. */
957 if (frame == NULL)
958 return 1;
959 current_frame = frame;
960 return 0;
961 }
962
963 struct frame_info *
964 get_current_frame (void)
965 {
966 /* First check, and report, the lack of registers. Having GDB
967 report "No stack!" or "No memory" when the target doesn't even
968 have registers is very confusing. Besides, "printcmd.exp"
969 explicitly checks that ``print $pc'' with no registers prints "No
970 registers". */
971 if (!target_has_registers)
972 error (_("No registers."));
973 if (!target_has_stack)
974 error (_("No stack."));
975 if (!target_has_memory)
976 error (_("No memory."));
977 if (is_executing (inferior_ptid))
978 error (_("Target is executing."));
979
980 if (current_frame == NULL)
981 {
982 struct frame_info *sentinel_frame =
983 create_sentinel_frame (get_current_regcache ());
984 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
985 RETURN_MASK_ERROR) != 0)
986 {
987 /* Oops! Fake a current frame? Is this useful? It has a PC
988 of zero, for instance. */
989 current_frame = sentinel_frame;
990 }
991 }
992 return current_frame;
993 }
994
995 /* The "selected" stack frame is used by default for local and arg
996 access. May be zero, for no selected frame. */
997
998 static struct frame_info *selected_frame;
999
1000 int
1001 has_stack_frames (void)
1002 {
1003 if (!target_has_registers || !target_has_stack || !target_has_memory)
1004 return 0;
1005
1006 /* If the current thread is executing, don't try to read from
1007 it. */
1008 if (is_executing (inferior_ptid))
1009 return 0;
1010
1011 return 1;
1012 }
1013
1014 /* Return the selected frame. Always non-NULL (unless there isn't an
1015 inferior sufficient for creating a frame) in which case an error is
1016 thrown. */
1017
1018 struct frame_info *
1019 get_selected_frame (const char *message)
1020 {
1021 if (selected_frame == NULL)
1022 {
1023 if (message != NULL && !has_stack_frames ())
1024 error (("%s"), message);
1025 /* Hey! Don't trust this. It should really be re-finding the
1026 last selected frame of the currently selected thread. This,
1027 though, is better than nothing. */
1028 select_frame (get_current_frame ());
1029 }
1030 /* There is always a frame. */
1031 gdb_assert (selected_frame != NULL);
1032 return selected_frame;
1033 }
1034
1035 /* This is a variant of get_selected_frame() which can be called when
1036 the inferior does not have a frame; in that case it will return
1037 NULL instead of calling error(). */
1038
1039 struct frame_info *
1040 deprecated_safe_get_selected_frame (void)
1041 {
1042 if (!has_stack_frames ())
1043 return NULL;
1044 return get_selected_frame (NULL);
1045 }
1046
1047 /* Select frame FI (or NULL - to invalidate the current frame). */
1048
1049 void
1050 select_frame (struct frame_info *fi)
1051 {
1052 struct symtab *s;
1053
1054 selected_frame = fi;
1055 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1056 frame is being invalidated. */
1057 if (deprecated_selected_frame_level_changed_hook)
1058 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1059
1060 /* FIXME: kseitz/2002-08-28: It would be nice to call
1061 selected_frame_level_changed_event() right here, but due to limitations
1062 in the current interfaces, we would end up flooding UIs with events
1063 because select_frame() is used extensively internally.
1064
1065 Once we have frame-parameterized frame (and frame-related) commands,
1066 the event notification can be moved here, since this function will only
1067 be called when the user's selected frame is being changed. */
1068
1069 /* Ensure that symbols for this frame are read in. Also, determine the
1070 source language of this frame, and switch to it if desired. */
1071 if (fi)
1072 {
1073 /* We retrieve the frame's symtab by using the frame PC. However
1074 we cannot use the frame PC as-is, because it usually points to
1075 the instruction following the "call", which is sometimes the
1076 first instruction of another function. So we rely on
1077 get_frame_address_in_block() which provides us with a PC which
1078 is guaranteed to be inside the frame's code block. */
1079 s = find_pc_symtab (get_frame_address_in_block (fi));
1080 if (s
1081 && s->language != current_language->la_language
1082 && s->language != language_unknown
1083 && language_mode == language_mode_auto)
1084 {
1085 set_language (s->language);
1086 }
1087 }
1088 }
1089
1090 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1091 Always returns a non-NULL value. */
1092
1093 struct frame_info *
1094 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1095 {
1096 struct frame_info *fi;
1097
1098 if (frame_debug)
1099 {
1100 fprintf_unfiltered (gdb_stdlog,
1101 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1102 paddr_nz (addr), paddr_nz (pc));
1103 }
1104
1105 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1106
1107 fi->next = create_sentinel_frame (get_current_regcache ());
1108
1109 /* Set/update this frame's cached PC value, found in the next frame.
