New OPTIMIZED_OUT_ERROR error code.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "gdb_assert.h"
27 #include <string.h>
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
32 #include "gdbcore.h"
33 #include "annotate.h"
34 #include "language.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "command.h"
38 #include "gdbcmd.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
43 #include "block.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "hashtab.h"
47 #include "valprint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
52
53 /* We keep a cache of stack frames, each of which is a "struct
54 frame_info". The innermost one gets allocated (in
55 wait_for_inferior) each time the inferior stops; current_frame
56 points to it. Additional frames get allocated (in get_prev_frame)
57 as needed, and are chained through the next and prev fields. Any
58 time that the frame cache becomes invalid (most notably when we
59 execute something, but also if we change how we interpret the
60 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
61 which reads new symbols)), we should call reinit_frame_cache. */
62
63 struct frame_info
64 {
65 /* Level of this frame. The inner-most (youngest) frame is at level
66 0. As you move towards the outer-most (oldest) frame, the level
67 increases. This is a cached value. It could just as easily be
68 computed by counting back from the selected frame to the inner
69 most frame. */
70 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
71 reserved to indicate a bogus frame - one that has been created
72 just to keep GDB happy (GDB always needs a frame). For the
73 moment leave this as speculation. */
74 int level;
75
76 /* The frame's program space. */
77 struct program_space *pspace;
78
79 /* The frame's address space. */
80 struct address_space *aspace;
81
82 /* The frame's low-level unwinder and corresponding cache. The
83 low-level unwinder is responsible for unwinding register values
84 for the previous frame. The low-level unwind methods are
85 selected based on the presence, or otherwise, of register unwind
86 information such as CFI. */
87 void *prologue_cache;
88 const struct frame_unwind *unwind;
89
90 /* Cached copy of the previous frame's architecture. */
91 struct
92 {
93 int p;
94 struct gdbarch *arch;
95 } prev_arch;
96
97 /* Cached copy of the previous frame's resume address. */
98 struct {
99 int p;
100 CORE_ADDR value;
101 } prev_pc;
102
103 /* Cached copy of the previous frame's function address. */
104 struct
105 {
106 CORE_ADDR addr;
107 int p;
108 } prev_func;
109
110 /* This frame's ID. */
111 struct
112 {
113 int p;
114 struct frame_id value;
115 } this_id;
116
117 /* The frame's high-level base methods, and corresponding cache.
118 The high level base methods are selected based on the frame's
119 debug info. */
120 const struct frame_base *base;
121 void *base_cache;
122
123 /* Pointers to the next (down, inner, younger) and previous (up,
124 outer, older) frame_info's in the frame cache. */
125 struct frame_info *next; /* down, inner, younger */
126 int prev_p;
127 struct frame_info *prev; /* up, outer, older */
128
129 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
130 could. Only valid when PREV_P is set. */
131 enum unwind_stop_reason stop_reason;
132 };
133
134 /* A frame stash used to speed up frame lookups. Create a hash table
135 to stash frames previously accessed from the frame cache for
136 quicker subsequent retrieval. The hash table is emptied whenever
137 the frame cache is invalidated. */
138
139 static htab_t frame_stash;
140
141 /* Internal function to calculate a hash from the frame_id addresses,
142 using as many valid addresses as possible. Frames below level 0
143 are not stored in the hash table. */
144
145 static hashval_t
146 frame_addr_hash (const void *ap)
147 {
148 const struct frame_info *frame = ap;
149 const struct frame_id f_id = frame->this_id.value;
150 hashval_t hash = 0;
151
152 gdb_assert (f_id.stack_addr_p || f_id.code_addr_p
153 || f_id.special_addr_p);
154
155 if (f_id.stack_addr_p)
156 hash = iterative_hash (&f_id.stack_addr,
157 sizeof (f_id.stack_addr), hash);
158 if (f_id.code_addr_p)
159 hash = iterative_hash (&f_id.code_addr,
160 sizeof (f_id.code_addr), hash);
161 if (f_id.special_addr_p)
162 hash = iterative_hash (&f_id.special_addr,
163 sizeof (f_id.special_addr), hash);
164
165 return hash;
166 }
167
168 /* Internal equality function for the hash table. This function
169 defers equality operations to frame_id_eq. */
170
171 static int
172 frame_addr_hash_eq (const void *a, const void *b)
173 {
174 const struct frame_info *f_entry = a;
175 const struct frame_info *f_element = b;
176
177 return frame_id_eq (f_entry->this_id.value,
178 f_element->this_id.value);
179 }
180
181 /* Internal function to create the frame_stash hash table. 100 seems
182 to be a good compromise to start the hash table at. */
183
184 static void
185 frame_stash_create (void)
186 {
187 frame_stash = htab_create (100,
188 frame_addr_hash,
189 frame_addr_hash_eq,
190 NULL);
191 }
192
193 /* Internal function to add a frame to the frame_stash hash table.
194 Returns false if a frame with the same ID was already stashed, true
195 otherwise. */
196
197 static int
198 frame_stash_add (struct frame_info *frame)
199 {
200 struct frame_info **slot;
201
202 /* Do not try to stash the sentinel frame. */
203 gdb_assert (frame->level >= 0);
204
205 slot = (struct frame_info **) htab_find_slot (frame_stash,
206 frame,
207 INSERT);
208
209 /* If we already have a frame in the stack with the same id, we
210 either have a stack cycle (corrupted stack?), or some bug
211 elsewhere in GDB. In any case, ignore the duplicate and return
212 an indication to the caller. */
213 if (*slot != NULL)
214 return 0;
215
216 *slot = frame;
217 return 1;
218 }
219
220 /* Internal function to search the frame stash for an entry with the
221 given frame ID. If found, return that frame. Otherwise return
222 NULL. */
223
224 static struct frame_info *
225 frame_stash_find (struct frame_id id)
226 {
227 struct frame_info dummy;
228 struct frame_info *frame;
229
230 dummy.this_id.value = id;
231 frame = htab_find (frame_stash, &dummy);
232 return frame;
233 }
234
235 /* Internal function to invalidate the frame stash by removing all
236 entries in it. This only occurs when the frame cache is
237 invalidated. */
238
239 static void
240 frame_stash_invalidate (void)
241 {
242 htab_empty (frame_stash);
243 }
244
245 /* Flag to control debugging. */
246
247 unsigned int frame_debug;
248 static void
249 show_frame_debug (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
253 }
254
255 /* Flag to indicate whether backtraces should stop at main et.al. */
256
257 static int backtrace_past_main;
258 static void
259 show_backtrace_past_main (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261 {
262 fprintf_filtered (file,
263 _("Whether backtraces should "
264 "continue past \"main\" is %s.\n"),
265 value);
266 }
267
268 static int backtrace_past_entry;
269 static void
270 show_backtrace_past_entry (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272 {
273 fprintf_filtered (file, _("Whether backtraces should continue past the "
274 "entry point of a program is %s.\n"),
275 value);
276 }
277
278 static unsigned int backtrace_limit = UINT_MAX;
279 static void
280 show_backtrace_limit (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282 {
283 fprintf_filtered (file,
284 _("An upper bound on the number "
285 "of backtrace levels is %s.\n"),
286 value);
287 }
288
289
290 static void
291 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
292 {
293 if (p)
294 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
295 else
296 fprintf_unfiltered (file, "!%s", name);
297 }
298
299 void
300 fprint_frame_id (struct ui_file *file, struct frame_id id)
301 {
302 fprintf_unfiltered (file, "{");
303 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
304 fprintf_unfiltered (file, ",");
305 fprint_field (file, "code", id.code_addr_p, id.code_addr);
306 fprintf_unfiltered (file, ",");
307 fprint_field (file, "special", id.special_addr_p, id.special_addr);
308 if (id.artificial_depth)
309 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
310 fprintf_unfiltered (file, "}");
311 }
312
313 static void
314 fprint_frame_type (struct ui_file *file, enum frame_type type)
315 {
316 switch (type)
317 {
318 case NORMAL_FRAME:
319 fprintf_unfiltered (file, "NORMAL_FRAME");
320 return;
321 case DUMMY_FRAME:
322 fprintf_unfiltered (file, "DUMMY_FRAME");
323 return;
324 case INLINE_FRAME:
325 fprintf_unfiltered (file, "INLINE_FRAME");
326 return;
327 case TAILCALL_FRAME:
328 fprintf_unfiltered (file, "TAILCALL_FRAME");
329 return;
330 case SIGTRAMP_FRAME:
331 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
332 return;
333 case ARCH_FRAME:
334 fprintf_unfiltered (file, "ARCH_FRAME");
335 return;
336 case SENTINEL_FRAME:
337 fprintf_unfiltered (file, "SENTINEL_FRAME");
338 return;
339 default:
340 fprintf_unfiltered (file, "<unknown type>");
341 return;
342 };
343 }
344
345 static void
346 fprint_frame (struct ui_file *file, struct frame_info *fi)
347 {
348 if (fi == NULL)
349 {
350 fprintf_unfiltered (file, "<NULL frame>");
351 return;
352 }
353 fprintf_unfiltered (file, "{");
354 fprintf_unfiltered (file, "level=%d", fi->level);
355 fprintf_unfiltered (file, ",");
356 fprintf_unfiltered (file, "type=");
357 if (fi->unwind != NULL)
358 fprint_frame_type (file, fi->unwind->type);
359 else
360 fprintf_unfiltered (file, "<unknown>");
361 fprintf_unfiltered (file, ",");
362 fprintf_unfiltered (file, "unwind=");
363 if (fi->unwind != NULL)
364 gdb_print_host_address (fi->unwind, file);
365 else
366 fprintf_unfiltered (file, "<unknown>");
367 fprintf_unfiltered (file, ",");
368 fprintf_unfiltered (file, "pc=");
369 if (fi->next != NULL && fi->next->prev_pc.p)
370 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
371 else
372 fprintf_unfiltered (file, "<unknown>");
373 fprintf_unfiltered (file, ",");
374 fprintf_unfiltered (file, "id=");
375 if (fi->this_id.p)
376 fprint_frame_id (file, fi->this_id.value);
377 else
378 fprintf_unfiltered (file, "<unknown>");
379 fprintf_unfiltered (file, ",");
380 fprintf_unfiltered (file, "func=");
381 if (fi->next != NULL && fi->next->prev_func.p)
382 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
383 else
384 fprintf_unfiltered (file, "<unknown>");
385 fprintf_unfiltered (file, "}");
386 }
387
388 /* Given FRAME, return the enclosing frame as found in real frames read-in from
389 inferior memory. Skip any previous frames which were made up by GDB.
