f5e0fad427bb0181d4ef7b33083156a62029cd5c
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44
45 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
46
47 /* We keep a cache of stack frames, each of which is a "struct
48 frame_info". The innermost one gets allocated (in
49 wait_for_inferior) each time the inferior stops; current_frame
50 points to it. Additional frames get allocated (in get_prev_frame)
51 as needed, and are chained through the next and prev fields. Any
52 time that the frame cache becomes invalid (most notably when we
53 execute something, but also if we change how we interpret the
54 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
55 which reads new symbols)), we should call reinit_frame_cache. */
56
57 struct frame_info
58 {
59 /* Level of this frame. The inner-most (youngest) frame is at level
60 0. As you move towards the outer-most (oldest) frame, the level
61 increases. This is a cached value. It could just as easily be
62 computed by counting back from the selected frame to the inner
63 most frame. */
64 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
65 reserved to indicate a bogus frame - one that has been created
66 just to keep GDB happy (GDB always needs a frame). For the
67 moment leave this as speculation. */
68 int level;
69
70 /* The frame's low-level unwinder and corresponding cache. The
71 low-level unwinder is responsible for unwinding register values
72 for the previous frame. The low-level unwind methods are
73 selected based on the presence, or otherwise, of register unwind
74 information such as CFI. */
75 void *prologue_cache;
76 const struct frame_unwind *unwind;
77
78 /* Cached copy of the previous frame's resume address. */
79 struct {
80 int p;
81 CORE_ADDR value;
82 } prev_pc;
83
84 /* Cached copy of the previous frame's function address. */
85 struct
86 {
87 CORE_ADDR addr;
88 int p;
89 } prev_func;
90
91 /* This frame's ID. */
92 struct
93 {
94 int p;
95 struct frame_id value;
96 } this_id;
97
98 /* The frame's high-level base methods, and corresponding cache.
99 The high level base methods are selected based on the frame's
100 debug info. */
101 const struct frame_base *base;
102 void *base_cache;
103
104 /* Pointers to the next (down, inner, younger) and previous (up,
105 outer, older) frame_info's in the frame cache. */
106 struct frame_info *next; /* down, inner, younger */
107 int prev_p;
108 struct frame_info *prev; /* up, outer, older */
109
110 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
111 could. Only valid when PREV_P is set. */
112 enum unwind_stop_reason stop_reason;
113 };
114
115 /* Flag to control debugging. */
116
117 int frame_debug;
118 static void
119 show_frame_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
123 }
124
125 /* Flag to indicate whether backtraces should stop at main et.al. */
126
127 static int backtrace_past_main;
128 static void
129 show_backtrace_past_main (struct ui_file *file, int from_tty,
130 struct cmd_list_element *c, const char *value)
131 {
132 fprintf_filtered (file, _("\
133 Whether backtraces should continue past \"main\" is %s.\n"),
134 value);
135 }
136
137 static int backtrace_past_entry;
138 static void
139 show_backtrace_past_entry (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("\
143 Whether backtraces should continue past the entry point of a program is %s.\n"),
144 value);
145 }
146
147 static int backtrace_limit = INT_MAX;
148 static void
149 show_backtrace_limit (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("\
153 An upper bound on the number of backtrace levels is %s.\n"),
154 value);
155 }
156
157
158 static void
159 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
160 {
161 if (p)
162 fprintf_unfiltered (file, "%s=0x%s", name, paddr_nz (addr));
163 else
164 fprintf_unfiltered (file, "!%s", name);
165 }
166
167 void
168 fprint_frame_id (struct ui_file *file, struct frame_id id)
169 {
170 fprintf_unfiltered (file, "{");
171 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
172 fprintf_unfiltered (file, ",");
173 fprint_field (file, "code", id.code_addr_p, id.code_addr);
174 fprintf_unfiltered (file, ",");
175 fprint_field (file, "special", id.special_addr_p, id.special_addr);
176 fprintf_unfiltered (file, "}");
177 }
178
179 static void
180 fprint_frame_type (struct ui_file *file, enum frame_type type)
181 {
182 switch (type)
183 {
184 case NORMAL_FRAME:
185 fprintf_unfiltered (file, "NORMAL_FRAME");
186 return;
187 case DUMMY_FRAME:
188 fprintf_unfiltered (file, "DUMMY_FRAME");
189 return;
190 case SIGTRAMP_FRAME:
191 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
192 return;
193 default:
194 fprintf_unfiltered (file, "<unknown type>");
195 return;
196 };
197 }
198
199 static void
200 fprint_frame (struct ui_file *file, struct frame_info *fi)
201 {
202 if (fi == NULL)
203 {
204 fprintf_unfiltered (file, "<NULL frame>");
205 return;
206 }
207 fprintf_unfiltered (file, "{");
208 fprintf_unfiltered (file, "level=%d", fi->level);
209 fprintf_unfiltered (file, ",");
210 fprintf_unfiltered (file, "type=");
211 if (fi->unwind != NULL)
212 fprint_frame_type (file, fi->unwind->type);
213 else
214 fprintf_unfiltered (file, "<unknown>");
215 fprintf_unfiltered (file, ",");
216 fprintf_unfiltered (file, "unwind=");
217 if (fi->unwind != NULL)
218 gdb_print_host_address (fi->unwind, file);
219 else
220 fprintf_unfiltered (file, "<unknown>");
221 fprintf_unfiltered (file, ",");
222 fprintf_unfiltered (file, "pc=");
223 if (fi->next != NULL && fi->next->prev_pc.p)
224 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_pc.value));
225 else
226 fprintf_unfiltered (file, "<unknown>");
227 fprintf_unfiltered (file, ",");
228 fprintf_unfiltered (file, "id=");
229 if (fi->this_id.p)
230 fprint_frame_id (file, fi->this_id.value);
231 else
232 fprintf_unfiltered (file, "<unknown>");
233 fprintf_unfiltered (file, ",");
234 fprintf_unfiltered (file, "func=");
235 if (fi->next != NULL && fi->next->prev_func.p)
236 fprintf_unfiltered (file, "0x%s", paddr_nz (fi->next->prev_func.addr));
237 else
238 fprintf_unfiltered (file, "<unknown>");
239 fprintf_unfiltered (file, "}");
240 }
241
242 /* Return a frame uniq ID that can be used to, later, re-find the
243 frame. */
244
245 struct frame_id
246 get_frame_id (struct frame_info *fi)
247 {
248 if (fi == NULL)
249 {
250 return null_frame_id;
251 }
252 if (!fi->this_id.p)
253 {
254 if (frame_debug)
255 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
256 fi->level);
257 /* Find the unwinder. */
258 if (fi->unwind == NULL)
259 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
260 /* Find THIS frame's ID. */
261 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
262 fi->this_id.p = 1;
263 if (frame_debug)
264 {
265 fprintf_unfiltered (gdb_stdlog, "-> ");
266 fprint_frame_id (gdb_stdlog, fi->this_id.value);
267 fprintf_unfiltered (gdb_stdlog, " }\n");
268 }
269 }
270 return fi->this_id.value;
271 }
272
273 struct frame_id
274 frame_unwind_id (struct frame_info *next_frame)
275 {
276 /* Use prev_frame, and not get_prev_frame. The latter will truncate
277 the frame chain, leading to this function unintentionally
278 returning a null_frame_id (e.g., when a caller requests the frame
279 ID of "main()"s caller. */
280 return get_frame_id (get_prev_frame_1 (next_frame));
281 }
282
283 const struct frame_id null_frame_id; /* All zeros. */
284
285 struct frame_id
286 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
287 CORE_ADDR special_addr)
288 {
289 struct frame_id id = null_frame_id;
290 id.stack_addr = stack_addr;
291 id.stack_addr_p = 1;
292 id.code_addr = code_addr;
293 id.code_addr_p = 1;
294 id.special_addr = special_addr;
295 id.special_addr_p = 1;
296 return id;
297 }
298
299 struct frame_id
300 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
301 {
302 struct frame_id id = null_frame_id;
303 id.stack_addr = stack_addr;
304 id.stack_addr_p = 1;
305 id.code_addr = code_addr;
306 id.code_addr_p = 1;
307 return id;
308 }
309
310 struct frame_id
311 frame_id_build_wild (CORE_ADDR stack_addr)
312 {
313 struct frame_id id = null_frame_id;
314 id.stack_addr = stack_addr;
315 id.stack_addr_p = 1;
316 return id;
317 }
318
319 int
320 frame_id_p (struct frame_id l)
321 {
322 int p;
323 /* The frame is valid iff it has a valid stack address. */
324 p = l.stack_addr_p;
325 if (frame_debug)
326 {
327 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
328 fprint_frame_id (gdb_stdlog, l);
329 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
330 }
331 return p;
332 }
333
334 int
335 frame_id_eq (struct frame_id l, struct frame_id r)
336 {
337 int eq;
338 if (!l.stack_addr_p || !r.stack_addr_p)
339 /* Like a NaN, if either ID is invalid, the result is false.