1110 Do this before looking for this frame's unwinder. A sniffer is
1111 very likely to read this, and the corresponding unwinder is
1112 entitled to rely that the PC doesn't magically change. */
1113 fi->next->prev_pc.value = pc;
1114 fi->next->prev_pc.p = 1;
1115
1116 /* Select/initialize both the unwind function and the frame's type
1117 based on the PC. */
1118 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1119
1120 fi->this_id.p = 1;
1121 fi->this_id.value = frame_id_build (addr, pc);
1122
1123 if (frame_debug)
1124 {
1125 fprintf_unfiltered (gdb_stdlog, "-> ");
1126 fprint_frame (gdb_stdlog, fi);
1127 fprintf_unfiltered (gdb_stdlog, " }\n");
1128 }
1129
1130 return fi;
1131 }
1132
1133 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1134 innermost frame). Be careful to not fall off the bottom of the
1135 frame chain and onto the sentinel frame. */
1136
1137 struct frame_info *
1138 get_next_frame (struct frame_info *this_frame)
1139 {
1140 if (this_frame->level > 0)
1141 return this_frame->next;
1142 else
1143 return NULL;
1144 }
1145
1146 /* Observer for the target_changed event. */
1147
1148 void
1149 frame_observer_target_changed (struct target_ops *target)
1150 {
1151 reinit_frame_cache ();
1152 }
1153
1154 /* Flush the entire frame cache. */
1155
1156 void
1157 reinit_frame_cache (void)
1158 {
1159 struct frame_info *fi;
1160
1161 /* Tear down all frame caches. */
1162 for (fi = current_frame; fi != NULL; fi = fi->prev)
1163 {
1164 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1165 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1166 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1167 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1168 }
1169
1170 /* Since we can't really be sure what the first object allocated was */
1171 obstack_free (&frame_cache_obstack, 0);
1172 obstack_init (&frame_cache_obstack);
1173
1174 if (current_frame != NULL)
1175 annotate_frames_invalid ();
1176
1177 current_frame = NULL; /* Invalidate cache */
1178 select_frame (NULL);
1179 if (frame_debug)
1180 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1181 }
1182
1183 /* Find where a register is saved (in memory or another register).
1184 The result of frame_register_unwind is just where it is saved
1185 relative to this particular frame. */
1186
1187 static void
1188 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1189 int *optimizedp, enum lval_type *lvalp,
1190 CORE_ADDR *addrp, int *realnump)
1191 {
1192 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1193
1194 while (this_frame != NULL)
1195 {
1196 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1197 addrp, realnump, NULL);
1198
1199 if (*optimizedp)
1200 break;
1201
1202 if (*lvalp != lval_register)
1203 break;
1204
1205 regnum = *realnump;
1206 this_frame = get_next_frame (this_frame);
