gdb: remove current_top_target function
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Level of this frame. The inner-most (youngest) frame is at level
115 0. As you move towards the outer-most (oldest) frame, the level
116 increases. This is a cached value. It could just as easily be
117 computed by counting back from the selected frame to the inner
118 most frame. */
119 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
120 reserved to indicate a bogus frame - one that has been created
121 just to keep GDB happy (GDB always needs a frame). For the
122 moment leave this as speculation. */
123 int level;
124
125 /* The frame's program space. */
126 struct program_space *pspace;
127
128 /* The frame's address space. */
129 const address_space *aspace;
130
131 /* The frame's low-level unwinder and corresponding cache. The
132 low-level unwinder is responsible for unwinding register values
133 for the previous frame. The low-level unwind methods are
134 selected based on the presence, or otherwise, of register unwind
135 information such as CFI. */
136 void *prologue_cache;
137 const struct frame_unwind *unwind;
138
139 /* Cached copy of the previous frame's architecture. */
140 struct
141 {
142 bool p;
143 struct gdbarch *arch;
144 } prev_arch;
145
146 /* Cached copy of the previous frame's resume address. */
147 struct {
148 cached_copy_status status;
149 /* Did VALUE require unmasking when being read. */
150 bool masked;
151 CORE_ADDR value;
152 } prev_pc;
153
154 /* Cached copy of the previous frame's function address. */
155 struct
156 {
157 CORE_ADDR addr;
158 cached_copy_status status;
159 } prev_func;
160
161 /* This frame's ID. */
162 struct
163 {
164 frame_id_status p;
165 struct frame_id value;
166 } this_id;
167
168 /* The frame's high-level base methods, and corresponding cache.
169 The high level base methods are selected based on the frame's
170 debug info. */
171 const struct frame_base *base;
172 void *base_cache;
173
174 /* Pointers to the next (down, inner, younger) and previous (up,
175 outer, older) frame_info's in the frame cache. */
176 struct frame_info *next; /* down, inner, younger */
177 bool prev_p;
178 struct frame_info *prev; /* up, outer, older */
179
180 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
181 could. Only valid when PREV_P is set. */
182 enum unwind_stop_reason stop_reason;
183
184 /* A frame specific string describing the STOP_REASON in more detail.
185 Only valid when PREV_P is set, but even then may still be NULL. */
186 const char *stop_string;
187 };
188
189 /* See frame.h. */
190
191 void
192 set_frame_previous_pc_masked (struct frame_info *frame)
193 {
194 frame->prev_pc.masked = true;
195 }
196
197 /* See frame.h. */
198
199 bool
200 get_frame_pc_masked (const struct frame_info *frame)
201 {
202 gdb_assert (frame->next != nullptr);
203 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
204
205 return frame->next->prev_pc.masked;
206 }
207
208 /* A frame stash used to speed up frame lookups. Create a hash table
209 to stash frames previously accessed from the frame cache for
210 quicker subsequent retrieval. The hash table is emptied whenever
211 the frame cache is invalidated. */
212
213 static htab_t frame_stash;
214
215 /* Internal function to calculate a hash from the frame_id addresses,
216 using as many valid addresses as possible. Frames below level 0
217 are not stored in the hash table. */
218
219 static hashval_t
220 frame_addr_hash (const void *ap)
221 {
222 const struct frame_info *frame = (const struct frame_info *) ap;
223 const struct frame_id f_id = frame->this_id.value;
224 hashval_t hash = 0;
225
226 gdb_assert (f_id.stack_status != FID_STACK_INVALID
227 || f_id.code_addr_p
228 || f_id.special_addr_p);
229
230 if (f_id.stack_status == FID_STACK_VALID)
231 hash = iterative_hash (&f_id.stack_addr,
232 sizeof (f_id.stack_addr), hash);
233 if (f_id.code_addr_p)
234 hash = iterative_hash (&f_id.code_addr,
235 sizeof (f_id.code_addr), hash);
236 if (f_id.special_addr_p)
237 hash = iterative_hash (&f_id.special_addr,
238 sizeof (f_id.special_addr), hash);
239
240 return hash;
241 }
242
243 /* Internal equality function for the hash table. This function
244 defers equality operations to frame_id_eq. */
245
246 static int
247 frame_addr_hash_eq (const void *a, const void *b)
248 {
249 const struct frame_info *f_entry = (const struct frame_info *) a;
250 const struct frame_info *f_element = (const struct frame_info *) b;
251
252 return frame_id_eq (f_entry->this_id.value,
253 f_element->this_id.value);
254 }
255
256 /* Internal function to create the frame_stash hash table. 100 seems
257 to be a good compromise to start the hash table at. */
258
259 static void
260 frame_stash_create (void)
261 {
262 frame_stash = htab_create (100,
263 frame_addr_hash,
264 frame_addr_hash_eq,
265 NULL);
266 }
267
268 /* Internal function to add a frame to the frame_stash hash table.
269 Returns false if a frame with the same ID was already stashed, true
270 otherwise. */
271
272 static bool
273 frame_stash_add (frame_info *frame)
274 {
275 /* Do not try to stash the sentinel frame. */
276 gdb_assert (frame->level >= 0);
277
278 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
279 frame, INSERT);
280
281 /* If we already have a frame in the stack with the same id, we
282 either have a stack cycle (corrupted stack?), or some bug
283 elsewhere in GDB. In any case, ignore the duplicate and return
284 an indication to the caller. */
285 if (*slot != nullptr)
286 return false;
287
288 *slot = frame;
289 return true;
290 }
291
292 /* Internal function to search the frame stash for an entry with the
293 given frame ID. If found, return that frame. Otherwise return
294 NULL. */
295
296 static struct frame_info *
297 frame_stash_find (struct frame_id id)
298 {
299 struct frame_info dummy;
300 struct frame_info *frame;
301
302 dummy.this_id.value = id;
303 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
304 return frame;
305 }
306
307 /* Internal function to invalidate the frame stash by removing all
308 entries in it. This only occurs when the frame cache is
309 invalidated. */
310
311 static void
312 frame_stash_invalidate (void)
313 {
314 htab_empty (frame_stash);
315 }
316
317 /* See frame.h */
318 scoped_restore_selected_frame::scoped_restore_selected_frame ()
319 {
320 m_lang = current_language->la_language;
321 save_selected_frame (&m_fid, &m_level);
322 }
323
324 /* See frame.h */
325 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
326 {
327 restore_selected_frame (m_fid, m_level);
328 set_language (m_lang);
329 }
330
331 /* Flag to control debugging. */
332
333 unsigned int frame_debug;
334 static void
335 show_frame_debug (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
339 }
340
341 /* Implementation of "show backtrace past-main". */
342
343 static void
344 show_backtrace_past_main (struct ui_file *file, int from_tty,
345 struct cmd_list_element *c, const char *value)
346 {
347 fprintf_filtered (file,
348 _("Whether backtraces should "
349 "continue past \"main\" is %s.\n"),
350 value);
351 }
352
353 /* Implementation of "show backtrace past-entry". */
354
355 static void
356 show_backtrace_past_entry (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c, const char *value)
358 {
359 fprintf_filtered (file, _("Whether backtraces should continue past the "
360 "entry point of a program is %s.\n"),
361 value);
362 }
363
364 /* Implementation of "show backtrace limit". */
365
366 static void
367 show_backtrace_limit (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file,
371 _("An upper bound on the number "
372 "of backtrace levels is %s.\n"),
373 value);
374 }
375
376
377 static void
378 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
379 {
380 if (p)
381 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
382 else
383 fprintf_unfiltered (file, "!%s", name);
384 }
385
386 void
387 fprint_frame_id (struct ui_file *file, struct frame_id id)
388 {
389 fprintf_unfiltered (file, "{");
390
391 if (id.stack_status == FID_STACK_INVALID)
392 fprintf_unfiltered (file, "!stack");
393 else if (id.stack_status == FID_STACK_UNAVAILABLE)
394 fprintf_unfiltered (file, "stack=<unavailable>");
395 else if (id.stack_status == FID_STACK_SENTINEL)
396 fprintf_unfiltered (file, "stack=<sentinel>");
397 else if (id.stack_status == FID_STACK_OUTER)
398 fprintf_unfiltered (file, "stack=<outer>");
399 else
400 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
401
402 fprintf_unfiltered (file, ",");
403
404 fprint_field (file, "code", id.code_addr_p, id.code_addr);
405 fprintf_unfiltered (file, ",");
406
407 fprint_field (file, "special", id.special_addr_p, id.special_addr);
408
409 if (id.artificial_depth)
410 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
411
412 fprintf_unfiltered (file, "}");
413 }
414
415 static void
416 fprint_frame_type (struct ui_file *file, enum frame_type type)
417 {
418 switch (type)
419 {
420 case NORMAL_FRAME:
421 fprintf_unfiltered (file, "NORMAL_FRAME");
422 return;
423 case DUMMY_FRAME:
424 fprintf_unfiltered (file, "DUMMY_FRAME");
425 return;
426 case INLINE_FRAME:
427 fprintf_unfiltered (file, "INLINE_FRAME");
428 return;
429 case TAILCALL_FRAME:
430 fprintf_unfiltered (file, "TAILCALL_FRAME");
431 return;
432 case SIGTRAMP_FRAME:
433 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
434 return;
435 case ARCH_FRAME:
436 fprintf_unfiltered (file, "ARCH_FRAME");
437 return;
438 case SENTINEL_FRAME:
439 fprintf_unfiltered (file, "SENTINEL_FRAME");
440 return;
441 default:
442 fprintf_unfiltered (file, "<unknown type>");
443 return;
444 };
445 }
446
447 static void
448 fprint_frame (struct ui_file *file, struct frame_info *fi)
449 {
450 if (fi == NULL)
451 {
452 fprintf_unfiltered (file, "<NULL frame>");
453 return;
454 }
455
456 fprintf_unfiltered (file, "{");
457 fprintf_unfiltered (file, "level=%d", fi->level);
458 fprintf_unfiltered (file, ",");
459
460 fprintf_unfiltered (file, "type=");
461 if (fi->unwind != NULL)
462 fprint_frame_type (file, fi->unwind->type);
463 else
464 fprintf_unfiltered (file, "<unknown>");
465 fprintf_unfiltered (file, ",");
466
467 fprintf_unfiltered (file, "unwind=");
468 if (fi->unwind != NULL)
469 gdb_print_host_address (fi->unwind, file);
470 else
471 fprintf_unfiltered (file, "<unknown>");
472 fprintf_unfiltered (file, ",");
473
474 fprintf_unfiltered (file, "pc=");
475 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
476 fprintf_unfiltered (file, "<unknown>");
477 else if (fi->next->prev_pc.status == CC_VALUE)
478 {
479 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
480 if (fi->next->prev_pc.masked)
481 fprintf_unfiltered (file, "[PAC]");
482 }
483 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
484 val_print_not_saved (file);
485 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
486 val_print_unavailable (file);
487 fprintf_unfiltered (file, ",");
488
489 fprintf_unfiltered (file, "id=");
490 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
491 fprintf_unfiltered (file, "<not computed>");
492 else if (fi->this_id.p == frame_id_status::COMPUTING)
493 fprintf_unfiltered (file, "<computing>");
494 else
495 fprint_frame_id (file, fi->this_id.value);
496 fprintf_unfiltered (file, ",");
497
498 fprintf_unfiltered (file, "func=");
499 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
500 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
501 else
502 fprintf_unfiltered (file, "<unknown>");
503 fprintf_unfiltered (file, "}");
504 }
505
506 /* Given FRAME, return the enclosing frame as found in real frames read-in from
507 inferior memory. Skip any previous frames which were made up by GDB.
508 Return FRAME if FRAME is a non-artificial frame.
509 Return NULL if FRAME is the start of an artificial-only chain. */
510
511 static struct frame_info *
512 skip_artificial_frames (struct frame_info *frame)
513 {
514 /* Note we use get_prev_frame_always, and not get_prev_frame. The
515 latter will truncate the frame chain, leading to this function
516 unintentionally returning a null_frame_id (e.g., when the user
517 sets a backtrace limit).
