Assert on lval_register
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025 aspace);
1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028 regcache_save (regcache, do_frame_register_read, this_frame);
1029 discard_cleanups (cleanups);
1030 return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036 struct frame_info *prev_frame;
1037 struct regcache *scratch;
1038 struct cleanup *cleanups;
1039
1040 if (get_frame_type (this_frame) == DUMMY_FRAME)
1041 {
1042 /* Popping a dummy frame involves restoring more than just registers.
1043 dummy_frame_pop does all the work. */
1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045 return;
1046 }
1047
1048 /* Ensure that we have a frame to pop to. */
1049 prev_frame = get_prev_frame_always (this_frame);
1050
1051 if (!prev_frame)
1052 error (_("Cannot pop the initial frame."));
1053
1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055 entering THISFRAME. */
1056 prev_frame = skip_tailcall_frames (prev_frame);
1057
1058 if (prev_frame == NULL)
1059 error (_("Cannot find the caller frame."));
1060
1061 /* Make a copy of all the register values unwound from this frame.
1062 Save them in a scratch buffer so that there isn't a race between
1063 trying to extract the old values from the current regcache while
1064 at the same time writing new values into that same cache. */
1065 scratch = frame_save_as_regcache (prev_frame);
1066 cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069 target's register cache that it is about to be hit with a burst
1070 register transfer and that the sequence of register writes should
1071 be batched. The pair target_prepare_to_store() and
1072 target_store_registers() kind of suggest this functionality.
1073 Unfortunately, they don't implement it. Their lack of a formal
1074 definition can lead to targets writing back bogus values
1075 (arguably a bug in the target code mind). */
1076 /* Now copy those saved registers into the current regcache.
1077 Here, regcache_cpy() calls regcache_restore(). */
1078 regcache_cpy (get_current_regcache (), scratch);
1079 do_cleanups (cleanups);
1080
1081 /* We've made right mess of GDB's local state, just discard
1082 everything. */
1083 reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088 int *optimizedp, int *unavailablep,
1089 enum lval_type *lvalp, CORE_ADDR *addrp,
1090 int *realnump, gdb_byte *bufferp)
1091 {
1092 struct value *value;
1093
1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1095 that the value proper does not need to be fetched. */
1096 gdb_assert (optimizedp != NULL);
1097 gdb_assert (lvalp != NULL);
1098 gdb_assert (addrp != NULL);
1099 gdb_assert (realnump != NULL);
1100 /* gdb_assert (bufferp != NULL); */
1101
1102 value = frame_unwind_register_value (frame, regnum);
1103
1104 gdb_assert (value != NULL);
1105
1106 *optimizedp = value_optimized_out (value);
1107 *unavailablep = !value_entirely_available (value);
1108 *lvalp = VALUE_LVAL (value);
1109 *addrp = value_address (value);
1110 if (*lvalp == lval_register)
1111 *realnump = VALUE_REGNUM (value);
1112 else
1113 *realnump = -1;
1114
1115 if (bufferp)
1116 {
1117 if (!*optimizedp && !*unavailablep)
1118 memcpy (bufferp, value_contents_all (value),
1119 TYPE_LENGTH (value_type (value)));
1120 else
1121 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1122 }
1123
1124 /* Dispose of the new value. This prevents watchpoints from
1125 trying to watch the saved frame pointer. */
1126 release_value (value);
1127 value_free (value);
1128 }
1129
1130 void
1131 frame_register (struct frame_info *frame, int regnum,
1132 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1133 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1134 {
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 /* Obtain the register value by unwinding the register from the next
1144 (more inner frame). */
1145 gdb_assert (frame != NULL && frame->next != NULL);
1146 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1147 lvalp, addrp, realnump, bufferp);
1148 }
1149
1150 void
1151 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1152 {
1153 int optimized;
1154 int unavailable;
1155 CORE_ADDR addr;
1156 int realnum;
1157 enum lval_type lval;
1158
1159 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1160 &lval, &addr, &realnum, buf);
1161
1162 if (optimized)
1163 throw_error (OPTIMIZED_OUT_ERROR,
1164 _("Register %d was not saved"), regnum);
1165 if (unavailable)
1166 throw_error (NOT_AVAILABLE_ERROR,
1167 _("Register %d is not available"), regnum);
1168 }
1169
1170 void