390 Return the original frame if no immediate previous frames exist. */
391
392 static struct frame_info *
393 skip_artificial_frames (struct frame_info *frame)
394 {
395 while (get_frame_type (frame) == INLINE_FRAME
396 || get_frame_type (frame) == TAILCALL_FRAME)
397 frame = get_prev_frame (frame);
398
399 return frame;
400 }
401
402 /* Compute the frame's uniq ID that can be used to, later, re-find the
403 frame. */
404
405 static void
406 compute_frame_id (struct frame_info *fi)
407 {
408 gdb_assert (!fi->this_id.p);
409
410 if (frame_debug)
411 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
412 fi->level);
413 /* Find the unwinder. */
414 if (fi->unwind == NULL)
415 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
416 /* Find THIS frame's ID. */
417 /* Default to outermost if no ID is found. */
418 fi->this_id.value = outer_frame_id;
419 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
420 gdb_assert (frame_id_p (fi->this_id.value));
421 fi->this_id.p = 1;
422 if (frame_debug)
423 {
424 fprintf_unfiltered (gdb_stdlog, "-> ");
425 fprint_frame_id (gdb_stdlog, fi->this_id.value);
426 fprintf_unfiltered (gdb_stdlog, " }\n");
427 }
428 }
429
430 /* Return a frame uniq ID that can be used to, later, re-find the
431 frame. */
432
433 struct frame_id
434 get_frame_id (struct frame_info *fi)
435 {
436 if (fi == NULL)
437 return null_frame_id;
438
439 gdb_assert (fi->this_id.p);
440 return fi->this_id.value;
441 }
442
443 struct frame_id
444 get_stack_frame_id (struct frame_info *next_frame)
445 {
446 return get_frame_id (skip_artificial_frames (next_frame));
447 }
448
449 struct frame_id
450 frame_unwind_caller_id (struct frame_info *next_frame)
451 {
452 struct frame_info *this_frame;
453
454 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
455 the frame chain, leading to this function unintentionally
456 returning a null_frame_id (e.g., when a caller requests the frame
457 ID of "main()"s caller. */
458
459 next_frame = skip_artificial_frames (next_frame);
460 this_frame = get_prev_frame_1 (next_frame);
461 if (this_frame)
462 return get_frame_id (skip_artificial_frames (this_frame));
463 else
464 return null_frame_id;
465 }
466
467 const struct frame_id null_frame_id; /* All zeros. */
468 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
469
470 struct frame_id
471 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
472 CORE_ADDR special_addr)
473 {
474 struct frame_id id = null_frame_id;
475
476 id.stack_addr = stack_addr;
477 id.stack_addr_p = 1;
478 id.code_addr = code_addr;
479 id.code_addr_p = 1;
480 id.special_addr = special_addr;
481 id.special_addr_p = 1;
482 return id;
483 }
484
485 struct frame_id
486 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
487 {
488 struct frame_id id = null_frame_id;
489
490 id.stack_addr = stack_addr;
491 id.stack_addr_p = 1;
492 id.code_addr = code_addr;
493 id.code_addr_p = 1;
494 return id;
495 }
496
497 struct frame_id
498 frame_id_build_wild (CORE_ADDR stack_addr)
499 {
500 struct frame_id id = null_frame_id;
501
502 id.stack_addr = stack_addr;
503 id.stack_addr_p = 1;
504 return id;
505 }
506
507 int
508 frame_id_p (struct frame_id l)
509 {
510 int p;
511
512 /* The frame is valid iff it has a valid stack address. */
513 p = l.stack_addr_p;
514 /* outer_frame_id is also valid. */
515 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
516 p = 1;
517 if (frame_debug)
518 {
519 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
520 fprint_frame_id (gdb_stdlog, l);
521 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
522 }
523 return p;
524 }
525
526 int
527 frame_id_artificial_p (struct frame_id l)
528 {
529 if (!frame_id_p (l))
530 return 0;
531
532 return (l.artificial_depth != 0);
533 }
534
535 int
536 frame_id_eq (struct frame_id l, struct frame_id r)
537 {
538 int eq;
539
540 if (!l.stack_addr_p && l.special_addr_p
541 && !r.stack_addr_p && r.special_addr_p)
542 /* The outermost frame marker is equal to itself. This is the
543 dodgy thing about outer_frame_id, since between execution steps
544 we might step into another function - from which we can't
545 unwind either. More thought required to get rid of
546 outer_frame_id. */
547 eq = 1;
548 else if (!l.stack_addr_p || !r.stack_addr_p)
549 /* Like a NaN, if either ID is invalid, the result is false.
550 Note that a frame ID is invalid iff it is the null frame ID. */
551 eq = 0;
552 else if (l.stack_addr != r.stack_addr)
553 /* If .stack addresses are different, the frames are different. */
554 eq = 0;
555 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
556 /* An invalid code addr is a wild card. If .code addresses are
557 different, the frames are different. */
558 eq = 0;
559 else if (l.special_addr_p && r.special_addr_p
560 && l.special_addr != r.special_addr)
561 /* An invalid special addr is a wild card (or unused). Otherwise
562 if special addresses are different, the frames are different. */
563 eq = 0;
564 else if (l.artificial_depth != r.artificial_depth)
565 /* If artifical depths are different, the frames must be different. */
566 eq = 0;
567 else
568 /* Frames are equal. */
569 eq = 1;
570
571 if (frame_debug)
572 {
573 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
574 fprint_frame_id (gdb_stdlog, l);
575 fprintf_unfiltered (gdb_stdlog, ",r=");
576 fprint_frame_id (gdb_stdlog, r);
577 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
578 }
579 return eq;
580 }
581
582 /* Safety net to check whether frame ID L should be inner to
583 frame ID R, according to their stack addresses.
584
585 This method cannot be used to compare arbitrary frames, as the
586 ranges of valid stack addresses may be discontiguous (e.g. due
587 to sigaltstack).
588
589 However, it can be used as safety net to discover invalid frame
590 IDs in certain circumstances. Assuming that NEXT is the immediate
591 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
592
593 * The stack address of NEXT must be inner-than-or-equal to the stack
594 address of THIS.
595
596 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
597 error has occurred.
598
599 * If NEXT and THIS have different stack addresses, no other frame
600 in the frame chain may have a stack address in between.
601
602 Therefore, if frame_id_inner (TEST, THIS) holds, but
603 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
604 to a valid frame in the frame chain.
605
606 The sanity checks above cannot be performed when a SIGTRAMP frame
607 is involved, because signal handlers might be executed on a different
608 stack than the stack used by the routine that caused the signal
609 to be raised. This can happen for instance when a thread exceeds
610 its maximum stack size. In this case, certain compilers implement
611 a stack overflow strategy that cause the handler to be run on a
612 different stack. */
613
614 static int
615 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
616 {
617 int inner;
618
619 if (!l.stack_addr_p || !r.stack_addr_p)
620 /* Like NaN, any operation involving an invalid ID always fails. */
621 inner = 0;
622 else if (l.artificial_depth > r.artificial_depth
623 && l.stack_addr == r.stack_addr
624 && l.code_addr_p == r.code_addr_p
625 && l.special_addr_p == r.special_addr_p
626 && l.special_addr == r.special_addr)
627 {
628 /* Same function, different inlined functions. */
629 struct block *lb, *rb;
630
631 gdb_assert (l.code_addr_p && r.code_addr_p);
632
633 lb = block_for_pc (l.code_addr);
634 rb = block_for_pc (r.code_addr);
635
636 if (lb == NULL || rb == NULL)
637 /* Something's gone wrong. */
638 inner = 0;
639 else
640 /* This will return true if LB and RB are the same block, or
641 if the block with the smaller depth lexically encloses the
642 block with the greater depth. */
643 inner = contained_in (lb, rb);
644 }
645 else
646 /* Only return non-zero when strictly inner than. Note that, per
647 comment in "frame.h", there is some fuzz here. Frameless
648 functions are not strictly inner than (same .stack but
649 different .code and/or .special address). */
650 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
651 if (frame_debug)
652 {
653 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
654 fprint_frame_id (gdb_stdlog, l);
655 fprintf_unfiltered (gdb_stdlog, ",r=");
656 fprint_frame_id (gdb_stdlog, r);
657 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
658 }
659 return inner;
660 }
661
662 struct frame_info *
663 frame_find_by_id (struct frame_id id)
664 {
665 struct frame_info *frame, *prev_frame;
666
667 /* ZERO denotes the null frame, let the caller decide what to do
668 about it. Should it instead return get_current_frame()? */
669 if (!frame_id_p (id))
670 return NULL;
671
672 /* Try using the frame stash first. Finding it there removes the need
673 to perform the search by looping over all frames, which can be very
674 CPU-intensive if the number of frames is very high (the loop is O(n)
675 and get_prev_frame performs a series of checks that are relatively
676 expensive). This optimization is particularly useful when this function
677 is called from another function (such as value_fetch_lazy, case
678 VALUE_LVAL (val) == lval_register) which already loops over all frames,
679 making the overall behavior O(n^2). */
680 frame = frame_stash_find (id);
681 if (frame)
682 return frame;
683
684 for (frame = get_current_frame (); ; frame = prev_frame)
685 {
686 struct frame_id this = get_frame_id (frame);
687
688 if (frame_id_eq (id, this))
689 /* An exact match. */
690 return frame;
691
692 prev_frame = get_prev_frame (frame);
693 if (!prev_frame)
694 return NULL;
695
696 /* As a safety net to avoid unnecessary backtracing while trying
697 to find an invalid ID, we check for a common situation where
698 we can detect from comparing stack addresses that no other
699 frame in the current frame chain can have this ID. See the
700 comment at frame_id_inner for details. */
701 if (get_frame_type (frame) == NORMAL_FRAME
702 && !frame_id_inner (get_frame_arch (frame), id, this)