1207 }
1208 }
1209
1210 /* Return a "struct frame_info" corresponding to the frame that called
1211 THIS_FRAME. Returns NULL if there is no such frame.
1212
1213 Unlike get_prev_frame, this function always tries to unwind the
1214 frame. */
1215
1216 static struct frame_info *
1217 get_prev_frame_1 (struct frame_info *this_frame)
1218 {
1219 struct frame_info *prev_frame;
1220 struct frame_id this_id;
1221 struct gdbarch *gdbarch;
1222
1223 gdb_assert (this_frame != NULL);
1224 gdbarch = get_frame_arch (this_frame);
1225
1226 if (frame_debug)
1227 {
1228 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1229 if (this_frame != NULL)
1230 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1231 else
1232 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1233 fprintf_unfiltered (gdb_stdlog, ") ");
1234 }
1235
1236 /* Only try to do the unwind once. */
1237 if (this_frame->prev_p)
1238 {
1239 if (frame_debug)
1240 {
1241 fprintf_unfiltered (gdb_stdlog, "-> ");
1242 fprint_frame (gdb_stdlog, this_frame->prev);
1243 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1244 }
1245 return this_frame->prev;
1246 }
1247
1248 /* If the frame unwinder hasn't been selected yet, we must do so
1249 before setting prev_p; otherwise the check for misbehaved
1250 sniffers will think that this frame's sniffer tried to unwind
1251 further (see frame_cleanup_after_sniffer). */
1252 if (this_frame->unwind == NULL)
1253 this_frame->unwind
1254 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1255
1256 this_frame->prev_p = 1;
1257 this_frame->stop_reason = UNWIND_NO_REASON;
1258
1259 /* Check that this frame's ID was valid. If it wasn't, don't try to
1260 unwind to the prev frame. Be careful to not apply this test to
1261 the sentinel frame. */
1262 this_id = get_frame_id (this_frame);
1263 if (this_frame->level >= 0 && !frame_id_p (this_id))
1264 {
1265 if (frame_debug)
1266 {
1267 fprintf_unfiltered (gdb_stdlog, "-> ");
1268 fprint_frame (gdb_stdlog, NULL);
1269 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1270 }
1271 this_frame->stop_reason = UNWIND_NULL_ID;
1272 return NULL;
1273 }
1274
1275 /* Check that this frame's ID isn't inner to (younger, below, next)
1276 the next frame. This happens when a frame unwind goes backwards.
1277 This check is valid only if the next frame is NORMAL. See the
1278 comment at frame_id_inner for details. */
1279 if (this_frame->next->unwind->type == NORMAL_FRAME
1280 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1281 get_frame_id (this_frame->next)))
1282 {
1283 if (frame_debug)
1284 {
1285 fprintf_unfiltered (gdb_stdlog, "-> ");
1286 fprint_frame (gdb_stdlog, NULL);
1287 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1288 }
1289 this_frame->stop_reason = UNWIND_INNER_ID;
1290 return NULL;
1291 }
1292
1293 /* Check that this and the next frame are not identical. If they
1294 are, there is most likely a stack cycle. As with the inner-than
1295 test above, avoid comparing the inner-most and sentinel frames. */
1296 if (this_frame->level > 0
1297 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1298 {
1299 if (frame_debug)
1300 {
1301 fprintf_unfiltered (gdb_stdlog, "-> ");
1302 fprint_frame (gdb_stdlog, NULL);
1303 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1304 }
1305 this_frame->stop_reason = UNWIND_SAME_ID;
1306 return NULL;
1307 }
1308
1309 /* Check that this and the next frame do not unwind the PC register
1310 to the same memory location. If they do, then even though they
1311 have different frame IDs, the new frame will be bogus; two
1312 functions can't share a register save slot for the PC. This can
1313 happen when the prologue analyzer finds a stack adjustment, but
1314 no PC save.
1315
1316 This check does assume that the "PC register" is roughly a
1317 traditional PC, even if the gdbarch_unwind_pc method adjusts
1318 it (we do not rely on the value, only on the unwound PC being
1319 dependent on this value). A potential improvement would be
1320 to have the frame prev_pc method and the gdbarch unwind_pc
1321 method set the same lval and location information as
1322 frame_register_unwind. */
1323 if (this_frame->level > 0
1324 && gdbarch_pc_regnum (gdbarch) >= 0
1325 && get_frame_type (this_frame) == NORMAL_FRAME
1326 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1327 {
1328 int optimized, realnum, nrealnum;
1329 enum lval_type lval, nlval;
1330 CORE_ADDR addr, naddr;
1331
1332 frame_register_unwind_location (this_frame,
1333 gdbarch_pc_regnum (gdbarch),
1334 &optimized, &lval, &addr, &realnum);
1335 frame_register_unwind_location (get_next_frame (this_frame),
1336 gdbarch_pc_regnum (gdbarch),
1337 &optimized, &nlval, &naddr, &nrealnum);
1338
1339 if ((lval == lval_memory && lval == nlval && addr == naddr)
1340 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1341 {
1342 if (frame_debug)
1343 {
1344 fprintf_unfiltered (gdb_stdlog, "-> ");
1345 fprint_frame (gdb_stdlog, NULL);
1346 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1347 }
1348
1349 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1350 this_frame->prev = NULL;
1351 return NULL;
1352 }
1353 }
1354
1355 /* Allocate the new frame but do not wire it in to the frame chain.