1171 get_frame_register (struct frame_info *frame,
1172 int regnum, gdb_byte *buf)
1173 {
1174 frame_unwind_register (frame->next, regnum, buf);
1175 }
1176
1177 struct value *
1178 frame_unwind_register_value (struct frame_info *frame, int regnum)
1179 {
1180 struct gdbarch *gdbarch;
1181 struct value *value;
1182
1183 gdb_assert (frame != NULL);
1184 gdbarch = frame_unwind_arch (frame);
1185
1186 if (frame_debug)
1187 {
1188 fprintf_unfiltered (gdb_stdlog,
1189 "{ frame_unwind_register_value "
1190 "(frame=%d,regnum=%d(%s),...) ",
1191 frame->level, regnum,
1192 user_reg_map_regnum_to_name (gdbarch, regnum));
1193 }
1194
1195 /* Find the unwinder. */
1196 if (frame->unwind == NULL)
1197 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1198
1199 /* Ask this frame to unwind its register. */
1200 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1201
1202 if (frame_debug)
1203 {
1204 fprintf_unfiltered (gdb_stdlog, "->");
1205 if (value_optimized_out (value))
1206 {
1207 fprintf_unfiltered (gdb_stdlog, " ");
1208 val_print_optimized_out (value, gdb_stdlog);
1209 }
1210 else
1211 {
1212 if (VALUE_LVAL (value) == lval_register)
1213 fprintf_unfiltered (gdb_stdlog, " register=%d",
1214 VALUE_REGNUM (value));
1215 else if (VALUE_LVAL (value) == lval_memory)
1216 fprintf_unfiltered (gdb_stdlog, " address=%s",
1217 paddress (gdbarch,
1218 value_address (value)));
1219 else
1220 fprintf_unfiltered (gdb_stdlog, " computed");
1221
1222 if (value_lazy (value))
1223 fprintf_unfiltered (gdb_stdlog, " lazy");
1224 else
1225 {
1226 int i;
1227 const gdb_byte *buf = value_contents (value);
1228
1229 fprintf_unfiltered (gdb_stdlog, " bytes=");
1230 fprintf_unfiltered (gdb_stdlog, "[");
1231 for (i = 0; i < register_size (gdbarch, regnum); i++)
1232 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1233 fprintf_unfiltered (gdb_stdlog, "]");
1234 }
1235 }
1236
1237 fprintf_unfiltered (gdb_stdlog, " }\n");
1238 }
1239
1240 return value;
1241 }
1242
1243 struct value *
1244 get_frame_register_value (struct frame_info *frame, int regnum)
1245 {
1246 return frame_unwind_register_value (frame->next, regnum);
1247 }
1248
1249 LONGEST
1250 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1251 {
1252 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1254 int size = register_size (gdbarch, regnum);
1255 gdb_byte buf[MAX_REGISTER_SIZE];
1256
1257 frame_unwind_register (frame, regnum, buf);
1258 return extract_signed_integer (buf, size, byte_order);
1259 }
1260
1261 LONGEST
1262 get_frame_register_signed (struct frame_info *frame, int regnum)
1263 {
1264 return frame_unwind_register_signed (frame->next, regnum);
1265 }
1266
1267 ULONGEST
1268 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1269 {
1270 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1272 int size = register_size (gdbarch, regnum);
1273 gdb_byte buf[MAX_REGISTER_SIZE];
1274
1275 frame_unwind_register (frame, regnum, buf);
1276 return extract_unsigned_integer (buf, size, byte_order);
1277 }
1278
1279 ULONGEST
1280 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1281 {
1282 return frame_unwind_register_unsigned (frame->next, regnum);
1283 }
1284
1285 int
1286 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1287 ULONGEST *val)
1288 {
1289 struct value *regval = get_frame_register_value (frame, regnum);
1290
1291 if (!value_optimized_out (regval)
1292 && value_entirely_available (regval))
1293 {
1294 struct gdbarch *gdbarch = get_frame_arch (frame);
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1297
1298 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1299 return 1;
1300 }
1301
1302 return 0;
1303 }
1304
1305 void
1306 put_frame_register (struct frame_info *frame, int regnum,
1307 const gdb_byte *buf)
1308 {
1309 struct gdbarch *gdbarch = get_frame_arch (frame);
1310 int realnum;
1311 int optim;
1312 int unavail;
1313 enum lval_type lval;
1314 CORE_ADDR addr;
1315
1316 frame_register (frame, regnum, &optim, &unavail,
1317 &lval, &addr, &realnum, NULL);
1318 if (optim)
1319 error (_("Attempt to assign to a register that was not saved."));
1320 switch (lval)
1321 {
1322 case lval_memory:
1323 {
1324 write_memory (addr, buf, register_size (gdbarch, regnum));
1325 break;
1326 }
1327 case lval_register:
1328 regcache_cooked_write (get_current_regcache (), realnum, buf);
1329 break;
1330 default:
1331 error (_("Attempt to assign to an unmodifiable value."));
1332 }
1333 }
1334
1335 /* This function is deprecated. Use get_frame_register_value instead,
1336 which provides more accurate information.