340 Note that a frame ID is invalid iff it is the null frame ID. */
341 eq = 0;
342 else if (l.stack_addr != r.stack_addr)
343 /* If .stack addresses are different, the frames are different. */
344 eq = 0;
345 else if (!l.code_addr_p || !r.code_addr_p)
346 /* An invalid code addr is a wild card, always succeed. */
347 eq = 1;
348 else if (l.code_addr != r.code_addr)
349 /* If .code addresses are different, the frames are different. */
350 eq = 0;
351 else if (!l.special_addr_p || !r.special_addr_p)
352 /* An invalid special addr is a wild card (or unused), always succeed. */
353 eq = 1;
354 else if (l.special_addr == r.special_addr)
355 /* Frames are equal. */
356 eq = 1;
357 else
358 /* No luck. */
359 eq = 0;
360 if (frame_debug)
361 {
362 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
363 fprint_frame_id (gdb_stdlog, l);
364 fprintf_unfiltered (gdb_stdlog, ",r=");
365 fprint_frame_id (gdb_stdlog, r);
366 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
367 }
368 return eq;
369 }
370
371 int
372 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
373 {
374 int inner;
375 if (!l.stack_addr_p || !r.stack_addr_p)
376 /* Like NaN, any operation involving an invalid ID always fails. */
377 inner = 0;
378 else
379 /* Only return non-zero when strictly inner than. Note that, per
380 comment in "frame.h", there is some fuzz here. Frameless
381 functions are not strictly inner than (same .stack but
382 different .code and/or .special address). */
383 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
384 if (frame_debug)
385 {
386 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
387 fprint_frame_id (gdb_stdlog, l);
388 fprintf_unfiltered (gdb_stdlog, ",r=");
389 fprint_frame_id (gdb_stdlog, r);
390 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
391 }
392 return inner;
393 }
394
395 struct frame_info *
396 frame_find_by_id (struct frame_id id)
397 {
398 struct frame_info *frame;
399
400 /* ZERO denotes the null frame, let the caller decide what to do
401 about it. Should it instead return get_current_frame()? */
402 if (!frame_id_p (id))
403 return NULL;
404
405 for (frame = get_current_frame ();
406 frame != NULL;
407 frame = get_prev_frame (frame))
408 {
409 struct frame_id this = get_frame_id (frame);
410 if (frame_id_eq (id, this))
411 /* An exact match. */
412 return frame;
413 if (frame_id_inner (get_frame_arch (frame), id, this))
414 /* Gone to far. */
415 return NULL;
416 /* Either we're not yet gone far enough out along the frame
417 chain (inner(this,id)), or we're comparing frameless functions
418 (same .base, different .func, no test available). Struggle
419 on until we've definitly gone to far. */
420 }
421 return NULL;
422 }
423
424 CORE_ADDR
425 frame_pc_unwind (struct frame_info *this_frame)
426 {
427 if (!this_frame->prev_pc.p)
428 {
429 CORE_ADDR pc;
430 if (gdbarch_unwind_pc_p (get_frame_arch (this_frame)))
431 {
432 /* The right way. The `pure' way. The one true way. This
433 method depends solely on the register-unwind code to
434 determine the value of registers in THIS frame, and hence
435 the value of this frame's PC (resume address). A typical
436 implementation is no more than:
437
438 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
439 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
440
441 Note: this method is very heavily dependent on a correct
442 register-unwind implementation, it pays to fix that
443 method first; this method is frame type agnostic, since
444 it only deals with register values, it works with any
445 frame. This is all in stark contrast to the old
446 FRAME_SAVED_PC which would try to directly handle all the
447 different ways that a PC could be unwound. */
448 pc = gdbarch_unwind_pc (get_frame_arch (this_frame), this_frame);
449 }
450 else
451 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
452 this_frame->prev_pc.value = pc;
453 this_frame->prev_pc.p = 1;
454 if (frame_debug)
455 fprintf_unfiltered (gdb_stdlog,
456 "{ frame_pc_unwind (this_frame=%d) -> 0x%s }\n",
457 this_frame->level,
458 paddr_nz (this_frame->prev_pc.value));
459 }
460 return this_frame->prev_pc.value;
461 }
462
463 CORE_ADDR
464 get_frame_func (struct frame_info *this_frame)
465 {
466 struct frame_info *next_frame = this_frame->next;
467
468 if (!next_frame->prev_func.p)
469 {
470 /* Make certain that this, and not the adjacent, function is
471 found. */
472 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
473 next_frame->prev_func.p = 1;
474 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
475 if (frame_debug)
476 fprintf_unfiltered (gdb_stdlog,
477 "{ get_frame_func (this_frame=%d) -> 0x%s }\n",
478 this_frame->level,
479 paddr_nz (next_frame->prev_func.addr));
480 }
481 return next_frame->prev_func.addr;
482 }
483
484 static int
485 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
486 {
487 return frame_register_read (src, regnum, buf);
488 }
489
490 struct regcache *
491 frame_save_as_regcache (struct frame_info *this_frame)
492 {
493 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
494 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
495 regcache_save (regcache, do_frame_register_read, this_frame);
496 discard_cleanups (cleanups);
497 return regcache;
498 }
499
500 void
501 frame_pop (struct frame_info *this_frame)
502 {
503 struct frame_info *prev_frame;
504 struct regcache *scratch;
505 struct cleanup *cleanups;
506
507 /* Ensure that we have a frame to pop to. */
508 prev_frame = get_prev_frame_1 (this_frame);
509
510 if (!prev_frame)
511 error (_("Cannot pop the initial frame."));
512
513 /* Make a copy of all the register values unwound from this frame.
514 Save them in a scratch buffer so that there isn't a race between
515 trying to extract the old values from the current regcache while
516 at the same time writing new values into that same cache. */
517 scratch = frame_save_as_regcache (prev_frame);
518 cleanups = make_cleanup_regcache_xfree (scratch);
519
520 /* FIXME: cagney/2003-03-16: It should be possible to tell the
521 target's register cache that it is about to be hit with a burst
522 register transfer and that the sequence of register writes should
523 be batched. The pair target_prepare_to_store() and
524 target_store_registers() kind of suggest this functionality.
525 Unfortunately, they don't implement it. Their lack of a formal
526 definition can lead to targets writing back bogus values
527 (arguably a bug in the target code mind). */
528 /* Now copy those saved registers into the current regcache.