1356 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1357 frame->next to pull some fancy tricks (of course such code is, by
1358 definition, recursive). Try to prevent it.
1359
1360 There is no reason to worry about memory leaks, should the
1361 remainder of the function fail. The allocated memory will be
1362 quickly reclaimed when the frame cache is flushed, and the `we've
1363 been here before' check above will stop repeated memory
1364 allocation calls. */
1365 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1366 prev_frame->level = this_frame->level + 1;
1367
1368 /* Don't yet compute ->unwind (and hence ->type). It is computed
1369 on-demand in get_frame_type, frame_register_unwind, and
1370 get_frame_id. */
1371
1372 /* Don't yet compute the frame's ID. It is computed on-demand by
1373 get_frame_id(). */
1374
1375 /* The unwound frame ID is validate at the start of this function,
1376 as part of the logic to decide if that frame should be further
1377 unwound, and not here while the prev frame is being created.
1378 Doing this makes it possible for the user to examine a frame that
1379 has an invalid frame ID.
1380
1381 Some very old VAX code noted: [...] For the sake of argument,
1382 suppose that the stack is somewhat trashed (which is one reason
1383 that "info frame" exists). So, return 0 (indicating we don't
1384 know the address of the arglist) if we don't know what frame this
1385 frame calls. */
1386
1387 /* Link it in. */
1388 this_frame->prev = prev_frame;
1389 prev_frame->next = this_frame;
1390
1391 if (frame_debug)
1392 {
1393 fprintf_unfiltered (gdb_stdlog, "-> ");
1394 fprint_frame (gdb_stdlog, prev_frame);
1395 fprintf_unfiltered (gdb_stdlog, " }\n");
1396 }
1397
1398 return prev_frame;
1399 }
1400
1401 /* Debug routine to print a NULL frame being returned. */
1402
1403 static void
1404 frame_debug_got_null_frame (struct frame_info *this_frame,
1405 const char *reason)
1406 {
1407 if (frame_debug)
1408 {
1409 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1410 if (this_frame != NULL)
1411 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1412 else
1413 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1414 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1415 }
1416 }
1417
1418 /* Is this (non-sentinel) frame in the "main"() function? */
1419
1420 static int
1421 inside_main_func (struct frame_info *this_frame)
1422 {
1423 struct minimal_symbol *msymbol;
1424 CORE_ADDR maddr;
1425
1426 if (symfile_objfile == 0)
1427 return 0;
1428 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1429 if (msymbol == NULL)
1430 return 0;
1431 /* Make certain that the code, and not descriptor, address is
1432 returned. */
1433 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1434 SYMBOL_VALUE_ADDRESS (msymbol),
1435 &current_target);
1436 return maddr == get_frame_func (this_frame);
1437 }
1438
1439 /* Test whether THIS_FRAME is inside the process entry point function. */
1440
1441 static int
1442 inside_entry_func (struct frame_info *this_frame)
1443 {
1444 return (get_frame_func (this_frame) == entry_point_address ());
1445 }
1446
1447 /* Return a structure containing various interesting information about
1448 the frame that called THIS_FRAME. Returns NULL if there is entier
1449 no such frame or the frame fails any of a set of target-independent
1450 condition that should terminate the frame chain (e.g., as unwinding
1451 past main()).