518
519 Note that for record targets we may get a frame chain that consists
520 of artificial frames only. */
521 while (get_frame_type (frame) == INLINE_FRAME
522 || get_frame_type (frame) == TAILCALL_FRAME)
523 {
524 frame = get_prev_frame_always (frame);
525 if (frame == NULL)
526 break;
527 }
528
529 return frame;
530 }
531
532 struct frame_info *
533 skip_unwritable_frames (struct frame_info *frame)
534 {
535 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
536 {
537 frame = get_prev_frame (frame);
538 if (frame == NULL)
539 break;
540 }
541
542 return frame;
543 }
544
545 /* See frame.h. */
546
547 struct frame_info *
548 skip_tailcall_frames (struct frame_info *frame)
549 {
550 while (get_frame_type (frame) == TAILCALL_FRAME)
551 {
552 /* Note that for record targets we may get a frame chain that consists of
553 tailcall frames only. */
554 frame = get_prev_frame (frame);
555 if (frame == NULL)
556 break;
557 }
558
559 return frame;
560 }
561
562 /* Compute the frame's uniq ID that can be used to, later, re-find the
563 frame. */
564
565 static void
566 compute_frame_id (struct frame_info *fi)
567 {
568 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
569
570 unsigned int entry_generation = get_frame_cache_generation ();
571
572 try
573 {
574 /* Mark this frame's id as "being computed. */
575 fi->this_id.p = frame_id_status::COMPUTING;
576
577 if (frame_debug)
578 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
579 fi->level);
580
581 /* Find the unwinder. */
582 if (fi->unwind == NULL)
583 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
584
585 /* Find THIS frame's ID. */
586 /* Default to outermost if no ID is found. */
587 fi->this_id.value = outer_frame_id;
588 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
589 gdb_assert (frame_id_p (fi->this_id.value));
590
591 /* Mark this frame's id as "computed". */
592 fi->this_id.p = frame_id_status::COMPUTED;
593
594 if (frame_debug)
595 {
596 fprintf_unfiltered (gdb_stdlog, "-> ");
597 fprint_frame_id (gdb_stdlog, fi->this_id.value);
598 fprintf_unfiltered (gdb_stdlog, " }\n");
599 }
600 }
601 catch (const gdb_exception &ex)
602 {
603 /* On error, revert the frame id status to not computed. If the frame
604 cache generation changed, the frame object doesn't exist anymore, so
605 don't touch it. */
606 if (get_frame_cache_generation () == entry_generation)
607 fi->this_id.p = frame_id_status::NOT_COMPUTED;
608
609 throw;
610 }
611 }
612
613 /* Return a frame uniq ID that can be used to, later, re-find the
614 frame. */
615
616 struct frame_id
617 get_frame_id (struct frame_info *fi)
618 {
619 if (fi == NULL)
620 return null_frame_id;
621
622 /* It's always invalid to try to get a frame's id while it is being
623 computed. */
624 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
625
626 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
627 {
628 /* If we haven't computed the frame id yet, then it must be that
629 this is the current frame. Compute it now, and stash the
630 result. The IDs of other frames are computed as soon as
631 they're created, in order to detect cycles. See
632 get_prev_frame_if_no_cycle. */
633 gdb_assert (fi->level == 0);
634
635 /* Compute. */
636 compute_frame_id (fi);
637
638 /* Since this is the first frame in the chain, this should
639 always succeed. */
640 bool stashed = frame_stash_add (fi);
641 gdb_assert (stashed);
642 }
643
644 return fi->this_id.value;
645 }
646
647 struct frame_id
648 get_stack_frame_id (struct frame_info *next_frame)
649 {
650 return get_frame_id (skip_artificial_frames (next_frame));
651 }
652
653 struct frame_id
654 frame_unwind_caller_id (struct frame_info *next_frame)
655 {
656 struct frame_info *this_frame;
657
658 /* Use get_prev_frame_always, and not get_prev_frame. The latter
659 will truncate the frame chain, leading to this function
660 unintentionally returning a null_frame_id (e.g., when a caller
661 requests the frame ID of "main()"s caller. */
662
663 next_frame = skip_artificial_frames (next_frame);
664 if (next_frame == NULL)
665 return null_frame_id;
666
667 this_frame = get_prev_frame_always (next_frame);
668 if (this_frame)
669 return get_frame_id (skip_artificial_frames (this_frame));
670 else
671 return null_frame_id;
672 }
673
674 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
675 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
676 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
677
678 struct frame_id
679 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
680 CORE_ADDR special_addr)
681 {
682 struct frame_id id = null_frame_id;
683
684 id.stack_addr = stack_addr;
685 id.stack_status = FID_STACK_VALID;
686 id.code_addr = code_addr;
687 id.code_addr_p = true;
688 id.special_addr = special_addr;
689 id.special_addr_p = true;
690 return id;
691 }
692
693 /* See frame.h. */
694
695 struct frame_id
696 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
697 {
698 struct frame_id id = null_frame_id;
699
700 id.stack_status = FID_STACK_UNAVAILABLE;
701 id.code_addr = code_addr;
702 id.code_addr_p = true;
703 return id;
704 }
705
706 /* See frame.h. */
707
708 struct frame_id
709 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
710 CORE_ADDR special_addr)
711 {
712 struct frame_id id = null_frame_id;
713
714 id.stack_status = FID_STACK_UNAVAILABLE;
715 id.code_addr = code_addr;
716 id.code_addr_p = true;
717 id.special_addr = special_addr;
718 id.special_addr_p = true;
719 return id;
720 }
721
722 struct frame_id
723 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
724 {
725 struct frame_id id = null_frame_id;
726
727 id.stack_addr = stack_addr;
728 id.stack_status = FID_STACK_VALID;
729 id.code_addr = code_addr;
730 id.code_addr_p = true;
731 return id;
732 }
733
734 struct frame_id
735 frame_id_build_wild (CORE_ADDR stack_addr)
736 {
737 struct frame_id id = null_frame_id;
738
739 id.stack_addr = stack_addr;
740 id.stack_status = FID_STACK_VALID;
741 return id;
742 }
743
744 bool
745 frame_id_p (frame_id l)
746 {
747 /* The frame is valid iff it has a valid stack address. */
748 bool p = l.stack_status != FID_STACK_INVALID;
749
750 if (frame_debug)
751 {
752 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
753 fprint_frame_id (gdb_stdlog, l);
754 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
755 }
756
757 return p;
758 }
759
760 bool
761 frame_id_artificial_p (frame_id l)
762 {
763 if (!frame_id_p (l))
764 return false;
765
766 return l.artificial_depth != 0;
767 }
768
769 bool
770 frame_id_eq (frame_id l, frame_id r)
771 {
772 bool eq;
773
774 if (l.stack_status == FID_STACK_INVALID
775 || r.stack_status == FID_STACK_INVALID)
776 /* Like a NaN, if either ID is invalid, the result is false.
777 Note that a frame ID is invalid iff it is the null frame ID. */
778 eq = false;
779 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
780 /* If .stack addresses are different, the frames are different. */
781 eq = false;
782 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
783 /* An invalid code addr is a wild card. If .code addresses are
784 different, the frames are different. */
785 eq = false;
786 else if (l.special_addr_p && r.special_addr_p
787 && l.special_addr != r.special_addr)
788 /* An invalid special addr is a wild card (or unused). Otherwise
789 if special addresses are different, the frames are different. */
790 eq = false;
791 else if (l.artificial_depth != r.artificial_depth)
792 /* If artificial depths are different, the frames must be different. */
793 eq = false;
794 else
795 /* Frames are equal. */
796 eq = true;
797
798 if (frame_debug)
799 {
800 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
801 fprint_frame_id (gdb_stdlog, l);
802 fprintf_unfiltered (gdb_stdlog, ",r=");
803 fprint_frame_id (gdb_stdlog, r);
804 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
805 }
806
807 return eq;
808 }
809
810 /* Safety net to check whether frame ID L should be inner to
811 frame ID R, according to their stack addresses.
812
813 This method cannot be used to compare arbitrary frames, as the
814 ranges of valid stack addresses may be discontiguous (e.g. due
815 to sigaltstack).
816
817 However, it can be used as safety net to discover invalid frame
818 IDs in certain circumstances. Assuming that NEXT is the immediate
819 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
820
821 * The stack address of NEXT must be inner-than-or-equal to the stack
822 address of THIS.
823
824 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
825 error has occurred.
826
827 * If NEXT and THIS have different stack addresses, no other frame
828 in the frame chain may have a stack address in between.
829
830 Therefore, if frame_id_inner (TEST, THIS) holds, but
831 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
832 to a valid frame in the frame chain.
833
834 The sanity checks above cannot be performed when a SIGTRAMP frame
835 is involved, because signal handlers might be executed on a different
836 stack than the stack used by the routine that caused the signal
837 to be raised. This can happen for instance when a thread exceeds
838 its maximum stack size. In this case, certain compilers implement
839 a stack overflow strategy that cause the handler to be run on a
840 different stack. */
841
842 static bool
843 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
844 {
845 bool inner;
846
847 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
848 /* Like NaN, any operation involving an invalid ID always fails.