1337
1338 Find and return the value of REGNUM for the specified stack frame.
1339 The number of bytes copied is REGISTER_SIZE (REGNUM).
1340
1341 Returns 0 if the register value could not be found. */
1342
1343 int
1344 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1345 gdb_byte *myaddr)
1346 {
1347 int optimized;
1348 int unavailable;
1349 enum lval_type lval;
1350 CORE_ADDR addr;
1351 int realnum;
1352
1353 frame_register (frame, regnum, &optimized, &unavailable,
1354 &lval, &addr, &realnum, myaddr);
1355
1356 return !optimized && !unavailable;
1357 }
1358
1359 int
1360 get_frame_register_bytes (struct frame_info *frame, int regnum,
1361 CORE_ADDR offset, int len, gdb_byte *myaddr,
1362 int *optimizedp, int *unavailablep)
1363 {
1364 struct gdbarch *gdbarch = get_frame_arch (frame);
1365 int i;
1366 int maxsize;
1367 int numregs;
1368
1369 /* Skip registers wholly inside of OFFSET. */
1370 while (offset >= register_size (gdbarch, regnum))
1371 {
1372 offset -= register_size (gdbarch, regnum);
1373 regnum++;
1374 }
1375
1376 /* Ensure that we will not read beyond the end of the register file.
1377 This can only ever happen if the debug information is bad. */
1378 maxsize = -offset;
1379 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1380 for (i = regnum; i < numregs; i++)
1381 {
1382 int thissize = register_size (gdbarch, i);
1383
1384 if (thissize == 0)
1385 break; /* This register is not available on this architecture. */
1386 maxsize += thissize;
1387 }
1388 if (len > maxsize)
1389 error (_("Bad debug information detected: "
1390 "Attempt to read %d bytes from registers."), len);
1391
1392 /* Copy the data. */
1393 while (len > 0)
1394 {
1395 int curr_len = register_size (gdbarch, regnum) - offset;
1396
1397 if (curr_len > len)
1398 curr_len = len;
1399
1400 if (curr_len == register_size (gdbarch, regnum))
1401 {
1402 enum lval_type lval;
1403 CORE_ADDR addr;
1404 int realnum;
1405
1406 frame_register (frame, regnum, optimizedp, unavailablep,
1407 &lval, &addr, &realnum, myaddr);
1408 if (*optimizedp || *unavailablep)
1409 return 0;
1410 }
1411 else
1412 {
1413 gdb_byte buf[MAX_REGISTER_SIZE];
1414 enum lval_type lval;
1415 CORE_ADDR addr;
1416 int realnum;
1417
1418 frame_register (frame, regnum, optimizedp, unavailablep,
1419 &lval, &addr, &realnum, buf);
1420 if (*optimizedp || *unavailablep)
1421 return 0;
1422 memcpy (myaddr, buf + offset, curr_len);
1423 }
1424
1425 myaddr += curr_len;
1426 len -= curr_len;
1427 offset = 0;
1428 regnum++;
1429 }
1430
1431 *optimizedp = 0;
1432 *unavailablep = 0;
1433 return 1;
1434 }
1435
1436 void
1437 put_frame_register_bytes (struct frame_info *frame, int regnum,
1438 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1439 {
1440 struct gdbarch *gdbarch = get_frame_arch (frame);
1441
1442 /* Skip registers wholly inside of OFFSET. */
1443 while (offset >= register_size (gdbarch, regnum))
1444 {
1445 offset -= register_size (gdbarch, regnum);
1446 regnum++;
1447 }
1448
1449 /* Copy the data. */
1450 while (len > 0)
1451 {
1452 int curr_len = register_size (gdbarch, regnum) - offset;
1453
1454 if (curr_len > len)
1455 curr_len = len;
1456