529 Here, regcache_cpy() calls regcache_restore(). */
530 regcache_cpy (get_current_regcache (), scratch);
531 do_cleanups (cleanups);
532
533 /* We've made right mess of GDB's local state, just discard
534 everything. */
535 reinit_frame_cache ();
536 }
537
538 void
539 frame_register_unwind (struct frame_info *frame, int regnum,
540 int *optimizedp, enum lval_type *lvalp,
541 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
542 {
543 struct value *value;
544
545 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
546 that the value proper does not need to be fetched. */
547 gdb_assert (optimizedp != NULL);
548 gdb_assert (lvalp != NULL);
549 gdb_assert (addrp != NULL);
550 gdb_assert (realnump != NULL);
551 /* gdb_assert (bufferp != NULL); */
552
553 value = frame_unwind_register_value (frame, regnum);
554
555 gdb_assert (value != NULL);
556
557 *optimizedp = value_optimized_out (value);
558 *lvalp = VALUE_LVAL (value);
559 *addrp = VALUE_ADDRESS (value);
560 *realnump = VALUE_REGNUM (value);
561
562 if (bufferp)
563 memcpy (bufferp, value_contents_all (value),
564 TYPE_LENGTH (value_type (value)));
565
566 /* Dispose of the new value. This prevents watchpoints from
567 trying to watch the saved frame pointer. */
568 release_value (value);
569 value_free (value);
570 }
571
572 void
573 frame_register (struct frame_info *frame, int regnum,
574 int *optimizedp, enum lval_type *lvalp,
575 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
576 {
577 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
578 that the value proper does not need to be fetched. */
579 gdb_assert (optimizedp != NULL);
580 gdb_assert (lvalp != NULL);
581 gdb_assert (addrp != NULL);
582 gdb_assert (realnump != NULL);
583 /* gdb_assert (bufferp != NULL); */
584
585 /* Obtain the register value by unwinding the register from the next
586 (more inner frame). */
587 gdb_assert (frame != NULL && frame->next != NULL);
588 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
589 realnump, bufferp);
590 }
591
592 void
593 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
594 {
595 int optimized;
596 CORE_ADDR addr;
597 int realnum;
598 enum lval_type lval;
599 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
600 &realnum, buf);
601 }
602
603 void
604 get_frame_register (struct frame_info *frame,
605 int regnum, gdb_byte *buf)
606 {
607 frame_unwind_register (frame->next, regnum, buf);
608 }
609
610 struct value *
611 frame_unwind_register_value (struct frame_info *frame, int regnum)
612 {
613 struct value *value;
614
615 gdb_assert (frame != NULL);
616
617 if (frame_debug)
618 {
619 fprintf_unfiltered (gdb_stdlog, "\
620 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
621 frame->level, regnum,
622 frame_map_regnum_to_name (frame, regnum));
623 }
624
625 /* Find the unwinder. */
626 if (frame->unwind == NULL)
627 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
628
629 /* Ask this frame to unwind its register. */
630 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
631
632 if (frame_debug)
633 {
634 fprintf_unfiltered (gdb_stdlog, "->");
635 if (value_optimized_out (value))
636 fprintf_unfiltered (gdb_stdlog, " optimized out");
637 else
638 {
639 if (VALUE_LVAL (value) == lval_register)
640 fprintf_unfiltered (gdb_stdlog, " register=%d",
641 VALUE_REGNUM (value));
642 else if (VALUE_LVAL (value) == lval_memory)
643 fprintf_unfiltered (gdb_stdlog, " address=0x%s",
644 paddr_nz (VALUE_ADDRESS (value)));
645 else
646 fprintf_unfiltered (gdb_stdlog, " computed");
647
648 if (value_lazy (value))
649 fprintf_unfiltered (gdb_stdlog, " lazy");
650 else
651 {
652 int i;
653 const gdb_byte *buf = value_contents (value);
654
655 fprintf_unfiltered (gdb_stdlog, " bytes=");
656 fprintf_unfiltered (gdb_stdlog, "[");
657 for (i = 0; i < register_size (get_frame_arch (frame), regnum); i++)
658 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
659 fprintf_unfiltered (gdb_stdlog, "]");
660 }
661 }
662
663 fprintf_unfiltered (gdb_stdlog, " }\n");
664 }
665
666 return value;
667 }
668
669 struct value *
670 get_frame_register_value (struct frame_info *frame, int regnum)
671 {
672 return frame_unwind_register_value (frame->next, regnum);
673 }
674
675 LONGEST
676 frame_unwind_register_signed (struct frame_info *frame, int regnum)
677 {
678 gdb_byte buf[MAX_REGISTER_SIZE];
679 frame_unwind_register (frame, regnum, buf);
680 return extract_signed_integer (buf, register_size (get_frame_arch (frame),
681 regnum));
682 }
683
684 LONGEST
685 get_frame_register_signed (struct frame_info *frame, int regnum)
686 {
687 return frame_unwind_register_signed (frame->next, regnum);
688 }
689
690 ULONGEST
691 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
692 {
693 gdb_byte buf[MAX_REGISTER_SIZE];
694 frame_unwind_register (frame, regnum, buf);
695 return extract_unsigned_integer (buf, register_size (get_frame_arch (frame),
696 regnum));
697 }
698
699 ULONGEST
700 get_frame_register_unsigned (struct frame_info *frame, int regnum)
701 {
702 return frame_unwind_register_unsigned (frame->next, regnum);
703 }
704
705 void
706 put_frame_register (struct frame_info *frame, int regnum,
707 const gdb_byte *buf)
708 {
709 struct gdbarch *gdbarch = get_frame_arch (frame);
710 int realnum;
711 int optim;
712 enum lval_type lval;
713 CORE_ADDR addr;
714 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
715 if (optim)
716 error (_("Attempt to assign to a value that was optimized out."));
717 switch (lval)
718 {
719 case lval_memory:
720 {
721 /* FIXME: write_memory doesn't yet take constant buffers.
722 Arrrg! */
723 gdb_byte tmp[MAX_REGISTER_SIZE];
724 memcpy (tmp, buf, register_size (gdbarch, regnum));
725 write_memory (addr, tmp, register_size (gdbarch, regnum));
726 break;
727 }
728 case lval_register:
729 regcache_cooked_write (get_current_regcache (), realnum, buf);
730 break;
731 default:
732 error (_("Attempt to assign to an unmodifiable value."));
733 }
734 }
735
736 /* frame_register_read ()