849 Likewise if either ID has an unavailable stack address. */
850 inner = false;
851 else if (l.artificial_depth > r.artificial_depth
852 && l.stack_addr == r.stack_addr
853 && l.code_addr_p == r.code_addr_p
854 && l.special_addr_p == r.special_addr_p
855 && l.special_addr == r.special_addr)
856 {
857 /* Same function, different inlined functions. */
858 const struct block *lb, *rb;
859
860 gdb_assert (l.code_addr_p && r.code_addr_p);
861
862 lb = block_for_pc (l.code_addr);
863 rb = block_for_pc (r.code_addr);
864
865 if (lb == NULL || rb == NULL)
866 /* Something's gone wrong. */
867 inner = false;
868 else
869 /* This will return true if LB and RB are the same block, or
870 if the block with the smaller depth lexically encloses the
871 block with the greater depth. */
872 inner = contained_in (lb, rb);
873 }
874 else
875 /* Only return non-zero when strictly inner than. Note that, per
876 comment in "frame.h", there is some fuzz here. Frameless
877 functions are not strictly inner than (same .stack but
878 different .code and/or .special address). */
879 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
880
881 if (frame_debug)
882 {
883 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
884 fprint_frame_id (gdb_stdlog, l);
885 fprintf_unfiltered (gdb_stdlog, ",r=");
886 fprint_frame_id (gdb_stdlog, r);
887 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
888 }
889
890 return inner;
891 }
892
893 struct frame_info *
894 frame_find_by_id (struct frame_id id)
895 {
896 struct frame_info *frame, *prev_frame;
897
898 /* ZERO denotes the null frame, let the caller decide what to do
899 about it. Should it instead return get_current_frame()? */
900 if (!frame_id_p (id))
901 return NULL;
902
903 /* Check for the sentinel frame. */
904 if (frame_id_eq (id, sentinel_frame_id))
905 return sentinel_frame;
906
907 /* Try using the frame stash first. Finding it there removes the need
908 to perform the search by looping over all frames, which can be very
909 CPU-intensive if the number of frames is very high (the loop is O(n)
910 and get_prev_frame performs a series of checks that are relatively
911 expensive). This optimization is particularly useful when this function
912 is called from another function (such as value_fetch_lazy, case
913 VALUE_LVAL (val) == lval_register) which already loops over all frames,
914 making the overall behavior O(n^2). */
915 frame = frame_stash_find (id);
916 if (frame)
917 return frame;
918
919 for (frame = get_current_frame (); ; frame = prev_frame)
920 {
921 struct frame_id self = get_frame_id (frame);
922
923 if (frame_id_eq (id, self))
924 /* An exact match. */
925 return frame;
926
927 prev_frame = get_prev_frame (frame);
928 if (!prev_frame)
929 return NULL;
930
931 /* As a safety net to avoid unnecessary backtracing while trying
932 to find an invalid ID, we check for a common situation where
933 we can detect from comparing stack addresses that no other
934 frame in the current frame chain can have this ID. See the
935 comment at frame_id_inner for details. */
936 if (get_frame_type (frame) == NORMAL_FRAME
937 && !frame_id_inner (get_frame_arch (frame), id, self)
938 && frame_id_inner (get_frame_arch (prev_frame), id,
939 get_frame_id (prev_frame)))
940 return NULL;
941 }
942 return NULL;
943 }
944
945 static CORE_ADDR
946 frame_unwind_pc (struct frame_info *this_frame)
947 {
948 if (this_frame->prev_pc.status == CC_UNKNOWN)
949 {
950 struct gdbarch *prev_gdbarch;
951 CORE_ADDR pc = 0;
952 bool pc_p = false;
953
954 /* The right way. The `pure' way. The one true way. This
955 method depends solely on the register-unwind code to
956 determine the value of registers in THIS frame, and hence
957 the value of this frame's PC (resume address). A typical
958 implementation is no more than:
959
960 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
961 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
962
963 Note: this method is very heavily dependent on a correct
964 register-unwind implementation, it pays to fix that
965 method first; this method is frame type agnostic, since
966 it only deals with register values, it works with any
967 frame. This is all in stark contrast to the old
968 FRAME_SAVED_PC which would try to directly handle all the
969 different ways that a PC could be unwound. */
970 prev_gdbarch = frame_unwind_arch (this_frame);
971
972 try
973 {
974 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
975 pc_p = true;
976 }
977 catch (const gdb_exception_error &ex)
978 {
979 if (ex.error == NOT_AVAILABLE_ERROR)
980 {
981 this_frame->prev_pc.status = CC_UNAVAILABLE;
982
983 if (frame_debug)
984 fprintf_unfiltered (gdb_stdlog,
985 "{ frame_unwind_pc (this_frame=%d)"
986 " -> <unavailable> }\n",
987 this_frame->level);
988 }
989 else if (ex.error == OPTIMIZED_OUT_ERROR)
990 {
991 this_frame->prev_pc.status = CC_NOT_SAVED;
992
993 if (frame_debug)
994 fprintf_unfiltered (gdb_stdlog,
995 "{ frame_unwind_pc (this_frame=%d)"
996 " -> <not saved> }\n",
997 this_frame->level);
998 }
999 else
1000 throw;
1001 }
1002
1003 if (pc_p)
1004 {
1005 this_frame->prev_pc.value = pc;
1006 this_frame->prev_pc.status = CC_VALUE;
1007 if (frame_debug)
1008 fprintf_unfiltered (gdb_stdlog,
1009 "{ frame_unwind_pc (this_frame=%d) "
1010 "-> %s }\n",
1011 this_frame->level,
1012 hex_string (this_frame->prev_pc.value));
1013 }
1014 }
1015
1016 if (this_frame->prev_pc.status == CC_VALUE)
1017 return this_frame->prev_pc.value;
1018 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
1019 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1020 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
1021 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
1022 else
1023 internal_error (__FILE__, __LINE__,
1024 "unexpected prev_pc status: %d",
1025 (int) this_frame->prev_pc.status);
1026 }
1027
1028 CORE_ADDR
1029 frame_unwind_caller_pc (struct frame_info *this_frame)
1030 {
1031 this_frame = skip_artificial_frames (this_frame);
1032
1033 /* We must have a non-artificial frame. The caller is supposed to check
1034 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1035 in this case. */
1036 gdb_assert (this_frame != NULL);
1037
1038 return frame_unwind_pc (this_frame);
1039 }
1040
1041 bool
1042 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1043 {
1044 struct frame_info *next_frame = this_frame->next;
1045
1046 if (next_frame->prev_func.status == CC_UNKNOWN)
1047 {
1048 CORE_ADDR addr_in_block;
1049
1050 /* Make certain that this, and not the adjacent, function is
1051 found. */
1052 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1053 {
1054 next_frame->prev_func.status = CC_UNAVAILABLE;
1055 if (frame_debug)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "{ get_frame_func (this_frame=%d)"
1058 " -> unavailable }\n",
1059 this_frame->level);
1060 }
1061 else
1062 {
1063 next_frame->prev_func.status = CC_VALUE;
1064 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1065 if (frame_debug)
1066 fprintf_unfiltered (gdb_stdlog,
1067 "{ get_frame_func (this_frame=%d) -> %s }\n",
1068 this_frame->level,
1069 hex_string (next_frame->prev_func.addr));
1070 }
1071 }
1072
1073 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1074 {
1075 *pc = -1;
1076 return false;
1077 }
1078 else
1079 {
1080 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1081
1082 *pc = next_frame->prev_func.addr;
1083 return true;
1084 }
1085 }
1086
1087 CORE_ADDR
1088 get_frame_func (struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091
1092 if (!get_frame_func_if_available (this_frame, &pc))
1093 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1094
1095 return pc;
1096 }
1097
1098 std::unique_ptr<readonly_detached_regcache>
1099 frame_save_as_regcache (struct frame_info *this_frame)
1100 {
1101 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1102 {
1103 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1104 return REG_UNAVAILABLE;
1105 else
1106 return REG_VALID;
1107 };
1108
1109 std::unique_ptr<readonly_detached_regcache> regcache
1110 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1111
1112 return regcache;
1113 }
1114
1115 void
1116 frame_pop (struct frame_info *this_frame)
1117 {
1118 struct frame_info *prev_frame;
1119
1120 if (get_frame_type (this_frame) == DUMMY_FRAME)
1121 {
1122 /* Popping a dummy frame involves restoring more than just registers.
1123 dummy_frame_pop does all the work. */
1124 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1125 return;
1126 }
1127
1128 /* Ensure that we have a frame to pop to. */
1129 prev_frame = get_prev_frame_always (this_frame);
1130
1131 if (!prev_frame)
1132 error (_("Cannot pop the initial frame."));
1133
1134 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1135 entering THISFRAME. */
1136 prev_frame = skip_tailcall_frames (prev_frame);
1137
1138 if (prev_frame == NULL)
1139 error (_("Cannot find the caller frame."));
1140
1141 /* Make a copy of all the register values unwound from this frame.
1142 Save them in a scratch buffer so that there isn't a race between
1143 trying to extract the old values from the current regcache while
1144 at the same time writing new values into that same cache. */
1145 std::unique_ptr<readonly_detached_regcache> scratch
1146 = frame_save_as_regcache (prev_frame);
1147
1148 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1149 target's register cache that it is about to be hit with a burst
1150 register transfer and that the sequence of register writes should
1151 be batched. The pair target_prepare_to_store() and
1152 target_store_registers() kind of suggest this functionality.
1153 Unfortunately, they don't implement it. Their lack of a formal
1154 definition can lead to targets writing back bogus values
1155 (arguably a bug in the target code mind). */
1156 /* Now copy those saved registers into the current regcache. */
1157 get_current_regcache ()->restore (scratch.get ());
1158
1159 /* We've made right mess of GDB's local state, just discard
1160 everything. */
1161 reinit_frame_cache ();
1162 }
1163
1164 void
1165 frame_register_unwind (frame_info *next_frame, int regnum,
1166 int *optimizedp, int *unavailablep,
1167 enum lval_type *lvalp, CORE_ADDR *addrp,
1168 int *realnump, gdb_byte *bufferp)
1169 {
1170 struct value *value;
1171
1172 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1173 that the value proper does not need to be fetched. */
1174 gdb_assert (optimizedp != NULL);
1175 gdb_assert (lvalp != NULL);
1176 gdb_assert (addrp != NULL);
1177 gdb_assert (realnump != NULL);
1178 /* gdb_assert (bufferp != NULL); */
1179
1180 value = frame_unwind_register_value (next_frame, regnum);
1181
1182 gdb_assert (value != NULL);
1183
1184 *optimizedp = value_optimized_out (value);
1185 *unavailablep = !value_entirely_available (value);
1186 *lvalp = VALUE_LVAL (value);
1187 *addrp = value_address (value);
1188 if (*lvalp == lval_register)
1189 *realnump = VALUE_REGNUM (value);
1190 else
1191 *realnump = -1;
1192
1193 if (bufferp)
1194 {
1195 if (!*optimizedp && !*unavailablep)
1196 memcpy (bufferp, value_contents_all (value),
1197 TYPE_LENGTH (value_type (value)));
1198 else
1199 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1200 }
1201
1202 /* Dispose of the new value. This prevents watchpoints from
1203 trying to watch the saved frame pointer. */
1204 release_value (value);
1205 }
1206
1207 void
1208 frame_register (struct frame_info *frame, int regnum,
1209 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1210 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1211 {
1212 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1213 that the value proper does not need to be fetched. */
1214 gdb_assert (optimizedp != NULL);
1215 gdb_assert (lvalp != NULL);
1216 gdb_assert (addrp != NULL);
1217 gdb_assert (realnump != NULL);
1218 /* gdb_assert (bufferp != NULL); */
1219
1220 /* Obtain the register value by unwinding the register from the next
1221 (more inner frame). */
1222 gdb_assert (frame != NULL && frame->next != NULL);
1223 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1224 lvalp, addrp, realnump, bufferp);
1225 }
1226
1227 void
1228 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1229 {
1230 int optimized;
1231 int unavailable;
1232 CORE_ADDR addr;
1233 int realnum;
1234 enum lval_type lval;
1235
1236 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1237 &lval, &addr, &realnum, buf);
1238
1239 if (optimized)
1240 throw_error (OPTIMIZED_OUT_ERROR,
1241 _("Register %d was not saved"), regnum);
1242 if (unavailable)
1243 throw_error (NOT_AVAILABLE_ERROR,
1244 _("Register %d is not available"), regnum);
1245 }
1246
1247 void
1248 get_frame_register (struct frame_info *frame,
1249 int regnum, gdb_byte *buf)
1250 {
1251 frame_unwind_register (frame->next, regnum, buf);
1252 }
1253
1254 struct value *
1255 frame_unwind_register_value (frame_info *next_frame, int regnum)
1256 {
1257 struct gdbarch *gdbarch;
1258 struct value *value;
1259
1260 gdb_assert (next_frame != NULL);
1261 gdbarch = frame_unwind_arch (next_frame);
1262
1263 if (frame_debug)
1264 {
1265 fprintf_unfiltered (gdb_stdlog,
1266 "{ frame_unwind_register_value "
1267 "(frame=%d,regnum=%d(%s),...) ",
1268 next_frame->level, regnum,
1269 user_reg_map_regnum_to_name (gdbarch, regnum));
1270 }
1271
1272 /* Find the unwinder. */
1273 if (next_frame->unwind == NULL)
1274 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1275
1276 /* Ask this frame to unwind its register. */
1277 value = next_frame->unwind->prev_register (next_frame,
1278 &next_frame->prologue_cache,
1279 regnum);
1280
1281 if (frame_debug)
1282 {
1283 fprintf_unfiltered (gdb_stdlog, "->");
1284 if (value_optimized_out (value))
1285 {
1286 fprintf_unfiltered (gdb_stdlog, " ");
1287 val_print_not_saved (gdb_stdlog);
1288 }
1289 else
1290 {
1291 if (VALUE_LVAL (value) == lval_register)
1292 fprintf_unfiltered (gdb_stdlog, " register=%d",
1293 VALUE_REGNUM (value));
1294 else if (VALUE_LVAL (value) == lval_memory)
1295 fprintf_unfiltered (gdb_stdlog, " address=%s",
1296 paddress (gdbarch,
1297 value_address (value)));
1298 else
1299 fprintf_unfiltered (gdb_stdlog, " computed");
1300
1301 if (value_lazy (value))
1302 fprintf_unfiltered (gdb_stdlog, " lazy");
1303 else
1304 {
1305 int i;
1306 const gdb_byte *buf = value_contents (value);
1307
1308 fprintf_unfiltered (gdb_stdlog, " bytes=");
1309 fprintf_unfiltered (gdb_stdlog, "[");
1310 for (i = 0; i < register_size (gdbarch, regnum); i++)
1311 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1312 fprintf_unfiltered (gdb_stdlog, "]");
1313 }
1314 }
1315
1316 fprintf_unfiltered (gdb_stdlog, " }\n");
1317 }
1318
1319 return value;
1320 }
1321
1322 struct value *
1323 get_frame_register_value (struct frame_info *frame, int regnum)
1324 {
1325 return frame_unwind_register_value (frame->next, regnum);
1326 }
1327
1328 LONGEST
1329 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1330 {
1331 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 int size = register_size (gdbarch, regnum);
1334 struct value *value = frame_unwind_register_value (next_frame, regnum);
1335
1336 gdb_assert (value != NULL);
1337
1338 if (value_optimized_out (value))
1339 {
1340 throw_error (OPTIMIZED_OUT_ERROR,
1341 _("Register %d was not saved"), regnum);
1342 }
1343 if (!value_entirely_available (value))
1344 {
1345 throw_error (NOT_AVAILABLE_ERROR,
1346 _("Register %d is not available"), regnum);
1347 }
1348
1349 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1350 byte_order);
1351
1352 release_value (value);
1353 return r;
1354 }
1355
1356 LONGEST
1357 get_frame_register_signed (struct frame_info *frame, int regnum)
1358 {
1359 return frame_unwind_register_signed (frame->next, regnum);
1360 }
1361
1362 ULONGEST
1363 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1364 {
1365 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1367 int size = register_size (gdbarch, regnum);
1368 struct value *value = frame_unwind_register_value (next_frame, regnum);
1369
1370 gdb_assert (value != NULL);
1371
1372 if (value_optimized_out (value))
1373 {
1374 throw_error (OPTIMIZED_OUT_ERROR,
1375 _("Register %d was not saved"), regnum);
1376 }
1377 if (!value_entirely_available (value))
1378 {
1379 throw_error (NOT_AVAILABLE_ERROR,
1380 _("Register %d is not available"), regnum);
1381 }
1382
1383 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1384 byte_order);
1385
1386 release_value (value);
1387 return r;
1388 }
1389
1390 ULONGEST
1391 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1392 {
1393 return frame_unwind_register_unsigned (frame->next, regnum);
1394 }
1395
1396 bool
1397 read_frame_register_unsigned (frame_info *frame, int regnum,
1398 ULONGEST *val)
1399 {
1400 struct value *regval = get_frame_register_value (frame, regnum);
1401
1402 if (!value_optimized_out (regval)
1403 && value_entirely_available (regval))
1404 {
1405 struct gdbarch *gdbarch = get_frame_arch (frame);
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1408
1409 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1410 return true;
1411 }
1412
1413 return false;
1414 }
1415
1416 void
1417 put_frame_register (struct frame_info *frame, int regnum,
1418 const gdb_byte *buf)
1419 {
1420 struct gdbarch *gdbarch = get_frame_arch (frame);
1421 int realnum;
1422 int optim;
1423 int unavail;
1424 enum lval_type lval;
1425 CORE_ADDR addr;
1426
1427 frame_register (frame, regnum, &optim, &unavail,
1428 &lval, &addr, &realnum, NULL);
1429 if (optim)
1430 error (_("Attempt to assign to a register that was not saved."));
1431 switch (lval)
1432 {
1433 case lval_memory:
1434 {
1435 write_memory (addr, buf, register_size (gdbarch, regnum));
1436 break;
1437 }
1438 case lval_register:
1439 get_current_regcache ()->cooked_write (realnum, buf);
1440 break;
1441 default:
1442 error (_("Attempt to assign to an unmodifiable value."));
1443 }
1444 }
1445
1446 /* This function is deprecated. Use get_frame_register_value instead,
1447 which provides more accurate information.