703 && frame_id_inner (get_frame_arch (prev_frame), id,
704 get_frame_id (prev_frame)))
705 return NULL;
706 }
707 return NULL;
708 }
709
710 static int
711 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
712 {
713 if (!this_frame->prev_pc.p)
714 {
715 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
716 {
717 volatile struct gdb_exception ex;
718 struct gdbarch *prev_gdbarch;
719 CORE_ADDR pc = 0;
720
721 /* The right way. The `pure' way. The one true way. This
722 method depends solely on the register-unwind code to
723 determine the value of registers in THIS frame, and hence
724 the value of this frame's PC (resume address). A typical
725 implementation is no more than:
726
727 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
728 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
729
730 Note: this method is very heavily dependent on a correct
731 register-unwind implementation, it pays to fix that
732 method first; this method is frame type agnostic, since
733 it only deals with register values, it works with any
734 frame. This is all in stark contrast to the old
735 FRAME_SAVED_PC which would try to directly handle all the
736 different ways that a PC could be unwound. */
737 prev_gdbarch = frame_unwind_arch (this_frame);
738
739 TRY_CATCH (ex, RETURN_MASK_ERROR)
740 {
741 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
742 }
743 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
744 {
745 this_frame->prev_pc.p = -1;
746
747 if (frame_debug)
748 fprintf_unfiltered (gdb_stdlog,
749 "{ frame_unwind_pc (this_frame=%d)"
750 " -> <unavailable> }\n",
751 this_frame->level);
752 }
753 else if (ex.reason < 0)
754 {
755 throw_exception (ex);
756 }
757 else
758 {
759 this_frame->prev_pc.value = pc;
760 this_frame->prev_pc.p = 1;
761 if (frame_debug)
762 fprintf_unfiltered (gdb_stdlog,
763 "{ frame_unwind_pc (this_frame=%d) "
764 "-> %s }\n",
765 this_frame->level,
766 hex_string (this_frame->prev_pc.value));
767 }
768 }
769 else
770 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
771 }
772 if (this_frame->prev_pc.p < 0)
773 {
774 *pc = -1;
775 return 0;
776 }
777 else
778 {
779 *pc = this_frame->prev_pc.value;
780 return 1;
781 }
782 }
783
784 static CORE_ADDR
785 frame_unwind_pc (struct frame_info *this_frame)
786 {
787 CORE_ADDR pc;
788
789 if (!frame_unwind_pc_if_available (this_frame, &pc))
790 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
791 else
792 return pc;
793 }
794
795 CORE_ADDR
796 frame_unwind_caller_pc (struct frame_info *this_frame)
797 {
798 return frame_unwind_pc (skip_artificial_frames (this_frame));
799 }
800
801 int
802 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
803 CORE_ADDR *pc)
804 {
805 return frame_unwind_pc_if_available (skip_artificial_frames (this_frame), pc);
806 }
807
808 int
809 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
810 {
811 struct frame_info *next_frame = this_frame->next;
812
813 if (!next_frame->prev_func.p)
814 {
815 CORE_ADDR addr_in_block;
816
817 /* Make certain that this, and not the adjacent, function is
818 found. */
819 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
820 {
821 next_frame->prev_func.p = -1;
822 if (frame_debug)
823 fprintf_unfiltered (gdb_stdlog,
824 "{ get_frame_func (this_frame=%d)"
825 " -> unavailable }\n",
826 this_frame->level);
827 }
828 else
829 {
830 next_frame->prev_func.p = 1;
831 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
832 if (frame_debug)
833 fprintf_unfiltered (gdb_stdlog,
834 "{ get_frame_func (this_frame=%d) -> %s }\n",
835 this_frame->level,
836 hex_string (next_frame->prev_func.addr));
837 }
838 }
839
840 if (next_frame->prev_func.p < 0)
841 {
842 *pc = -1;
843 return 0;
844 }
845 else
846 {
847 *pc = next_frame->prev_func.addr;
848 return 1;
849 }
850 }
851
852 CORE_ADDR
853 get_frame_func (struct frame_info *this_frame)
854 {
855 CORE_ADDR pc;
856
857 if (!get_frame_func_if_available (this_frame, &pc))
858 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
859
860 return pc;
861 }
862
863 static enum register_status
864 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
865 {
866 if (!deprecated_frame_register_read (src, regnum, buf))
867 return REG_UNAVAILABLE;
868 else
869 return REG_VALID;
870 }
871
872 struct regcache *
873 frame_save_as_regcache (struct frame_info *this_frame)
874 {
875 struct address_space *aspace = get_frame_address_space (this_frame);
876 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
877 aspace);
878 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
879
880 regcache_save (regcache, do_frame_register_read, this_frame);
881 discard_cleanups (cleanups);
882 return regcache;
883 }
884
885 void
886 frame_pop (struct frame_info *this_frame)
887 {
888 struct frame_info *prev_frame;
889 struct regcache *scratch;
890 struct cleanup *cleanups;
891
892 if (get_frame_type (this_frame) == DUMMY_FRAME)
893 {
894 /* Popping a dummy frame involves restoring more than just registers.
895 dummy_frame_pop does all the work. */
896 dummy_frame_pop (get_frame_id (this_frame));
897 return;
898 }
899
900 /* Ensure that we have a frame to pop to. */
901 prev_frame = get_prev_frame_1 (this_frame);
902
903 if (!prev_frame)
904 error (_("Cannot pop the initial frame."));
905
906 /* Ignore TAILCALL_FRAME type frames, they were executed already before
907 entering THISFRAME. */
908 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
909 prev_frame = get_prev_frame (prev_frame);
910
911 /* Make a copy of all the register values unwound from this frame.
912 Save them in a scratch buffer so that there isn't a race between
913 trying to extract the old values from the current regcache while
914 at the same time writing new values into that same cache. */
915 scratch = frame_save_as_regcache (prev_frame);
916 cleanups = make_cleanup_regcache_xfree (scratch);
917
918 /* FIXME: cagney/2003-03-16: It should be possible to tell the
919 target's register cache that it is about to be hit with a burst
920 register transfer and that the sequence of register writes should
921 be batched. The pair target_prepare_to_store() and
922 target_store_registers() kind of suggest this functionality.
923 Unfortunately, they don't implement it. Their lack of a formal
924 definition can lead to targets writing back bogus values
925 (arguably a bug in the target code mind). */
926 /* Now copy those saved registers into the current regcache.
927 Here, regcache_cpy() calls regcache_restore(). */
928 regcache_cpy (get_current_regcache (), scratch);
929 do_cleanups (cleanups);
930
931 /* We've made right mess of GDB's local state, just discard
932 everything. */
933 reinit_frame_cache ();
934 }
935
936 void
937 frame_register_unwind (struct frame_info *frame, int regnum,
938 int *optimizedp, int *unavailablep,
939 enum lval_type *lvalp, CORE_ADDR *addrp,
940 int *realnump, gdb_byte *bufferp)
941 {
942 struct value *value;
943
944 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
945 that the value proper does not need to be fetched. */
946 gdb_assert (optimizedp != NULL);
947 gdb_assert (lvalp != NULL);
948 gdb_assert (addrp != NULL);
949 gdb_assert (realnump != NULL);
950 /* gdb_assert (bufferp != NULL); */
951
952 value = frame_unwind_register_value (frame, regnum);
953
954 gdb_assert (value != NULL);
955
956 *optimizedp = value_optimized_out (value);
957 *unavailablep = !value_entirely_available (value);
958 *lvalp = VALUE_LVAL (value);
959 *addrp = value_address (value);
960 *realnump = VALUE_REGNUM (value);
961
962 if (bufferp)
963 {
964 if (!*optimizedp && !*unavailablep)
965 memcpy (bufferp, value_contents_all (value),
966 TYPE_LENGTH (value_type (value)));
967 else
968 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
969 }
970
971 /* Dispose of the new value. This prevents watchpoints from
972 trying to watch the saved frame pointer. */
973 release_value (value);
974 value_free (value);
975 }
976
977 void
978 frame_register (struct frame_info *frame, int regnum,
979 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
980 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
981 {
982 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
983 that the value proper does not need to be fetched. */
984 gdb_assert (optimizedp != NULL);
985 gdb_assert (lvalp != NULL);
986 gdb_assert (addrp != NULL);
987 gdb_assert (realnump != NULL);
988 /* gdb_assert (bufferp != NULL); */
989
990 /* Obtain the register value by unwinding the register from the next
991 (more inner frame). */
992 gdb_assert (frame != NULL && frame->next != NULL);
993 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
994 lvalp, addrp, realnump, bufferp);
995 }
996
997 void
998 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
999 {
1000 int optimized;
1001 int unavailable;
1002 CORE_ADDR addr;
1003 int realnum;
1004 enum lval_type lval;
1005
1006 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1007 &lval, &addr, &realnum, buf);
1008
1009 if (optimized)
1010 throw_error (OPTIMIZED_OUT_ERROR,
1011 _("Register %d was not saved"), regnum);
1012 if (unavailable)
1013 throw_error (NOT_AVAILABLE_ERROR,
1014 _("Register %d is not available"), regnum);
1015 }
1016
1017 void
1018 get_frame_register (struct frame_info *frame,
1019 int regnum, gdb_byte *buf)
1020 {
1021 frame_unwind_register (frame->next, regnum, buf);
1022 }
1023
1024 struct value *
1025 frame_unwind_register_value (struct frame_info *frame, int regnum)
1026 {
1027 struct gdbarch *gdbarch;
1028 struct value *value;
1029
1030 gdb_assert (frame != NULL);
1031 gdbarch = frame_unwind_arch (frame);
1032
1033 if (frame_debug)
1034 {
1035 fprintf_unfiltered (gdb_stdlog,
1036 "{ frame_unwind_register_value "
1037 "(frame=%d,regnum=%d(%s),...) ",
1038 frame->level, regnum,
1039 user_reg_map_regnum_to_name (gdbarch, regnum));
1040 }
1041
1042 /* Find the unwinder. */
1043 if (frame->unwind == NULL)
1044 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1045
1046 /* Ask this frame to unwind its register. */
