gdb/
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991, 1994-1996, 1998, 2000-2004,
4 2007-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50
51 /* We keep a cache of stack frames, each of which is a "struct
52 frame_info". The innermost one gets allocated (in
53 wait_for_inferior) each time the inferior stops; current_frame
54 points to it. Additional frames get allocated (in get_prev_frame)
55 as needed, and are chained through the next and prev fields. Any
56 time that the frame cache becomes invalid (most notably when we
57 execute something, but also if we change how we interpret the
58 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
59 which reads new symbols)), we should call reinit_frame_cache. */
60
61 struct frame_info
62 {
63 /* Level of this frame. The inner-most (youngest) frame is at level
64 0. As you move towards the outer-most (oldest) frame, the level
65 increases. This is a cached value. It could just as easily be
66 computed by counting back from the selected frame to the inner
67 most frame. */
68 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
69 reserved to indicate a bogus frame - one that has been created
70 just to keep GDB happy (GDB always needs a frame). For the
71 moment leave this as speculation. */
72 int level;
73
74 /* The frame's program space. */
75 struct program_space *pspace;
76
77 /* The frame's address space. */
78 struct address_space *aspace;
79
80 /* The frame's low-level unwinder and corresponding cache. The
81 low-level unwinder is responsible for unwinding register values
82 for the previous frame. The low-level unwind methods are
83 selected based on the presence, or otherwise, of register unwind
84 information such as CFI. */
85 void *prologue_cache;
86 const struct frame_unwind *unwind;
87
88 /* Cached copy of the previous frame's architecture. */
89 struct
90 {
91 int p;
92 struct gdbarch *arch;
93 } prev_arch;
94
95 /* Cached copy of the previous frame's resume address. */
96 struct {
97 int p;
98 CORE_ADDR value;
99 } prev_pc;
100
101 /* Cached copy of the previous frame's function address. */
102 struct
103 {
104 CORE_ADDR addr;
105 int p;
106 } prev_func;
107
108 /* This frame's ID. */
109 struct
110 {
111 int p;
112 struct frame_id value;
113 } this_id;
114
115 /* The frame's high-level base methods, and corresponding cache.
116 The high level base methods are selected based on the frame's
117 debug info. */
118 const struct frame_base *base;
119 void *base_cache;
120
121 /* Pointers to the next (down, inner, younger) and previous (up,
122 outer, older) frame_info's in the frame cache. */
123 struct frame_info *next; /* down, inner, younger */
124 int prev_p;
125 struct frame_info *prev; /* up, outer, older */
126
127 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
128 could. Only valid when PREV_P is set. */
129 enum unwind_stop_reason stop_reason;
130 };
131
132 /* A frame stash used to speed up frame lookups. */
133
134 /* We currently only stash one frame at a time, as this seems to be
135 sufficient for now. */
136 static struct frame_info *frame_stash = NULL;
137
138 /* Add the following FRAME to the frame stash. */
139
140 static void
141 frame_stash_add (struct frame_info *frame)
142 {
143 frame_stash = frame;
144 }
145
146 /* Search the frame stash for an entry with the given frame ID.
147 If found, return that frame. Otherwise return NULL. */
148
149 static struct frame_info *
150 frame_stash_find (struct frame_id id)
151 {
152 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
153 return frame_stash;
154
155 return NULL;
156 }
157
158 /* Invalidate the frame stash by removing all entries in it. */
159
160 static void
161 frame_stash_invalidate (void)
162 {
163 frame_stash = NULL;
164 }
165
166 /* Flag to control debugging. */
167
168 unsigned int frame_debug;
169 static void
170 show_frame_debug (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172 {
173 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
174 }
175
176 /* Flag to indicate whether backtraces should stop at main et.al. */
177
178 static int backtrace_past_main;
179 static void
180 show_backtrace_past_main (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file,
184 _("Whether backtraces should "
185 "continue past \"main\" is %s.\n"),
186 value);
187 }
188
189 static int backtrace_past_entry;
190 static void
191 show_backtrace_past_entry (struct ui_file *file, int from_tty,
192 struct cmd_list_element *c, const char *value)
193 {
194 fprintf_filtered (file, _("Whether backtraces should continue past the "
195 "entry point of a program is %s.\n"),
196 value);
197 }
198
199 static unsigned int backtrace_limit = UINT_MAX;
200 static void
201 show_backtrace_limit (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file,
205 _("An upper bound on the number "
206 "of backtrace levels is %s.\n"),
207 value);
208 }
209
210
211 static void
212 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
213 {
214 if (p)
215 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
216 else
217 fprintf_unfiltered (file, "!%s", name);
218 }
219
220 void
221 fprint_frame_id (struct ui_file *file, struct frame_id id)
222 {
223 fprintf_unfiltered (file, "{");
224 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
225 fprintf_unfiltered (file, ",");
226 fprint_field (file, "code", id.code_addr_p, id.code_addr);
227 fprintf_unfiltered (file, ",");
228 fprint_field (file, "special", id.special_addr_p, id.special_addr);
229 if (id.artificial_depth)
230 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
231 fprintf_unfiltered (file, "}");
232 }
233
234 static void
235 fprint_frame_type (struct ui_file *file, enum frame_type type)
236 {
237 switch (type)
238 {
239 case NORMAL_FRAME:
240 fprintf_unfiltered (file, "NORMAL_FRAME");
241 return;
242 case DUMMY_FRAME:
243 fprintf_unfiltered (file, "DUMMY_FRAME");
244 return;
245 case INLINE_FRAME:
246 fprintf_unfiltered (file, "INLINE_FRAME");
247 return;
248 case SENTINEL_FRAME:
249 fprintf_unfiltered (file, "SENTINEL_FRAME");
250 return;
251 case SIGTRAMP_FRAME:
252 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
253 return;
254 case ARCH_FRAME:
255 fprintf_unfiltered (file, "ARCH_FRAME");
256 return;
257 default:
258 fprintf_unfiltered (file, "<unknown type>");
259 return;
260 };
261 }
262
263 static void
264 fprint_frame (struct ui_file *file, struct frame_info *fi)
265 {
266 if (fi == NULL)
267 {
268 fprintf_unfiltered (file, "<NULL frame>");
269 return;
270 }
271 fprintf_unfiltered (file, "{");
272 fprintf_unfiltered (file, "level=%d", fi->level);
273 fprintf_unfiltered (file, ",");
274 fprintf_unfiltered (file, "type=");
275 if (fi->unwind != NULL)
276 fprint_frame_type (file, fi->unwind->type);
277 else
278 fprintf_unfiltered (file, "<unknown>");
279 fprintf_unfiltered (file, ",");
280 fprintf_unfiltered (file, "unwind=");
281 if (fi->unwind != NULL)
282 gdb_print_host_address (fi->unwind, file);
283 else
284 fprintf_unfiltered (file, "<unknown>");
285 fprintf_unfiltered (file, ",");
286 fprintf_unfiltered (file, "pc=");
287 if (fi->next != NULL && fi->next->prev_pc.p)
288 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
289 else
290 fprintf_unfiltered (file, "<unknown>");
291 fprintf_unfiltered (file, ",");
292 fprintf_unfiltered (file, "id=");
293 if (fi->this_id.p)
294 fprint_frame_id (file, fi->this_id.value);
295 else
296 fprintf_unfiltered (file, "<unknown>");
297 fprintf_unfiltered (file, ",");
298 fprintf_unfiltered (file, "func=");
299 if (fi->next != NULL && fi->next->prev_func.p)
300 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
301 else
302 fprintf_unfiltered (file, "<unknown>");
303 fprintf_unfiltered (file, "}");
304 }
305
306 /* Given FRAME, return the enclosing frame as found in real frames read-in from
307 inferior memory. Skip any previous frames which were made up by GDB.