1452
1453 This function should not contain target-dependent tests, such as
1454 checking whether the program-counter is zero. */
1455
1456 struct frame_info *
1457 get_prev_frame (struct frame_info *this_frame)
1458 {
1459 struct frame_info *prev_frame;
1460
1461 /* There is always a frame. If this assertion fails, suspect that
1462 something should be calling get_selected_frame() or
1463 get_current_frame(). */
1464 gdb_assert (this_frame != NULL);
1465
1466 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1467 sense to stop unwinding at a dummy frame. One place where a dummy
1468 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1469 pcsqh register (space register for the instruction at the head of the
1470 instruction queue) cannot be written directly; the only way to set it
1471 is to branch to code that is in the target space. In order to implement
1472 frame dummies on HPUX, the called function is made to jump back to where
1473 the inferior was when the user function was called. If gdb was inside
1474 the main function when we created the dummy frame, the dummy frame will
1475 point inside the main function. */
1476 if (this_frame->level >= 0
1477 && get_frame_type (this_frame) != DUMMY_FRAME
1478 && !backtrace_past_main
1479 && inside_main_func (this_frame))
1480 /* Don't unwind past main(). Note, this is done _before_ the
1481 frame has been marked as previously unwound. That way if the
1482 user later decides to enable unwinds past main(), that will
1483 automatically happen. */
1484 {
1485 frame_debug_got_null_frame (this_frame, "inside main func");
1486 return NULL;
1487 }
1488
1489 /* If the user's backtrace limit has been exceeded, stop. We must
1490 add two to the current level; one of those accounts for backtrace_limit
1491 being 1-based and the level being 0-based, and the other accounts for
1492 the level of the new frame instead of the level of the current
1493 frame. */
1494 if (this_frame->level + 2 > backtrace_limit)
1495 {
1496 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1497 return NULL;
1498 }
1499
1500 /* If we're already inside the entry function for the main objfile,
1501 then it isn't valid. Don't apply this test to a dummy frame -
1502 dummy frame PCs typically land in the entry func. Don't apply
1503 this test to the sentinel frame. Sentinel frames should always
1504 be allowed to unwind. */
1505 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1506 wasn't checking for "main" in the minimal symbols. With that
1507 fixed asm-source tests now stop in "main" instead of halting the
1508 backtrace in weird and wonderful ways somewhere inside the entry
1509 file. Suspect that tests for inside the entry file/func were
1510 added to work around that (now fixed) case. */
1511 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1512 suggested having the inside_entry_func test use the
1513 inside_main_func() msymbol trick (along with entry_point_address()
1514 I guess) to determine the address range of the start function.
1515 That should provide a far better stopper than the current
1516 heuristics. */
1517 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1518 applied tail-call optimizations to main so that a function called
1519 from main returns directly to the caller of main. Since we don't
1520 stop at main, we should at least stop at the entry point of the
1521 application. */
1522 if (!backtrace_past_entry
1523 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1524 && inside_entry_func (this_frame))
1525 {
1526 frame_debug_got_null_frame (this_frame, "inside entry func");
1527 return NULL;
1528 }
1529
1530 /* Assume that the only way to get a zero PC is through something
1531 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1532 will never unwind a zero PC. */
1533 if (this_frame->level > 0
1534 && get_frame_type (this_frame) == NORMAL_FRAME
1535 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1536 && get_frame_pc (this_frame) == 0)
1537 {
1538 frame_debug_got_null_frame (this_frame, "zero PC");
1539 return NULL;
1540 }
1541
1542 return get_prev_frame_1 (this_frame);
1543 }
1544
1545 CORE_ADDR
1546 get_frame_pc (struct frame_info *frame)
1547 {
1548 gdb_assert (frame->next != NULL);
1549 return frame_pc_unwind (frame->next);
1550 }
1551
1552 /* Return an address that falls within THIS_FRAME's code block. */
1553
1554 CORE_ADDR
1555 get_frame_address_in_block (struct frame_info *this_frame)
1556 {
1557 /* A draft address. */
1558 CORE_ADDR pc = get_frame_pc (this_frame);
1559
1560 struct frame_info *next_frame = this_frame->next;
1561
1562 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1563 Normally the resume address is inside the body of the function
1564 associated with THIS_FRAME, but there is a special case: when
1565 calling a function which the compiler knows will never return
1566 (for instance abort), the call may be the very last instruction
1567 in the calling function. The resume address will point after the
1568 call and may be at the beginning of a different function
1569 entirely.
1570
1571 If THIS_FRAME is a signal frame or dummy frame, then we should
1572 not adjust the unwound PC. For a dummy frame, GDB pushed the
1573 resume address manually onto the stack. For a signal frame, the
1574 OS may have pushed the resume address manually and invoked the
1575 handler (e.g. GNU/Linux), or invoked the trampoline which called
1576 the signal handler - but in either case the signal handler is
1577 expected to return to the trampoline. So in both of these
1578 cases we know that the resume address is executable and
1579 related. So we only need to adjust the PC if THIS_FRAME
1580 is a normal function.