1047 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1048
1049 if (frame_debug)
1050 {
1051 fprintf_unfiltered (gdb_stdlog, "->");
1052 if (value_optimized_out (value))
1053 {
1054 fprintf_unfiltered (gdb_stdlog, " ");
1055 val_print_optimized_out (value, gdb_stdlog);
1056 }
1057 else
1058 {
1059 if (VALUE_LVAL (value) == lval_register)
1060 fprintf_unfiltered (gdb_stdlog, " register=%d",
1061 VALUE_REGNUM (value));
1062 else if (VALUE_LVAL (value) == lval_memory)
1063 fprintf_unfiltered (gdb_stdlog, " address=%s",
1064 paddress (gdbarch,
1065 value_address (value)));
1066 else
1067 fprintf_unfiltered (gdb_stdlog, " computed");
1068
1069 if (value_lazy (value))
1070 fprintf_unfiltered (gdb_stdlog, " lazy");
1071 else
1072 {
1073 int i;
1074 const gdb_byte *buf = value_contents (value);
1075
1076 fprintf_unfiltered (gdb_stdlog, " bytes=");
1077 fprintf_unfiltered (gdb_stdlog, "[");
1078 for (i = 0; i < register_size (gdbarch, regnum); i++)
1079 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1080 fprintf_unfiltered (gdb_stdlog, "]");
1081 }
1082 }
1083
1084 fprintf_unfiltered (gdb_stdlog, " }\n");
1085 }
1086
1087 return value;
1088 }
1089
1090 struct value *
1091 get_frame_register_value (struct frame_info *frame, int regnum)
1092 {
1093 return frame_unwind_register_value (frame->next, regnum);
1094 }
1095
1096 LONGEST
1097 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1098 {
1099 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1101 int size = register_size (gdbarch, regnum);
1102 gdb_byte buf[MAX_REGISTER_SIZE];
1103
1104 frame_unwind_register (frame, regnum, buf);
1105 return extract_signed_integer (buf, size, byte_order);
1106 }
1107
1108 LONGEST
1109 get_frame_register_signed (struct frame_info *frame, int regnum)
1110 {
1111 return frame_unwind_register_signed (frame->next, regnum);
1112 }
1113
1114 ULONGEST
1115 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1116 {
1117 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1118 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1119 int size = register_size (gdbarch, regnum);
1120 gdb_byte buf[MAX_REGISTER_SIZE];
1121
1122 frame_unwind_register (frame, regnum, buf);
1123 return extract_unsigned_integer (buf, size, byte_order);
1124 }
1125
1126 ULONGEST
1127 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1128 {
1129 return frame_unwind_register_unsigned (frame->next, regnum);
1130 }
1131
1132 int
1133 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1134 ULONGEST *val)
1135 {
1136 struct value *regval = get_frame_register_value (frame, regnum);
1137
1138 if (!value_optimized_out (regval)
1139 && value_entirely_available (regval))
1140 {
1141 struct gdbarch *gdbarch = get_frame_arch (frame);
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1144
1145 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1146 return 1;
1147 }
1148
1149 return 0;
1150 }
1151
1152 void
1153 put_frame_register (struct frame_info *frame, int regnum,
1154 const gdb_byte *buf)
1155 {
1156 struct gdbarch *gdbarch = get_frame_arch (frame);
1157 int realnum;
1158 int optim;
1159 int unavail;
1160 enum lval_type lval;
1161 CORE_ADDR addr;
1162
1163 frame_register (frame, regnum, &optim, &unavail,
1164 &lval, &addr, &realnum, NULL);
1165 if (optim)
1166 error (_("Attempt to assign to a register that was not saved."));
1167 switch (lval)
1168 {
1169 case lval_memory:
1170 {
1171 write_memory (addr, buf, register_size (gdbarch, regnum));
1172 break;
1173 }
1174 case lval_register:
1175 regcache_cooked_write (get_current_regcache (), realnum, buf);
1176 break;
1177 default:
1178 error (_("Attempt to assign to an unmodifiable value."));
1179 }
1180 }
1181
1182 /* This function is deprecated. Use get_frame_register_value instead,
1183 which provides more accurate information.
1184
1185 Find and return the value of REGNUM for the specified stack frame.
1186 The number of bytes copied is REGISTER_SIZE (REGNUM).
1187
1188 Returns 0 if the register value could not be found. */
1189
1190 int
1191 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1192 gdb_byte *myaddr)
1193 {
1194 int optimized;
1195 int unavailable;
1196 enum lval_type lval;
1197 CORE_ADDR addr;
1198 int realnum;
1199
1200 frame_register (frame, regnum, &optimized, &unavailable,
1201 &lval, &addr, &realnum, myaddr);
1202
1203 return !optimized && !unavailable;
1204 }
1205
1206 int
1207 get_frame_register_bytes (struct frame_info *frame, int regnum,
1208 CORE_ADDR offset, int len, gdb_byte *myaddr,
1209 int *optimizedp, int *unavailablep)
1210 {
1211 struct gdbarch *gdbarch = get_frame_arch (frame);
1212 int i;
1213 int maxsize;
1214 int numregs;
1215
1216 /* Skip registers wholly inside of OFFSET. */
1217 while (offset >= register_size (gdbarch, regnum))
1218 {
1219 offset -= register_size (gdbarch, regnum);
1220 regnum++;
1221 }
1222
1223 /* Ensure that we will not read beyond the end of the register file.
1224 This can only ever happen if the debug information is bad. */
1225 maxsize = -offset;
1226 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1227 for (i = regnum; i < numregs; i++)
1228 {
1229 int thissize = register_size (gdbarch, i);
1230
1231 if (thissize == 0)
1232 break; /* This register is not available on this architecture. */
1233 maxsize += thissize;
1234 }
1235 if (len > maxsize)
1236 error (_("Bad debug information detected: "
1237 "Attempt to read %d bytes from registers."), len);
1238
1239 /* Copy the data. */
1240 while (len > 0)
1241 {
1242 int curr_len = register_size (gdbarch, regnum) - offset;
1243
1244 if (curr_len > len)
1245 curr_len = len;
1246
1247 if (curr_len == register_size (gdbarch, regnum))
1248 {
1249 enum lval_type lval;
1250 CORE_ADDR addr;
1251 int realnum;
1252
1253 frame_register (frame, regnum, optimizedp, unavailablep,
1254 &lval, &addr, &realnum, myaddr);
1255 if (*optimizedp || *unavailablep)
1256 return 0;
1257 }
1258 else
1259 {
1260 gdb_byte buf[MAX_REGISTER_SIZE];
1261 enum lval_type lval;
1262 CORE_ADDR addr;
1263 int realnum;
1264
1265 frame_register (frame, regnum, optimizedp, unavailablep,
1266 &lval, &addr, &realnum, buf);
1267 if (*optimizedp || *unavailablep)
1268 return 0;
1269 memcpy (myaddr, buf + offset, curr_len);
1270 }
1271
1272 myaddr += curr_len;
1273 len -= curr_len;
1274 offset = 0;
1275 regnum++;
1276 }
1277
1278 *optimizedp = 0;
1279 *unavailablep = 0;
1280 return 1;
1281 }
1282
1283 void
1284 put_frame_register_bytes (struct frame_info *frame, int regnum,
1285 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1286 {
1287 struct gdbarch *gdbarch = get_frame_arch (frame);
1288
1289 /* Skip registers wholly inside of OFFSET. */
1290 while (offset >= register_size (gdbarch, regnum))
1291 {
1292 offset -= register_size (gdbarch, regnum);
1293 regnum++;
1294 }
1295
1296 /* Copy the data. */
1297 while (len > 0)
1298 {
1299 int curr_len = register_size (gdbarch, regnum) - offset;
1300
1301 if (curr_len > len)
1302 curr_len = len;
1303
1304 if (curr_len == register_size (gdbarch, regnum))
1305 {
1306 put_frame_register (frame, regnum, myaddr);
1307 }
1308 else
1309 {
1310 gdb_byte buf[MAX_REGISTER_SIZE];
1311
1312 deprecated_frame_register_read (frame, regnum, buf);
1313 memcpy (buf + offset, myaddr, curr_len);
1314 put_frame_register (frame, regnum, buf);
1315 }
1316
1317 myaddr += curr_len;
1318 len -= curr_len;
1319 offset = 0;
1320 regnum++;
1321 }
1322 }
1323
1324 /* Create a sentinel frame. */
1325
1326 static struct frame_info *
1327 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1328 {
1329 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1330
1331 frame->level = -1;
1332 frame->pspace = pspace;
1333 frame->aspace = get_regcache_aspace (regcache);
1334 /* Explicitly initialize the sentinel frame's cache. Provide it
1335 with the underlying regcache. In the future additional
1336 information, such as the frame's thread will be added. */
1337 frame->prologue_cache = sentinel_frame_cache (regcache);
1338 /* For the moment there is only one sentinel frame implementation. */
1339 frame->unwind = &sentinel_frame_unwind;
1340 /* Link this frame back to itself. The frame is self referential
1341 (the unwound PC is the same as the pc), so make it so. */
1342 frame->next = frame;
1343 /* Make the sentinel frame's ID valid, but invalid. That way all
1344 comparisons with it should fail. */
1345 frame->this_id.p = 1;
1346 frame->this_id.value = null_frame_id;
1347 if (frame_debug)
1348 {
1349 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1350 fprint_frame (gdb_stdlog, frame);
1351 fprintf_unfiltered (gdb_stdlog, " }\n");
1352 }
1353 return frame;
1354 }
1355
1356 /* Info about the innermost stack frame (contents of FP register). */
1357
1358 static struct frame_info *current_frame;
1359
1360 /* Cache for frame addresses already read by gdb. Valid only while
1361 inferior is stopped. Control variables for the frame cache should
1362 be local to this module. */
1363
1364 static struct obstack frame_cache_obstack;
1365
1366 void *
1367 frame_obstack_zalloc (unsigned long size)
1368 {
1369 void *data = obstack_alloc (&frame_cache_obstack, size);
1370
1371 memset (data, 0, size);
1372 return data;
1373 }
1374
1375 /* Return the innermost (currently executing) stack frame. This is
1376 split into two functions. The function unwind_to_current_frame()
1377 is wrapped in catch exceptions so that, even when the unwind of the
1378 sentinel frame fails, the function still returns a stack frame. */
1379
1380 static int
1381 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1382 {
1383 struct frame_info *frame = get_prev_frame (args);
1384
1385 /* A sentinel frame can fail to unwind, e.g., because its PC value
1386 lands in somewhere like start. */
1387 if (frame == NULL)
1388 return 1;
1389 current_frame = frame;
1390 return 0;
1391 }
1392
1393 struct frame_info *
1394 get_current_frame (void)
1395 {
1396 /* First check, and report, the lack of registers. Having GDB