737
738 Find and return the value of REGNUM for the specified stack frame.
739 The number of bytes copied is REGISTER_SIZE (REGNUM).
740
741 Returns 0 if the register value could not be found. */
742
743 int
744 frame_register_read (struct frame_info *frame, int regnum,
745 gdb_byte *myaddr)
746 {
747 int optimized;
748 enum lval_type lval;
749 CORE_ADDR addr;
750 int realnum;
751 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
752
753 return !optimized;
754 }
755
756 int
757 get_frame_register_bytes (struct frame_info *frame, int regnum,
758 CORE_ADDR offset, int len, gdb_byte *myaddr)
759 {
760 struct gdbarch *gdbarch = get_frame_arch (frame);
761
762 /* Skip registers wholly inside of OFFSET. */
763 while (offset >= register_size (gdbarch, regnum))
764 {
765 offset -= register_size (gdbarch, regnum);
766 regnum++;
767 }
768
769 /* Copy the data. */
770 while (len > 0)
771 {
772 int curr_len = register_size (gdbarch, regnum) - offset;
773 if (curr_len > len)
774 curr_len = len;
775
776 if (curr_len == register_size (gdbarch, regnum))
777 {
778 if (!frame_register_read (frame, regnum, myaddr))
779 return 0;
780 }
781 else
782 {
783 gdb_byte buf[MAX_REGISTER_SIZE];
784 if (!frame_register_read (frame, regnum, buf))
785 return 0;
786 memcpy (myaddr, buf + offset, curr_len);
787 }
788
789 myaddr += curr_len;
790 len -= curr_len;
791 offset = 0;
792 regnum++;
793 }
794
795 return 1;
796 }
797
798 void
799 put_frame_register_bytes (struct frame_info *frame, int regnum,
800 CORE_ADDR offset, int len, const gdb_byte *myaddr)
801 {
802 struct gdbarch *gdbarch = get_frame_arch (frame);
803
804 /* Skip registers wholly inside of OFFSET. */
805 while (offset >= register_size (gdbarch, regnum))
806 {
807 offset -= register_size (gdbarch, regnum);
808 regnum++;
809 }
810
811 /* Copy the data. */
812 while (len > 0)
813 {
814 int curr_len = register_size (gdbarch, regnum) - offset;
815 if (curr_len > len)
816 curr_len = len;
817
818 if (curr_len == register_size (gdbarch, regnum))
819 {
820 put_frame_register (frame, regnum, myaddr);
821 }
822 else
823 {
824 gdb_byte buf[MAX_REGISTER_SIZE];
825 frame_register_read (frame, regnum, buf);
826 memcpy (buf + offset, myaddr, curr_len);
827 put_frame_register (frame, regnum, buf);
828 }
829
830 myaddr += curr_len;
831 len -= curr_len;
832 offset = 0;
833 regnum++;
834 }
835 }
836
837 /* Map between a frame register number and its name. A frame register
838 space is a superset of the cooked register space --- it also
839 includes builtin registers. */
840
841 int
842 frame_map_name_to_regnum (struct frame_info *frame, const char *name, int len)
843 {
844 return user_reg_map_name_to_regnum (get_frame_arch (frame), name, len);
845 }
846
847 const char *
848 frame_map_regnum_to_name (struct frame_info *frame, int regnum)
849 {
850 return user_reg_map_regnum_to_name (get_frame_arch (frame), regnum);
851 }
852
853 /* Create a sentinel frame. */
854
855 static struct frame_info *
856 create_sentinel_frame (struct regcache *regcache)
857 {
858 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
859 frame->level = -1;
860 /* Explicitly initialize the sentinel frame's cache. Provide it
861 with the underlying regcache. In the future additional
862 information, such as the frame's thread will be added. */
863 frame->prologue_cache = sentinel_frame_cache (regcache);
864 /* For the moment there is only one sentinel frame implementation. */
865 frame->unwind = sentinel_frame_unwind;
866 /* Link this frame back to itself. The frame is self referential
867 (the unwound PC is the same as the pc), so make it so. */
868 frame->next = frame;
869 /* Make the sentinel frame's ID valid, but invalid. That way all
870 comparisons with it should fail. */
871 frame->this_id.p = 1;
872 frame->this_id.value = null_frame_id;
873 if (frame_debug)
874 {
875 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
876 fprint_frame (gdb_stdlog, frame);
877 fprintf_unfiltered (gdb_stdlog, " }\n");
878 }
879 return frame;
880 }
881
882 /* Info about the innermost stack frame (contents of FP register) */
883
884 static struct frame_info *current_frame;
885
886 /* Cache for frame addresses already read by gdb. Valid only while
887 inferior is stopped. Control variables for the frame cache should
888 be local to this module. */
889
890 static struct obstack frame_cache_obstack;
891
892 void *
893 frame_obstack_zalloc (unsigned long size)
894 {
895 void *data = obstack_alloc (&frame_cache_obstack, size);
896 memset (data, 0, size);
897 return data;
898 }
899
900 /* Return the innermost (currently executing) stack frame. This is
901 split into two functions. The function unwind_to_current_frame()
902 is wrapped in catch exceptions so that, even when the unwind of the
903 sentinel frame fails, the function still returns a stack frame. */
904
905 static int
906 unwind_to_current_frame (struct ui_out *ui_out, void *args)
907 {
908 struct frame_info *frame = get_prev_frame (args);
909 /* A sentinel frame can fail to unwind, e.g., because its PC value
910 lands in somewhere like start. */
911 if (frame == NULL)
912 return 1;
913 current_frame = frame;
914 return 0;
915 }
916
917 struct frame_info *
918 get_current_frame (void)
919 {
920 /* First check, and report, the lack of registers. Having GDB
921 report "No stack!" or "No memory" when the target doesn't even
922 have registers is very confusing. Besides, "printcmd.exp"
923 explicitly checks that ``print $pc'' with no registers prints "No
924 registers". */
925 if (!target_has_registers)
926 error (_("No registers."));
927 if (!target_has_stack)
928 error (_("No stack."));
929 if (!target_has_memory)
930 error (_("No memory."));
931 if (is_executing (inferior_ptid))
932 error (_("Target is executing."));
933
934 if (current_frame == NULL)
935 {
936 struct frame_info *sentinel_frame =
937 create_sentinel_frame (get_current_regcache ());
938 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
939 RETURN_MASK_ERROR) != 0)
940 {
941 /* Oops! Fake a current frame? Is this useful? It has a PC
942 of zero, for instance. */
943 current_frame = sentinel_frame;
944 }
945 }
946 return current_frame;
947 }
948
949 /* The "selected" stack frame is used by default for local and arg
950 access. May be zero, for no selected frame. */
951
952 static struct frame_info *selected_frame;
953
954 static int
955 has_stack_frames (void)
956 {
957 if (!target_has_registers || !target_has_stack || !target_has_memory)
958 return 0;
959
960 /* If the current thread is executing, don't try to read from
961 it. */
962 if (is_executing (inferior_ptid))
963 return 0;
964
965 return 1;
966 }
967
968 /* Return the selected frame. Always non-NULL (unless there isn't an
969 inferior sufficient for creating a frame) in which case an error is
970 thrown. */
971
972 struct frame_info *
973 get_selected_frame (const char *message)
974 {
975 if (selected_frame == NULL)
976 {
977 if (message != NULL && !has_stack_frames ())
978 error (("%s"), message);
979 /* Hey! Don't trust this. It should really be re-finding the
980 last selected frame of the currently selected thread. This,
981 though, is better than nothing. */
982 select_frame (get_current_frame ());
983 }
984 /* There is always a frame. */
985 gdb_assert (selected_frame != NULL);
986 return selected_frame;
987 }
988
989 /* This is a variant of get_selected_frame() which can be called when
990 the inferior does not have a frame; in that case it will return
991 NULL instead of calling error(). */
992
993 struct frame_info *
994 deprecated_safe_get_selected_frame (void)
995 {
996 if (!has_stack_frames ())
997 return NULL;
998 return get_selected_frame (NULL);
999 }
1000
1001 /* Select frame FI (or NULL - to invalidate the current frame). */
1002
1003 void
1004 select_frame (struct frame_info *fi)
1005 {
1006 struct symtab *s;
1007
1008 selected_frame = fi;
1009 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1010 frame is being invalidated. */
1011 if (deprecated_selected_frame_level_changed_hook)
1012 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1013
1014 /* FIXME: kseitz/2002-08-28: It would be nice to call
1015 selected_frame_level_changed_event() right here, but due to limitations
1016 in the current interfaces, we would end up flooding UIs with events
1017 because select_frame() is used extensively internally.