1457 if (curr_len == register_size (gdbarch, regnum))
1458 {
1459 put_frame_register (frame, regnum, myaddr);
1460 }
1461 else
1462 {
1463 gdb_byte buf[MAX_REGISTER_SIZE];
1464
1465 deprecated_frame_register_read (frame, regnum, buf);
1466 memcpy (buf + offset, myaddr, curr_len);
1467 put_frame_register (frame, regnum, buf);
1468 }
1469
1470 myaddr += curr_len;
1471 len -= curr_len;
1472 offset = 0;
1473 regnum++;
1474 }
1475 }
1476
1477 /* Create a sentinel frame. */
1478
1479 static struct frame_info *
1480 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1481 {
1482 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1483
1484 frame->level = -1;
1485 frame->pspace = pspace;
1486 frame->aspace = get_regcache_aspace (regcache);
1487 /* Explicitly initialize the sentinel frame's cache. Provide it
1488 with the underlying regcache. In the future additional
1489 information, such as the frame's thread will be added. */
1490 frame->prologue_cache = sentinel_frame_cache (regcache);
1491 /* For the moment there is only one sentinel frame implementation. */
1492 frame->unwind = &sentinel_frame_unwind;
1493 /* Link this frame back to itself. The frame is self referential
1494 (the unwound PC is the same as the pc), so make it so. */
1495 frame->next = frame;
1496 /* The sentinel frame has a special ID. */
1497 frame->this_id.p = 1;
1498 frame->this_id.value = sentinel_frame_id;
1499 if (frame_debug)
1500 {
1501 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1502 fprint_frame (gdb_stdlog, frame);
1503 fprintf_unfiltered (gdb_stdlog, " }\n");
1504 }
1505 return frame;
1506 }
1507
1508 /* Cache for frame addresses already read by gdb. Valid only while
1509 inferior is stopped. Control variables for the frame cache should
1510 be local to this module. */
1511
1512 static struct obstack frame_cache_obstack;
1513
1514 void *
1515 frame_obstack_zalloc (unsigned long size)
1516 {
1517 void *data = obstack_alloc (&frame_cache_obstack, size);
1518
1519 memset (data, 0, size);
1520 return data;
1521 }
1522
1523 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1524
1525 struct frame_info *
1526 get_current_frame (void)
1527 {
1528 struct frame_info *current_frame;
1529
1530 /* First check, and report, the lack of registers. Having GDB
1531 report "No stack!" or "No memory" when the target doesn't even
1532 have registers is very confusing. Besides, "printcmd.exp"
1533 explicitly checks that ``print $pc'' with no registers prints "No
1534 registers". */
1535 if (!target_has_registers)
1536 error (_("No registers."));
1537 if (!target_has_stack)
1538 error (_("No stack."));
1539 if (!target_has_memory)
1540 error (_("No memory."));
1541 /* Traceframes are effectively a substitute for the live inferior. */
1542 if (get_traceframe_number () < 0)
1543 validate_registers_access ();
1544
1545 if (sentinel_frame == NULL)
1546 sentinel_frame =
1547 create_sentinel_frame (current_program_space, get_current_regcache ());
1548
1549 /* Set the current frame before computing the frame id, to avoid
1550 recursion inside compute_frame_id, in case the frame's
1551 unwinder decides to do a symbol lookup (which depends on the
1552 selected frame's block).