308 Return the original frame if no immediate previous frames exist. */
309
310 static struct frame_info *
311 skip_artificial_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_artificial_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_artificial_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_artificial_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_artificial_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.artificial_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.artificial_depth != r.artificial_depth)
477 /* If artifical depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.artificial_depth > r.artificial_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static int
623 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
628 {
629 volatile struct gdb_exception ex;
630 struct gdbarch *prev_gdbarch;
631 CORE_ADDR pc = 0;
632
633 /* The right way. The `pure' way. The one true way. This
634 method depends solely on the register-unwind code to
635 determine the value of registers in THIS frame, and hence
636 the value of this frame's PC (resume address). A typical
637 implementation is no more than:
638
639 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
640 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
641
642 Note: this method is very heavily dependent on a correct
643 register-unwind implementation, it pays to fix that
644 method first; this method is frame type agnostic, since
645 it only deals with register values, it works with any
646 frame. This is all in stark contrast to the old
647 FRAME_SAVED_PC which would try to directly handle all the
648 different ways that a PC could be unwound. */
649 prev_gdbarch = frame_unwind_arch (this_frame);
650
651 TRY_CATCH (ex, RETURN_MASK_ERROR)
652 {
653 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
654 }
655 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
656 {
657 this_frame->prev_pc.p = -1;
658
659 if (frame_debug)
660 fprintf_unfiltered (gdb_stdlog,
661 "{ frame_unwind_pc (this_frame=%d)"
662 " -> <unavailable> }\n",
663 this_frame->level);
664 }
665 else if (ex.reason < 0)
666 {
667 throw_exception (ex);
668 }
669 else
670 {
671 this_frame->prev_pc.value = pc;
672 this_frame->prev_pc.p = 1;
673 if (frame_debug)
674 fprintf_unfiltered (gdb_stdlog,
675 "{ frame_unwind_pc (this_frame=%d) "
676 "-> %s }\n",
677 this_frame->level,
678 hex_string (this_frame->prev_pc.value));
679 }
680 }
681 else
682 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
683 }
684 if (this_frame->prev_pc.p < 0)
685 {
686 *pc = -1;
687 return 0;
688 }
689 else
690 {
691 *pc = this_frame->prev_pc.value;
692 return 1;
693 }
694 }
695
696 static CORE_ADDR
697 frame_unwind_pc (struct frame_info *this_frame)
698 {
699 CORE_ADDR pc;
700
701 if (!frame_unwind_pc_if_available (this_frame, &pc))
702 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
703 else
704 return pc;
705 }
706
707 CORE_ADDR
708 frame_unwind_caller_pc (struct frame_info *this_frame)
709 {
710 return frame_unwind_pc (skip_artificial_frames (this_frame));
711 }
712
713 int
714 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
715 CORE_ADDR *pc)
716 {
717 return frame_unwind_pc_if_available (skip_artificial_frames (this_frame), pc);
718 }
719
720 int
721 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
722 {
723 struct frame_info *next_frame = this_frame->next;
724
725 if (!next_frame->prev_func.p)
726 {
727 CORE_ADDR addr_in_block;
728
729 /* Make certain that this, and not the adjacent, function is
730 found. */
731 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
732 {
733 next_frame->prev_func.p = -1;
734 if (frame_debug)
735 fprintf_unfiltered (gdb_stdlog,
736 "{ get_frame_func (this_frame=%d)"
737 " -> unavailable }\n",
738 this_frame->level);
739 }
740 else
741 {
742 next_frame->prev_func.p = 1;
743 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
744 if (frame_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "{ get_frame_func (this_frame=%d) -> %s }\n",
747 this_frame->level,
748 hex_string (next_frame->prev_func.addr));
749 }
750 }
751
752 if (next_frame->prev_func.p < 0)
753 {
754 *pc = -1;
755 return 0;
756 }
757 else
758 {
759 *pc = next_frame->prev_func.addr;
760 return 1;
761 }
762 }
763
764 CORE_ADDR
765 get_frame_func (struct frame_info *this_frame)
766 {
767 CORE_ADDR pc;
768
769 if (!get_frame_func_if_available (this_frame, &pc))
770 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
771
772 return pc;
773 }
774
775 static enum register_status
776 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
777 {
778 if (!frame_register_read (src, regnum, buf))
779 return REG_UNAVAILABLE;
780 else
781 return REG_VALID;
782 }
783
784 struct regcache *
785 frame_save_as_regcache (struct frame_info *this_frame)
786 {
787 struct address_space *aspace = get_frame_address_space (this_frame);
788 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
789 aspace);
790 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
791
792 regcache_save (regcache, do_frame_register_read, this_frame);
793 discard_cleanups (cleanups);
794 return regcache;
795 }
796
797 void
798 frame_pop (struct frame_info *this_frame)
799 {
800 struct frame_info *prev_frame;
801 struct regcache *scratch;
802 struct cleanup *cleanups;
803
804 if (get_frame_type (this_frame) == DUMMY_FRAME)
805 {
806 /* Popping a dummy frame involves restoring more than just registers.
807 dummy_frame_pop does all the work. */
808 dummy_frame_pop (get_frame_id (this_frame));
809 return;
810 }
811
812 /* Ensure that we have a frame to pop to. */
813 prev_frame = get_prev_frame_1 (this_frame);
814
815 if (!prev_frame)
816 error (_("Cannot pop the initial frame."));
817
818 /* Make a copy of all the register values unwound from this frame.
819 Save them in a scratch buffer so that there isn't a race between
820 trying to extract the old values from the current regcache while
821 at the same time writing new values into that same cache. */
822 scratch = frame_save_as_regcache (prev_frame);
823 cleanups = make_cleanup_regcache_xfree (scratch);
824
825 /* FIXME: cagney/2003-03-16: It should be possible to tell the
826 target's register cache that it is about to be hit with a burst
827 register transfer and that the sequence of register writes should
828 be batched. The pair target_prepare_to_store() and
829 target_store_registers() kind of suggest this functionality.
830 Unfortunately, they don't implement it. Their lack of a formal
831 definition can lead to targets writing back bogus values
832 (arguably a bug in the target code mind). */
833 /* Now copy those saved registers into the current regcache.
834 Here, regcache_cpy() calls regcache_restore(). */
835 regcache_cpy (get_current_regcache (), scratch);
836 do_cleanups (cleanups);
837
838 /* We've made right mess of GDB's local state, just discard
839 everything. */
840 reinit_frame_cache ();
841 }
842
843 void
844 frame_register_unwind (struct frame_info *frame, int regnum,
845 int *optimizedp, int *unavailablep,
846 enum lval_type *lvalp, CORE_ADDR *addrp,
847 int *realnump, gdb_byte *bufferp)
848 {
849 struct value *value;
850
851 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
852 that the value proper does not need to be fetched. */
853 gdb_assert (optimizedp != NULL);
854 gdb_assert (lvalp != NULL);
855 gdb_assert (addrp != NULL);
856 gdb_assert (realnump != NULL);
857 /* gdb_assert (bufferp != NULL); */
858
859 value = frame_unwind_register_value (frame, regnum);
860
861 gdb_assert (value != NULL);
862
863 *optimizedp = value_optimized_out (value);
864 *unavailablep = !value_entirely_available (value);
865 *lvalp = VALUE_LVAL (value);
866 *addrp = value_address (value);
867 *realnump = VALUE_REGNUM (value);
868
869 if (bufferp)
870 {
871 if (!*optimizedp && !*unavailablep)
872 memcpy (bufferp, value_contents_all (value),
873 TYPE_LENGTH (value_type (value)));
874 else
875 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
876 }
877
878 /* Dispose of the new value. This prevents watchpoints from
879 trying to watch the saved frame pointer. */
880 release_value (value);
881 value_free (value);
882 }
883
884 void
885 frame_register (struct frame_info *frame, int regnum,
886 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
887 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
888 {
889 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
890 that the value proper does not need to be fetched. */
891 gdb_assert (optimizedp != NULL);
892 gdb_assert (lvalp != NULL);
893 gdb_assert (addrp != NULL);
894 gdb_assert (realnump != NULL);