1018
1019 Once we have frame-parameterized frame (and frame-related) commands,
1020 the event notification can be moved here, since this function will only
1021 be called when the user's selected frame is being changed. */
1022
1023 /* Ensure that symbols for this frame are read in. Also, determine the
1024 source language of this frame, and switch to it if desired. */
1025 if (fi)
1026 {
1027 /* We retrieve the frame's symtab by using the frame PC. However
1028 we cannot use the frame PC as-is, because it usually points to
1029 the instruction following the "call", which is sometimes the
1030 first instruction of another function. So we rely on
1031 get_frame_address_in_block() which provides us with a PC which
1032 is guaranteed to be inside the frame's code block. */
1033 s = find_pc_symtab (get_frame_address_in_block (fi));
1034 if (s
1035 && s->language != current_language->la_language
1036 && s->language != language_unknown
1037 && language_mode == language_mode_auto)
1038 {
1039 set_language (s->language);
1040 }
1041 }
1042 }
1043
1044 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1045 Always returns a non-NULL value. */
1046
1047 struct frame_info *
1048 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1049 {
1050 struct frame_info *fi;
1051
1052 if (frame_debug)
1053 {
1054 fprintf_unfiltered (gdb_stdlog,
1055 "{ create_new_frame (addr=0x%s, pc=0x%s) ",
1056 paddr_nz (addr), paddr_nz (pc));
1057 }
1058
1059 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1060
1061 fi->next = create_sentinel_frame (get_current_regcache ());
1062
1063 /* Select/initialize both the unwind function and the frame's type
1064 based on the PC. */
1065 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1066
1067 fi->this_id.p = 1;
1068 deprecated_update_frame_base_hack (fi, addr);
1069 deprecated_update_frame_pc_hack (fi, pc);
1070
1071 if (frame_debug)
1072 {
1073 fprintf_unfiltered (gdb_stdlog, "-> ");
1074 fprint_frame (gdb_stdlog, fi);
1075 fprintf_unfiltered (gdb_stdlog, " }\n");
1076 }
1077
1078 return fi;
1079 }
1080
1081 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1082 innermost frame). Be careful to not fall off the bottom of the
1083 frame chain and onto the sentinel frame. */
1084
1085 struct frame_info *
1086 get_next_frame (struct frame_info *this_frame)
1087 {
1088 if (this_frame->level > 0)
1089 return this_frame->next;
1090 else
1091 return NULL;
1092 }
1093
1094 /* Observer for the target_changed event. */
1095
1096 void
1097 frame_observer_target_changed (struct target_ops *target)
1098 {
1099 reinit_frame_cache ();
1100 }
1101
1102 /* Flush the entire frame cache. */
1103
1104 void
1105 reinit_frame_cache (void)
1106 {
1107 struct frame_info *fi;
1108
1109 /* Tear down all frame caches. */
1110 for (fi = current_frame; fi != NULL; fi = fi->prev)
1111 {
1112 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1113 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1114 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1115 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1116 }
1117
1118 /* Since we can't really be sure what the first object allocated was */
1119 obstack_free (&frame_cache_obstack, 0);
1120 obstack_init (&frame_cache_obstack);
1121
1122 if (current_frame != NULL)
1123 annotate_frames_invalid ();
1124
1125 current_frame = NULL; /* Invalidate cache */
1126 select_frame (NULL);
1127 if (frame_debug)
1128 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1129 }
1130
1131 /* Find where a register is saved (in memory or another register).
1132 The result of frame_register_unwind is just where it is saved
1133 relative to this particular frame. */
1134
1135 static void
1136 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1137 int *optimizedp, enum lval_type *lvalp,
1138 CORE_ADDR *addrp, int *realnump)
1139 {
1140 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1141
1142 while (this_frame != NULL)
1143 {
1144 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1145 addrp, realnump, NULL);
1146
1147 if (*optimizedp)
1148 break;
1149
1150 if (*lvalp != lval_register)
1151 break;
1152
1153 regnum = *realnump;
1154 this_frame = get_next_frame (this_frame);
1155 }
1156 }
1157
1158 /* Return a "struct frame_info" corresponding to the frame that called
1159 THIS_FRAME. Returns NULL if there is no such frame.
1160
1161 Unlike get_prev_frame, this function always tries to unwind the
1162 frame. */
1163
1164 static struct frame_info *
1165 get_prev_frame_1 (struct frame_info *this_frame)
1166 {
1167 struct frame_info *prev_frame;
1168 struct frame_id this_id;
1169 struct gdbarch *gdbarch;
1170
1171 gdb_assert (this_frame != NULL);
1172 gdbarch = get_frame_arch (this_frame);
1173
1174 if (frame_debug)
1175 {
1176 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1177 if (this_frame != NULL)
1178 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1179 else
1180 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1181 fprintf_unfiltered (gdb_stdlog, ") ");
1182 }
1183
1184 /* Only try to do the unwind once. */
1185 if (this_frame->prev_p)
1186 {
1187 if (frame_debug)
1188 {
1189 fprintf_unfiltered (gdb_stdlog, "-> ");
1190 fprint_frame (gdb_stdlog, this_frame->prev);
1191 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1192 }
1193 return this_frame->prev;
1194 }
1195
1196 /* If the frame unwinder hasn't been selected yet, we must do so
1197 before setting prev_p; otherwise the check for misbehaved
1198 sniffers will think that this frame's sniffer tried to unwind
1199 further (see frame_cleanup_after_sniffer). */
1200 if (this_frame->unwind == NULL)
1201 this_frame->unwind
1202 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1203
1204 this_frame->prev_p = 1;
1205 this_frame->stop_reason = UNWIND_NO_REASON;
1206
1207 /* Check that this frame's ID was valid. If it wasn't, don't try to
1208 unwind to the prev frame. Be careful to not apply this test to
1209 the sentinel frame. */
1210 this_id = get_frame_id (this_frame);
1211 if (this_frame->level >= 0 && !frame_id_p (this_id))
1212 {
1213 if (frame_debug)
1214 {
1215 fprintf_unfiltered (gdb_stdlog, "-> ");
1216 fprint_frame (gdb_stdlog, NULL);
1217 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1218 }
1219 this_frame->stop_reason = UNWIND_NULL_ID;
1220 return NULL;
1221 }
1222
1223 /* Check that this frame's ID isn't inner to (younger, below, next)
1224 the next frame. This happens when a frame unwind goes backwards.
1225 Exclude signal trampolines (due to sigaltstack the frame ID can
1226 go backwards) and sentinel frames (the test is meaningless). */
1227 if (this_frame->next->level >= 0
1228 && this_frame->next->unwind->type != SIGTRAMP_FRAME
1229 && frame_id_inner (get_frame_arch (this_frame), this_id,
1230 get_frame_id (this_frame->next)))
1231 {
1232 if (frame_debug)
1233 {
1234 fprintf_unfiltered (gdb_stdlog, "-> ");
1235 fprint_frame (gdb_stdlog, NULL);
1236 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1237 }
1238 this_frame->stop_reason = UNWIND_INNER_ID;
1239 return NULL;
1240 }
1241
1242 /* Check that this and the next frame are not identical. If they
1243 are, there is most likely a stack cycle. As with the inner-than
1244 test above, avoid comparing the inner-most and sentinel frames. */
1245 if (this_frame->level > 0
1246 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1247 {
1248 if (frame_debug)
1249 {
1250 fprintf_unfiltered (gdb_stdlog, "-> ");
1251 fprint_frame (gdb_stdlog, NULL);
1252 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1253 }
1254 this_frame->stop_reason = UNWIND_SAME_ID;
1255 return NULL;
1256 }
1257
1258 /* Check that this and the next frame do not unwind the PC register
1259 to the same memory location. If they do, then even though they
1260 have different frame IDs, the new frame will be bogus; two
1261 functions can't share a register save slot for the PC. This can
1262 happen when the prologue analyzer finds a stack adjustment, but
1263 no PC save.
1264
1265 This check does assume that the "PC register" is roughly a
1266 traditional PC, even if the gdbarch_unwind_pc method adjusts
1267 it (we do not rely on the value, only on the unwound PC being
1268 dependent on this value). A potential improvement would be
1269 to have the frame prev_pc method and the gdbarch unwind_pc
1270 method set the same lval and location information as
1271 frame_register_unwind. */
1272 if (this_frame->level > 0
1273 && gdbarch_pc_regnum (gdbarch) >= 0
1274 && get_frame_type (this_frame) == NORMAL_FRAME
1275 && get_frame_type (this_frame->next) == NORMAL_FRAME)
1276 {
1277 int optimized, realnum, nrealnum;
1278 enum lval_type lval, nlval;
1279 CORE_ADDR addr, naddr;
1280
1281 frame_register_unwind_location (this_frame,
1282 gdbarch_pc_regnum (gdbarch),
1283 &optimized, &lval, &addr, &realnum);
1284 frame_register_unwind_location (get_next_frame (this_frame),
1285 gdbarch_pc_regnum (gdbarch),
1286 &optimized, &nlval, &naddr, &nrealnum);
1287
1288 if ((lval == lval_memory && lval == nlval && addr == naddr)
1289 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1290 {
1291 if (frame_debug)
1292 {
1293 fprintf_unfiltered (gdb_stdlog, "-> ");
1294 fprint_frame (gdb_stdlog, NULL);
1295 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1296 }
1297
1298 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1299 this_frame->prev = NULL;
1300 return NULL;
1301 }
1302 }
1303
1304 /* Allocate the new frame but do not wire it in to the frame chain.