1448
1449 Find and return the value of REGNUM for the specified stack frame.
1450 The number of bytes copied is REGISTER_SIZE (REGNUM).
1451
1452 Returns 0 if the register value could not be found. */
1453
1454 bool
1455 deprecated_frame_register_read (frame_info *frame, int regnum,
1456 gdb_byte *myaddr)
1457 {
1458 int optimized;
1459 int unavailable;
1460 enum lval_type lval;
1461 CORE_ADDR addr;
1462 int realnum;
1463
1464 frame_register (frame, regnum, &optimized, &unavailable,
1465 &lval, &addr, &realnum, myaddr);
1466
1467 return !optimized && !unavailable;
1468 }
1469
1470 bool
1471 get_frame_register_bytes (frame_info *frame, int regnum,
1472 CORE_ADDR offset,
1473 gdb::array_view<gdb_byte> buffer,
1474 int *optimizedp, int *unavailablep)
1475 {
1476 struct gdbarch *gdbarch = get_frame_arch (frame);
1477 int i;
1478 int maxsize;
1479 int numregs;
1480
1481 /* Skip registers wholly inside of OFFSET. */
1482 while (offset >= register_size (gdbarch, regnum))
1483 {
1484 offset -= register_size (gdbarch, regnum);
1485 regnum++;
1486 }
1487
1488 /* Ensure that we will not read beyond the end of the register file.
1489 This can only ever happen if the debug information is bad. */
1490 maxsize = -offset;
1491 numregs = gdbarch_num_cooked_regs (gdbarch);
1492 for (i = regnum; i < numregs; i++)
1493 {
1494 int thissize = register_size (gdbarch, i);
1495
1496 if (thissize == 0)
1497 break; /* This register is not available on this architecture. */
1498 maxsize += thissize;
1499 }
1500
1501 int len = buffer.size ();
1502 if (len > maxsize)
1503 error (_("Bad debug information detected: "
1504 "Attempt to read %d bytes from registers."), len);
1505
1506 /* Copy the data. */
1507 while (len > 0)
1508 {
1509 int curr_len = register_size (gdbarch, regnum) - offset;
1510
1511 if (curr_len > len)
1512 curr_len = len;
1513
1514 gdb_byte *myaddr = buffer.data ();
1515
1516 if (curr_len == register_size (gdbarch, regnum))
1517 {
1518 enum lval_type lval;
1519 CORE_ADDR addr;
1520 int realnum;
1521
1522 frame_register (frame, regnum, optimizedp, unavailablep,
1523 &lval, &addr, &realnum, myaddr);
1524 if (*optimizedp || *unavailablep)
1525 return false;
1526 }
1527 else
1528 {
1529 struct value *value = frame_unwind_register_value (frame->next,
1530 regnum);
1531 gdb_assert (value != NULL);
1532 *optimizedp = value_optimized_out (value);
1533 *unavailablep = !value_entirely_available (value);
1534
1535 if (*optimizedp || *unavailablep)
1536 {
1537 release_value (value);
1538 return false;
1539 }
1540
1541 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1542 release_value (value);
1543 }
1544
1545 myaddr += curr_len;
1546 len -= curr_len;
1547 offset = 0;
1548 regnum++;
1549 }
1550
1551 *optimizedp = 0;
1552 *unavailablep = 0;
1553
1554 return true;
1555 }
1556
1557 void
1558 put_frame_register_bytes (struct frame_info *frame, int regnum,
1559 CORE_ADDR offset,
1560 gdb::array_view<const gdb_byte> buffer)
1561 {
1562 struct gdbarch *gdbarch = get_frame_arch (frame);
1563
1564 /* Skip registers wholly inside of OFFSET. */
1565 while (offset >= register_size (gdbarch, regnum))
1566 {
1567 offset -= register_size (gdbarch, regnum);
1568 regnum++;
1569 }
1570
1571 int len = buffer.size ();
1572 /* Copy the data. */
1573 while (len > 0)
1574 {
1575 int curr_len = register_size (gdbarch, regnum) - offset;
1576
1577 if (curr_len > len)
1578 curr_len = len;
1579
1580 const gdb_byte *myaddr = buffer.data ();
1581 if (curr_len == register_size (gdbarch, regnum))
1582 {
1583 put_frame_register (frame, regnum, myaddr);
1584 }
1585 else
1586 {
1587 struct value *value = frame_unwind_register_value (frame->next,
1588 regnum);
1589 gdb_assert (value != NULL);
1590
1591 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1592 curr_len);
1593 put_frame_register (frame, regnum, value_contents_raw (value));
1594 release_value (value);
1595 }
1596
1597 myaddr += curr_len;
1598 len -= curr_len;
1599 offset = 0;
1600 regnum++;
1601 }
1602 }
1603
1604 /* Create a sentinel frame. */
1605
1606 static struct frame_info *
1607 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1608 {
1609 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1610
1611 frame->level = -1;
1612 frame->pspace = pspace;
1613 frame->aspace = regcache->aspace ();
1614 /* Explicitly initialize the sentinel frame's cache. Provide it
1615 with the underlying regcache. In the future additional
1616 information, such as the frame's thread will be added. */
1617 frame->prologue_cache = sentinel_frame_cache (regcache);
1618 /* For the moment there is only one sentinel frame implementation. */
1619 frame->unwind = &sentinel_frame_unwind;
1620 /* Link this frame back to itself. The frame is self referential
1621 (the unwound PC is the same as the pc), so make it so. */
1622 frame->next = frame;
1623 /* The sentinel frame has a special ID. */
1624 frame->this_id.p = frame_id_status::COMPUTED;
1625 frame->this_id.value = sentinel_frame_id;
1626 if (frame_debug)
1627 {
1628 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1629 fprint_frame (gdb_stdlog, frame);
1630 fprintf_unfiltered (gdb_stdlog, " }\n");
1631 }
1632 return frame;
1633 }
1634
1635 /* Cache for frame addresses already read by gdb. Valid only while
1636 inferior is stopped. Control variables for the frame cache should
1637 be local to this module. */
1638
1639 static struct obstack frame_cache_obstack;
1640
1641 void *
1642 frame_obstack_zalloc (unsigned long size)
1643 {
1644 void *data = obstack_alloc (&frame_cache_obstack, size);
1645
1646 memset (data, 0, size);
1647 return data;
1648 }
1649
1650 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1651
1652 struct frame_info *
1653 get_current_frame (void)
1654 {
1655 struct frame_info *current_frame;
1656
1657 /* First check, and report, the lack of registers. Having GDB
1658 report "No stack!" or "No memory" when the target doesn't even
1659 have registers is very confusing. Besides, "printcmd.exp"
1660 explicitly checks that ``print $pc'' with no registers prints "No
1661 registers". */
1662 if (!target_has_registers ())
1663 error (_("No registers."));
1664 if (!target_has_stack ())
1665 error (_("No stack."));
1666 if (!target_has_memory ())
1667 error (_("No memory."));
1668 /* Traceframes are effectively a substitute for the live inferior. */
1669 if (get_traceframe_number () < 0)
1670 validate_registers_access ();
1671
1672 if (sentinel_frame == NULL)
1673 sentinel_frame =
1674 create_sentinel_frame (current_program_space, get_current_regcache ());
1675
1676 /* Set the current frame before computing the frame id, to avoid
1677 recursion inside compute_frame_id, in case the frame's
1678 unwinder decides to do a symbol lookup (which depends on the
1679 selected frame's block).
1680
1681 This call must always succeed. In particular, nothing inside
1682 get_prev_frame_always_1 should try to unwind from the
1683 sentinel frame, because that could fail/throw, and we always
1684 want to leave with the current frame created and linked in --
1685 we should never end up with the sentinel frame as outermost
1686 frame. */
1687 current_frame = get_prev_frame_always_1 (sentinel_frame);
1688 gdb_assert (current_frame != NULL);
1689
1690 return current_frame;
1691 }
1692
1693 /* The "selected" stack frame is used by default for local and arg
1694 access.
1695
1696 The "single source of truth" for the selected frame is the
1697 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1698
1699 Frame IDs can be saved/restored across reinitializing the frame
1700 cache, while frame_info pointers can't (frame_info objects are
1701 invalidated). If we know the corresponding frame_info object, it
1702 is cached in SELECTED_FRAME.
1703
1704 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1705 and the target has stack and is stopped, the selected frame is the
1706 current (innermost) frame. This means that SELECTED_FRAME_LEVEL is
1707 never 0 and SELECTED_FRAME_ID is never the ID of the innermost
1708 frame.
1709
1710 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1711 and the target has no stack or is executing, then there's no
1712 selected frame. */
1713 static frame_id selected_frame_id = null_frame_id;
1714 static int selected_frame_level = -1;
1715
1716 /* The cached frame_info object pointing to the selected frame.