1581
1582 If the program has been interrupted while THIS_FRAME is current,
1583 then clearly the resume address is inside the associated
1584 function. There are three kinds of interruption: debugger stop
1585 (next frame will be SENTINEL_FRAME), operating system
1586 signal or exception (next frame will be SIGTRAMP_FRAME),
1587 or debugger-induced function call (next frame will be
1588 DUMMY_FRAME). So we only need to adjust the PC if
1589 NEXT_FRAME is a normal function.
1590
1591 We check the type of NEXT_FRAME first, since it is already
1592 known; frame type is determined by the unwinder, and since
1593 we have THIS_FRAME we've already selected an unwinder for
1594 NEXT_FRAME. */
1595 if (get_frame_type (next_frame) == NORMAL_FRAME
1596 && get_frame_type (this_frame) == NORMAL_FRAME)
1597 return pc - 1;
1598
1599 return pc;
1600 }
1601
1602 static int
1603 pc_notcurrent (struct frame_info *frame)
1604 {
1605 /* If FRAME is not the innermost frame, that normally means that
1606 FRAME->pc points at the return instruction (which is *after* the
1607 call instruction), and we want to get the line containing the
1608 call (because the call is where the user thinks the program is).
1609 However, if the next frame is either a SIGTRAMP_FRAME or a
1610 DUMMY_FRAME, then the next frame will contain a saved interrupt
1611 PC and such a PC indicates the current (rather than next)
1612 instruction/line, consequently, for such cases, want to get the
1613 line containing fi->pc. */
1614 struct frame_info *next = get_next_frame (frame);
1615 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1616 return notcurrent;
1617 }
1618
1619 void
1620 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1621 {
1622 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1623 }
1624
1625 /* Per "frame.h", return the ``address'' of the frame. Code should
1626 really be using get_frame_id(). */
1627 CORE_ADDR
1628 get_frame_base (struct frame_info *fi)
1629 {
1630 return get_frame_id (fi).stack_addr;
1631 }
1632
1633 /* High-level offsets into the frame. Used by the debug info. */
1634
1635 CORE_ADDR
1636 get_frame_base_address (struct frame_info *fi)
1637 {
1638 if (get_frame_type (fi) != NORMAL_FRAME)
1639 return 0;
1640 if (fi->base == NULL)
1641 fi->base = frame_base_find_by_frame (fi);
1642 /* Sneaky: If the low-level unwind and high-level base code share a
1643 common unwinder, let them share the prologue cache. */
1644 if (fi->base->unwind == fi->unwind)
1645 return fi->base->this_base (fi, &fi->prologue_cache);
1646 return fi->base->this_base (fi, &fi->base_cache);
1647 }
1648
1649 CORE_ADDR
1650 get_frame_locals_address (struct frame_info *fi)
1651 {
1652 void **cache;
1653 if (get_frame_type (fi) != NORMAL_FRAME)
1654 return 0;
1655 /* If there isn't a frame address method, find it. */
1656 if (fi->base == NULL)
1657 fi->base = frame_base_find_by_frame (fi);
1658 /* Sneaky: If the low-level unwind and high-level base code share a
1659 common unwinder, let them share the prologue cache. */
1660 if (fi->base->unwind == fi->unwind)
1661 return fi->base->this_locals (fi, &fi->prologue_cache);
1662 return fi->base->this_locals (fi, &fi->base_cache);
1663 }
1664
1665 CORE_ADDR
1666 get_frame_args_address (struct frame_info *fi)
1667 {
1668 void **cache;
1669 if (get_frame_type (fi) != NORMAL_FRAME)
1670 return 0;
1671 /* If there isn't a frame address method, find it. */
1672 if (fi->base == NULL)
1673 fi->base = frame_base_find_by_frame (fi);
1674 /* Sneaky: If the low-level unwind and high-level base code share a
1675 common unwinder, let them share the prologue cache. */
1676 if (fi->base->unwind == fi->unwind)
1677 return fi->base->this_args (fi, &fi->prologue_cache);
1678 return fi->base->this_args (fi, &fi->base_cache);
1679 }
1680
1681 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1682 or -1 for a NULL frame. */
1683
1684 int
1685 frame_relative_level (struct frame_info *fi)
1686 {
1687 if (fi == NULL)
1688 return -1;
1689 else
1690 return fi->level;
1691 }
1692