1397 report "No stack!" or "No memory" when the target doesn't even
1398 have registers is very confusing. Besides, "printcmd.exp"
1399 explicitly checks that ``print $pc'' with no registers prints "No
1400 registers". */
1401 if (!target_has_registers)
1402 error (_("No registers."));
1403 if (!target_has_stack)
1404 error (_("No stack."));
1405 if (!target_has_memory)
1406 error (_("No memory."));
1407 /* Traceframes are effectively a substitute for the live inferior. */
1408 if (get_traceframe_number () < 0)
1409 {
1410 if (ptid_equal (inferior_ptid, null_ptid))
1411 error (_("No selected thread."));
1412 if (is_exited (inferior_ptid))
1413 error (_("Invalid selected thread."));
1414 if (is_executing (inferior_ptid))
1415 error (_("Target is executing."));
1416 }
1417
1418 if (current_frame == NULL)
1419 {
1420 struct frame_info *sentinel_frame =
1421 create_sentinel_frame (current_program_space, get_current_regcache ());
1422 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1423 sentinel_frame, RETURN_MASK_ERROR) != 0)
1424 {
1425 /* Oops! Fake a current frame? Is this useful? It has a PC
1426 of zero, for instance. */
1427 current_frame = sentinel_frame;
1428 }
1429 }
1430 return current_frame;
1431 }
1432
1433 /* The "selected" stack frame is used by default for local and arg
1434 access. May be zero, for no selected frame. */
1435
1436 static struct frame_info *selected_frame;
1437
1438 int
1439 has_stack_frames (void)
1440 {
1441 if (!target_has_registers || !target_has_stack || !target_has_memory)
1442 return 0;
1443
1444 /* Traceframes are effectively a substitute for the live inferior. */
1445 if (get_traceframe_number () < 0)
1446 {
1447 /* No current inferior, no frame. */
1448 if (ptid_equal (inferior_ptid, null_ptid))
1449 return 0;
1450
1451 /* Don't try to read from a dead thread. */
1452 if (is_exited (inferior_ptid))
1453 return 0;
1454
1455 /* ... or from a spinning thread. */
1456 if (is_executing (inferior_ptid))
1457 return 0;
1458 }
1459
1460 return 1;
1461 }
1462
1463 /* Return the selected frame. Always non-NULL (unless there isn't an
1464 inferior sufficient for creating a frame) in which case an error is
1465 thrown. */
1466
1467 struct frame_info *
1468 get_selected_frame (const char *message)
1469 {
1470 if (selected_frame == NULL)
1471 {
1472 if (message != NULL && !has_stack_frames ())
1473 error (("%s"), message);
1474 /* Hey! Don't trust this. It should really be re-finding the
1475 last selected frame of the currently selected thread. This,
1476 though, is better than nothing. */
1477 select_frame (get_current_frame ());
1478 }
1479 /* There is always a frame. */
1480 gdb_assert (selected_frame != NULL);
1481 return selected_frame;
1482 }
1483
1484 /* If there is a selected frame, return it. Otherwise, return NULL. */
1485
1486 struct frame_info *
1487 get_selected_frame_if_set (void)
1488 {
1489 return selected_frame;
1490 }
1491
1492 /* This is a variant of get_selected_frame() which can be called when
1493 the inferior does not have a frame; in that case it will return
1494 NULL instead of calling error(). */
1495
1496 struct frame_info *
1497 deprecated_safe_get_selected_frame (void)
1498 {
1499 if (!has_stack_frames ())
1500 return NULL;
1501 return get_selected_frame (NULL);
1502 }
1503
1504 /* Select frame FI (or NULL - to invalidate the current frame). */
1505
1506 void
1507 select_frame (struct frame_info *fi)
1508 {
1509 selected_frame = fi;
1510 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1511 frame is being invalidated. */
1512 if (deprecated_selected_frame_level_changed_hook)
1513 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1514
1515 /* FIXME: kseitz/2002-08-28: It would be nice to call
1516 selected_frame_level_changed_event() right here, but due to limitations
1517 in the current interfaces, we would end up flooding UIs with events
1518 because select_frame() is used extensively internally.
1519
1520 Once we have frame-parameterized frame (and frame-related) commands,
1521 the event notification can be moved here, since this function will only
1522 be called when the user's selected frame is being changed. */
1523
1524 /* Ensure that symbols for this frame are read in. Also, determine the
1525 source language of this frame, and switch to it if desired. */
1526 if (fi)
1527 {
1528 CORE_ADDR pc;
1529
1530 /* We retrieve the frame's symtab by using the frame PC.
1531 However we cannot use the frame PC as-is, because it usually
1532 points to the instruction following the "call", which is
1533 sometimes the first instruction of another function. So we
1534 rely on get_frame_address_in_block() which provides us with a
1535 PC which is guaranteed to be inside the frame's code
1536 block. */
1537 if (get_frame_address_in_block_if_available (fi, &pc))
1538 {
1539 struct symtab *s = find_pc_symtab (pc);
1540
1541 if (s
1542 && s->language != current_language->la_language
1543 && s->language != language_unknown
1544 && language_mode == language_mode_auto)
1545 set_language (s->language);
1546 }
1547 }
1548 }
1549
1550 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1551 Always returns a non-NULL value. */
1552
1553 struct frame_info *
1554 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1555 {
1556 struct frame_info *fi;
1557
1558 if (frame_debug)
1559 {
1560 fprintf_unfiltered (gdb_stdlog,
1561 "{ create_new_frame (addr=%s, pc=%s) ",
1562 hex_string (addr), hex_string (pc));
1563 }
1564
1565 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1566
1567 fi->next = create_sentinel_frame (current_program_space,
1568 get_current_regcache ());
1569
1570 /* Set/update this frame's cached PC value, found in the next frame.
1571 Do this before looking for this frame's unwinder. A sniffer is
1572 very likely to read this, and the corresponding unwinder is
1573 entitled to rely that the PC doesn't magically change. */
1574 fi->next->prev_pc.value = pc;
1575 fi->next->prev_pc.p = 1;
1576
1577 /* We currently assume that frame chain's can't cross spaces. */
1578 fi->pspace = fi->next->pspace;
1579 fi->aspace = fi->next->aspace;
1580
1581 /* Select/initialize both the unwind function and the frame's type
1582 based on the PC. */
1583 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1584
1585 fi->this_id.p = 1;
1586 fi->this_id.value = frame_id_build (addr, pc);
1587
1588 if (frame_debug)
1589 {
1590 fprintf_unfiltered (gdb_stdlog, "-> ");
1591 fprint_frame (gdb_stdlog, fi);
1592 fprintf_unfiltered (gdb_stdlog, " }\n");
1593 }
1594
1595 return fi;
1596 }
1597
1598 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1599 innermost frame). Be careful to not fall off the bottom of the
1600 frame chain and onto the sentinel frame. */
1601
1602 struct frame_info *
1603 get_next_frame (struct frame_info *this_frame)
1604 {
1605 if (this_frame->level > 0)
1606 return this_frame->next;
1607 else
1608 return NULL;
1609 }
1610
1611 /* Observer for the target_changed event. */
1612
1613 static void
1614 frame_observer_target_changed (struct target_ops *target)
1615 {
1616 reinit_frame_cache ();
1617 }
1618
1619 /* Flush the entire frame cache. */
1620
1621 void
1622 reinit_frame_cache (void)
1623 {
1624 struct frame_info *fi;
1625
1626 /* Tear down all frame caches. */
1627 for (fi = current_frame; fi != NULL; fi = fi->prev)
1628 {
1629 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1630 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1631 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1632 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1633 }
1634
1635 /* Since we can't really be sure what the first object allocated was. */
1636 obstack_free (&frame_cache_obstack, 0);
1637 obstack_init (&frame_cache_obstack);
1638
1639 if (current_frame != NULL)
1640 annotate_frames_invalid ();
1641
1642 current_frame = NULL; /* Invalidate cache */
1643 select_frame (NULL);
1644 frame_stash_invalidate ();
1645 if (frame_debug)
1646 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1647 }
1648
1649 /* Find where a register is saved (in memory or another register).
1650 The result of frame_register_unwind is just where it is saved
1651 relative to this particular frame. */
1652
1653 static void
1654 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1655 int *optimizedp, enum lval_type *lvalp,
1656 CORE_ADDR *addrp, int *realnump)
1657 {
1658 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1659
1660 while (this_frame != NULL)
1661 {
1662 int unavailable;
1663
1664 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1665 lvalp, addrp, realnump, NULL);
1666
1667 if (*optimizedp)
1668 break;
1669
1670 if (*lvalp != lval_register)
1671 break;
1672
1673 regnum = *realnump;
1674 this_frame = get_next_frame (this_frame);
1675 }
1676 }
1677
1678 /* Get the previous raw frame, and check that it is not identical to
1679 same other frame frame already in the chain. If it is, there is
1680 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1681 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1682 validity tests, that compare THIS_FRAME and the next frame, we do
1683 this right after creating the previous frame, to avoid ever ending
1684 up with two frames with the same id in the frame chain. */
1685
1686 static struct frame_info *
1687 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1688 {
1689 struct frame_info *prev_frame;
1690
1691 prev_frame = get_prev_frame_raw (this_frame);
1692 if (prev_frame == NULL)
1693 return NULL;
1694
1695 compute_frame_id (prev_frame);
1696 if (frame_stash_add (prev_frame))
1697 return prev_frame;
1698
1699 /* Another frame with the same id was already in the stash. We just
1700 detected a cycle. */
1701 if (frame_debug)
1702 {
1703 fprintf_unfiltered (gdb_stdlog, "-> ");
1704 fprint_frame (gdb_stdlog, NULL);
1705 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1706 }
1707 this_frame->stop_reason = UNWIND_SAME_ID;
1708 /* Unlink. */
1709 prev_frame->next = NULL;
1710 this_frame->prev = NULL;
1711 return NULL;