1717 Looked up on demand by get_selected_frame. */
1718 static struct frame_info *selected_frame;
1719
1720 /* See frame.h. */
1721
1722 void
1723 save_selected_frame (frame_id *frame_id, int *frame_level)
1724 noexcept
1725 {
1726 *frame_id = selected_frame_id;
1727 *frame_level = selected_frame_level;
1728 }
1729
1730 /* See frame.h. */
1731
1732 void
1733 restore_selected_frame (frame_id frame_id, int frame_level)
1734 noexcept
1735 {
1736 /* save_selected_frame never returns level == 0, so we shouldn't see
1737 it here either. */
1738 gdb_assert (frame_level != 0);
1739
1740 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1741 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1742 || (frame_level != -1 && frame_id_p (frame_id)));
1743
1744 selected_frame_id = frame_id;
1745 selected_frame_level = frame_level;
1746
1747 /* Will be looked up later by get_selected_frame. */
1748 selected_frame = nullptr;
1749 }
1750
1751 /* See frame.h. */
1752
1753 void
1754 lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1755 {
1756 struct frame_info *frame = NULL;
1757 int count;
1758
1759 /* This either means there was no selected frame, or the selected
1760 frame was the current frame. In either case, select the current
1761 frame. */
1762 if (frame_level == -1)
1763 {
1764 select_frame (get_current_frame ());
1765 return;
1766 }
1767
1768 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1769 shouldn't see it here. */
1770 gdb_assert (frame_level > 0);
1771
1772 /* Restore by level first, check if the frame id is the same as
1773 expected. If that fails, try restoring by frame id. If that
1774 fails, nothing to do, just warn the user. */
1775
1776 count = frame_level;
1777 frame = find_relative_frame (get_current_frame (), &count);
1778 if (count == 0
1779 && frame != NULL
1780 /* The frame ids must match - either both valid or both
1781 outer_frame_id. The latter case is not failsafe, but since
1782 it's highly unlikely the search by level finds the wrong
1783 frame, it's 99.9(9)% of the time (for all practical purposes)
1784 safe. */
1785 && frame_id_eq (get_frame_id (frame), a_frame_id))
1786 {
1787 /* Cool, all is fine. */
1788 select_frame (frame);
1789 return;
1790 }
1791
1792 frame = frame_find_by_id (a_frame_id);
1793 if (frame != NULL)
1794 {
1795 /* Cool, refound it. */
1796 select_frame (frame);
1797 return;
1798 }
1799
1800 /* Nothing else to do, the frame layout really changed. Select the
1801 innermost stack frame. */
1802 select_frame (get_current_frame ());
1803
1804 /* Warn the user. */
1805 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1806 {
1807 warning (_("Couldn't restore frame #%d in "
1808 "current thread. Bottom (innermost) frame selected:"),
1809 frame_level);
1810 /* For MI, we should probably have a notification about current
1811 frame change. But this error is not very likely, so don't
1812 bother for now. */
1813 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1814 }
1815 }
1816
1817 bool
1818 has_stack_frames ()
1819 {
1820 if (!target_has_registers () || !target_has_stack ()
1821 || !target_has_memory ())
1822 return false;
1823
1824 /* Traceframes are effectively a substitute for the live inferior. */
1825 if (get_traceframe_number () < 0)
1826 {
1827 /* No current inferior, no frame. */
1828 if (inferior_ptid == null_ptid)
1829 return false;
1830
1831 thread_info *tp = inferior_thread ();
1832 /* Don't try to read from a dead thread. */
1833 if (tp->state == THREAD_EXITED)
1834 return false;
1835
1836 /* ... or from a spinning thread. */
1837 if (tp->executing)
1838 return false;
1839 }
1840
1841 return true;
1842 }
1843
1844 /* See frame.h. */
1845
1846 struct frame_info *
1847 get_selected_frame (const char *message)
1848 {
1849 if (selected_frame == NULL)
1850 {
1851 if (message != NULL && !has_stack_frames ())
1852 error (("%s"), message);
1853
1854 lookup_selected_frame (selected_frame_id, selected_frame_level);
1855 }
1856 /* There is always a frame. */
1857 gdb_assert (selected_frame != NULL);
1858 return selected_frame;
1859 }
1860
1861 /* This is a variant of get_selected_frame() which can be called when
1862 the inferior does not have a frame; in that case it will return
1863 NULL instead of calling error(). */
1864
1865 struct frame_info *
1866 deprecated_safe_get_selected_frame (void)
1867 {
1868 if (!has_stack_frames ())
1869 return NULL;
1870 return get_selected_frame (NULL);
1871 }
1872
1873 /* Select frame FI (or NULL - to invalidate the selected frame). */
1874
1875 void
1876 select_frame (struct frame_info *fi)
1877 {
1878 selected_frame = fi;
1879 selected_frame_level = frame_relative_level (fi);
1880 if (selected_frame_level == 0)
1881 {
1882 /* Treat the current frame especially -- we want to always
1883 save/restore it without warning, even if the frame ID changes
1884 (see lookup_selected_frame). E.g.:
1885
1886 // The current frame is selected, the target had just stopped.
1887 {
1888 scoped_restore_selected_frame restore_frame;
1889 some_operation_that_changes_the_stack ();
1890 }
1891 // scoped_restore_selected_frame's dtor runs, but the
1892 // original frame_id can't be found. No matter whether it
1893 // is found or not, we still end up with the now-current
1894 // frame selected. Warning in lookup_selected_frame in this
1895 // case seems pointless.
1896
1897 Also get_frame_id may access the target's registers/memory,
1898 and thus skipping get_frame_id optimizes the common case.
1899
1900 Saving the selected frame this way makes get_selected_frame
1901 and restore_current_frame return/re-select whatever frame is
1902 the innermost (current) then. */
1903 selected_frame_level = -1;
1904 selected_frame_id = null_frame_id;
1905 }
1906 else
1907 selected_frame_id = get_frame_id (fi);
1908
1909 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1910 frame is being invalidated. */
1911
1912 /* FIXME: kseitz/2002-08-28: It would be nice to call
1913 selected_frame_level_changed_event() right here, but due to limitations
1914 in the current interfaces, we would end up flooding UIs with events
1915 because select_frame() is used extensively internally.
1916
1917 Once we have frame-parameterized frame (and frame-related) commands,
1918 the event notification can be moved here, since this function will only
1919 be called when the user's selected frame is being changed. */
1920
1921 /* Ensure that symbols for this frame are read in. Also, determine the
1922 source language of this frame, and switch to it if desired. */
1923 if (fi)
1924 {
1925 CORE_ADDR pc;
1926
1927 /* We retrieve the frame's symtab by using the frame PC.
1928 However we cannot use the frame PC as-is, because it usually
1929 points to the instruction following the "call", which is
1930 sometimes the first instruction of another function. So we
1931 rely on get_frame_address_in_block() which provides us with a
1932 PC which is guaranteed to be inside the frame's code
1933 block. */
1934 if (get_frame_address_in_block_if_available (fi, &pc))
1935 {
1936 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1937
1938 if (cust != NULL
1939 && compunit_language (cust) != current_language->la_language
1940 && compunit_language (cust) != language_unknown
1941 && language_mode == language_mode_auto)
1942 set_language (compunit_language (cust));
1943 }
1944 }
1945 }
1946
1947 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1948 Always returns a non-NULL value. */
1949
1950 struct frame_info *
1951 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1952 {
1953 struct frame_info *fi;
1954
1955 if (frame_debug)
1956 {
1957 fprintf_unfiltered (gdb_stdlog,
1958 "{ create_new_frame (addr=%s, pc=%s) ",
1959 hex_string (addr), hex_string (pc));
1960 }
1961
1962 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1963
1964 fi->next = create_sentinel_frame (current_program_space,
1965 get_current_regcache ());
1966
1967 /* Set/update this frame's cached PC value, found in the next frame.
1968 Do this before looking for this frame's unwinder. A sniffer is
1969 very likely to read this, and the corresponding unwinder is
1970 entitled to rely that the PC doesn't magically change. */
1971 fi->next->prev_pc.value = pc;
1972 fi->next->prev_pc.status = CC_VALUE;
1973
1974 /* We currently assume that frame chain's can't cross spaces. */
1975 fi->pspace = fi->next->pspace;
1976 fi->aspace = fi->next->aspace;
1977
1978 /* Select/initialize both the unwind function and the frame's type
1979 based on the PC. */
1980 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1981
1982 fi->this_id.p = frame_id_status::COMPUTED;
1983 fi->this_id.value = frame_id_build (addr, pc);
1984
1985 if (frame_debug)
1986 {
1987 fprintf_unfiltered (gdb_stdlog, "-> ");
1988 fprint_frame (gdb_stdlog, fi);
1989 fprintf_unfiltered (gdb_stdlog, " }\n");
1990 }
1991
1992 return fi;
1993 }
1994
1995 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1996 innermost frame). Be careful to not fall off the bottom of the
1997 frame chain and onto the sentinel frame. */
1998
1999 struct frame_info *
2000 get_next_frame (struct frame_info *this_frame)
2001 {
2002 if (this_frame->level > 0)
2003 return this_frame->next;
2004 else
2005 return NULL;
2006 }
2007
2008 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
2009 innermost (i.e. current) frame, return the sentinel frame. Thus,
2010 unlike get_next_frame(), NULL will never be returned. */
2011
2012 struct frame_info *
2013 get_next_frame_sentinel_okay (struct frame_info *this_frame)
2014 {
2015 gdb_assert (this_frame != NULL);
2016
2017 /* Note that, due to the manner in which the sentinel frame is
2018 constructed, this_frame->next still works even when this_frame
2019 is the sentinel frame. But we disallow it here anyway because
2020 calling get_next_frame_sentinel_okay() on the sentinel frame
2021 is likely a coding error. */
2022 gdb_assert (this_frame != sentinel_frame);
2023
2024 return this_frame->next;
2025 }
2026
2027 /* Observer for the target_changed event. */
2028
2029 static void
2030 frame_observer_target_changed (struct target_ops *target)
2031 {
2032 reinit_frame_cache ();
2033 }
2034
2035 /* Flush the entire frame cache. */
2036
2037 void
2038 reinit_frame_cache (void)
2039 {
2040 struct frame_info *fi;
2041
2042 ++frame_cache_generation;
2043
2044 /* Tear down all frame caches. */
2045 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
2046 {
2047 if (fi->prologue_cache && fi->unwind->dealloc_cache)
2048 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
2049 if (fi->base_cache && fi->base->unwind->dealloc_cache)
2050 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
2051 }
2052
2053 /* Since we can't really be sure what the first object allocated was. */
2054 obstack_free (&frame_cache_obstack, 0);
2055 obstack_init (&frame_cache_obstack);
2056
2057 if (sentinel_frame != NULL)
2058 annotate_frames_invalid ();
2059
2060 sentinel_frame = NULL; /* Invalidate cache */
2061 select_frame (NULL);
2062 frame_stash_invalidate ();
2063 if (frame_debug)
2064 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
2065 }
2066
2067 /* Find where a register is saved (in memory or another register).