1693 enum frame_type
1694 get_frame_type (struct frame_info *frame)
1695 {
1696 if (frame->unwind == NULL)
1697 /* Initialize the frame's unwinder because that's what
1698 provides the frame's type. */
1699 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1700 return frame->unwind->type;
1701 }
1702
1703 /* Memory access methods. */
1704
1705 void
1706 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1707 gdb_byte *buf, int len)
1708 {
1709 read_memory (addr, buf, len);
1710 }
1711
1712 LONGEST
1713 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1714 int len)
1715 {
1716 return read_memory_integer (addr, len);
1717 }
1718
1719 ULONGEST
1720 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1721 int len)
1722 {
1723 return read_memory_unsigned_integer (addr, len);
1724 }
1725
1726 int
1727 safe_frame_unwind_memory (struct frame_info *this_frame,
1728 CORE_ADDR addr, gdb_byte *buf, int len)
1729 {
1730 /* NOTE: target_read_memory returns zero on success! */
1731 return !target_read_memory (addr, buf, len);
1732 }
1733
1734 /* Architecture method. */
1735
1736 struct gdbarch *
1737 get_frame_arch (struct frame_info *this_frame)
1738 {
1739 /* In the future, this function will return a per-frame
1740 architecture instead of current_gdbarch. Calling the
1741 routine with a NULL value of this_frame is a bug! */
1742 gdb_assert (this_frame);
1743
1744 return current_gdbarch;
1745 }
1746
1747 /* Stack pointer methods. */
1748
1749 CORE_ADDR
1750 get_frame_sp (struct frame_info *this_frame)
1751 {
1752 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1753 /* Normality - an architecture that provides a way of obtaining any
1754 frame inner-most address. */
1755 if (gdbarch_unwind_sp_p (gdbarch))
1756 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1757 operate on THIS_FRAME now. */
1758 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1759 /* Now things are really are grim. Hope that the value returned by
1760 the gdbarch_sp_regnum register is meaningful. */
1761 if (gdbarch_sp_regnum (gdbarch) >= 0)
1762 return get_frame_register_unsigned (this_frame,
1763 gdbarch_sp_regnum (gdbarch));
1764 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1765 }
1766
1767 /* Return the reason why we can't unwind past FRAME. */
1768
1769 enum unwind_stop_reason
1770 get_frame_unwind_stop_reason (struct frame_info *frame)
1771 {
1772 /* If we haven't tried to unwind past this point yet, then assume
1773 that unwinding would succeed. */
1774 if (frame->prev_p == 0)
1775 return UNWIND_NO_REASON;
1776
1777 /* Otherwise, we set a reason when we succeeded (or failed) to
1778 unwind. */
1779 return frame->stop_reason;
1780 }
1781
1782 /* Return a string explaining REASON. */
1783
1784 const char *
1785 frame_stop_reason_string (enum unwind_stop_reason reason)
1786 {
1787 switch (reason)
1788 {
1789 case UNWIND_NULL_ID:
1790 return _("unwinder did not report frame ID");
1791
1792 case UNWIND_INNER_ID:
1793 return _("previous frame inner to this frame (corrupt stack?)");
1794
1795 case UNWIND_SAME_ID:
1796 return _("previous frame identical to this frame (corrupt stack?)");
1797
1798 case UNWIND_NO_SAVED_PC:
1799 return _("frame did not save the PC");
1800
1801 case UNWIND_NO_REASON:
1802 case UNWIND_FIRST_ERROR:
1803 default:
1804 internal_error (__FILE__, __LINE__,
1805 "Invalid frame stop reason");
1806 }
1807 }
1808
1809 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1810 FRAME. */
1811
1812 static void
1813 frame_cleanup_after_sniffer (void *arg)
1814 {
1815 struct frame_info *frame = arg;
1816
1817 /* The sniffer should not allocate a prologue cache if it did not
1818 match this frame. */
1819 gdb_assert (frame->prologue_cache == NULL);
1820
1821 /* No sniffer should extend the frame chain; sniff based on what is
1822 already certain. */
1823 gdb_assert (!frame->prev_p);
1824
1825 /* The sniffer should not check the frame's ID; that's circular. */
1826 gdb_assert (!frame->this_id.p);
1827
1828 /* Clear cached fields dependent on the unwinder.