895 /* gdb_assert (bufferp != NULL); */
896
897 /* Obtain the register value by unwinding the register from the next
898 (more inner frame). */
899 gdb_assert (frame != NULL && frame->next != NULL);
900 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
901 lvalp, addrp, realnump, bufferp);
902 }
903
904 void
905 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
906 {
907 int optimized;
908 int unavailable;
909 CORE_ADDR addr;
910 int realnum;
911 enum lval_type lval;
912
913 frame_register_unwind (frame, regnum, &optimized, &unavailable,
914 &lval, &addr, &realnum, buf);
915
916 if (optimized)
917 error (_("Register %d was optimized out"), regnum);
918 if (unavailable)
919 throw_error (NOT_AVAILABLE_ERROR,
920 _("Register %d is not available"), regnum);
921 }
922
923 void
924 get_frame_register (struct frame_info *frame,
925 int regnum, gdb_byte *buf)
926 {
927 frame_unwind_register (frame->next, regnum, buf);
928 }
929
930 struct value *
931 frame_unwind_register_value (struct frame_info *frame, int regnum)
932 {
933 struct gdbarch *gdbarch;
934 struct value *value;
935
936 gdb_assert (frame != NULL);
937 gdbarch = frame_unwind_arch (frame);
938
939 if (frame_debug)
940 {
941 fprintf_unfiltered (gdb_stdlog,
942 "{ frame_unwind_register_value "
943 "(frame=%d,regnum=%d(%s),...) ",
944 frame->level, regnum,
945 user_reg_map_regnum_to_name (gdbarch, regnum));
946 }
947
948 /* Find the unwinder. */
949 if (frame->unwind == NULL)
950 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
951
952 /* Ask this frame to unwind its register. */
953 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
954
955 if (frame_debug)
956 {
957 fprintf_unfiltered (gdb_stdlog, "->");
958 if (value_optimized_out (value))
959 fprintf_unfiltered (gdb_stdlog, " optimized out");
960 else
961 {
962 if (VALUE_LVAL (value) == lval_register)
963 fprintf_unfiltered (gdb_stdlog, " register=%d",
964 VALUE_REGNUM (value));
965 else if (VALUE_LVAL (value) == lval_memory)
966 fprintf_unfiltered (gdb_stdlog, " address=%s",
967 paddress (gdbarch,
968 value_address (value)));
969 else
970 fprintf_unfiltered (gdb_stdlog, " computed");
971
972 if (value_lazy (value))
973 fprintf_unfiltered (gdb_stdlog, " lazy");
974 else
975 {
976 int i;
977 const gdb_byte *buf = value_contents (value);
978
979 fprintf_unfiltered (gdb_stdlog, " bytes=");
980 fprintf_unfiltered (gdb_stdlog, "[");
981 for (i = 0; i < register_size (gdbarch, regnum); i++)
982 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
983 fprintf_unfiltered (gdb_stdlog, "]");
984 }
985 }
986
987 fprintf_unfiltered (gdb_stdlog, " }\n");
988 }
989
990 return value;
991 }
992
993 struct value *
994 get_frame_register_value (struct frame_info *frame, int regnum)
995 {
996 return frame_unwind_register_value (frame->next, regnum);
997 }
998
999 LONGEST
1000 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1001 {
1002 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1004 int size = register_size (gdbarch, regnum);
1005 gdb_byte buf[MAX_REGISTER_SIZE];
1006
1007 frame_unwind_register (frame, regnum, buf);
1008 return extract_signed_integer (buf, size, byte_order);
1009 }
1010
1011 LONGEST
1012 get_frame_register_signed (struct frame_info *frame, int regnum)
1013 {
1014 return frame_unwind_register_signed (frame->next, regnum);
1015 }
1016
1017 ULONGEST
1018 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1019 {
1020 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 int size = register_size (gdbarch, regnum);
1023 gdb_byte buf[MAX_REGISTER_SIZE];
1024
1025 frame_unwind_register (frame, regnum, buf);
1026 return extract_unsigned_integer (buf, size, byte_order);
1027 }
1028
1029 ULONGEST
1030 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1031 {
1032 return frame_unwind_register_unsigned (frame->next, regnum);
1033 }
1034
1035 int
1036 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1037 ULONGEST *val)
1038 {
1039 struct value *regval = get_frame_register_value (frame, regnum);
1040
1041 if (!value_optimized_out (regval)
1042 && value_entirely_available (regval))
1043 {
1044 struct gdbarch *gdbarch = get_frame_arch (frame);
1045 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1046 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1047
1048 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1049 return 1;
1050 }
1051
1052 return 0;
1053 }
1054
1055 void
1056 put_frame_register (struct frame_info *frame, int regnum,
1057 const gdb_byte *buf)
1058 {
1059 struct gdbarch *gdbarch = get_frame_arch (frame);
1060 int realnum;
1061 int optim;
1062 int unavail;
1063 enum lval_type lval;
1064 CORE_ADDR addr;
1065
1066 frame_register (frame, regnum, &optim, &unavail,
1067 &lval, &addr, &realnum, NULL);
1068 if (optim)
1069 error (_("Attempt to assign to a value that was optimized out."));
1070 switch (lval)
1071 {
1072 case lval_memory:
1073 {
1074 /* FIXME: write_memory doesn't yet take constant buffers.
1075 Arrrg! */
1076 gdb_byte tmp[MAX_REGISTER_SIZE];
1077
1078 memcpy (tmp, buf, register_size (gdbarch, regnum));
1079 write_memory (addr, tmp, register_size (gdbarch, regnum));
1080 break;
1081 }
1082 case lval_register:
1083 regcache_cooked_write (get_current_regcache (), realnum, buf);
1084 break;
1085 default:
1086 error (_("Attempt to assign to an unmodifiable value."));
1087 }
1088 }
1089
1090 /* frame_register_read ()
1091
1092 Find and return the value of REGNUM for the specified stack frame.
1093 The number of bytes copied is REGISTER_SIZE (REGNUM).
1094
1095 Returns 0 if the register value could not be found. */
1096
1097 int
1098 frame_register_read (struct frame_info *frame, int regnum,
1099 gdb_byte *myaddr)
1100 {
1101 int optimized;
1102 int unavailable;
1103 enum lval_type lval;
1104 CORE_ADDR addr;
1105 int realnum;
1106
1107 frame_register (frame, regnum, &optimized, &unavailable,
1108 &lval, &addr, &realnum, myaddr);
1109
1110 return !optimized && !unavailable;
1111 }
1112
1113 int
1114 get_frame_register_bytes (struct frame_info *frame, int regnum,
1115 CORE_ADDR offset, int len, gdb_byte *myaddr,
1116 int *optimizedp, int *unavailablep)
1117 {
1118 struct gdbarch *gdbarch = get_frame_arch (frame);
1119 int i;
1120 int maxsize;
1121 int numregs;
1122
1123 /* Skip registers wholly inside of OFFSET. */
1124 while (offset >= register_size (gdbarch, regnum))
1125 {
1126 offset -= register_size (gdbarch, regnum);
1127 regnum++;
1128 }
1129
1130 /* Ensure that we will not read beyond the end of the register file.
1131 This can only ever happen if the debug information is bad. */
1132 maxsize = -offset;
1133 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1134 for (i = regnum; i < numregs; i++)
1135 {
1136 int thissize = register_size (gdbarch, i);
1137
1138 if (thissize == 0)
1139 break; /* This register is not available on this architecture. */
1140 maxsize += thissize;
1141 }
1142 if (len > maxsize)
1143 error (_("Bad debug information detected: "
1144 "Attempt to read %d bytes from registers."), len);
1145
1146 /* Copy the data. */
1147 while (len > 0)
1148 {
1149 int curr_len = register_size (gdbarch, regnum) - offset;
1150
1151 if (curr_len > len)
1152 curr_len = len;
1153
1154 if (curr_len == register_size (gdbarch, regnum))
1155 {
1156 enum lval_type lval;
1157 CORE_ADDR addr;
1158 int realnum;
1159
1160 frame_register (frame, regnum, optimizedp, unavailablep,
1161 &lval, &addr, &realnum, myaddr);
1162 if (*optimizedp || *unavailablep)
1163 return 0;
1164 }
1165 else
1166 {
1167 gdb_byte buf[MAX_REGISTER_SIZE];
1168 enum lval_type lval;
1169 CORE_ADDR addr;
1170 int realnum;
1171
1172 frame_register (frame, regnum, optimizedp, unavailablep,
1173 &lval, &addr, &realnum, buf);
1174 if (*optimizedp || *unavailablep)
1175 return 0;
1176 memcpy (myaddr, buf + offset, curr_len);
1177 }
1178
1179 myaddr += curr_len;
1180 len -= curr_len;
1181 offset = 0;
1182 regnum++;
1183 }
1184
1185 *optimizedp = 0;
1186 *unavailablep = 0;
1187 return 1;
1188 }
1189
1190 void
1191 put_frame_register_bytes (struct frame_info *frame, int regnum,
1192 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1193 {
1194 struct gdbarch *gdbarch = get_frame_arch (frame);
1195
1196 /* Skip registers wholly inside of OFFSET. */
1197 while (offset >= register_size (gdbarch, regnum))
1198 {
1199 offset -= register_size (gdbarch, regnum);
1200 regnum++;
1201 }
1202
1203 /* Copy the data. */
1204 while (len > 0)
1205 {
1206 int curr_len = register_size (gdbarch, regnum) - offset;
1207
1208 if (curr_len > len)
1209 curr_len = len;
1210
1211 if (curr_len == register_size (gdbarch, regnum))
1212 {