1712 }
1713
1714 /* Return a "struct frame_info" corresponding to the frame that called
1715 THIS_FRAME. Returns NULL if there is no such frame.
1716
1717 Unlike get_prev_frame, this function always tries to unwind the
1718 frame. */
1719
1720 static struct frame_info *
1721 get_prev_frame_1 (struct frame_info *this_frame)
1722 {
1723 struct gdbarch *gdbarch;
1724
1725 gdb_assert (this_frame != NULL);
1726 gdbarch = get_frame_arch (this_frame);
1727
1728 if (frame_debug)
1729 {
1730 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1731 if (this_frame != NULL)
1732 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1733 else
1734 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1735 fprintf_unfiltered (gdb_stdlog, ") ");
1736 }
1737
1738 /* Only try to do the unwind once. */
1739 if (this_frame->prev_p)
1740 {
1741 if (frame_debug)
1742 {
1743 fprintf_unfiltered (gdb_stdlog, "-> ");
1744 fprint_frame (gdb_stdlog, this_frame->prev);
1745 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1746 }
1747 return this_frame->prev;
1748 }
1749
1750 /* If the frame unwinder hasn't been selected yet, we must do so
1751 before setting prev_p; otherwise the check for misbehaved
1752 sniffers will think that this frame's sniffer tried to unwind
1753 further (see frame_cleanup_after_sniffer). */
1754 if (this_frame->unwind == NULL)
1755 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1756
1757 this_frame->prev_p = 1;
1758 this_frame->stop_reason = UNWIND_NO_REASON;
1759
1760 /* If we are unwinding from an inline frame, all of the below tests
1761 were already performed when we unwound from the next non-inline
1762 frame. We must skip them, since we can not get THIS_FRAME's ID
1763 until we have unwound all the way down to the previous non-inline
1764 frame. */
1765 if (get_frame_type (this_frame) == INLINE_FRAME)
1766 return get_prev_frame_if_no_cycle (this_frame);
1767
1768 /* Check that this frame is unwindable. If it isn't, don't try to
1769 unwind to the prev frame. */
1770 this_frame->stop_reason
1771 = this_frame->unwind->stop_reason (this_frame,
1772 &this_frame->prologue_cache);
1773
1774 if (this_frame->stop_reason != UNWIND_NO_REASON)
1775 {
1776 if (frame_debug)
1777 {
1778 enum unwind_stop_reason reason = this_frame->stop_reason;
1779
1780 fprintf_unfiltered (gdb_stdlog, "-> ");
1781 fprint_frame (gdb_stdlog, NULL);
1782 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1783 frame_stop_reason_symbol_string (reason));
1784 }
1785 return NULL;
1786 }
1787
1788 /* Check that this frame's ID isn't inner to (younger, below, next)
1789 the next frame. This happens when a frame unwind goes backwards.
1790 This check is valid only if this frame and the next frame are NORMAL.
1791 See the comment at frame_id_inner for details. */
1792 if (get_frame_type (this_frame) == NORMAL_FRAME
1793 && this_frame->next->unwind->type == NORMAL_FRAME
1794 && frame_id_inner (get_frame_arch (this_frame->next),
1795 get_frame_id (this_frame),
1796 get_frame_id (this_frame->next)))
1797 {
1798 CORE_ADDR this_pc_in_block;
1799 struct minimal_symbol *morestack_msym;
1800 const char *morestack_name = NULL;
1801
1802 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1803 this_pc_in_block = get_frame_address_in_block (this_frame);
1804 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1805 if (morestack_msym)
1806 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1807 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1808 {
1809 if (frame_debug)
1810 {
1811 fprintf_unfiltered (gdb_stdlog, "-> ");
1812 fprint_frame (gdb_stdlog, NULL);
1813 fprintf_unfiltered (gdb_stdlog,
1814 " // this frame ID is inner }\n");
1815 }
1816 this_frame->stop_reason = UNWIND_INNER_ID;
1817 return NULL;
1818 }
1819 }
1820
1821 /* Check that this and the next frame do not unwind the PC register
1822 to the same memory location. If they do, then even though they
1823 have different frame IDs, the new frame will be bogus; two
1824 functions can't share a register save slot for the PC. This can
1825 happen when the prologue analyzer finds a stack adjustment, but
1826 no PC save.
1827
1828 This check does assume that the "PC register" is roughly a
1829 traditional PC, even if the gdbarch_unwind_pc method adjusts
1830 it (we do not rely on the value, only on the unwound PC being
1831 dependent on this value). A potential improvement would be
1832 to have the frame prev_pc method and the gdbarch unwind_pc
1833 method set the same lval and location information as
1834 frame_register_unwind. */
1835 if (this_frame->level > 0
1836 && gdbarch_pc_regnum (gdbarch) >= 0
1837 && get_frame_type (this_frame) == NORMAL_FRAME
1838 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1839 || get_frame_type (this_frame->next) == INLINE_FRAME))
1840 {
1841 int optimized, realnum, nrealnum;
1842 enum lval_type lval, nlval;
1843 CORE_ADDR addr, naddr;
1844
1845 frame_register_unwind_location (this_frame,
1846 gdbarch_pc_regnum (gdbarch),
1847 &optimized, &lval, &addr, &realnum);
1848 frame_register_unwind_location (get_next_frame (this_frame),
1849 gdbarch_pc_regnum (gdbarch),
1850 &optimized, &nlval, &naddr, &nrealnum);
1851
1852 if ((lval == lval_memory && lval == nlval && addr == naddr)
1853 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1854 {
1855 if (frame_debug)
1856 {
1857 fprintf_unfiltered (gdb_stdlog, "-> ");
1858 fprint_frame (gdb_stdlog, NULL);
1859 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1860 }
1861
1862 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1863 this_frame->prev = NULL;
1864 return NULL;
1865 }
1866 }
1867
1868 return get_prev_frame_if_no_cycle (this_frame);
1869 }
1870
1871 /* Construct a new "struct frame_info" and link it previous to
1872 this_frame. */
1873
1874 static struct frame_info *
1875 get_prev_frame_raw (struct frame_info *this_frame)
1876 {
1877 struct frame_info *prev_frame;
1878
1879 /* Allocate the new frame but do not wire it in to the frame chain.
1880 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1881 frame->next to pull some fancy tricks (of course such code is, by
1882 definition, recursive). Try to prevent it.
1883
1884 There is no reason to worry about memory leaks, should the
1885 remainder of the function fail. The allocated memory will be
1886 quickly reclaimed when the frame cache is flushed, and the `we've
1887 been here before' check above will stop repeated memory
1888 allocation calls. */
1889 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1890 prev_frame->level = this_frame->level + 1;
1891
1892 /* For now, assume we don't have frame chains crossing address
1893 spaces. */
1894 prev_frame->pspace = this_frame->pspace;
1895 prev_frame->aspace = this_frame->aspace;
1896
1897 /* Don't yet compute ->unwind (and hence ->type). It is computed
1898 on-demand in get_frame_type, frame_register_unwind, and
1899 get_frame_id. */
1900
1901 /* Don't yet compute the frame's ID. It is computed on-demand by
1902 get_frame_id(). */
1903
1904 /* The unwound frame ID is validate at the start of this function,
1905 as part of the logic to decide if that frame should be further
1906 unwound, and not here while the prev frame is being created.
1907 Doing this makes it possible for the user to examine a frame that
1908 has an invalid frame ID.
1909
1910 Some very old VAX code noted: [...] For the sake of argument,
1911 suppose that the stack is somewhat trashed (which is one reason
1912 that "info frame" exists). So, return 0 (indicating we don't
1913 know the address of the arglist) if we don't know what frame this
1914 frame calls. */
1915
1916 /* Link it in. */
1917 this_frame->prev = prev_frame;
1918 prev_frame->next = this_frame;
1919
1920 if (frame_debug)
1921 {
1922 fprintf_unfiltered (gdb_stdlog, "-> ");
1923 fprint_frame (gdb_stdlog, prev_frame);
1924 fprintf_unfiltered (gdb_stdlog, " }\n");
1925 }
1926
1927 return prev_frame;
1928 }
1929
1930 /* Debug routine to print a NULL frame being returned. */
1931
1932 static void
1933 frame_debug_got_null_frame (struct frame_info *this_frame,
1934 const char *reason)
1935 {
1936 if (frame_debug)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1939 if (this_frame != NULL)
1940 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1941 else
1942 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1943 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1944 }
1945 }
1946
1947 /* Is this (non-sentinel) frame in the "main"() function? */
1948
1949 static int
1950 inside_main_func (struct frame_info *this_frame)
1951 {
1952 struct minimal_symbol *msymbol;
1953 CORE_ADDR maddr;
1954
1955 if (symfile_objfile == 0)
1956 return 0;
1957 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1958 if (msymbol == NULL)
1959 return 0;
1960 /* Make certain that the code, and not descriptor, address is
1961 returned. */
1962 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1963 SYMBOL_VALUE_ADDRESS (msymbol),
1964 &current_target);
1965 return maddr == get_frame_func (this_frame);
1966 }
1967
1968 /* Test whether THIS_FRAME is inside the process entry point function. */
1969
1970 static int
1971 inside_entry_func (struct frame_info *this_frame)
1972 {
1973 CORE_ADDR entry_point;
1974
1975 if (!entry_point_address_query (&entry_point))
1976 return 0;
1977
1978 return get_frame_func (this_frame) == entry_point;
1979 }
1980
1981 /* Return a structure containing various interesting information about
1982 the frame that called THIS_FRAME. Returns NULL if there is entier
1983 no such frame or the frame fails any of a set of target-independent
1984 condition that should terminate the frame chain (e.g., as unwinding
1985 past main()).