1553
1554 This call must always succeed. In particular, nothing inside
1555 get_prev_frame_always_1 should try to unwind from the
1556 sentinel frame, because that could fail/throw, and we always
1557 want to leave with the current frame created and linked in --
1558 we should never end up with the sentinel frame as outermost
1559 frame. */
1560 current_frame = get_prev_frame_always_1 (sentinel_frame);
1561 gdb_assert (current_frame != NULL);
1562
1563 return current_frame;
1564 }
1565
1566 /* The "selected" stack frame is used by default for local and arg
1567 access. May be zero, for no selected frame. */
1568
1569 static struct frame_info *selected_frame;
1570
1571 int
1572 has_stack_frames (void)
1573 {
1574 if (!target_has_registers || !target_has_stack || !target_has_memory)
1575 return 0;
1576
1577 /* Traceframes are effectively a substitute for the live inferior. */
1578 if (get_traceframe_number () < 0)
1579 {
1580 /* No current inferior, no frame. */
1581 if (ptid_equal (inferior_ptid, null_ptid))
1582 return 0;
1583
1584 /* Don't try to read from a dead thread. */
1585 if (is_exited (inferior_ptid))
1586 return 0;
1587
1588 /* ... or from a spinning thread. */
1589 if (is_executing (inferior_ptid))
1590 return 0;
1591 }
1592
1593 return 1;
1594 }
1595
1596 /* Return the selected frame. Always non-NULL (unless there isn't an
1597 inferior sufficient for creating a frame) in which case an error is
1598 thrown. */
1599
1600 struct frame_info *
1601 get_selected_frame (const char *message)
1602 {
1603 if (selected_frame == NULL)
1604 {
1605 if (message != NULL && !has_stack_frames ())
1606 error (("%s"), message);
1607 /* Hey! Don't trust this. It should really be re-finding the
1608 last selected frame of the currently selected thread. This,
1609 though, is better than nothing. */
1610 select_frame (get_current_frame ());
1611 }
1612 /* There is always a frame. */
1613 gdb_assert (selected_frame != NULL);
1614 return selected_frame;
1615 }
1616
1617 /* If there is a selected frame, return it. Otherwise, return NULL. */
1618
1619 struct frame_info *
1620 get_selected_frame_if_set (void)
1621 {
1622 return selected_frame;
1623 }
1624
1625 /* This is a variant of get_selected_frame() which can be called when
1626 the inferior does not have a frame; in that case it will return
1627 NULL instead of calling error(). */
1628
1629 struct frame_info *
1630 deprecated_safe_get_selected_frame (void)
1631 {
1632 if (!has_stack_frames ())
1633 return NULL;
1634 return get_selected_frame (NULL);
1635 }
1636
1637 /* Select frame FI (or NULL - to invalidate the current frame). */
1638
1639 void
1640 select_frame (struct frame_info *fi)
1641 {
1642 selected_frame = fi;
1643 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1644 frame is being invalidated. */
1645
1646 /* FIXME: kseitz/2002-08-28: It would be nice to call
1647 selected_frame_level_changed_event() right here, but due to limitations
1648 in the current interfaces, we would end up flooding UIs with events
1649 because select_frame() is used extensively internally.
1650
1651 Once we have frame-parameterized frame (and frame-related) commands,
1652 the event notification can be moved here, since this function will only
1653 be called when the user's selected frame is being changed. */
1654
1655 /* Ensure that symbols for this frame are read in. Also, determine the
1656 source language of this frame, and switch to it if desired. */
1657 if (fi)
1658 {
1659 CORE_ADDR pc;
1660
1661 /* We retrieve the frame's symtab by using the frame PC.
1662 However we cannot use the frame PC as-is, because it usually
1663 points to the instruction following the "call", which is
1664 sometimes the first instruction of another function. So we
1665 rely on get_frame_address_in_block() which provides us with a
1666 PC which is guaranteed to be inside the frame's code
1667 block. */
1668 if (get_frame_address_in_block_if_available (fi, &pc))
1669 {
1670 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1671
1672 if (cust != NULL
1673 && compunit_language (cust) != current_language->la_language
1674 && compunit_language (cust) != language_unknown
1675 && language_mode == language_mode_auto)
1676 set_language (compunit_language (cust));
1677 }
1678 }
1679 }
1680
1681 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1682 Always returns a non-NULL value. */
1683
1684 struct frame_info *
1685 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1686 {
1687 struct frame_info *fi;
1688
1689 if (frame_debug)
1690 {
1691 fprintf_unfiltered (gdb_stdlog,
1692 "{ create_new_frame (addr=%s, pc=%s) ",
1693 hex_string (addr), hex_string (pc));
1694 }
1695
1696 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1697
1698 fi->next = create_sentinel_frame (current_program_space,
1699 get_current_regcache ());
1700
1701 /* Set/update this frame's cached PC value, found in the next frame.