1213 put_frame_register (frame, regnum, myaddr);
1214 }
1215 else
1216 {
1217 gdb_byte buf[MAX_REGISTER_SIZE];
1218
1219 frame_register_read (frame, regnum, buf);
1220 memcpy (buf + offset, myaddr, curr_len);
1221 put_frame_register (frame, regnum, buf);
1222 }
1223
1224 myaddr += curr_len;
1225 len -= curr_len;
1226 offset = 0;
1227 regnum++;
1228 }
1229 }
1230
1231 /* Create a sentinel frame. */
1232
1233 static struct frame_info *
1234 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1235 {
1236 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1237
1238 frame->level = -1;
1239 frame->pspace = pspace;
1240 frame->aspace = get_regcache_aspace (regcache);
1241 /* Explicitly initialize the sentinel frame's cache. Provide it
1242 with the underlying regcache. In the future additional
1243 information, such as the frame's thread will be added. */
1244 frame->prologue_cache = sentinel_frame_cache (regcache);
1245 /* For the moment there is only one sentinel frame implementation. */
1246 frame->unwind = &sentinel_frame_unwind;
1247 /* Link this frame back to itself. The frame is self referential
1248 (the unwound PC is the same as the pc), so make it so. */
1249 frame->next = frame;
1250 /* Make the sentinel frame's ID valid, but invalid. That way all
1251 comparisons with it should fail. */
1252 frame->this_id.p = 1;
1253 frame->this_id.value = null_frame_id;
1254 if (frame_debug)
1255 {
1256 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1257 fprint_frame (gdb_stdlog, frame);
1258 fprintf_unfiltered (gdb_stdlog, " }\n");
1259 }
1260 return frame;
1261 }
1262
1263 /* Info about the innermost stack frame (contents of FP register). */
1264
1265 static struct frame_info *current_frame;
1266
1267 /* Cache for frame addresses already read by gdb. Valid only while
1268 inferior is stopped. Control variables for the frame cache should
1269 be local to this module. */
1270
1271 static struct obstack frame_cache_obstack;
1272
1273 void *
1274 frame_obstack_zalloc (unsigned long size)
1275 {
1276 void *data = obstack_alloc (&frame_cache_obstack, size);
1277
1278 memset (data, 0, size);
1279 return data;
1280 }
1281
1282 /* Return the innermost (currently executing) stack frame. This is
1283 split into two functions. The function unwind_to_current_frame()
1284 is wrapped in catch exceptions so that, even when the unwind of the
1285 sentinel frame fails, the function still returns a stack frame. */
1286
1287 static int
1288 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1289 {
1290 struct frame_info *frame = get_prev_frame (args);
1291
1292 /* A sentinel frame can fail to unwind, e.g., because its PC value
1293 lands in somewhere like start. */
1294 if (frame == NULL)
1295 return 1;
1296 current_frame = frame;
1297 return 0;
1298 }
1299
1300 struct frame_info *
1301 get_current_frame (void)
1302 {
1303 /* First check, and report, the lack of registers. Having GDB
1304 report "No stack!" or "No memory" when the target doesn't even
1305 have registers is very confusing. Besides, "printcmd.exp"
1306 explicitly checks that ``print $pc'' with no registers prints "No
1307 registers". */
1308 if (!target_has_registers)
1309 error (_("No registers."));
1310 if (!target_has_stack)
1311 error (_("No stack."));
1312 if (!target_has_memory)
1313 error (_("No memory."));
1314 /* Traceframes are effectively a substitute for the live inferior. */
1315 if (get_traceframe_number () < 0)
1316 {
1317 if (ptid_equal (inferior_ptid, null_ptid))
1318 error (_("No selected thread."));
1319 if (is_exited (inferior_ptid))
1320 error (_("Invalid selected thread."));
1321 if (is_executing (inferior_ptid))
1322 error (_("Target is executing."));
1323 }
1324
1325 if (current_frame == NULL)
1326 {
1327 struct frame_info *sentinel_frame =
1328 create_sentinel_frame (current_program_space, get_current_regcache ());
1329 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1330 sentinel_frame, RETURN_MASK_ERROR) != 0)
1331 {
1332 /* Oops! Fake a current frame? Is this useful? It has a PC
1333 of zero, for instance. */
1334 current_frame = sentinel_frame;
1335 }
1336 }
1337 return current_frame;
1338 }
1339
1340 /* The "selected" stack frame is used by default for local and arg
1341 access. May be zero, for no selected frame. */
1342
1343 static struct frame_info *selected_frame;
1344
1345 int
1346 has_stack_frames (void)
1347 {
1348 if (!target_has_registers || !target_has_stack || !target_has_memory)
1349 return 0;
1350
1351 /* Traceframes are effectively a substitute for the live inferior. */
1352 if (get_traceframe_number () < 0)
1353 {
1354 /* No current inferior, no frame. */
1355 if (ptid_equal (inferior_ptid, null_ptid))
1356 return 0;
1357
1358 /* Don't try to read from a dead thread. */
1359 if (is_exited (inferior_ptid))
1360 return 0;
1361
1362 /* ... or from a spinning thread. */
1363 if (is_executing (inferior_ptid))
1364 return 0;
1365 }
1366
1367 return 1;
1368 }
1369
1370 /* Return the selected frame. Always non-NULL (unless there isn't an
1371 inferior sufficient for creating a frame) in which case an error is
1372 thrown. */
1373
1374 struct frame_info *
1375 get_selected_frame (const char *message)
1376 {
1377 if (selected_frame == NULL)
1378 {
1379 if (message != NULL && !has_stack_frames ())
1380 error (("%s"), message);
1381 /* Hey! Don't trust this. It should really be re-finding the
1382 last selected frame of the currently selected thread. This,
1383 though, is better than nothing. */
1384 select_frame (get_current_frame ());
1385 }
1386 /* There is always a frame. */
1387 gdb_assert (selected_frame != NULL);
1388 return selected_frame;
1389 }
1390
1391 /* If there is a selected frame, return it. Otherwise, return NULL. */
1392
1393 struct frame_info *
1394 get_selected_frame_if_set (void)
1395 {
1396 return selected_frame;
1397 }
1398
1399 /* This is a variant of get_selected_frame() which can be called when
1400 the inferior does not have a frame; in that case it will return
1401 NULL instead of calling error(). */
1402
1403 struct frame_info *
1404 deprecated_safe_get_selected_frame (void)
1405 {
1406 if (!has_stack_frames ())
1407 return NULL;
1408 return get_selected_frame (NULL);
1409 }
1410
1411 /* Select frame FI (or NULL - to invalidate the current frame). */
1412
1413 void
1414 select_frame (struct frame_info *fi)
1415 {
1416 selected_frame = fi;
1417 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1418 frame is being invalidated. */
1419 if (deprecated_selected_frame_level_changed_hook)
1420 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1421
1422 /* FIXME: kseitz/2002-08-28: It would be nice to call
1423 selected_frame_level_changed_event() right here, but due to limitations
1424 in the current interfaces, we would end up flooding UIs with events
1425 because select_frame() is used extensively internally.
1426
1427 Once we have frame-parameterized frame (and frame-related) commands,
1428 the event notification can be moved here, since this function will only
1429 be called when the user's selected frame is being changed. */
1430
1431 /* Ensure that symbols for this frame are read in. Also, determine the
1432 source language of this frame, and switch to it if desired. */
1433 if (fi)
1434 {
1435 CORE_ADDR pc;
1436
1437 /* We retrieve the frame's symtab by using the frame PC.
1438 However we cannot use the frame PC as-is, because it usually
1439 points to the instruction following the "call", which is
1440 sometimes the first instruction of another function. So we
1441 rely on get_frame_address_in_block() which provides us with a
1442 PC which is guaranteed to be inside the frame's code
1443 block. */
1444 if (get_frame_address_in_block_if_available (fi, &pc))
1445 {
1446 struct symtab *s = find_pc_symtab (pc);
1447
1448 if (s
1449 && s->language != current_language->la_language
1450 && s->language != language_unknown
1451 && language_mode == language_mode_auto)
1452 set_language (s->language);
1453 }
1454 }
1455 }
1456
1457 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1458 Always returns a non-NULL value. */
1459
1460 struct frame_info *
1461 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1462 {
1463 struct frame_info *fi;
1464
1465 if (frame_debug)
1466 {
1467 fprintf_unfiltered (gdb_stdlog,
1468 "{ create_new_frame (addr=%s, pc=%s) ",
1469 hex_string (addr), hex_string (pc));
1470 }
1471
1472 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1473
1474 fi->next = create_sentinel_frame (current_program_space,
1475 get_current_regcache ());
1476
1477 /* Set/update this frame's cached PC value, found in the next frame.