1305 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1306 frame->next to pull some fancy tricks (of course such code is, by
1307 definition, recursive). Try to prevent it.
1308
1309 There is no reason to worry about memory leaks, should the
1310 remainder of the function fail. The allocated memory will be
1311 quickly reclaimed when the frame cache is flushed, and the `we've
1312 been here before' check above will stop repeated memory
1313 allocation calls. */
1314 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1315 prev_frame->level = this_frame->level + 1;
1316
1317 /* Don't yet compute ->unwind (and hence ->type). It is computed
1318 on-demand in get_frame_type, frame_register_unwind, and
1319 get_frame_id. */
1320
1321 /* Don't yet compute the frame's ID. It is computed on-demand by
1322 get_frame_id(). */
1323
1324 /* The unwound frame ID is validate at the start of this function,
1325 as part of the logic to decide if that frame should be further
1326 unwound, and not here while the prev frame is being created.
1327 Doing this makes it possible for the user to examine a frame that
1328 has an invalid frame ID.
1329
1330 Some very old VAX code noted: [...] For the sake of argument,
1331 suppose that the stack is somewhat trashed (which is one reason
1332 that "info frame" exists). So, return 0 (indicating we don't
1333 know the address of the arglist) if we don't know what frame this
1334 frame calls. */
1335
1336 /* Link it in. */
1337 this_frame->prev = prev_frame;
1338 prev_frame->next = this_frame;
1339
1340 if (frame_debug)
1341 {
1342 fprintf_unfiltered (gdb_stdlog, "-> ");
1343 fprint_frame (gdb_stdlog, prev_frame);
1344 fprintf_unfiltered (gdb_stdlog, " }\n");
1345 }
1346
1347 return prev_frame;
1348 }
1349
1350 /* Debug routine to print a NULL frame being returned. */
1351
1352 static void
1353 frame_debug_got_null_frame (struct ui_file *file,
1354 struct frame_info *this_frame,
1355 const char *reason)
1356 {
1357 if (frame_debug)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1360 if (this_frame != NULL)
1361 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1362 else
1363 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1364 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1365 }
1366 }
1367
1368 /* Is this (non-sentinel) frame in the "main"() function? */
1369
1370 static int
1371 inside_main_func (struct frame_info *this_frame)
1372 {
1373 struct minimal_symbol *msymbol;
1374 CORE_ADDR maddr;
1375
1376 if (symfile_objfile == 0)
1377 return 0;
1378 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1379 if (msymbol == NULL)
1380 return 0;
1381 /* Make certain that the code, and not descriptor, address is
1382 returned. */
1383 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1384 SYMBOL_VALUE_ADDRESS (msymbol),
1385 &current_target);
1386 return maddr == get_frame_func (this_frame);
1387 }
1388
1389 /* Test whether THIS_FRAME is inside the process entry point function. */
1390
1391 static int
1392 inside_entry_func (struct frame_info *this_frame)
1393 {
1394 return (get_frame_func (this_frame) == entry_point_address ());
1395 }
1396
1397 /* Return a structure containing various interesting information about
1398 the frame that called THIS_FRAME. Returns NULL if there is entier
1399 no such frame or the frame fails any of a set of target-independent
1400 condition that should terminate the frame chain (e.g., as unwinding
1401 past main()).
1402
1403 This function should not contain target-dependent tests, such as
1404 checking whether the program-counter is zero. */
1405
1406 struct frame_info *
1407 get_prev_frame (struct frame_info *this_frame)
1408 {
1409 struct frame_info *prev_frame;
1410
1411 /* Return the inner-most frame, when the caller passes in NULL. */
1412 /* NOTE: cagney/2002-11-09: Not sure how this would happen. The
1413 caller should have previously obtained a valid frame using
1414 get_selected_frame() and then called this code - only possibility
1415 I can think of is code behaving badly.
1416
1417 NOTE: cagney/2003-01-10: Talk about code behaving badly. Check
1418 block_innermost_frame(). It does the sequence: frame = NULL;
1419 while (1) { frame = get_prev_frame (frame); .... }. Ulgh! Why
1420 it couldn't be written better, I don't know.
1421
1422 NOTE: cagney/2003-01-11: I suspect what is happening in
1423 block_innermost_frame() is, when the target has no state
1424 (registers, memory, ...), it is still calling this function. The
1425 assumption being that this function will return NULL indicating
1426 that a frame isn't possible, rather than checking that the target
1427 has state and then calling get_current_frame() and
1428 get_prev_frame(). This is a guess mind. */
1429 if (this_frame == NULL)
1430 {
1431 /* NOTE: cagney/2002-11-09: There was a code segment here that
1432 would error out when CURRENT_FRAME was NULL. The comment
1433 that went with it made the claim ...
1434
1435 ``This screws value_of_variable, which just wants a nice
1436 clean NULL return from block_innermost_frame if there are no
1437 frames. I don't think I've ever seen this message happen
1438 otherwise. And returning NULL here is a perfectly legitimate
1439 thing to do.''
1440
1441 Per the above, this code shouldn't even be called with a NULL
1442 THIS_FRAME. */
1443 frame_debug_got_null_frame (gdb_stdlog, this_frame, "this_frame NULL");
1444 return current_frame;
1445 }
1446
1447 /* There is always a frame. If this assertion fails, suspect that
1448 something should be calling get_selected_frame() or
1449 get_current_frame(). */
1450 gdb_assert (this_frame != NULL);
1451
1452 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1453 sense to stop unwinding at a dummy frame. One place where a dummy
1454 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1455 pcsqh register (space register for the instruction at the head of the
1456 instruction queue) cannot be written directly; the only way to set it
1457 is to branch to code that is in the target space. In order to implement
1458 frame dummies on HPUX, the called function is made to jump back to where
1459 the inferior was when the user function was called. If gdb was inside
1460 the main function when we created the dummy frame, the dummy frame will
1461 point inside the main function. */
1462 if (this_frame->level >= 0
1463 && get_frame_type (this_frame) != DUMMY_FRAME
1464 && !backtrace_past_main
1465 && inside_main_func (this_frame))
1466 /* Don't unwind past main(). Note, this is done _before_ the
1467 frame has been marked as previously unwound. That way if the
1468 user later decides to enable unwinds past main(), that will
1469 automatically happen. */
1470 {
1471 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside main func");
1472 return NULL;
1473 }
1474
1475 /* If the user's backtrace limit has been exceeded, stop. We must
1476 add two to the current level; one of those accounts for backtrace_limit
1477 being 1-based and the level being 0-based, and the other accounts for
1478 the level of the new frame instead of the level of the current
1479 frame. */
1480 if (this_frame->level + 2 > backtrace_limit)
1481 {
1482 frame_debug_got_null_frame (gdb_stdlog, this_frame,
1483 "backtrace limit exceeded");
1484 return NULL;
1485 }
1486
1487 /* If we're already inside the entry function for the main objfile,
1488 then it isn't valid. Don't apply this test to a dummy frame -
1489 dummy frame PCs typically land in the entry func. Don't apply
1490 this test to the sentinel frame. Sentinel frames should always
1491 be allowed to unwind. */
1492 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1493 wasn't checking for "main" in the minimal symbols. With that
1494 fixed asm-source tests now stop in "main" instead of halting the
1495 backtrace in weird and wonderful ways somewhere inside the entry
1496 file. Suspect that tests for inside the entry file/func were
1497 added to work around that (now fixed) case. */
1498 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1499 suggested having the inside_entry_func test use the
1500 inside_main_func() msymbol trick (along with entry_point_address()