1702 Do this before looking for this frame's unwinder. A sniffer is
1703 very likely to read this, and the corresponding unwinder is
1704 entitled to rely that the PC doesn't magically change. */
1705 fi->next->prev_pc.value = pc;
1706 fi->next->prev_pc.status = CC_VALUE;
1707
1708 /* We currently assume that frame chain's can't cross spaces. */
1709 fi->pspace = fi->next->pspace;
1710 fi->aspace = fi->next->aspace;
1711
1712 /* Select/initialize both the unwind function and the frame's type
1713 based on the PC. */
1714 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1715
1716 fi->this_id.p = 1;
1717 fi->this_id.value = frame_id_build (addr, pc);
1718
1719 if (frame_debug)
1720 {
1721 fprintf_unfiltered (gdb_stdlog, "-> ");
1722 fprint_frame (gdb_stdlog, fi);
1723 fprintf_unfiltered (gdb_stdlog, " }\n");
1724 }
1725
1726 return fi;
1727 }
1728
1729 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1730 innermost frame). Be careful to not fall off the bottom of the
1731 frame chain and onto the sentinel frame. */
1732
1733 struct frame_info *
1734 get_next_frame (struct frame_info *this_frame)
1735 {
1736 if (this_frame->level > 0)
1737 return this_frame->next;
1738 else
1739 return NULL;
1740 }
1741
1742 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1743 innermost (i.e. current) frame, return the sentinel frame. Thus,
1744 unlike get_next_frame(), NULL will never be returned. */
1745
1746 struct frame_info *
1747 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1748 {
1749 gdb_assert (this_frame != NULL);
1750
1751 /* Note that, due to the manner in which the sentinel frame is
1752 constructed, this_frame->next still works even when this_frame
1753 is the sentinel frame. But we disallow it here anyway because
1754 calling get_next_frame_sentinel_okay() on the sentinel frame
1755 is likely a coding error. */
1756 gdb_assert (this_frame != sentinel_frame);
1757
1758 return this_frame->next;
1759 }
1760
1761 /* Observer for the target_changed event. */
1762
1763 static void
1764 frame_observer_target_changed (struct target_ops *target)
1765 {
1766 reinit_frame_cache ();
1767 }
1768
1769 /* Flush the entire frame cache. */
1770
1771 void
1772 reinit_frame_cache (void)
1773 {
1774 struct frame_info *fi;
1775
1776 /* Tear down all frame caches. */
1777 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1778 {
1779 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1780 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1781 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1782 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1783 }
1784
1785 /* Since we can't really be sure what the first object allocated was. */
1786 obstack_free (&frame_cache_obstack, 0);
1787 obstack_init (&frame_cache_obstack);
1788
1789 if (sentinel_frame != NULL)
1790 annotate_frames_invalid ();
1791
1792 sentinel_frame = NULL; /* Invalidate cache */
1793 select_frame (NULL);
1794 frame_stash_invalidate ();
1795 if (frame_debug)
1796 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1797 }
1798
1799 /* Find where a register is saved (in memory or another register).