1478 Do this before looking for this frame's unwinder. A sniffer is
1479 very likely to read this, and the corresponding unwinder is
1480 entitled to rely that the PC doesn't magically change. */
1481 fi->next->prev_pc.value = pc;
1482 fi->next->prev_pc.p = 1;
1483
1484 /* We currently assume that frame chain's can't cross spaces. */
1485 fi->pspace = fi->next->pspace;
1486 fi->aspace = fi->next->aspace;
1487
1488 /* Select/initialize both the unwind function and the frame's type
1489 based on the PC. */
1490 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1491
1492 fi->this_id.p = 1;
1493 fi->this_id.value = frame_id_build (addr, pc);
1494
1495 if (frame_debug)
1496 {
1497 fprintf_unfiltered (gdb_stdlog, "-> ");
1498 fprint_frame (gdb_stdlog, fi);
1499 fprintf_unfiltered (gdb_stdlog, " }\n");
1500 }
1501
1502 return fi;
1503 }
1504
1505 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1506 innermost frame). Be careful to not fall off the bottom of the
1507 frame chain and onto the sentinel frame. */
1508
1509 struct frame_info *
1510 get_next_frame (struct frame_info *this_frame)
1511 {
1512 if (this_frame->level > 0)
1513 return this_frame->next;
1514 else
1515 return NULL;
1516 }
1517
1518 /* Observer for the target_changed event. */
1519
1520 static void
1521 frame_observer_target_changed (struct target_ops *target)
1522 {
1523 reinit_frame_cache ();
1524 }
1525
1526 /* Flush the entire frame cache. */
1527
1528 void
1529 reinit_frame_cache (void)
1530 {
1531 struct frame_info *fi;
1532
1533 /* Tear down all frame caches. */
1534 for (fi = current_frame; fi != NULL; fi = fi->prev)
1535 {
1536 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1537 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1538 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1539 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1540 }
1541
1542 /* Since we can't really be sure what the first object allocated was. */
1543 obstack_free (&frame_cache_obstack, 0);
1544 obstack_init (&frame_cache_obstack);
1545
1546 if (current_frame != NULL)
1547 annotate_frames_invalid ();
1548
1549 current_frame = NULL; /* Invalidate cache */
1550 select_frame (NULL);
1551 frame_stash_invalidate ();
1552 if (frame_debug)
1553 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1554 }
1555
1556 /* Find where a register is saved (in memory or another register).
1557 The result of frame_register_unwind is just where it is saved
1558 relative to this particular frame. */
1559
1560 static void
1561 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1562 int *optimizedp, enum lval_type *lvalp,
1563 CORE_ADDR *addrp, int *realnump)
1564 {
1565 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1566
1567 while (this_frame != NULL)
1568 {
1569 int unavailable;
1570
1571 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1572 lvalp, addrp, realnump, NULL);
1573
1574 if (*optimizedp)
1575 break;
1576
1577 if (*lvalp != lval_register)
1578 break;
1579
1580 regnum = *realnump;
1581 this_frame = get_next_frame (this_frame);
1582 }
1583 }
1584
1585 /* Return a "struct frame_info" corresponding to the frame that called
1586 THIS_FRAME. Returns NULL if there is no such frame.
1587
1588 Unlike get_prev_frame, this function always tries to unwind the
1589 frame. */
1590
1591 static struct frame_info *
1592 get_prev_frame_1 (struct frame_info *this_frame)
1593 {
1594 struct frame_id this_id;
1595 struct gdbarch *gdbarch;
1596
1597 gdb_assert (this_frame != NULL);
1598 gdbarch = get_frame_arch (this_frame);
1599
1600 if (frame_debug)
1601 {
1602 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1603 if (this_frame != NULL)
1604 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1605 else
1606 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1607 fprintf_unfiltered (gdb_stdlog, ") ");
1608 }
1609
1610 /* Only try to do the unwind once. */
1611 if (this_frame->prev_p)
1612 {
1613 if (frame_debug)
1614 {
1615 fprintf_unfiltered (gdb_stdlog, "-> ");
1616 fprint_frame (gdb_stdlog, this_frame->prev);
1617 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1618 }
1619 return this_frame->prev;
1620 }
1621
1622 /* If the frame unwinder hasn't been selected yet, we must do so
1623 before setting prev_p; otherwise the check for misbehaved
1624 sniffers will think that this frame's sniffer tried to unwind
1625 further (see frame_cleanup_after_sniffer). */
1626 if (this_frame->unwind == NULL)
1627 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1628
1629 this_frame->prev_p = 1;
1630 this_frame->stop_reason = UNWIND_NO_REASON;
1631
1632 /* If we are unwinding from an inline frame, all of the below tests
1633 were already performed when we unwound from the next non-inline
1634 frame. We must skip them, since we can not get THIS_FRAME's ID
1635 until we have unwound all the way down to the previous non-inline
1636 frame. */
1637 if (get_frame_type (this_frame) == INLINE_FRAME)
1638 return get_prev_frame_raw (this_frame);
1639
1640 /* Check that this frame is unwindable. If it isn't, don't try to
1641 unwind to the prev frame. */
1642 this_frame->stop_reason
1643 = this_frame->unwind->stop_reason (this_frame,
1644 &this_frame->prologue_cache);
1645
1646 if (this_frame->stop_reason != UNWIND_NO_REASON)
1647 return NULL;
1648
1649 /* Check that this frame's ID was valid. If it wasn't, don't try to
1650 unwind to the prev frame. Be careful to not apply this test to
1651 the sentinel frame. */
1652 this_id = get_frame_id (this_frame);
1653 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1654 {
1655 if (frame_debug)
1656 {
1657 fprintf_unfiltered (gdb_stdlog, "-> ");
1658 fprint_frame (gdb_stdlog, NULL);
1659 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1660 }
1661 this_frame->stop_reason = UNWIND_NULL_ID;
1662 return NULL;
1663 }
1664
1665 /* Check that this frame's ID isn't inner to (younger, below, next)
1666 the next frame. This happens when a frame unwind goes backwards.
1667 This check is valid only if this frame and the next frame are NORMAL.
1668 See the comment at frame_id_inner for details. */
1669 if (get_frame_type (this_frame) == NORMAL_FRAME
1670 && this_frame->next->unwind->type == NORMAL_FRAME
1671 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1672 get_frame_id (this_frame->next)))
1673 {
1674 CORE_ADDR this_pc_in_block;
1675 struct minimal_symbol *morestack_msym;
1676 const char *morestack_name = NULL;
1677
1678 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1679 this_pc_in_block = get_frame_address_in_block (this_frame);
1680 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1681 if (morestack_msym)
1682 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1683 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1684 {
1685 if (frame_debug)
1686 {
1687 fprintf_unfiltered (gdb_stdlog, "-> ");
1688 fprint_frame (gdb_stdlog, NULL);
1689 fprintf_unfiltered (gdb_stdlog,
1690 " // this frame ID is inner }\n");
1691 }
1692 this_frame->stop_reason = UNWIND_INNER_ID;
1693 return NULL;
1694 }
1695 }
1696
1697 /* Check that this and the next frame are not identical. If they
1698 are, there is most likely a stack cycle. As with the inner-than
1699 test above, avoid comparing the inner-most and sentinel frames. */
1700 if (this_frame->level > 0
1701 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1702 {
1703 if (frame_debug)
1704 {
1705 fprintf_unfiltered (gdb_stdlog, "-> ");
1706 fprint_frame (gdb_stdlog, NULL);
1707 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1708 }
1709 this_frame->stop_reason = UNWIND_SAME_ID;
1710 return NULL;
1711 }
1712
1713 /* Check that this and the next frame do not unwind the PC register
1714 to the same memory location. If they do, then even though they
1715 have different frame IDs, the new frame will be bogus; two
1716 functions can't share a register save slot for the PC. This can
1717 happen when the prologue analyzer finds a stack adjustment, but
1718 no PC save.
1719
1720 This check does assume that the "PC register" is roughly a
1721 traditional PC, even if the gdbarch_unwind_pc method adjusts
1722 it (we do not rely on the value, only on the unwound PC being
1723 dependent on this value). A potential improvement would be
1724 to have the frame prev_pc method and the gdbarch unwind_pc
1725 method set the same lval and location information as
1726 frame_register_unwind. */
1727 if (this_frame->level > 0
1728 && gdbarch_pc_regnum (gdbarch) >= 0
1729 && get_frame_type (this_frame) == NORMAL_FRAME
1730 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1731 || get_frame_type (this_frame->next) == INLINE_FRAME))
1732 {
1733 int optimized, realnum, nrealnum;
1734 enum lval_type lval, nlval;
1735 CORE_ADDR addr, naddr;
1736
1737 frame_register_unwind_location (this_frame,
1738 gdbarch_pc_regnum (gdbarch),
1739 &optimized, &lval, &addr, &realnum);
1740 frame_register_unwind_location (get_next_frame (this_frame),
1741 gdbarch_pc_regnum (gdbarch),
1742 &optimized, &nlval, &naddr, &nrealnum);
1743
1744 if ((lval == lval_memory && lval == nlval && addr == naddr)
1745 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1746 {
1747 if (frame_debug)
1748 {
1749 fprintf_unfiltered (gdb_stdlog, "-> ");
1750 fprint_frame (gdb_stdlog, NULL);
1751 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1752 }
1753
1754 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1755 this_frame->prev = NULL;
1756 return NULL;
1757 }
1758 }
1759
1760 return get_prev_frame_raw (this_frame);
1761 }
1762
1763 /* Construct a new "struct frame_info" and link it previous to
1764 this_frame. */
1765
1766 static struct frame_info *
1767 get_prev_frame_raw (struct frame_info *this_frame)
1768 {
1769 struct frame_info *prev_frame;
1770
1771 /* Allocate the new frame but do not wire it in to the frame chain.