2068 The result of frame_register_unwind is just where it is saved
2069 relative to this particular frame. */
2070
2071 static void
2072 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
2073 int *optimizedp, enum lval_type *lvalp,
2074 CORE_ADDR *addrp, int *realnump)
2075 {
2076 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2077
2078 while (this_frame != NULL)
2079 {
2080 int unavailable;
2081
2082 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2083 lvalp, addrp, realnump, NULL);
2084
2085 if (*optimizedp)
2086 break;
2087
2088 if (*lvalp != lval_register)
2089 break;
2090
2091 regnum = *realnump;
2092 this_frame = get_next_frame (this_frame);
2093 }
2094 }
2095
2096 /* Get the previous raw frame, and check that it is not identical to
2097 same other frame frame already in the chain. If it is, there is
2098 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2099 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2100 validity tests, that compare THIS_FRAME and the next frame, we do
2101 this right after creating the previous frame, to avoid ever ending
2102 up with two frames with the same id in the frame chain. */
2103
2104 static struct frame_info *
2105 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
2106 {
2107 struct frame_info *prev_frame;
2108
2109 prev_frame = get_prev_frame_raw (this_frame);
2110
2111 /* Don't compute the frame id of the current frame yet. Unwinding
2112 the sentinel frame can fail (e.g., if the thread is gone and we
2113 can't thus read its registers). If we let the cycle detection
2114 code below try to compute a frame ID, then an error thrown from
2115 within the frame ID computation would result in the sentinel
2116 frame as outermost frame, which is bogus. Instead, we'll compute
2117 the current frame's ID lazily in get_frame_id. Note that there's
2118 no point in doing cycle detection when there's only one frame, so
2119 nothing is lost here. */
2120 if (prev_frame->level == 0)
2121 return prev_frame;
2122
2123 unsigned int entry_generation = get_frame_cache_generation ();
2124
2125 try
2126 {
2127 compute_frame_id (prev_frame);
2128 if (!frame_stash_add (prev_frame))
2129 {
2130 /* Another frame with the same id was already in the stash. We just
2131 detected a cycle. */
2132 if (frame_debug)
2133 {
2134 fprintf_unfiltered (gdb_stdlog, "-> ");
2135 fprint_frame (gdb_stdlog, NULL);
2136 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
2137 }
2138 this_frame->stop_reason = UNWIND_SAME_ID;
2139 /* Unlink. */
2140 prev_frame->next = NULL;
2141 this_frame->prev = NULL;
2142 prev_frame = NULL;
2143 }
2144 }
2145 catch (const gdb_exception &ex)
2146 {
2147 if (get_frame_cache_generation () == entry_generation)
2148 {
2149 prev_frame->next = NULL;
2150 this_frame->prev = NULL;
2151 }
2152
2153 throw;
2154 }
2155
2156 return prev_frame;
2157 }
2158
2159 /* Helper function for get_prev_frame_always, this is called inside a
2160 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2161 there is no such frame. This may throw an exception. */
2162
2163 static struct frame_info *
2164 get_prev_frame_always_1 (struct frame_info *this_frame)
2165 {
2166 struct gdbarch *gdbarch;
2167
2168 gdb_assert (this_frame != NULL);
2169 gdbarch = get_frame_arch (this_frame);
2170
2171 if (frame_debug)
2172 {
2173 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
2174 if (this_frame != NULL)
2175 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2176 else
2177 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2178 fprintf_unfiltered (gdb_stdlog, ") ");
2179 }
2180
2181 /* Only try to do the unwind once. */
2182 if (this_frame->prev_p)
2183 {
2184 if (frame_debug)
2185 {
2186 fprintf_unfiltered (gdb_stdlog, "-> ");
2187 fprint_frame (gdb_stdlog, this_frame->prev);
2188 fprintf_unfiltered (gdb_stdlog, " // cached \n");
2189 }
2190 return this_frame->prev;
2191 }
2192
2193 /* If the frame unwinder hasn't been selected yet, we must do so
2194 before setting prev_p; otherwise the check for misbehaved
2195 sniffers will think that this frame's sniffer tried to unwind
2196 further (see frame_cleanup_after_sniffer). */
2197 if (this_frame->unwind == NULL)
2198 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2199
2200 this_frame->prev_p = true;
2201 this_frame->stop_reason = UNWIND_NO_REASON;
2202
2203 /* If we are unwinding from an inline frame, all of the below tests
2204 were already performed when we unwound from the next non-inline
2205 frame. We must skip them, since we can not get THIS_FRAME's ID
2206 until we have unwound all the way down to the previous non-inline
2207 frame. */
2208 if (get_frame_type (this_frame) == INLINE_FRAME)
2209 return get_prev_frame_if_no_cycle (this_frame);
2210
2211 /* If this_frame is the current frame, then compute and stash its
2212 frame id prior to fetching and computing the frame id of the
2213 previous frame. Otherwise, the cycle detection code in
2214 get_prev_frame_if_no_cycle() will not work correctly. When
2215 get_frame_id() is called later on, an assertion error will be
2216 triggered in the event of a cycle between the current frame and
2217 its previous frame.
2218
2219 Note we do this after the INLINE_FRAME check above. That is
2220 because the inline frame's frame id computation needs to fetch
2221 the frame id of its previous real stack frame. I.e., we need to
2222 avoid recursion in that case. This is OK since we're sure the
2223 inline frame won't create a cycle with the real stack frame. See
2224 inline_frame_this_id. */
2225 if (this_frame->level == 0)
2226 get_frame_id (this_frame);
2227
2228 /* Check that this frame is unwindable. If it isn't, don't try to
2229 unwind to the prev frame. */
2230 this_frame->stop_reason
2231 = this_frame->unwind->stop_reason (this_frame,
2232 &this_frame->prologue_cache);
2233
2234 if (this_frame->stop_reason != UNWIND_NO_REASON)
2235 {
2236 if (frame_debug)
2237 {
2238 enum unwind_stop_reason reason = this_frame->stop_reason;
2239
2240 fprintf_unfiltered (gdb_stdlog, "-> ");
2241 fprint_frame (gdb_stdlog, NULL);
2242 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2243 frame_stop_reason_symbol_string (reason));
2244 }
2245 return NULL;
2246 }
2247
2248 /* Check that this frame's ID isn't inner to (younger, below, next)
2249 the next frame. This happens when a frame unwind goes backwards.
2250 This check is valid only if this frame and the next frame are NORMAL.
2251 See the comment at frame_id_inner for details. */
2252 if (get_frame_type (this_frame) == NORMAL_FRAME
2253 && this_frame->next->unwind->type == NORMAL_FRAME
2254 && frame_id_inner (get_frame_arch (this_frame->next),
2255 get_frame_id (this_frame),
2256 get_frame_id (this_frame->next)))
2257 {
2258 CORE_ADDR this_pc_in_block;
2259 struct minimal_symbol *morestack_msym;
2260 const char *morestack_name = NULL;
2261
2262 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2263 this_pc_in_block = get_frame_address_in_block (this_frame);
2264 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2265 if (morestack_msym)
2266 morestack_name = morestack_msym->linkage_name ();
2267 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2268 {
2269 if (frame_debug)
2270 {
2271 fprintf_unfiltered (gdb_stdlog, "-> ");
2272 fprint_frame (gdb_stdlog, NULL);
2273 fprintf_unfiltered (gdb_stdlog,
2274 " // this frame ID is inner }\n");
2275 }
2276 this_frame->stop_reason = UNWIND_INNER_ID;
2277 return NULL;
2278 }
2279 }
2280
2281 /* Check that this and the next frame do not unwind the PC register
2282 to the same memory location. If they do, then even though they
2283 have different frame IDs, the new frame will be bogus; two
2284 functions can't share a register save slot for the PC. This can
2285 happen when the prologue analyzer finds a stack adjustment, but
2286 no PC save.
2287
2288 This check does assume that the "PC register" is roughly a
2289 traditional PC, even if the gdbarch_unwind_pc method adjusts
2290 it (we do not rely on the value, only on the unwound PC being
2291 dependent on this value). A potential improvement would be
2292 to have the frame prev_pc method and the gdbarch unwind_pc
2293 method set the same lval and location information as
2294 frame_register_unwind. */
2295 if (this_frame->level > 0
2296 && gdbarch_pc_regnum (gdbarch) >= 0
2297 && get_frame_type (this_frame) == NORMAL_FRAME
2298 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2299 || get_frame_type (this_frame->next) == INLINE_FRAME))
2300 {
2301 int optimized, realnum, nrealnum;
2302 enum lval_type lval, nlval;
2303 CORE_ADDR addr, naddr;
2304
2305 frame_register_unwind_location (this_frame,
2306 gdbarch_pc_regnum (gdbarch),
2307 &optimized, &lval, &addr, &realnum);
2308 frame_register_unwind_location (get_next_frame (this_frame),
2309 gdbarch_pc_regnum (gdbarch),
2310 &optimized, &nlval, &naddr, &nrealnum);
2311
2312 if ((lval == lval_memory && lval == nlval && addr == naddr)
2313 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2314 {
2315 if (frame_debug)
2316 {
2317 fprintf_unfiltered (gdb_stdlog, "-> ");
2318 fprint_frame (gdb_stdlog, NULL);
2319 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2320 }
2321
2322 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2323 this_frame->prev = NULL;
2324 return NULL;
2325 }
2326 }
2327
2328 return get_prev_frame_if_no_cycle (this_frame);
2329 }
2330
2331 /* Return a "struct frame_info" corresponding to the frame that called
2332 THIS_FRAME. Returns NULL if there is no such frame.
2333
2334 Unlike get_prev_frame, this function always tries to unwind the
2335 frame. */
2336
2337 struct frame_info *
2338 get_prev_frame_always (struct frame_info *this_frame)
2339 {
2340 struct frame_info *prev_frame = NULL;
2341
2342 try
2343 {
2344 prev_frame = get_prev_frame_always_1 (this_frame);
2345 }
2346 catch (const gdb_exception_error &ex)
2347 {
2348 if (ex.error == MEMORY_ERROR)
2349 {
2350 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2351 if (ex.message != NULL)
2352 {
2353 char *stop_string;
2354 size_t size;
2355
2356 /* The error needs to live as long as the frame does.
2357 Allocate using stack local STOP_STRING then assign the
2358 pointer to the frame, this allows the STOP_STRING on the
2359 frame to be of type 'const char *'. */
2360 size = ex.message->size () + 1;
2361 stop_string = (char *) frame_obstack_zalloc (size);
2362 memcpy (stop_string, ex.what (), size);
2363 this_frame->stop_string = stop_string;
2364 }
2365 prev_frame = NULL;
2366 }
2367 else
2368 throw;
2369 }
2370
2371 return prev_frame;
2372 }
2373
2374 /* Construct a new "struct frame_info" and link it previous to
2375 this_frame. */
2376
2377 static struct frame_info *
2378 get_prev_frame_raw (struct frame_info *this_frame)
2379 {
2380 struct frame_info *prev_frame;
2381
2382 /* Allocate the new frame but do not wire it in to the frame chain.
2383 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2384 frame->next to pull some fancy tricks (of course such code is, by
2385 definition, recursive). Try to prevent it.
2386
2387 There is no reason to worry about memory leaks, should the
2388 remainder of the function fail. The allocated memory will be
2389 quickly reclaimed when the frame cache is flushed, and the `we've
2390 been here before' check above will stop repeated memory
2391 allocation calls. */
2392 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2393 prev_frame->level = this_frame->level + 1;
2394
2395 /* For now, assume we don't have frame chains crossing address
2396 spaces. */
2397 prev_frame->pspace = this_frame->pspace;
2398 prev_frame->aspace = this_frame->aspace;
2399
2400 /* Don't yet compute ->unwind (and hence ->type). It is computed
2401 on-demand in get_frame_type, frame_register_unwind, and
2402 get_frame_id. */
2403
2404 /* Don't yet compute the frame's ID. It is computed on-demand by
2405 get_frame_id(). */
2406
2407 /* The unwound frame ID is validate at the start of this function,
2408 as part of the logic to decide if that frame should be further
2409 unwound, and not here while the prev frame is being created.
2410 Doing this makes it possible for the user to examine a frame that
2411 has an invalid frame ID.
2412
2413 Some very old VAX code noted: [...] For the sake of argument,
2414 suppose that the stack is somewhat trashed (which is one reason
2415 that "info frame" exists). So, return 0 (indicating we don't
2416 know the address of the arglist) if we don't know what frame this
2417 frame calls. */
2418
2419 /* Link it in. */
2420 this_frame->prev = prev_frame;
2421 prev_frame->next = this_frame;
2422
2423 if (frame_debug)
2424 {
2425 fprintf_unfiltered (gdb_stdlog, "-> ");
2426 fprint_frame (gdb_stdlog, prev_frame);
2427 fprintf_unfiltered (gdb_stdlog, " }\n");
2428 }
2429
2430 return prev_frame;
2431 }
2432
2433 /* Debug routine to print a NULL frame being returned. */
2434
2435 static void
2436 frame_debug_got_null_frame (struct frame_info *this_frame,
2437 const char *reason)
2438 {
2439 if (frame_debug)
2440 {
2441 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2442 if (this_frame != NULL)
2443 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2444 else
2445 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2446 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2447 }
2448 }
2449
2450 /* Is this (non-sentinel) frame in the "main"() function? */
2451
2452 static bool
2453 inside_main_func (frame_info *this_frame)
2454 {
2455 if (current_program_space->symfile_object_file == nullptr)
2456 return false;
2457
2458 CORE_ADDR sym_addr;
2459 const char *name = main_name ();
2460 bound_minimal_symbol msymbol
2461 = lookup_minimal_symbol (name, NULL,
2462 current_program_space->symfile_object_file);
2463 if (msymbol.minsym == nullptr)
2464 {
2465 /* In some language (for example Fortran) there will be no minimal
2466 symbol with the name of the main function. In this case we should
2467 search the full symbols to see if we can find a match. */
2468 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2469 if (bs.symbol == nullptr)
2470 return false;
2471
2472 const struct block *block = SYMBOL_BLOCK_VALUE (bs.symbol);
2473 gdb_assert (block != nullptr);
2474 sym_addr = BLOCK_START (block);
2475 }
2476 else
2477 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2478
2479 /* Convert any function descriptor addresses into the actual function
2480 code address. */
2481 sym_addr = gdbarch_convert_from_func_ptr_addr
2482 (get_frame_arch (this_frame), sym_addr, current_inferior ()->top_target ());
2483
2484 return sym_addr == get_frame_func (this_frame);
2485 }
2486
2487 /* Test whether THIS_FRAME is inside the process entry point function. */
2488
2489 static bool
2490 inside_entry_func (frame_info *this_frame)
2491 {
2492 CORE_ADDR entry_point;
2493
2494 if (!entry_point_address_query (&entry_point))
2495 return false;
2496
2497 return get_frame_func (this_frame) == entry_point;
2498 }
2499
2500 /* Return a structure containing various interesting information about
2501 the frame that called THIS_FRAME. Returns NULL if there is entier
2502 no such frame or the frame fails any of a set of target-independent
2503 condition that should terminate the frame chain (e.g., as unwinding
2504 past main()).