1800 The result of frame_register_unwind is just where it is saved
1801 relative to this particular frame. */
1802
1803 static void
1804 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1805 int *optimizedp, enum lval_type *lvalp,
1806 CORE_ADDR *addrp, int *realnump)
1807 {
1808 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1809
1810 while (this_frame != NULL)
1811 {
1812 int unavailable;
1813
1814 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1815 lvalp, addrp, realnump, NULL);
1816
1817 if (*optimizedp)
1818 break;
1819
1820 if (*lvalp != lval_register)
1821 break;
1822
1823 regnum = *realnump;
1824 this_frame = get_next_frame (this_frame);
1825 }
1826 }
1827
1828 /* Called during frame unwinding to remove a previous frame pointer from a
1829 frame passed in ARG. */
1830
1831 static void
1832 remove_prev_frame (void *arg)
1833 {
1834 struct frame_info *this_frame, *prev_frame;
1835
1836 this_frame = (struct frame_info *) arg;
1837 prev_frame = this_frame->prev;
1838 gdb_assert (prev_frame != NULL);
1839
1840 prev_frame->next = NULL;
1841 this_frame->prev = NULL;
1842 }
1843
1844 /* Get the previous raw frame, and check that it is not identical to
1845 same other frame frame already in the chain. If it is, there is
1846 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1847 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1848 validity tests, that compare THIS_FRAME and the next frame, we do
1849 this right after creating the previous frame, to avoid ever ending
1850 up with two frames with the same id in the frame chain. */
1851
1852 static struct frame_info *
1853 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1854 {
1855 struct frame_info *prev_frame;
1856 struct cleanup *prev_frame_cleanup;
1857
1858 prev_frame = get_prev_frame_raw (this_frame);
1859
1860 /* Don't compute the frame id of the current frame yet. Unwinding
1861 the sentinel frame can fail (e.g., if the thread is gone and we
1862 can't thus read its registers). If we let the cycle detection
1863 code below try to compute a frame ID, then an error thrown from
1864 within the frame ID computation would result in the sentinel
1865 frame as outermost frame, which is bogus. Instead, we'll compute
1866 the current frame's ID lazily in get_frame_id. Note that there's
1867 no point in doing cycle detection when there's only one frame, so
1868 nothing is lost here. */
1869 if (prev_frame->level == 0)
1870 return prev_frame;
1871
1872 /* The cleanup will remove the previous frame that get_prev_frame_raw
1873 linked onto THIS_FRAME. */
1874 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1875
1876 compute_frame_id (prev_frame);
1877 if (!frame_stash_add (prev_frame))
1878 {
1879 /* Another frame with the same id was already in the stash. We just
1880 detected a cycle. */
1881 if (frame_debug)
1882 {
1883 fprintf_unfiltered (gdb_stdlog, "-> ");
1884 fprint_frame (gdb_stdlog, NULL);
1885 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1886 }
1887 this_frame->stop_reason = UNWIND_SAME_ID;
1888 /* Unlink. */
1889 prev_frame->next = NULL;
1890 this_frame->prev = NULL;
1891 prev_frame = NULL;
1892 }
1893
1894 discard_cleanups (prev_frame_cleanup);
1895 return prev_frame;
1896 }
1897
1898 /* Helper function for get_prev_frame_always, this is called inside a
1899 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1900 there is no such frame. This may throw an exception. */
1901
1902 static struct frame_info *
1903 get_prev_frame_always_1 (struct frame_info *this_frame)
1904 {
1905 struct gdbarch *gdbarch;
1906
1907 gdb_assert (this_frame != NULL);
1908 gdbarch = get_frame_arch (this_frame);
1909
1910 if (frame_debug)
1911 {
1912 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1913 if (this_frame != NULL)
1914 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1915 else
1916 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1917 fprintf_unfiltered (gdb_stdlog, ") ");
1918 }
1919
1920 /* Only try to do the unwind once. */
1921 if (this_frame->prev_p)
1922 {
1923 if (frame_debug)
1924 {
1925 fprintf_unfiltered (gdb_stdlog, "-> ");
1926 fprint_frame (gdb_stdlog, this_frame->prev);
1927 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1928 }
1929 return this_frame->prev;
1930 }
1931
1932 /* If the frame unwinder hasn't been selected yet, we must do so
1933 before setting prev_p; otherwise the check for misbehaved
1934 sniffers will think that this frame's sniffer tried to unwind
1935 further (see frame_cleanup_after_sniffer). */
1936 if (this_frame->unwind == NULL)
1937 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1938
1939 this_frame->prev_p = 1;
1940 this_frame->stop_reason = UNWIND_NO_REASON;
1941
1942 /* If we are unwinding from an inline frame, all of the below tests
1943 were already performed when we unwound from the next non-inline
1944 frame. We must skip them, since we can not get THIS_FRAME's ID
1945 until we have unwound all the way down to the previous non-inline
1946 frame. */
1947 if (get_frame_type (this_frame) == INLINE_FRAME)
1948 return get_prev_frame_if_no_cycle (this_frame);
1949
1950 /* Check that this frame is unwindable. If it isn't, don't try to
1951 unwind to the prev frame. */
1952 this_frame->stop_reason
1953 = this_frame->unwind->stop_reason (this_frame,
1954 &this_frame->prologue_cache);
1955
1956 if (this_frame->stop_reason != UNWIND_NO_REASON)
1957 {
1958 if (frame_debug)
1959 {
1960 enum unwind_stop_reason reason = this_frame->stop_reason;
1961
1962 fprintf_unfiltered (gdb_stdlog, "-> ");
1963 fprint_frame (gdb_stdlog, NULL);
1964 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1965 frame_stop_reason_symbol_string (reason));
1966 }
1967 return NULL;
1968 }
1969
1970 /* Check that this frame's ID isn't inner to (younger, below, next)
1971 the next frame. This happens when a frame unwind goes backwards.