1772 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1773 frame->next to pull some fancy tricks (of course such code is, by
1774 definition, recursive). Try to prevent it.
1775
1776 There is no reason to worry about memory leaks, should the
1777 remainder of the function fail. The allocated memory will be
1778 quickly reclaimed when the frame cache is flushed, and the `we've
1779 been here before' check above will stop repeated memory
1780 allocation calls. */
1781 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1782 prev_frame->level = this_frame->level + 1;
1783
1784 /* For now, assume we don't have frame chains crossing address
1785 spaces. */
1786 prev_frame->pspace = this_frame->pspace;
1787 prev_frame->aspace = this_frame->aspace;
1788
1789 /* Don't yet compute ->unwind (and hence ->type). It is computed
1790 on-demand in get_frame_type, frame_register_unwind, and
1791 get_frame_id. */
1792
1793 /* Don't yet compute the frame's ID. It is computed on-demand by
1794 get_frame_id(). */
1795
1796 /* The unwound frame ID is validate at the start of this function,
1797 as part of the logic to decide if that frame should be further
1798 unwound, and not here while the prev frame is being created.
1799 Doing this makes it possible for the user to examine a frame that
1800 has an invalid frame ID.
1801
1802 Some very old VAX code noted: [...] For the sake of argument,
1803 suppose that the stack is somewhat trashed (which is one reason
1804 that "info frame" exists). So, return 0 (indicating we don't
1805 know the address of the arglist) if we don't know what frame this
1806 frame calls. */
1807
1808 /* Link it in. */
1809 this_frame->prev = prev_frame;
1810 prev_frame->next = this_frame;
1811
1812 if (frame_debug)
1813 {
1814 fprintf_unfiltered (gdb_stdlog, "-> ");
1815 fprint_frame (gdb_stdlog, prev_frame);
1816 fprintf_unfiltered (gdb_stdlog, " }\n");
1817 }
1818
1819 return prev_frame;
1820 }
1821
1822 /* Debug routine to print a NULL frame being returned. */
1823
1824 static void
1825 frame_debug_got_null_frame (struct frame_info *this_frame,
1826 const char *reason)
1827 {
1828 if (frame_debug)
1829 {
1830 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1831 if (this_frame != NULL)
1832 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1833 else
1834 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1835 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1836 }
1837 }
1838
1839 /* Is this (non-sentinel) frame in the "main"() function? */
1840
1841 static int
1842 inside_main_func (struct frame_info *this_frame)
1843 {
1844 struct minimal_symbol *msymbol;
1845 CORE_ADDR maddr;
1846
1847 if (symfile_objfile == 0)
1848 return 0;
1849 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1850 if (msymbol == NULL)
1851 return 0;
1852 /* Make certain that the code, and not descriptor, address is
1853 returned. */
1854 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1855 SYMBOL_VALUE_ADDRESS (msymbol),
1856 &current_target);
1857 return maddr == get_frame_func (this_frame);
1858 }
1859
1860 /* Test whether THIS_FRAME is inside the process entry point function. */
1861
1862 static int
1863 inside_entry_func (struct frame_info *this_frame)
1864 {
1865 CORE_ADDR entry_point;
1866
1867 if (!entry_point_address_query (&entry_point))
1868 return 0;
1869
1870 return get_frame_func (this_frame) == entry_point;
1871 }
1872
1873 /* Return a structure containing various interesting information about
1874 the frame that called THIS_FRAME. Returns NULL if there is entier
1875 no such frame or the frame fails any of a set of target-independent
1876 condition that should terminate the frame chain (e.g., as unwinding
1877 past main()).
1878
1879 This function should not contain target-dependent tests, such as
1880 checking whether the program-counter is zero. */
1881
1882 struct frame_info *
1883 get_prev_frame (struct frame_info *this_frame)
1884 {
1885 CORE_ADDR frame_pc;
1886 int frame_pc_p;
1887
1888 /* There is always a frame. If this assertion fails, suspect that
1889 something should be calling get_selected_frame() or
1890 get_current_frame(). */
1891 gdb_assert (this_frame != NULL);
1892 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1893
1894 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1895 sense to stop unwinding at a dummy frame. One place where a dummy
1896 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1897 pcsqh register (space register for the instruction at the head of the
1898 instruction queue) cannot be written directly; the only way to set it
1899 is to branch to code that is in the target space. In order to implement
1900 frame dummies on HPUX, the called function is made to jump back to where
1901 the inferior was when the user function was called. If gdb was inside
1902 the main function when we created the dummy frame, the dummy frame will
1903 point inside the main function. */
1904 if (this_frame->level >= 0
1905 && get_frame_type (this_frame) == NORMAL_FRAME
1906 && !backtrace_past_main
1907 && frame_pc_p
1908 && inside_main_func (this_frame))
1909 /* Don't unwind past main(). Note, this is done _before_ the
1910 frame has been marked as previously unwound. That way if the
1911 user later decides to enable unwinds past main(), that will
1912 automatically happen. */
1913 {
1914 frame_debug_got_null_frame (this_frame, "inside main func");
1915 return NULL;
1916 }
1917
1918 /* If the user's backtrace limit has been exceeded, stop. We must
1919 add two to the current level; one of those accounts for backtrace_limit
1920 being 1-based and the level being 0-based, and the other accounts for
1921 the level of the new frame instead of the level of the current
1922 frame. */
1923 if (this_frame->level + 2 > backtrace_limit)
1924 {
1925 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1926 return NULL;
1927 }
1928
1929 /* If we're already inside the entry function for the main objfile,
1930 then it isn't valid. Don't apply this test to a dummy frame -
1931 dummy frame PCs typically land in the entry func. Don't apply
1932 this test to the sentinel frame. Sentinel frames should always
1933 be allowed to unwind. */
1934 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1935 wasn't checking for "main" in the minimal symbols. With that
1936 fixed asm-source tests now stop in "main" instead of halting the
1937 backtrace in weird and wonderful ways somewhere inside the entry
1938 file. Suspect that tests for inside the entry file/func were
1939 added to work around that (now fixed) case. */
1940 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1941 suggested having the inside_entry_func test use the
1942 inside_main_func() msymbol trick (along with entry_point_address()
1943 I guess) to determine the address range of the start function.
1944 That should provide a far better stopper than the current
1945 heuristics. */
1946 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1947 applied tail-call optimizations to main so that a function called
1948 from main returns directly to the caller of main. Since we don't
1949 stop at main, we should at least stop at the entry point of the
1950 application. */
1951 if (this_frame->level >= 0
1952 && get_frame_type (this_frame) == NORMAL_FRAME
1953 && !backtrace_past_entry
1954 && frame_pc_p
1955 && inside_entry_func (this_frame))
1956 {
1957 frame_debug_got_null_frame (this_frame, "inside entry func");
1958 return NULL;
1959 }
1960
1961 /* Assume that the only way to get a zero PC is through something
1962 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1963 will never unwind a zero PC. */
1964 if (this_frame->level > 0
1965 && (get_frame_type (this_frame) == NORMAL_FRAME
1966 || get_frame_type (this_frame) == INLINE_FRAME)
1967 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1968 && frame_pc_p && frame_pc == 0)
1969 {
1970 frame_debug_got_null_frame (this_frame, "zero PC");
1971 return NULL;
1972 }
1973
1974 return get_prev_frame_1 (this_frame);
1975 }
1976
1977 CORE_ADDR
1978 get_frame_pc (struct frame_info *frame)
1979 {
1980 gdb_assert (frame->next != NULL);
1981 return frame_unwind_pc (frame->next);
1982 }
1983
1984 int
1985 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1986 {
1987 volatile struct gdb_exception ex;
1988
1989 gdb_assert (frame->next != NULL);
1990
1991 TRY_CATCH (ex, RETURN_MASK_ERROR)
1992 {
1993 *pc = frame_unwind_pc (frame->next);
1994 }
1995 if (ex.reason < 0)
1996 {
1997 if (ex.error == NOT_AVAILABLE_ERROR)
1998 return 0;
1999 else
2000 throw_exception (ex);
2001 }
2002
2003 return 1;
2004 }
2005
2006 /* Return an address that falls within THIS_FRAME's code block. */
2007
2008 CORE_ADDR
2009 get_frame_address_in_block (struct frame_info *this_frame)
2010 {
2011 /* A draft address. */
2012 CORE_ADDR pc = get_frame_pc (this_frame);
2013
2014 struct frame_info *next_frame = this_frame->next;
2015
2016 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2017 Normally the resume address is inside the body of the function
2018 associated with THIS_FRAME, but there is a special case: when
2019 calling a function which the compiler knows will never return
2020 (for instance abort), the call may be the very last instruction
2021 in the calling function. The resume address will point after the
2022 call and may be at the beginning of a different function
2023 entirely.