1986
1987 This function should not contain target-dependent tests, such as
1988 checking whether the program-counter is zero. */
1989
1990 struct frame_info *
1991 get_prev_frame (struct frame_info *this_frame)
1992 {
1993 CORE_ADDR frame_pc;
1994 int frame_pc_p;
1995
1996 /* There is always a frame. If this assertion fails, suspect that
1997 something should be calling get_selected_frame() or
1998 get_current_frame(). */
1999 gdb_assert (this_frame != NULL);
2000 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2001
2002 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2003 sense to stop unwinding at a dummy frame. One place where a dummy
2004 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2005 pcsqh register (space register for the instruction at the head of the
2006 instruction queue) cannot be written directly; the only way to set it
2007 is to branch to code that is in the target space. In order to implement
2008 frame dummies on HPUX, the called function is made to jump back to where
2009 the inferior was when the user function was called. If gdb was inside
2010 the main function when we created the dummy frame, the dummy frame will
2011 point inside the main function. */
2012 if (this_frame->level >= 0
2013 && get_frame_type (this_frame) == NORMAL_FRAME
2014 && !backtrace_past_main
2015 && frame_pc_p
2016 && inside_main_func (this_frame))
2017 /* Don't unwind past main(). Note, this is done _before_ the
2018 frame has been marked as previously unwound. That way if the
2019 user later decides to enable unwinds past main(), that will
2020 automatically happen. */
2021 {
2022 frame_debug_got_null_frame (this_frame, "inside main func");
2023 return NULL;
2024 }
2025
2026 /* If the user's backtrace limit has been exceeded, stop. We must
2027 add two to the current level; one of those accounts for backtrace_limit
2028 being 1-based and the level being 0-based, and the other accounts for
2029 the level of the new frame instead of the level of the current
2030 frame. */
2031 if (this_frame->level + 2 > backtrace_limit)
2032 {
2033 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2034 return NULL;
2035 }
2036
2037 /* If we're already inside the entry function for the main objfile,
2038 then it isn't valid. Don't apply this test to a dummy frame -
2039 dummy frame PCs typically land in the entry func. Don't apply
2040 this test to the sentinel frame. Sentinel frames should always
2041 be allowed to unwind. */
2042 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2043 wasn't checking for "main" in the minimal symbols. With that
2044 fixed asm-source tests now stop in "main" instead of halting the
2045 backtrace in weird and wonderful ways somewhere inside the entry
2046 file. Suspect that tests for inside the entry file/func were
2047 added to work around that (now fixed) case. */
2048 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2049 suggested having the inside_entry_func test use the
2050 inside_main_func() msymbol trick (along with entry_point_address()
2051 I guess) to determine the address range of the start function.
2052 That should provide a far better stopper than the current
2053 heuristics. */
2054 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2055 applied tail-call optimizations to main so that a function called
2056 from main returns directly to the caller of main. Since we don't
2057 stop at main, we should at least stop at the entry point of the
2058 application. */
2059 if (this_frame->level >= 0
2060 && get_frame_type (this_frame) == NORMAL_FRAME
2061 && !backtrace_past_entry
2062 && frame_pc_p
2063 && inside_entry_func (this_frame))
2064 {
2065 frame_debug_got_null_frame (this_frame, "inside entry func");
2066 return NULL;
2067 }
2068
2069 /* Assume that the only way to get a zero PC is through something
2070 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2071 will never unwind a zero PC. */
2072 if (this_frame->level > 0
2073 && (get_frame_type (this_frame) == NORMAL_FRAME
2074 || get_frame_type (this_frame) == INLINE_FRAME)
2075 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2076 && frame_pc_p && frame_pc == 0)
2077 {
2078 frame_debug_got_null_frame (this_frame, "zero PC");
2079 return NULL;
2080 }
2081
2082 return get_prev_frame_1 (this_frame);
2083 }
2084
2085 CORE_ADDR
2086 get_frame_pc (struct frame_info *frame)
2087 {
2088 gdb_assert (frame->next != NULL);
2089 return frame_unwind_pc (frame->next);
2090 }
2091
2092 int
2093 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2094 {
2095 volatile struct gdb_exception ex;
2096
2097 gdb_assert (frame->next != NULL);
2098
2099 TRY_CATCH (ex, RETURN_MASK_ERROR)
2100 {
2101 *pc = frame_unwind_pc (frame->next);
2102 }
2103 if (ex.reason < 0)
2104 {
2105 if (ex.error == NOT_AVAILABLE_ERROR)
2106 return 0;
2107 else
2108 throw_exception (ex);
2109 }
2110
2111 return 1;
2112 }
2113
2114 /* Return an address that falls within THIS_FRAME's code block. */
2115
2116 CORE_ADDR
2117 get_frame_address_in_block (struct frame_info *this_frame)
2118 {
2119 /* A draft address. */
2120 CORE_ADDR pc = get_frame_pc (this_frame);
2121
2122 struct frame_info *next_frame = this_frame->next;
2123
2124 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2125 Normally the resume address is inside the body of the function
2126 associated with THIS_FRAME, but there is a special case: when
2127 calling a function which the compiler knows will never return
2128 (for instance abort), the call may be the very last instruction
2129 in the calling function. The resume address will point after the
2130 call and may be at the beginning of a different function
2131 entirely.
2132
2133 If THIS_FRAME is a signal frame or dummy frame, then we should
2134 not adjust the unwound PC. For a dummy frame, GDB pushed the
2135 resume address manually onto the stack. For a signal frame, the
2136 OS may have pushed the resume address manually and invoked the
2137 handler (e.g. GNU/Linux), or invoked the trampoline which called
2138 the signal handler - but in either case the signal handler is
2139 expected to return to the trampoline. So in both of these
2140 cases we know that the resume address is executable and
2141 related. So we only need to adjust the PC if THIS_FRAME
2142 is a normal function.
2143
2144 If the program has been interrupted while THIS_FRAME is current,
2145 then clearly the resume address is inside the associated
2146 function. There are three kinds of interruption: debugger stop
2147 (next frame will be SENTINEL_FRAME), operating system
2148 signal or exception (next frame will be SIGTRAMP_FRAME),
2149 or debugger-induced function call (next frame will be
2150 DUMMY_FRAME). So we only need to adjust the PC if
2151 NEXT_FRAME is a normal function.
2152
2153 We check the type of NEXT_FRAME first, since it is already
2154 known; frame type is determined by the unwinder, and since
2155 we have THIS_FRAME we've already selected an unwinder for
2156 NEXT_FRAME.
2157
2158 If the next frame is inlined, we need to keep going until we find
2159 the real function - for instance, if a signal handler is invoked
2160 while in an inlined function, then the code address of the
2161 "calling" normal function should not be adjusted either. */
2162
2163 while (get_frame_type (next_frame) == INLINE_FRAME)
2164 next_frame = next_frame->next;
2165
2166 if ((get_frame_type (next_frame) == NORMAL_FRAME
2167 || get_frame_type (next_frame) == TAILCALL_FRAME)
2168 && (get_frame_type (this_frame) == NORMAL_FRAME
2169 || get_frame_type (this_frame) == TAILCALL_FRAME
2170 || get_frame_type (this_frame) == INLINE_FRAME))
2171 return pc - 1;
2172
2173 return pc;
2174 }
2175
2176 int
2177 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2178 CORE_ADDR *pc)
2179 {
2180 volatile struct gdb_exception ex;
2181
2182 TRY_CATCH (ex, RETURN_MASK_ERROR)
2183 {
2184 *pc = get_frame_address_in_block (this_frame);
2185 }
2186 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2187 return 0;
2188 else if (ex.reason < 0)
2189 throw_exception (ex);
2190 else
2191 return 1;
2192 }
2193
2194 void
2195 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2196 {
2197 struct frame_info *next_frame;
2198 int notcurrent;
2199 CORE_ADDR pc;
2200
2201 /* If the next frame represents an inlined function call, this frame's
2202 sal is the "call site" of that inlined function, which can not
2203 be inferred from get_frame_pc. */
2204 next_frame = get_next_frame (frame);
2205 if (frame_inlined_callees (frame) > 0)
2206 {
2207 struct symbol *sym;
2208
2209 if (next_frame)
2210 sym = get_frame_function (next_frame);
2211 else
2212 sym = inline_skipped_symbol (inferior_ptid);
2213
2214 /* If frame is inline, it certainly has symbols. */
2215 gdb_assert (sym);
2216 init_sal (sal);
2217 if (SYMBOL_LINE (sym) != 0)
2218 {
2219 sal->symtab = SYMBOL_SYMTAB (sym);
2220 sal->line = SYMBOL_LINE (sym);
2221 }
2222 else
2223 /* If the symbol does not have a location, we don't know where
2224 the call site is. Do not pretend to. This is jarring, but
2225 we can't do much better. */
2226 sal->pc = get_frame_pc (frame);
2227
2228 sal->pspace = get_frame_program_space (frame);
2229
2230 return;
2231 }
2232
2233 /* If FRAME is not the innermost frame, that normally means that
2234 FRAME->pc points at the return instruction (which is *after* the
2235 call instruction), and we want to get the line containing the
2236 call (because the call is where the user thinks the program is).