2505
2506 This function should not contain target-dependent tests, such as
2507 checking whether the program-counter is zero. */
2508
2509 struct frame_info *
2510 get_prev_frame (struct frame_info *this_frame)
2511 {
2512 CORE_ADDR frame_pc;
2513 int frame_pc_p;
2514
2515 /* There is always a frame. If this assertion fails, suspect that
2516 something should be calling get_selected_frame() or
2517 get_current_frame(). */
2518 gdb_assert (this_frame != NULL);
2519
2520 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2521
2522 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2523 sense to stop unwinding at a dummy frame. One place where a dummy
2524 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2525 pcsqh register (space register for the instruction at the head of the
2526 instruction queue) cannot be written directly; the only way to set it
2527 is to branch to code that is in the target space. In order to implement
2528 frame dummies on HPUX, the called function is made to jump back to where
2529 the inferior was when the user function was called. If gdb was inside
2530 the main function when we created the dummy frame, the dummy frame will
2531 point inside the main function. */
2532 if (this_frame->level >= 0
2533 && get_frame_type (this_frame) == NORMAL_FRAME
2534 && !user_set_backtrace_options.backtrace_past_main
2535 && frame_pc_p
2536 && inside_main_func (this_frame))
2537 /* Don't unwind past main(). Note, this is done _before_ the
2538 frame has been marked as previously unwound. That way if the
2539 user later decides to enable unwinds past main(), that will
2540 automatically happen. */
2541 {
2542 frame_debug_got_null_frame (this_frame, "inside main func");
2543 return NULL;
2544 }
2545
2546 /* If the user's backtrace limit has been exceeded, stop. We must
2547 add two to the current level; one of those accounts for backtrace_limit
2548 being 1-based and the level being 0-based, and the other accounts for
2549 the level of the new frame instead of the level of the current
2550 frame. */
2551 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2552 {
2553 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2554 return NULL;
2555 }
2556
2557 /* If we're already inside the entry function for the main objfile,
2558 then it isn't valid. Don't apply this test to a dummy frame -
2559 dummy frame PCs typically land in the entry func. Don't apply
2560 this test to the sentinel frame. Sentinel frames should always
2561 be allowed to unwind. */
2562 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2563 wasn't checking for "main" in the minimal symbols. With that
2564 fixed asm-source tests now stop in "main" instead of halting the
2565 backtrace in weird and wonderful ways somewhere inside the entry
2566 file. Suspect that tests for inside the entry file/func were
2567 added to work around that (now fixed) case. */
2568 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2569 suggested having the inside_entry_func test use the
2570 inside_main_func() msymbol trick (along with entry_point_address()
2571 I guess) to determine the address range of the start function.
2572 That should provide a far better stopper than the current
2573 heuristics. */
2574 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2575 applied tail-call optimizations to main so that a function called
2576 from main returns directly to the caller of main. Since we don't
2577 stop at main, we should at least stop at the entry point of the
2578 application. */
2579 if (this_frame->level >= 0
2580 && get_frame_type (this_frame) == NORMAL_FRAME
2581 && !user_set_backtrace_options.backtrace_past_entry
2582 && frame_pc_p
2583 && inside_entry_func (this_frame))
2584 {
2585 frame_debug_got_null_frame (this_frame, "inside entry func");
2586 return NULL;
2587 }
2588
2589 /* Assume that the only way to get a zero PC is through something
2590 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2591 will never unwind a zero PC. */
2592 if (this_frame->level > 0
2593 && (get_frame_type (this_frame) == NORMAL_FRAME
2594 || get_frame_type (this_frame) == INLINE_FRAME)
2595 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2596 && frame_pc_p && frame_pc == 0)
2597 {
2598 frame_debug_got_null_frame (this_frame, "zero PC");
2599 return NULL;
2600 }
2601
2602 return get_prev_frame_always (this_frame);
2603 }
2604
2605 struct frame_id
2606 get_prev_frame_id_by_id (struct frame_id id)
2607 {
2608 struct frame_id prev_id;
2609 struct frame_info *frame;
2610
2611 frame = frame_find_by_id (id);
2612
2613 if (frame != NULL)
2614 prev_id = get_frame_id (get_prev_frame (frame));
2615 else
2616 prev_id = null_frame_id;
2617
2618 return prev_id;
2619 }
2620
2621 CORE_ADDR
2622 get_frame_pc (struct frame_info *frame)
2623 {
2624 gdb_assert (frame->next != NULL);
2625 return frame_unwind_pc (frame->next);
2626 }
2627
2628 bool
2629 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2630 {
2631
2632 gdb_assert (frame->next != NULL);
2633
2634 try
2635 {
2636 *pc = frame_unwind_pc (frame->next);
2637 }
2638 catch (const gdb_exception_error &ex)
2639 {
2640 if (ex.error == NOT_AVAILABLE_ERROR)
2641 return false;
2642 else
2643 throw;
2644 }
2645
2646 return true;
2647 }
2648
2649 /* Return an address that falls within THIS_FRAME's code block. */
2650
2651 CORE_ADDR
2652 get_frame_address_in_block (struct frame_info *this_frame)
2653 {
2654 /* A draft address. */
2655 CORE_ADDR pc = get_frame_pc (this_frame);
2656
2657 struct frame_info *next_frame = this_frame->next;
2658
2659 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2660 Normally the resume address is inside the body of the function
2661 associated with THIS_FRAME, but there is a special case: when
2662 calling a function which the compiler knows will never return
2663 (for instance abort), the call may be the very last instruction
2664 in the calling function. The resume address will point after the
2665 call and may be at the beginning of a different function
2666 entirely.
2667
2668 If THIS_FRAME is a signal frame or dummy frame, then we should
2669 not adjust the unwound PC. For a dummy frame, GDB pushed the
2670 resume address manually onto the stack. For a signal frame, the
2671 OS may have pushed the resume address manually and invoked the
2672 handler (e.g. GNU/Linux), or invoked the trampoline which called
2673 the signal handler - but in either case the signal handler is
2674 expected to return to the trampoline. So in both of these
2675 cases we know that the resume address is executable and
2676 related. So we only need to adjust the PC if THIS_FRAME
2677 is a normal function.
2678
2679 If the program has been interrupted while THIS_FRAME is current,
2680 then clearly the resume address is inside the associated
2681 function. There are three kinds of interruption: debugger stop
2682 (next frame will be SENTINEL_FRAME), operating system
2683 signal or exception (next frame will be SIGTRAMP_FRAME),
2684 or debugger-induced function call (next frame will be
2685 DUMMY_FRAME). So we only need to adjust the PC if
2686 NEXT_FRAME is a normal function.
2687
2688 We check the type of NEXT_FRAME first, since it is already
2689 known; frame type is determined by the unwinder, and since
2690 we have THIS_FRAME we've already selected an unwinder for
2691 NEXT_FRAME.
2692
2693 If the next frame is inlined, we need to keep going until we find
2694 the real function - for instance, if a signal handler is invoked
2695 while in an inlined function, then the code address of the
2696 "calling" normal function should not be adjusted either. */
2697
2698 while (get_frame_type (next_frame) == INLINE_FRAME)
2699 next_frame = next_frame->next;
2700
2701 if ((get_frame_type (next_frame) == NORMAL_FRAME
2702 || get_frame_type (next_frame) == TAILCALL_FRAME)
2703 && (get_frame_type (this_frame) == NORMAL_FRAME
2704 || get_frame_type (this_frame) == TAILCALL_FRAME
2705 || get_frame_type (this_frame) == INLINE_FRAME))
2706 return pc - 1;
2707
2708 return pc;
2709 }
2710
2711 bool
2712 get_frame_address_in_block_if_available (frame_info *this_frame,
2713 CORE_ADDR *pc)
2714 {
2715
2716 try
2717 {
2718 *pc = get_frame_address_in_block (this_frame);
2719 }
2720 catch (const gdb_exception_error &ex)
2721 {
2722 if (ex.error == NOT_AVAILABLE_ERROR)
2723 return false;
2724 throw;
2725 }
2726
2727 return true;
2728 }
2729
2730 symtab_and_line
2731 find_frame_sal (frame_info *frame)
2732 {
2733 struct frame_info *next_frame;
2734 int notcurrent;
2735 CORE_ADDR pc;
2736
2737 if (frame_inlined_callees (frame) > 0)
2738 {
2739 struct symbol *sym;
2740
2741 /* If the current frame has some inlined callees, and we have a next
2742 frame, then that frame must be an inlined frame. In this case
2743 this frame's sal is the "call site" of the next frame's inlined
2744 function, which can not be inferred from get_frame_pc. */
2745 next_frame = get_next_frame (frame);
2746 if (next_frame)
2747 sym = get_frame_function (next_frame);
2748 else
2749 sym = inline_skipped_symbol (inferior_thread ());
2750
2751 /* If frame is inline, it certainly has symbols. */
2752 gdb_assert (sym);
2753
2754 symtab_and_line sal;
2755 if (SYMBOL_LINE (sym) != 0)
2756 {
2757 sal.symtab = symbol_symtab (sym);
2758 sal.line = SYMBOL_LINE (sym);
2759 }
2760 else
2761 /* If the symbol does not have a location, we don't know where
2762 the call site is. Do not pretend to. This is jarring, but
2763 we can't do much better. */
2764 sal.pc = get_frame_pc (frame);
2765
2766 sal.pspace = get_frame_program_space (frame);
2767 return sal;
2768 }
2769
2770 /* If FRAME is not the innermost frame, that normally means that
2771 FRAME->pc points at the return instruction (which is *after* the
2772 call instruction), and we want to get the line containing the
2773 call (because the call is where the user thinks the program is).