2024
2025 If THIS_FRAME is a signal frame or dummy frame, then we should
2026 not adjust the unwound PC. For a dummy frame, GDB pushed the
2027 resume address manually onto the stack. For a signal frame, the
2028 OS may have pushed the resume address manually and invoked the
2029 handler (e.g. GNU/Linux), or invoked the trampoline which called
2030 the signal handler - but in either case the signal handler is
2031 expected to return to the trampoline. So in both of these
2032 cases we know that the resume address is executable and
2033 related. So we only need to adjust the PC if THIS_FRAME
2034 is a normal function.
2035
2036 If the program has been interrupted while THIS_FRAME is current,
2037 then clearly the resume address is inside the associated
2038 function. There are three kinds of interruption: debugger stop
2039 (next frame will be SENTINEL_FRAME), operating system
2040 signal or exception (next frame will be SIGTRAMP_FRAME),
2041 or debugger-induced function call (next frame will be
2042 DUMMY_FRAME). So we only need to adjust the PC if
2043 NEXT_FRAME is a normal function.
2044
2045 We check the type of NEXT_FRAME first, since it is already
2046 known; frame type is determined by the unwinder, and since
2047 we have THIS_FRAME we've already selected an unwinder for
2048 NEXT_FRAME.
2049
2050 If the next frame is inlined, we need to keep going until we find
2051 the real function - for instance, if a signal handler is invoked
2052 while in an inlined function, then the code address of the
2053 "calling" normal function should not be adjusted either. */
2054
2055 while (get_frame_type (next_frame) == INLINE_FRAME)
2056 next_frame = next_frame->next;
2057
2058 if ((get_frame_type (next_frame) == NORMAL_FRAME
2059 || get_frame_type (next_frame) == TAILCALL_FRAME)
2060 && (get_frame_type (this_frame) == NORMAL_FRAME
2061 || get_frame_type (this_frame) == TAILCALL_FRAME
2062 || get_frame_type (this_frame) == INLINE_FRAME))
2063 return pc - 1;
2064
2065 return pc;
2066 }
2067
2068 int
2069 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2070 CORE_ADDR *pc)
2071 {
2072 volatile struct gdb_exception ex;
2073
2074 TRY_CATCH (ex, RETURN_MASK_ERROR)
2075 {
2076 *pc = get_frame_address_in_block (this_frame);
2077 }
2078 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2079 return 0;
2080 else if (ex.reason < 0)
2081 throw_exception (ex);
2082 else
2083 return 1;
2084 }
2085
2086 void
2087 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2088 {
2089 struct frame_info *next_frame;
2090 int notcurrent;
2091 CORE_ADDR pc;
2092
2093 /* If the next frame represents an inlined function call, this frame's
2094 sal is the "call site" of that inlined function, which can not
2095 be inferred from get_frame_pc. */
2096 next_frame = get_next_frame (frame);
2097 if (frame_inlined_callees (frame) > 0)
2098 {
2099 struct symbol *sym;
2100
2101 if (next_frame)
2102 sym = get_frame_function (next_frame);
2103 else
2104 sym = inline_skipped_symbol (inferior_ptid);
2105
2106 /* If frame is inline, it certainly has symbols. */
2107 gdb_assert (sym);
2108 init_sal (sal);
2109 if (SYMBOL_LINE (sym) != 0)
2110 {
2111 sal->symtab = SYMBOL_SYMTAB (sym);
2112 sal->line = SYMBOL_LINE (sym);
2113 }
2114 else
2115 /* If the symbol does not have a location, we don't know where
2116 the call site is. Do not pretend to. This is jarring, but
2117 we can't do much better. */
2118 sal->pc = get_frame_pc (frame);
2119
2120 sal->pspace = get_frame_program_space (frame);
2121
2122 return;
2123 }
2124
2125 /* If FRAME is not the innermost frame, that normally means that
2126 FRAME->pc points at the return instruction (which is *after* the
2127 call instruction), and we want to get the line containing the
2128 call (because the call is where the user thinks the program is).
2129 However, if the next frame is either a SIGTRAMP_FRAME or a
2130 DUMMY_FRAME, then the next frame will contain a saved interrupt
2131 PC and such a PC indicates the current (rather than next)
2132 instruction/line, consequently, for such cases, want to get the
2133 line containing fi->pc. */
2134 if (!get_frame_pc_if_available (frame, &pc))
2135 {
2136 init_sal (sal);
2137 return;
2138 }
2139
2140 notcurrent = (pc != get_frame_address_in_block (frame));
2141 (*sal) = find_pc_line (pc, notcurrent);
2142 }
2143
2144 /* Per "frame.h", return the ``address'' of the frame. Code should
2145 really be using get_frame_id(). */
2146 CORE_ADDR
2147 get_frame_base (struct frame_info *fi)
2148 {
2149 return get_frame_id (fi).stack_addr;
2150 }
2151
2152 /* High-level offsets into the frame. Used by the debug info. */
2153
2154 CORE_ADDR
2155 get_frame_base_address (struct frame_info *fi)
2156 {
2157 if (get_frame_type (fi) != NORMAL_FRAME)
2158 return 0;
2159 if (fi->base == NULL)
2160 fi->base = frame_base_find_by_frame (fi);
2161 /* Sneaky: If the low-level unwind and high-level base code share a
2162 common unwinder, let them share the prologue cache. */
2163 if (fi->base->unwind == fi->unwind)
2164 return fi->base->this_base (fi, &fi->prologue_cache);
2165 return fi->base->this_base (fi, &fi->base_cache);
2166 }
2167
2168 CORE_ADDR
2169 get_frame_locals_address (struct frame_info *fi)
2170 {
2171 if (get_frame_type (fi) != NORMAL_FRAME)
2172 return 0;
2173 /* If there isn't a frame address method, find it. */
2174 if (fi->base == NULL)
2175 fi->base = frame_base_find_by_frame (fi);
2176 /* Sneaky: If the low-level unwind and high-level base code share a
2177 common unwinder, let them share the prologue cache. */
2178 if (fi->base->unwind == fi->unwind)
2179 return fi->base->this_locals (fi, &fi->prologue_cache);
2180 return fi->base->this_locals (fi, &fi->base_cache);
2181 }
2182
2183 CORE_ADDR
2184 get_frame_args_address (struct frame_info *fi)
2185 {
2186 if (get_frame_type (fi) != NORMAL_FRAME)
2187 return 0;
2188 /* If there isn't a frame address method, find it. */
2189 if (fi->base == NULL)
2190 fi->base = frame_base_find_by_frame (fi);
2191 /* Sneaky: If the low-level unwind and high-level base code share a
2192 common unwinder, let them share the prologue cache. */
2193 if (fi->base->unwind == fi->unwind)
2194 return fi->base->this_args (fi, &fi->prologue_cache);
2195 return fi->base->this_args (fi, &fi->base_cache);
2196 }
2197
2198 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2199 otherwise. */
2200
2201 int
2202 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2203 {
2204 if (fi->unwind == NULL)
2205 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2206 return fi->unwind == unwinder;
2207 }
2208
2209 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2210 or -1 for a NULL frame. */
2211
2212 int
2213 frame_relative_level (struct frame_info *fi)
2214 {
2215 if (fi == NULL)
2216 return -1;
2217 else
2218 return fi->level;
2219 }
2220
2221 enum frame_type
2222 get_frame_type (struct frame_info *frame)
2223 {
2224 if (frame->unwind == NULL)
2225 /* Initialize the frame's unwinder because that's what
2226 provides the frame's type. */
2227 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2228 return frame->unwind->type;
2229 }
2230
2231 struct program_space *
2232 get_frame_program_space (struct frame_info *frame)
2233 {
2234 return frame->pspace;
2235 }
2236
2237 struct program_space *
2238 frame_unwind_program_space (struct frame_info *this_frame)
2239 {
2240 gdb_assert (this_frame);
2241
2242 /* This is really a placeholder to keep the API consistent --- we
2243 assume for now that we don't have frame chains crossing
2244 spaces. */
2245 return this_frame->pspace;
2246 }
2247
2248 struct address_space *
2249 get_frame_address_space (struct frame_info *frame)
2250 {
2251 return frame->aspace;
2252 }
2253
2254 /* Memory access methods. */
2255
2256 void
2257 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2258 gdb_byte *buf, int len)
2259 {
2260 read_memory (addr, buf, len);
2261 }
2262
2263 LONGEST