1501 I guess) to determine the address range of the start function.
1502 That should provide a far better stopper than the current
1503 heuristics. */
1504 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1505 applied tail-call optimizations to main so that a function called
1506 from main returns directly to the caller of main. Since we don't
1507 stop at main, we should at least stop at the entry point of the
1508 application. */
1509 if (!backtrace_past_entry
1510 && get_frame_type (this_frame) != DUMMY_FRAME && this_frame->level >= 0
1511 && inside_entry_func (this_frame))
1512 {
1513 frame_debug_got_null_frame (gdb_stdlog, this_frame, "inside entry func");
1514 return NULL;
1515 }
1516
1517 /* Assume that the only way to get a zero PC is through something
1518 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1519 will never unwind a zero PC. */
1520 if (this_frame->level > 0
1521 && get_frame_type (this_frame) == NORMAL_FRAME
1522 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1523 && get_frame_pc (this_frame) == 0)
1524 {
1525 frame_debug_got_null_frame (gdb_stdlog, this_frame, "zero PC");
1526 return NULL;
1527 }
1528
1529 return get_prev_frame_1 (this_frame);
1530 }
1531
1532 CORE_ADDR
1533 get_frame_pc (struct frame_info *frame)
1534 {
1535 gdb_assert (frame->next != NULL);
1536 return frame_pc_unwind (frame->next);
1537 }
1538
1539 /* Return an address that falls within THIS_FRAME's code block. */
1540
1541 CORE_ADDR
1542 get_frame_address_in_block (struct frame_info *this_frame)
1543 {
1544 /* A draft address. */
1545 CORE_ADDR pc = get_frame_pc (this_frame);
1546
1547 struct frame_info *next_frame = this_frame->next;
1548
1549 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1550 Normally the resume address is inside the body of the function
1551 associated with THIS_FRAME, but there is a special case: when
1552 calling a function which the compiler knows will never return
1553 (for instance abort), the call may be the very last instruction
1554 in the calling function. The resume address will point after the
1555 call and may be at the beginning of a different function
1556 entirely.
1557
1558 If THIS_FRAME is a signal frame or dummy frame, then we should
1559 not adjust the unwound PC. For a dummy frame, GDB pushed the
1560 resume address manually onto the stack. For a signal frame, the
1561 OS may have pushed the resume address manually and invoked the
1562 handler (e.g. GNU/Linux), or invoked the trampoline which called
1563 the signal handler - but in either case the signal handler is
1564 expected to return to the trampoline. So in both of these
1565 cases we know that the resume address is executable and
1566 related. So we only need to adjust the PC if THIS_FRAME
1567 is a normal function.
1568
1569 If the program has been interrupted while THIS_FRAME is current,
1570 then clearly the resume address is inside the associated
1571 function. There are three kinds of interruption: debugger stop
1572 (next frame will be SENTINEL_FRAME), operating system
1573 signal or exception (next frame will be SIGTRAMP_FRAME),
1574 or debugger-induced function call (next frame will be
1575 DUMMY_FRAME). So we only need to adjust the PC if
1576 NEXT_FRAME is a normal function.
1577
1578 We check the type of NEXT_FRAME first, since it is already
1579 known; frame type is determined by the unwinder, and since
1580 we have THIS_FRAME we've already selected an unwinder for
1581 NEXT_FRAME. */
1582 if (get_frame_type (next_frame) == NORMAL_FRAME
1583 && get_frame_type (this_frame) == NORMAL_FRAME)
1584 return pc - 1;
1585
1586 return pc;
1587 }
1588
1589 static int
1590 pc_notcurrent (struct frame_info *frame)
1591 {
1592 /* If FRAME is not the innermost frame, that normally means that
1593 FRAME->pc points at the return instruction (which is *after* the
1594 call instruction), and we want to get the line containing the
1595 call (because the call is where the user thinks the program is).
1596 However, if the next frame is either a SIGTRAMP_FRAME or a
1597 DUMMY_FRAME, then the next frame will contain a saved interrupt
1598 PC and such a PC indicates the current (rather than next)
1599 instruction/line, consequently, for such cases, want to get the
1600 line containing fi->pc. */
1601 struct frame_info *next = get_next_frame (frame);
1602 int notcurrent = (next != NULL && get_frame_type (next) == NORMAL_FRAME);
1603 return notcurrent;
1604 }
1605
1606 void
1607 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1608 {
1609 (*sal) = find_pc_line (get_frame_pc (frame), pc_notcurrent (frame));
1610 }
1611
1612 /* Per "frame.h", return the ``address'' of the frame. Code should
1613 really be using get_frame_id(). */
1614 CORE_ADDR
1615 get_frame_base (struct frame_info *fi)
1616 {
1617 return get_frame_id (fi).stack_addr;
1618 }
1619
1620 /* High-level offsets into the frame. Used by the debug info. */
1621
1622 CORE_ADDR
1623 get_frame_base_address (struct frame_info *fi)
1624 {
1625 if (get_frame_type (fi) != NORMAL_FRAME)
1626 return 0;
1627 if (fi->base == NULL)
1628 fi->base = frame_base_find_by_frame (fi);
1629 /* Sneaky: If the low-level unwind and high-level base code share a
1630 common unwinder, let them share the prologue cache. */
1631 if (fi->base->unwind == fi->unwind)
1632 return fi->base->this_base (fi, &fi->prologue_cache);
1633 return fi->base->this_base (fi, &fi->base_cache);
1634 }
1635
1636 CORE_ADDR
1637 get_frame_locals_address (struct frame_info *fi)
1638 {
1639 void **cache;
1640 if (get_frame_type (fi) != NORMAL_FRAME)
1641 return 0;
1642 /* If there isn't a frame address method, find it. */
1643 if (fi->base == NULL)
1644 fi->base = frame_base_find_by_frame (fi);
1645 /* Sneaky: If the low-level unwind and high-level base code share a
1646 common unwinder, let them share the prologue cache. */
1647 if (fi->base->unwind == fi->unwind)
1648 return fi->base->this_locals (fi, &fi->prologue_cache);
1649 return fi->base->this_locals (fi, &fi->base_cache);
1650 }
1651
1652 CORE_ADDR
1653 get_frame_args_address (struct frame_info *fi)
1654 {
1655 void **cache;
1656 if (get_frame_type (fi) != NORMAL_FRAME)
1657 return 0;
1658 /* If there isn't a frame address method, find it. */
1659 if (fi->base == NULL)
1660 fi->base = frame_base_find_by_frame (fi);
1661 /* Sneaky: If the low-level unwind and high-level base code share a
1662 common unwinder, let them share the prologue cache. */
1663 if (fi->base->unwind == fi->unwind)
1664 return fi->base->this_args (fi, &fi->prologue_cache);
1665 return fi->base->this_args (fi, &fi->base_cache);
1666 }
1667
1668 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1669 or -1 for a NULL frame. */
1670
1671 int
1672 frame_relative_level (struct frame_info *fi)
1673 {
1674 if (fi == NULL)
1675 return -1;
1676 else
1677 return fi->level;
1678 }
1679
1680 enum frame_type
1681 get_frame_type (struct frame_info *frame)
1682 {
1683 if (frame->unwind == NULL)
1684 /* Initialize the frame's unwinder because that's what
1685 provides the frame's type. */
1686 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1687 return frame->unwind->type;
1688 }
1689
1690 void
1691 deprecated_update_frame_pc_hack (struct frame_info *frame, CORE_ADDR pc)
1692 {
1693 if (frame_debug)
1694 fprintf_unfiltered (gdb_stdlog,
1695 "{ deprecated_update_frame_pc_hack (frame=%d,pc=0x%s) }\n",
1696 frame->level, paddr_nz (pc));
1697 /* NOTE: cagney/2003-03-11: Some architectures (e.g., Arm) are
1698 maintaining a locally allocated frame object. Since such frames
1699 are not in the frame chain, it isn't possible to assume that the
1700 frame has a next. Sigh. */
1701 if (frame->next != NULL)
1702 {
1703 /* While we're at it, update this frame's cached PC value, found
1704 in the next frame. Oh for the day when "struct frame_info"
1705 is opaque and this hack on hack can just go away. */