2237 However, if the next frame is either a SIGTRAMP_FRAME or a
2238 DUMMY_FRAME, then the next frame will contain a saved interrupt
2239 PC and such a PC indicates the current (rather than next)
2240 instruction/line, consequently, for such cases, want to get the
2241 line containing fi->pc. */
2242 if (!get_frame_pc_if_available (frame, &pc))
2243 {
2244 init_sal (sal);
2245 return;
2246 }
2247
2248 notcurrent = (pc != get_frame_address_in_block (frame));
2249 (*sal) = find_pc_line (pc, notcurrent);
2250 }
2251
2252 /* Per "frame.h", return the ``address'' of the frame. Code should
2253 really be using get_frame_id(). */
2254 CORE_ADDR
2255 get_frame_base (struct frame_info *fi)
2256 {
2257 return get_frame_id (fi).stack_addr;
2258 }
2259
2260 /* High-level offsets into the frame. Used by the debug info. */
2261
2262 CORE_ADDR
2263 get_frame_base_address (struct frame_info *fi)
2264 {
2265 if (get_frame_type (fi) != NORMAL_FRAME)
2266 return 0;
2267 if (fi->base == NULL)
2268 fi->base = frame_base_find_by_frame (fi);
2269 /* Sneaky: If the low-level unwind and high-level base code share a
2270 common unwinder, let them share the prologue cache. */
2271 if (fi->base->unwind == fi->unwind)
2272 return fi->base->this_base (fi, &fi->prologue_cache);
2273 return fi->base->this_base (fi, &fi->base_cache);
2274 }
2275
2276 CORE_ADDR
2277 get_frame_locals_address (struct frame_info *fi)
2278 {
2279 if (get_frame_type (fi) != NORMAL_FRAME)
2280 return 0;
2281 /* If there isn't a frame address method, find it. */
2282 if (fi->base == NULL)
2283 fi->base = frame_base_find_by_frame (fi);
2284 /* Sneaky: If the low-level unwind and high-level base code share a
2285 common unwinder, let them share the prologue cache. */
2286 if (fi->base->unwind == fi->unwind)
2287 return fi->base->this_locals (fi, &fi->prologue_cache);
2288 return fi->base->this_locals (fi, &fi->base_cache);
2289 }
2290
2291 CORE_ADDR
2292 get_frame_args_address (struct frame_info *fi)
2293 {
2294 if (get_frame_type (fi) != NORMAL_FRAME)
2295 return 0;
2296 /* If there isn't a frame address method, find it. */
2297 if (fi->base == NULL)
2298 fi->base = frame_base_find_by_frame (fi);
2299 /* Sneaky: If the low-level unwind and high-level base code share a
2300 common unwinder, let them share the prologue cache. */
2301 if (fi->base->unwind == fi->unwind)
2302 return fi->base->this_args (fi, &fi->prologue_cache);
2303 return fi->base->this_args (fi, &fi->base_cache);
2304 }
2305
2306 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2307 otherwise. */
2308
2309 int
2310 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2311 {
2312 if (fi->unwind == NULL)
2313 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2314 return fi->unwind == unwinder;
2315 }
2316
2317 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2318 or -1 for a NULL frame. */
2319
2320 int
2321 frame_relative_level (struct frame_info *fi)
2322 {
2323 if (fi == NULL)
2324 return -1;
2325 else
2326 return fi->level;
2327 }
2328
2329 enum frame_type
2330 get_frame_type (struct frame_info *frame)
2331 {
2332 if (frame->unwind == NULL)
2333 /* Initialize the frame's unwinder because that's what
2334 provides the frame's type. */
2335 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2336 return frame->unwind->type;
2337 }
2338
2339 struct program_space *
2340 get_frame_program_space (struct frame_info *frame)
2341 {
2342 return frame->pspace;
2343 }
2344
2345 struct program_space *
2346 frame_unwind_program_space (struct frame_info *this_frame)
2347 {
2348 gdb_assert (this_frame);
2349
2350 /* This is really a placeholder to keep the API consistent --- we
2351 assume for now that we don't have frame chains crossing
2352 spaces. */
2353 return this_frame->pspace;
2354 }
2355
2356 struct address_space *
2357 get_frame_address_space (struct frame_info *frame)
2358 {
2359 return frame->aspace;
2360 }
2361
2362 /* Memory access methods. */
2363
2364 void
2365 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2366 gdb_byte *buf, int len)
2367 {
2368 read_memory (addr, buf, len);
2369 }
2370
2371 LONGEST
2372 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2373 int len)
2374 {
2375 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2376 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2377
2378 return read_memory_integer (addr, len, byte_order);
2379 }
2380
2381 ULONGEST
2382 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2383 int len)
2384 {
2385 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2386 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2387
2388 return read_memory_unsigned_integer (addr, len, byte_order);
2389 }
2390
2391 int
2392 safe_frame_unwind_memory (struct frame_info *this_frame,
2393 CORE_ADDR addr, gdb_byte *buf, int len)
2394 {
2395 /* NOTE: target_read_memory returns zero on success! */
2396 return !target_read_memory (addr, buf, len);
2397 }
2398
2399 /* Architecture methods. */
2400
2401 struct gdbarch *
2402 get_frame_arch (struct frame_info *this_frame)
2403 {
2404 return frame_unwind_arch (this_frame->next);
2405 }
2406
2407 struct gdbarch *
2408 frame_unwind_arch (struct frame_info *next_frame)
2409 {
2410 if (!next_frame->prev_arch.p)
2411 {
2412 struct gdbarch *arch;
2413
2414 if (next_frame->unwind == NULL)
2415 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2416
2417 if (next_frame->unwind->prev_arch != NULL)
2418 arch = next_frame->unwind->prev_arch (next_frame,
2419 &next_frame->prologue_cache);
2420 else
2421 arch = get_frame_arch (next_frame);
2422
2423 next_frame->prev_arch.arch = arch;
2424 next_frame->prev_arch.p = 1;
2425 if (frame_debug)
2426 fprintf_unfiltered (gdb_stdlog,
2427 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2428 next_frame->level,
2429 gdbarch_bfd_arch_info (arch)->printable_name);
2430 }
2431
2432 return next_frame->prev_arch.arch;
2433 }
2434
2435 struct gdbarch *
2436 frame_unwind_caller_arch (struct frame_info *next_frame)
2437 {
2438 return frame_unwind_arch (skip_artificial_frames (next_frame));
2439 }
2440
2441 /* Stack pointer methods. */
2442
2443 CORE_ADDR
2444 get_frame_sp (struct frame_info *this_frame)
2445 {
2446 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2447
2448 /* Normality - an architecture that provides a way of obtaining any
2449 frame inner-most address. */
2450 if (gdbarch_unwind_sp_p (gdbarch))
2451 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2452 operate on THIS_FRAME now. */
2453 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2454 /* Now things are really are grim. Hope that the value returned by
2455 the gdbarch_sp_regnum register is meaningful. */
2456 if (gdbarch_sp_regnum (gdbarch) >= 0)
2457 return get_frame_register_unsigned (this_frame,
2458 gdbarch_sp_regnum (gdbarch));
2459 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2460 }
2461
2462 /* Return the reason why we can't unwind past FRAME. */
2463
2464 enum unwind_stop_reason
2465 get_frame_unwind_stop_reason (struct frame_info *frame)
2466 {
2467 /* If we haven't tried to unwind past this point yet, then assume
2468 that unwinding would succeed. */
2469 if (frame->prev_p == 0)
2470 return UNWIND_NO_REASON;
2471
2472 /* Otherwise, we set a reason when we succeeded (or failed) to
2473 unwind. */
2474 return frame->stop_reason;
2475 }
2476
2477 /* Return a string explaining REASON. */
2478
2479 const char *
2480 frame_stop_reason_string (enum unwind_stop_reason reason)
2481 {
2482 switch (reason)
2483 {
2484 #define SET(name, description) \
2485 case name: return _(description);
2486 #include "unwind_stop_reasons.def"
2487 #undef SET
2488
2489 default:
2490 internal_error (__FILE__, __LINE__,
2491 "Invalid frame stop reason");
2492 }
2493 }
2494
2495 /* Return the enum symbol name of REASON as a string, to use in debug
2496 output. */
2497
2498 static const char *
2499 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2500 {
2501 switch (reason)
2502 {
2503 #define SET(name, description) \
2504 case name: return #name;
2505 #include "unwind_stop_reasons.def"
2506 #undef SET
2507
2508 default:
2509 internal_error (__FILE__, __LINE__,
2510 "Invalid frame stop reason");
2511 }
2512 }
2513
2514 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2515 FRAME. */
2516
2517 static void
2518 frame_cleanup_after_sniffer (void *arg)
2519 {
2520 struct frame_info *frame = arg;
2521
2522 /* The sniffer should not allocate a prologue cache if it did not
2523 match this frame. */
2524 gdb_assert (frame->prologue_cache == NULL);
2525
2526 /* No sniffer should extend the frame chain; sniff based on what is
2527 already certain. */
2528 gdb_assert (!frame->prev_p);
2529
2530 /* The sniffer should not check the frame's ID; that's circular. */
2531 gdb_assert (!frame->this_id.p);
2532
2533 /* Clear cached fields dependent on the unwinder.
2534
2535 The previous PC is independent of the unwinder, but the previous
2536 function is not (see get_frame_address_in_block). */
2537 frame->prev_func.p = 0;
2538 frame->prev_func.addr = 0;
2539
2540 /* Discard the unwinder last, so that we can easily find it if an assertion
2541 in this function triggers. */
2542 frame->unwind = NULL;
2543 }
2544
2545 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2546 Return a cleanup which should be called if unwinding fails, and
2547 discarded if it succeeds. */
2548
2549 struct cleanup *
2550 frame_prepare_for_sniffer (struct frame_info *frame,
2551 const struct frame_unwind *unwind)
2552 {
2553 gdb_assert (frame->unwind == NULL);
2554 frame->unwind = unwind;
2555 return make_cleanup (frame_cleanup_after_sniffer, frame);
2556 }
2557
2558 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2559
2560 static struct cmd_list_element *set_backtrace_cmdlist;
2561 static struct cmd_list_element *show_backtrace_cmdlist;
2562
2563 static void
2564 set_backtrace_cmd (char *args, int from_tty)
2565 {
2566 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2567 }
2568
2569 static void
2570 show_backtrace_cmd (char *args, int from_tty)
2571 {
2572 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2573 }
2574
2575 void
2576 _initialize_frame (void)
2577 {
2578 obstack_init (&frame_cache_obstack);
2579
2580 frame_stash_create ();
2581
2582 observer_attach_target_changed (frame_observer_target_changed);
2583
2584 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2585 Set backtrace specific variables.\n\
2586 Configure backtrace variables such as the backtrace limit"),
2587 &set_backtrace_cmdlist, "set backtrace ",
2588 0/*allow-unknown*/, &setlist);
2589 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2590 Show backtrace specific variables\n\
2591 Show backtrace variables such as the backtrace limit"),
2592 &show_backtrace_cmdlist, "show backtrace ",
2593 0/*allow-unknown*/, &showlist);
2594
2595 add_setshow_boolean_cmd ("past-main", class_obscure,
2596 &backtrace_past_main, _("\
2597 Set whether backtraces should continue past \"main\"."), _("\
2598 Show whether backtraces should continue past \"main\"."), _("\
2599 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2600 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2601 of the stack trace."),
2602 NULL,
2603 show_backtrace_past_main,
2604 &set_backtrace_cmdlist,
2605 &show_backtrace_cmdlist);
2606
2607 add_setshow_boolean_cmd ("past-entry", class_obscure,
2608 &backtrace_past_entry, _("\
2609 Set whether backtraces should continue past the entry point of a program."),
2610 _("\
2611 Show whether backtraces should continue past the entry point of a program."),
2612 _("\
2613 Normally there are no callers beyond the entry point of a program, so GDB\n\
2614 will terminate the backtrace there. Set this variable if you need to see\n\
2615 the rest of the stack trace."),
2616 NULL,
2617 show_backtrace_past_entry,
2618 &set_backtrace_cmdlist,
2619 &show_backtrace_cmdlist);
2620
2621 add_setshow_uinteger_cmd ("limit", class_obscure,
2622 &backtrace_limit, _("\
2623 Set an upper bound on the number of backtrace levels."), _("\
2624 Show the upper bound on the number of backtrace levels."), _("\
2625 No more than the specified number of frames can be displayed or examined.\n\
2626 Literal \"unlimited\" or zero means no limit."),
2627 NULL,
2628 show_backtrace_limit,
2629 &set_backtrace_cmdlist,
2630 &show_backtrace_cmdlist);
2631
2632 /* Debug this files internals. */
2633 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2634 Set frame debugging."), _("\
2635 Show frame debugging."), _("\
2636 When non-zero, frame specific internal debugging is enabled."),
2637 NULL,
2638 show_frame_debug,
2639 &setdebuglist, &showdebuglist);
2640 }
This page took 0.085156 seconds and 5 git commands to generate.