2264 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2265 int len)
2266 {
2267 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2269
2270 return read_memory_integer (addr, len, byte_order);
2271 }
2272
2273 ULONGEST
2274 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2275 int len)
2276 {
2277 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2279
2280 return read_memory_unsigned_integer (addr, len, byte_order);
2281 }
2282
2283 int
2284 safe_frame_unwind_memory (struct frame_info *this_frame,
2285 CORE_ADDR addr, gdb_byte *buf, int len)
2286 {
2287 /* NOTE: target_read_memory returns zero on success! */
2288 return !target_read_memory (addr, buf, len);
2289 }
2290
2291 /* Architecture methods. */
2292
2293 struct gdbarch *
2294 get_frame_arch (struct frame_info *this_frame)
2295 {
2296 return frame_unwind_arch (this_frame->next);
2297 }
2298
2299 struct gdbarch *
2300 frame_unwind_arch (struct frame_info *next_frame)
2301 {
2302 if (!next_frame->prev_arch.p)
2303 {
2304 struct gdbarch *arch;
2305
2306 if (next_frame->unwind == NULL)
2307 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2308
2309 if (next_frame->unwind->prev_arch != NULL)
2310 arch = next_frame->unwind->prev_arch (next_frame,
2311 &next_frame->prologue_cache);
2312 else
2313 arch = get_frame_arch (next_frame);
2314
2315 next_frame->prev_arch.arch = arch;
2316 next_frame->prev_arch.p = 1;
2317 if (frame_debug)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2320 next_frame->level,
2321 gdbarch_bfd_arch_info (arch)->printable_name);
2322 }
2323
2324 return next_frame->prev_arch.arch;
2325 }
2326
2327 struct gdbarch *
2328 frame_unwind_caller_arch (struct frame_info *next_frame)
2329 {
2330 return frame_unwind_arch (skip_artificial_frames (next_frame));
2331 }
2332
2333 /* Stack pointer methods. */
2334
2335 CORE_ADDR
2336 get_frame_sp (struct frame_info *this_frame)
2337 {
2338 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2339
2340 /* Normality - an architecture that provides a way of obtaining any
2341 frame inner-most address. */
2342 if (gdbarch_unwind_sp_p (gdbarch))
2343 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2344 operate on THIS_FRAME now. */
2345 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2346 /* Now things are really are grim. Hope that the value returned by
2347 the gdbarch_sp_regnum register is meaningful. */
2348 if (gdbarch_sp_regnum (gdbarch) >= 0)
2349 return get_frame_register_unsigned (this_frame,
2350 gdbarch_sp_regnum (gdbarch));
2351 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2352 }
2353
2354 /* Return the reason why we can't unwind past FRAME. */
2355
2356 enum unwind_stop_reason
2357 get_frame_unwind_stop_reason (struct frame_info *frame)
2358 {
2359 /* If we haven't tried to unwind past this point yet, then assume
2360 that unwinding would succeed. */
2361 if (frame->prev_p == 0)
2362 return UNWIND_NO_REASON;
2363
2364 /* Otherwise, we set a reason when we succeeded (or failed) to
2365 unwind. */
2366 return frame->stop_reason;
2367 }
2368
2369 /* Return a string explaining REASON. */
2370
2371 const char *
2372 frame_stop_reason_string (enum unwind_stop_reason reason)
2373 {
2374 switch (reason)
2375 {
2376 #define SET(name, description) \
2377 case name: return _(description);
2378 #include "unwind_stop_reasons.def"
2379 #undef SET
2380
2381 default:
2382 internal_error (__FILE__, __LINE__,
2383 "Invalid frame stop reason");
2384 }
2385 }
2386
2387 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2388 FRAME. */
2389
2390 static void
2391 frame_cleanup_after_sniffer (void *arg)
2392 {
2393 struct frame_info *frame = arg;
2394
2395 /* The sniffer should not allocate a prologue cache if it did not
2396 match this frame. */
2397 gdb_assert (frame->prologue_cache == NULL);
2398
2399 /* No sniffer should extend the frame chain; sniff based on what is
2400 already certain. */
2401 gdb_assert (!frame->prev_p);
2402
2403 /* The sniffer should not check the frame's ID; that's circular. */
2404 gdb_assert (!frame->this_id.p);
2405
2406 /* Clear cached fields dependent on the unwinder.
2407
2408 The previous PC is independent of the unwinder, but the previous
2409 function is not (see get_frame_address_in_block). */
2410 frame->prev_func.p = 0;
2411 frame->prev_func.addr = 0;
2412
2413 /* Discard the unwinder last, so that we can easily find it if an assertion
2414 in this function triggers. */
2415 frame->unwind = NULL;
2416 }
2417
2418 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2419 Return a cleanup which should be called if unwinding fails, and
2420 discarded if it succeeds. */
2421
2422 struct cleanup *
2423 frame_prepare_for_sniffer (struct frame_info *frame,
2424 const struct frame_unwind *unwind)
2425 {
2426 gdb_assert (frame->unwind == NULL);
2427 frame->unwind = unwind;
2428 return make_cleanup (frame_cleanup_after_sniffer, frame);
2429 }
2430
2431 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2432
2433 static struct cmd_list_element *set_backtrace_cmdlist;
2434 static struct cmd_list_element *show_backtrace_cmdlist;
2435
2436 static void
2437 set_backtrace_cmd (char *args, int from_tty)
2438 {
2439 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2440 }
2441
2442 static void
2443 show_backtrace_cmd (char *args, int from_tty)
2444 {
2445 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2446 }
2447
2448 void
2449 _initialize_frame (void)
2450 {
2451 obstack_init (&frame_cache_obstack);
2452
2453 observer_attach_target_changed (frame_observer_target_changed);
2454
2455 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2456 Set backtrace specific variables.\n\
2457 Configure backtrace variables such as the backtrace limit"),
2458 &set_backtrace_cmdlist, "set backtrace ",
2459 0/*allow-unknown*/, &setlist);
2460 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2461 Show backtrace specific variables\n\
2462 Show backtrace variables such as the backtrace limit"),
2463 &show_backtrace_cmdlist, "show backtrace ",
2464 0/*allow-unknown*/, &showlist);
2465
2466 add_setshow_boolean_cmd ("past-main", class_obscure,
2467 &backtrace_past_main, _("\
2468 Set whether backtraces should continue past \"main\"."), _("\
2469 Show whether backtraces should continue past \"main\"."), _("\
2470 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2471 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2472 of the stack trace."),
2473 NULL,
2474 show_backtrace_past_main,
2475 &set_backtrace_cmdlist,
2476 &show_backtrace_cmdlist);
2477
2478 add_setshow_boolean_cmd ("past-entry", class_obscure,
2479 &backtrace_past_entry, _("\
2480 Set whether backtraces should continue past the entry point of a program."),
2481 _("\
2482 Show whether backtraces should continue past the entry point of a program."),
2483 _("\
2484 Normally there are no callers beyond the entry point of a program, so GDB\n\
2485 will terminate the backtrace there. Set this variable if you need to see\n\
2486 the rest of the stack trace."),
2487 NULL,
2488 show_backtrace_past_entry,
2489 &set_backtrace_cmdlist,
2490 &show_backtrace_cmdlist);
2491
2492 add_setshow_uinteger_cmd ("limit", class_obscure,
2493 &backtrace_limit, _("\
2494 Set an upper bound on the number of backtrace levels."), _("\
2495 Show the upper bound on the number of backtrace levels."), _("\
2496 No more than the specified number of frames can be displayed or examined.\n\
2497 Zero is unlimited."),
2498 NULL,
2499 show_backtrace_limit,
2500 &set_backtrace_cmdlist,
2501 &show_backtrace_cmdlist);
2502
2503 /* Debug this files internals. */
2504 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2505 Set frame debugging."), _("\
2506 Show frame debugging."), _("\
2507 When non-zero, frame specific internal debugging is enabled."),
2508 NULL,
2509 show_frame_debug,
2510 &setdebuglist, &showdebuglist);
2511 }
This page took 0.081861 seconds and 5 git commands to generate.