1829
1830 The previous PC is independent of the unwinder, but the previous
1831 function is not (see get_frame_address_in_block). */
1832 frame->prev_func.p = 0;
1833 frame->prev_func.addr = 0;
1834
1835 /* Discard the unwinder last, so that we can easily find it if an assertion
1836 in this function triggers. */
1837 frame->unwind = NULL;
1838 }
1839
1840 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1841 Return a cleanup which should be called if unwinding fails, and
1842 discarded if it succeeds. */
1843
1844 struct cleanup *
1845 frame_prepare_for_sniffer (struct frame_info *frame,
1846 const struct frame_unwind *unwind)
1847 {
1848 gdb_assert (frame->unwind == NULL);
1849 frame->unwind = unwind;
1850 return make_cleanup (frame_cleanup_after_sniffer, frame);
1851 }
1852
1853 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1854
1855 static struct cmd_list_element *set_backtrace_cmdlist;
1856 static struct cmd_list_element *show_backtrace_cmdlist;
1857
1858 static void
1859 set_backtrace_cmd (char *args, int from_tty)
1860 {
1861 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1862 }
1863
1864 static void
1865 show_backtrace_cmd (char *args, int from_tty)
1866 {
1867 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1868 }
1869
1870 void
1871 _initialize_frame (void)
1872 {
1873 obstack_init (&frame_cache_obstack);
1874
1875 observer_attach_target_changed (frame_observer_target_changed);
1876
1877 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1878 Set backtrace specific variables.\n\
1879 Configure backtrace variables such as the backtrace limit"),
1880 &set_backtrace_cmdlist, "set backtrace ",
1881 0/*allow-unknown*/, &setlist);
1882 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1883 Show backtrace specific variables\n\
1884 Show backtrace variables such as the backtrace limit"),
1885 &show_backtrace_cmdlist, "show backtrace ",
1886 0/*allow-unknown*/, &showlist);
1887
1888 add_setshow_boolean_cmd ("past-main", class_obscure,
1889 &backtrace_past_main, _("\
1890 Set whether backtraces should continue past \"main\"."), _("\
1891 Show whether backtraces should continue past \"main\"."), _("\
1892 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1893 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1894 of the stack trace."),
1895 NULL,
1896 show_backtrace_past_main,
1897 &set_backtrace_cmdlist,
1898 &show_backtrace_cmdlist);
1899
1900 add_setshow_boolean_cmd ("past-entry", class_obscure,
1901 &backtrace_past_entry, _("\
1902 Set whether backtraces should continue past the entry point of a program."),
1903 _("\
1904 Show whether backtraces should continue past the entry point of a program."),
1905 _("\
1906 Normally there are no callers beyond the entry point of a program, so GDB\n\
1907 will terminate the backtrace there. Set this variable if you need to see \n\
1908 the rest of the stack trace."),
1909 NULL,
1910 show_backtrace_past_entry,
1911 &set_backtrace_cmdlist,
1912 &show_backtrace_cmdlist);
1913
1914 add_setshow_integer_cmd ("limit", class_obscure,
1915 &backtrace_limit, _("\
1916 Set an upper bound on the number of backtrace levels."), _("\
1917 Show the upper bound on the number of backtrace levels."), _("\
1918 No more than the specified number of frames can be displayed or examined.\n\
1919 Zero is unlimited."),
1920 NULL,
1921 show_backtrace_limit,
1922 &set_backtrace_cmdlist,
1923 &show_backtrace_cmdlist);
1924
1925 /* Debug this files internals. */
1926 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1927 Set frame debugging."), _("\
1928 Show frame debugging."), _("\
1929 When non-zero, frame specific internal debugging is enabled."),
1930 NULL,
1931 show_frame_debug,
1932 &setdebuglist, &showdebuglist);
1933 }
This page took 0.076163 seconds and 4 git commands to generate.