2774 However, if the next frame is either a SIGTRAMP_FRAME or a
2775 DUMMY_FRAME, then the next frame will contain a saved interrupt
2776 PC and such a PC indicates the current (rather than next)
2777 instruction/line, consequently, for such cases, want to get the
2778 line containing fi->pc. */
2779 if (!get_frame_pc_if_available (frame, &pc))
2780 return {};
2781
2782 notcurrent = (pc != get_frame_address_in_block (frame));
2783 return find_pc_line (pc, notcurrent);
2784 }
2785
2786 /* Per "frame.h", return the ``address'' of the frame. Code should
2787 really be using get_frame_id(). */
2788 CORE_ADDR
2789 get_frame_base (struct frame_info *fi)
2790 {
2791 return get_frame_id (fi).stack_addr;
2792 }
2793
2794 /* High-level offsets into the frame. Used by the debug info. */
2795
2796 CORE_ADDR
2797 get_frame_base_address (struct frame_info *fi)
2798 {
2799 if (get_frame_type (fi) != NORMAL_FRAME)
2800 return 0;
2801 if (fi->base == NULL)
2802 fi->base = frame_base_find_by_frame (fi);
2803 /* Sneaky: If the low-level unwind and high-level base code share a
2804 common unwinder, let them share the prologue cache. */
2805 if (fi->base->unwind == fi->unwind)
2806 return fi->base->this_base (fi, &fi->prologue_cache);
2807 return fi->base->this_base (fi, &fi->base_cache);
2808 }
2809
2810 CORE_ADDR
2811 get_frame_locals_address (struct frame_info *fi)
2812 {
2813 if (get_frame_type (fi) != NORMAL_FRAME)
2814 return 0;
2815 /* If there isn't a frame address method, find it. */
2816 if (fi->base == NULL)
2817 fi->base = frame_base_find_by_frame (fi);
2818 /* Sneaky: If the low-level unwind and high-level base code share a
2819 common unwinder, let them share the prologue cache. */
2820 if (fi->base->unwind == fi->unwind)
2821 return fi->base->this_locals (fi, &fi->prologue_cache);
2822 return fi->base->this_locals (fi, &fi->base_cache);
2823 }
2824
2825 CORE_ADDR
2826 get_frame_args_address (struct frame_info *fi)
2827 {
2828 if (get_frame_type (fi) != NORMAL_FRAME)
2829 return 0;
2830 /* If there isn't a frame address method, find it. */
2831 if (fi->base == NULL)
2832 fi->base = frame_base_find_by_frame (fi);
2833 /* Sneaky: If the low-level unwind and high-level base code share a
2834 common unwinder, let them share the prologue cache. */
2835 if (fi->base->unwind == fi->unwind)
2836 return fi->base->this_args (fi, &fi->prologue_cache);
2837 return fi->base->this_args (fi, &fi->base_cache);
2838 }
2839
2840 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2841 otherwise. */
2842
2843 bool
2844 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2845 {
2846 if (fi->unwind == nullptr)
2847 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2848
2849 return fi->unwind == unwinder;
2850 }
2851
2852 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2853 or -1 for a NULL frame. */
2854
2855 int
2856 frame_relative_level (struct frame_info *fi)
2857 {
2858 if (fi == NULL)
2859 return -1;
2860 else
2861 return fi->level;
2862 }
2863
2864 enum frame_type
2865 get_frame_type (struct frame_info *frame)
2866 {
2867 if (frame->unwind == NULL)
2868 /* Initialize the frame's unwinder because that's what
2869 provides the frame's type. */
2870 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2871 return frame->unwind->type;
2872 }
2873
2874 struct program_space *
2875 get_frame_program_space (struct frame_info *frame)
2876 {
2877 return frame->pspace;
2878 }
2879
2880 struct program_space *
2881 frame_unwind_program_space (struct frame_info *this_frame)
2882 {
2883 gdb_assert (this_frame);
2884
2885 /* This is really a placeholder to keep the API consistent --- we
2886 assume for now that we don't have frame chains crossing
2887 spaces. */
2888 return this_frame->pspace;
2889 }
2890
2891 const address_space *
2892 get_frame_address_space (struct frame_info *frame)
2893 {
2894 return frame->aspace;
2895 }
2896
2897 /* Memory access methods. */
2898
2899 void
2900 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2901 gdb::array_view<gdb_byte> buffer)
2902 {
2903 read_memory (addr, buffer.data (), buffer.size ());
2904 }
2905
2906 LONGEST
2907 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2908 int len)
2909 {
2910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2912
2913 return read_memory_integer (addr, len, byte_order);
2914 }
2915
2916 ULONGEST
2917 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2918 int len)
2919 {
2920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2921 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2922
2923 return read_memory_unsigned_integer (addr, len, byte_order);
2924 }
2925
2926 bool
2927 safe_frame_unwind_memory (struct frame_info *this_frame,
2928 CORE_ADDR addr, gdb::array_view<gdb_byte> buffer)
2929 {
2930 /* NOTE: target_read_memory returns zero on success! */
2931 return target_read_memory (addr, buffer.data (), buffer.size ()) == 0;
2932 }
2933
2934 /* Architecture methods. */
2935
2936 struct gdbarch *
2937 get_frame_arch (struct frame_info *this_frame)
2938 {
2939 return frame_unwind_arch (this_frame->next);
2940 }
2941
2942 struct gdbarch *
2943 frame_unwind_arch (struct frame_info *next_frame)
2944 {
2945 if (!next_frame->prev_arch.p)
2946 {
2947 struct gdbarch *arch;
2948
2949 if (next_frame->unwind == NULL)
2950 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2951
2952 if (next_frame->unwind->prev_arch != NULL)
2953 arch = next_frame->unwind->prev_arch (next_frame,
2954 &next_frame->prologue_cache);
2955 else
2956 arch = get_frame_arch (next_frame);
2957
2958 next_frame->prev_arch.arch = arch;
2959 next_frame->prev_arch.p = true;
2960 if (frame_debug)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2963 next_frame->level,
2964 gdbarch_bfd_arch_info (arch)->printable_name);
2965 }
2966
2967 return next_frame->prev_arch.arch;
2968 }
2969
2970 struct gdbarch *
2971 frame_unwind_caller_arch (struct frame_info *next_frame)
2972 {
2973 next_frame = skip_artificial_frames (next_frame);
2974
2975 /* We must have a non-artificial frame. The caller is supposed to check
2976 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2977 in this case. */
2978 gdb_assert (next_frame != NULL);
2979
2980 return frame_unwind_arch (next_frame);
2981 }
2982
2983 /* Gets the language of FRAME. */
2984
2985 enum language
2986 get_frame_language (struct frame_info *frame)
2987 {
2988 CORE_ADDR pc = 0;
2989 bool pc_p = false;
2990
2991 gdb_assert (frame!= NULL);
2992
2993 /* We determine the current frame language by looking up its
2994 associated symtab. To retrieve this symtab, we use the frame
2995 PC. However we cannot use the frame PC as is, because it
2996 usually points to the instruction following the "call", which
2997 is sometimes the first instruction of another function. So
2998 we rely on get_frame_address_in_block(), it provides us with
2999 a PC that is guaranteed to be inside the frame's code
3000 block. */
3001
3002 try
3003 {
3004 pc = get_frame_address_in_block (frame);
3005 pc_p = true;
3006 }
3007 catch (const gdb_exception_error &ex)
3008 {
3009 if (ex.error != NOT_AVAILABLE_ERROR)
3010 throw;
3011 }
3012
3013 if (pc_p)
3014 {
3015 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
3016
3017 if (cust != NULL)
3018 return compunit_language (cust);
3019 }
3020
3021 return language_unknown;
3022 }
3023
3024 /* Stack pointer methods. */
3025
3026 CORE_ADDR
3027 get_frame_sp (struct frame_info *this_frame)
3028 {
3029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3030
3031 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
3032 operate on THIS_FRAME now. */
3033 return gdbarch_unwind_sp (gdbarch, this_frame->next);
3034 }
3035
3036 /* Return the reason why we can't unwind past FRAME. */
3037
3038 enum unwind_stop_reason
3039 get_frame_unwind_stop_reason (struct frame_info *frame)
3040 {
3041 /* Fill-in STOP_REASON. */
3042 get_prev_frame_always (frame);
3043 gdb_assert (frame->prev_p);
3044
3045 return frame->stop_reason;
3046 }
3047
3048 /* Return a string explaining REASON. */
3049
3050 const char *
3051 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
3052 {
3053 switch (reason)
3054 {
3055 #define SET(name, description) \
3056 case name: return _(description);
3057 #include "unwind_stop_reasons.def"
3058 #undef SET
3059
3060 default:
3061 internal_error (__FILE__, __LINE__,
3062 "Invalid frame stop reason");
3063 }
3064 }
3065
3066 const char *
3067 frame_stop_reason_string (struct frame_info *fi)
3068 {
3069 gdb_assert (fi->prev_p);
3070 gdb_assert (fi->prev == NULL);
3071
3072 /* Return the specific string if we have one. */
3073 if (fi->stop_string != NULL)
3074 return fi->stop_string;
3075
3076 /* Return the generic string if we have nothing better. */
3077 return unwind_stop_reason_to_string (fi->stop_reason);
3078 }
3079
3080 /* Return the enum symbol name of REASON as a string, to use in debug
3081 output. */
3082
3083 static const char *
3084 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3085 {
3086 switch (reason)
3087 {
3088 #define SET(name, description) \
3089 case name: return #name;
3090 #include "unwind_stop_reasons.def"
3091 #undef SET
3092
3093 default:
3094 internal_error (__FILE__, __LINE__,
3095 "Invalid frame stop reason");
3096 }
3097 }
3098
3099 /* Clean up after a failed (wrong unwinder) attempt to unwind past
3100 FRAME. */
3101
3102 void
3103 frame_cleanup_after_sniffer (struct frame_info *frame)
3104 {
3105 /* The sniffer should not allocate a prologue cache if it did not
3106 match this frame. */
3107 gdb_assert (frame->prologue_cache == NULL);
3108
3109 /* No sniffer should extend the frame chain; sniff based on what is
3110 already certain. */
3111 gdb_assert (!frame->prev_p);
3112
3113 /* The sniffer should not check the frame's ID; that's circular. */
3114 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3115
3116 /* Clear cached fields dependent on the unwinder.
3117
3118 The previous PC is independent of the unwinder, but the previous
3119 function is not (see get_frame_address_in_block). */
3120 frame->prev_func.status = CC_UNKNOWN;
3121 frame->prev_func.addr = 0;
3122
3123 /* Discard the unwinder last, so that we can easily find it if an assertion
3124 in this function triggers. */
3125 frame->unwind = NULL;
3126 }
3127
3128 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3129 If sniffing fails, the caller should be sure to call
3130 frame_cleanup_after_sniffer. */
3131
3132 void
3133 frame_prepare_for_sniffer (struct frame_info *frame,
3134 const struct frame_unwind *unwind)
3135 {
3136 gdb_assert (frame->unwind == NULL);
3137 frame->unwind = unwind;
3138 }
3139
3140 static struct cmd_list_element *set_backtrace_cmdlist;
3141 static struct cmd_list_element *show_backtrace_cmdlist;
3142
3143 /* Definition of the "set backtrace" settings that are exposed as
3144 "backtrace" command options. */
3145
3146 using boolean_option_def
3147 = gdb::option::boolean_option_def<set_backtrace_options>;
3148
3149 const gdb::option::option_def set_backtrace_option_defs[] = {
3150
3151 boolean_option_def {
3152 "past-main",
3153 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3154 show_backtrace_past_main, /* show_cmd_cb */
3155 N_("Set whether backtraces should continue past \"main\"."),
3156 N_("Show whether backtraces should continue past \"main\"."),
3157 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3158 the backtrace at \"main\". Set this if you need to see the rest\n\
3159 of the stack trace."),
3160 },
3161
3162 boolean_option_def {
3163 "past-entry",
3164 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3165 show_backtrace_past_entry, /* show_cmd_cb */
3166 N_("Set whether backtraces should continue past the entry point of a program."),
3167 N_("Show whether backtraces should continue past the entry point of a program."),
3168 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3169 will terminate the backtrace there. Set this if you need to see\n\
3170 the rest of the stack trace."),
3171 },
3172 };
3173
3174 void _initialize_frame ();
3175 void
3176 _initialize_frame ()
3177 {
3178 obstack_init (&frame_cache_obstack);
3179
3180 frame_stash_create ();
3181
3182 gdb::observers::target_changed.attach (frame_observer_target_changed);
3183
3184 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3185 Set backtrace specific variables.\n\
3186 Configure backtrace variables such as the backtrace limit"),
3187 &set_backtrace_cmdlist, "set backtrace ",
3188 0/*allow-unknown*/, &setlist);
3189 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3190 Show backtrace specific variables.\n\
3191 Show backtrace variables such as the backtrace limit."),
3192 &show_backtrace_cmdlist, "show backtrace ",
3193 0/*allow-unknown*/, &showlist);
3194
3195 add_setshow_uinteger_cmd ("limit", class_obscure,
3196 &user_set_backtrace_options.backtrace_limit, _("\
3197 Set an upper bound on the number of backtrace levels."), _("\
3198 Show the upper bound on the number of backtrace levels."), _("\
3199 No more than the specified number of frames can be displayed or examined.\n\
3200 Literal \"unlimited\" or zero means no limit."),
3201 NULL,
3202 show_backtrace_limit,
3203 &set_backtrace_cmdlist,
3204 &show_backtrace_cmdlist);
3205
3206 gdb::option::add_setshow_cmds_for_options
3207 (class_stack, &user_set_backtrace_options,
3208 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3209
3210 /* Debug this files internals. */
3211 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
3212 Set frame debugging."), _("\
3213 Show frame debugging."), _("\
3214 When non-zero, frame specific internal debugging is enabled."),
3215 NULL,
3216 show_frame_debug,
3217 &setdebuglist, &showdebuglist);
3218 }
This page took 0.110168 seconds and 5 git commands to generate.