1706 frame->next->prev_pc.value = pc;
1707 frame->next->prev_pc.p = 1;
1708 }
1709 }
1710
1711 void
1712 deprecated_update_frame_base_hack (struct frame_info *frame, CORE_ADDR base)
1713 {
1714 if (frame_debug)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "{ deprecated_update_frame_base_hack (frame=%d,base=0x%s) }\n",
1717 frame->level, paddr_nz (base));
1718 /* See comment in "frame.h". */
1719 frame->this_id.value.stack_addr = base;
1720 }
1721
1722 /* Memory access methods. */
1723
1724 void
1725 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1726 gdb_byte *buf, int len)
1727 {
1728 read_memory (addr, buf, len);
1729 }
1730
1731 LONGEST
1732 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1733 int len)
1734 {
1735 return read_memory_integer (addr, len);
1736 }
1737
1738 ULONGEST
1739 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
1740 int len)
1741 {
1742 return read_memory_unsigned_integer (addr, len);
1743 }
1744
1745 int
1746 safe_frame_unwind_memory (struct frame_info *this_frame,
1747 CORE_ADDR addr, gdb_byte *buf, int len)
1748 {
1749 /* NOTE: target_read_memory returns zero on success! */
1750 return !target_read_memory (addr, buf, len);
1751 }
1752
1753 /* Architecture method. */
1754
1755 struct gdbarch *
1756 get_frame_arch (struct frame_info *this_frame)
1757 {
1758 return current_gdbarch;
1759 }
1760
1761 /* Stack pointer methods. */
1762
1763 CORE_ADDR
1764 get_frame_sp (struct frame_info *this_frame)
1765 {
1766 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1767 /* Normality - an architecture that provides a way of obtaining any
1768 frame inner-most address. */
1769 if (gdbarch_unwind_sp_p (gdbarch))
1770 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
1771 operate on THIS_FRAME now. */
1772 return gdbarch_unwind_sp (gdbarch, this_frame->next);
1773 /* Now things are really are grim. Hope that the value returned by
1774 the gdbarch_sp_regnum register is meaningful. */
1775 if (gdbarch_sp_regnum (gdbarch) >= 0)
1776 return get_frame_register_unsigned (this_frame,
1777 gdbarch_sp_regnum (gdbarch));
1778 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
1779 }
1780
1781 /* Return the reason why we can't unwind past FRAME. */
1782
1783 enum unwind_stop_reason
1784 get_frame_unwind_stop_reason (struct frame_info *frame)
1785 {
1786 /* If we haven't tried to unwind past this point yet, then assume
1787 that unwinding would succeed. */
1788 if (frame->prev_p == 0)
1789 return UNWIND_NO_REASON;
1790
1791 /* Otherwise, we set a reason when we succeeded (or failed) to
1792 unwind. */
1793 return frame->stop_reason;
1794 }
1795
1796 /* Return a string explaining REASON. */
1797
1798 const char *
1799 frame_stop_reason_string (enum unwind_stop_reason reason)
1800 {
1801 switch (reason)
1802 {
1803 case UNWIND_NULL_ID:
1804 return _("unwinder did not report frame ID");
1805
1806 case UNWIND_INNER_ID:
1807 return _("previous frame inner to this frame (corrupt stack?)");
1808
1809 case UNWIND_SAME_ID:
1810 return _("previous frame identical to this frame (corrupt stack?)");
1811
1812 case UNWIND_NO_SAVED_PC:
1813 return _("frame did not save the PC");
1814
1815 case UNWIND_NO_REASON:
1816 case UNWIND_FIRST_ERROR:
1817 default:
1818 internal_error (__FILE__, __LINE__,
1819 "Invalid frame stop reason");
1820 }
1821 }
1822
1823 /* Clean up after a failed (wrong unwinder) attempt to unwind past
1824 FRAME. */
1825
1826 static void
1827 frame_cleanup_after_sniffer (void *arg)
1828 {
1829 struct frame_info *frame = arg;
1830
1831 /* The sniffer should not allocate a prologue cache if it did not
1832 match this frame. */
1833 gdb_assert (frame->prologue_cache == NULL);
1834
1835 /* No sniffer should extend the frame chain; sniff based on what is
1836 already certain. */
1837 gdb_assert (!frame->prev_p);
1838
1839 /* The sniffer should not check the frame's ID; that's circular. */
1840 gdb_assert (!frame->this_id.p);
1841
1842 /* Clear cached fields dependent on the unwinder.
1843
1844 The previous PC is independent of the unwinder, but the previous
1845 function is not (see get_frame_address_in_block). */
1846 frame->prev_func.p = 0;
1847 frame->prev_func.addr = 0;
1848
1849 /* Discard the unwinder last, so that we can easily find it if an assertion
1850 in this function triggers. */
1851 frame->unwind = NULL;
1852 }
1853
1854 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
1855 Return a cleanup which should be called if unwinding fails, and
1856 discarded if it succeeds. */
1857
1858 struct cleanup *
1859 frame_prepare_for_sniffer (struct frame_info *frame,
1860 const struct frame_unwind *unwind)
1861 {
1862 gdb_assert (frame->unwind == NULL);
1863 frame->unwind = unwind;
1864 return make_cleanup (frame_cleanup_after_sniffer, frame);
1865 }
1866
1867 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
1868
1869 static struct cmd_list_element *set_backtrace_cmdlist;
1870 static struct cmd_list_element *show_backtrace_cmdlist;
1871
1872 static void
1873 set_backtrace_cmd (char *args, int from_tty)
1874 {
1875 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
1876 }
1877
1878 static void
1879 show_backtrace_cmd (char *args, int from_tty)
1880 {
1881 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
1882 }
1883
1884 void
1885 _initialize_frame (void)
1886 {
1887 obstack_init (&frame_cache_obstack);
1888
1889 observer_attach_target_changed (frame_observer_target_changed);
1890
1891 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
1892 Set backtrace specific variables.\n\
1893 Configure backtrace variables such as the backtrace limit"),
1894 &set_backtrace_cmdlist, "set backtrace ",
1895 0/*allow-unknown*/, &setlist);
1896 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
1897 Show backtrace specific variables\n\
1898 Show backtrace variables such as the backtrace limit"),
1899 &show_backtrace_cmdlist, "show backtrace ",
1900 0/*allow-unknown*/, &showlist);
1901
1902 add_setshow_boolean_cmd ("past-main", class_obscure,
1903 &backtrace_past_main, _("\
1904 Set whether backtraces should continue past \"main\"."), _("\
1905 Show whether backtraces should continue past \"main\"."), _("\
1906 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
1907 the backtrace at \"main\". Set this variable if you need to see the rest\n\
1908 of the stack trace."),
1909 NULL,
1910 show_backtrace_past_main,
1911 &set_backtrace_cmdlist,
1912 &show_backtrace_cmdlist);
1913
1914 add_setshow_boolean_cmd ("past-entry", class_obscure,
1915 &backtrace_past_entry, _("\
1916 Set whether backtraces should continue past the entry point of a program."),
1917 _("\
1918 Show whether backtraces should continue past the entry point of a program."),
1919 _("\
1920 Normally there are no callers beyond the entry point of a program, so GDB\n\
1921 will terminate the backtrace there. Set this variable if you need to see \n\
1922 the rest of the stack trace."),
1923 NULL,
1924 show_backtrace_past_entry,
1925 &set_backtrace_cmdlist,
1926 &show_backtrace_cmdlist);
1927
1928 add_setshow_integer_cmd ("limit", class_obscure,
1929 &backtrace_limit, _("\
1930 Set an upper bound on the number of backtrace levels."), _("\
1931 Show the upper bound on the number of backtrace levels."), _("\
1932 No more than the specified number of frames can be displayed or examined.\n\
1933 Zero is unlimited."),
1934 NULL,
1935 show_backtrace_limit,
1936 &set_backtrace_cmdlist,
1937 &show_backtrace_cmdlist);
1938
1939 /* Debug this files internals. */
1940 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
1941 Set frame debugging."), _("\
1942 Show frame debugging."), _("\
1943 When non-zero, frame specific internal debugging is enabled."),
1944 NULL,
1945 show_frame_debug,
1946 &setdebuglist, &showdebuglist);
1947 }
This page took 0.068925 seconds and 3 git commands to generate.