1972 This check is valid only if this frame and the next frame are NORMAL.
1973 See the comment at frame_id_inner for details. */
1974 if (get_frame_type (this_frame) == NORMAL_FRAME
1975 && this_frame->next->unwind->type == NORMAL_FRAME
1976 && frame_id_inner (get_frame_arch (this_frame->next),
1977 get_frame_id (this_frame),
1978 get_frame_id (this_frame->next)))
1979 {
1980 CORE_ADDR this_pc_in_block;
1981 struct minimal_symbol *morestack_msym;
1982 const char *morestack_name = NULL;
1983
1984 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1985 this_pc_in_block = get_frame_address_in_block (this_frame);
1986 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1987 if (morestack_msym)
1988 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1989 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1990 {
1991 if (frame_debug)
1992 {
1993 fprintf_unfiltered (gdb_stdlog, "-> ");
1994 fprint_frame (gdb_stdlog, NULL);
1995 fprintf_unfiltered (gdb_stdlog,
1996 " // this frame ID is inner }\n");
1997 }
1998 this_frame->stop_reason = UNWIND_INNER_ID;
1999 return NULL;
2000 }
2001 }
2002
2003 /* Check that this and the next frame do not unwind the PC register
2004 to the same memory location. If they do, then even though they
2005 have different frame IDs, the new frame will be bogus; two
2006 functions can't share a register save slot for the PC. This can
2007 happen when the prologue analyzer finds a stack adjustment, but
2008 no PC save.
2009
2010 This check does assume that the "PC register" is roughly a
2011 traditional PC, even if the gdbarch_unwind_pc method adjusts
2012 it (we do not rely on the value, only on the unwound PC being
2013 dependent on this value). A potential improvement would be
2014 to have the frame prev_pc method and the gdbarch unwind_pc
2015 method set the same lval and location information as
2016 frame_register_unwind. */
2017 if (this_frame->level > 0
2018 && gdbarch_pc_regnum (gdbarch) >= 0
2019 && get_frame_type (this_frame) == NORMAL_FRAME
2020 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2021 || get_frame_type (this_frame->next) == INLINE_FRAME))
2022 {
2023 int optimized, realnum, nrealnum;
2024 enum lval_type lval, nlval;
2025 CORE_ADDR addr, naddr;
2026
2027 frame_register_unwind_location (this_frame,
2028 gdbarch_pc_regnum (gdbarch),
2029 &optimized, &lval, &addr, &realnum);
2030 frame_register_unwind_location (get_next_frame (this_frame),
2031 gdbarch_pc_regnum (gdbarch),
2032 &optimized, &nlval, &naddr, &nrealnum);
2033
2034 if ((lval == lval_memory && lval == nlval && addr == naddr)
2035 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2036 {
2037 if (frame_debug)
2038 {
2039 fprintf_unfiltered (gdb_stdlog, "-> ");
2040 fprint_frame (gdb_stdlog, NULL);
2041 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2042 }
2043
2044 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2045 this_frame->prev = NULL;
2046 return NULL;
2047 }
2048 }
2049
2050 return get_prev_frame_if_no_cycle (this_frame);
2051 }
2052
2053 /* Return a "struct frame_info" corresponding to the frame that called
2054 THIS_FRAME. Returns NULL if there is no such frame.
2055
2056 Unlike get_prev_frame, this function always tries to unwind the
2057 frame. */
2058
2059 struct frame_info *
2060 get_prev_frame_always (struct frame_info *this_frame)
2061 {
2062 struct frame_info *prev_frame = NULL;
2063
2064 TRY
2065 {
2066 prev_frame = get_prev_frame_always_1 (this_frame);
2067 }
2068 CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 if (ex.error == MEMORY_ERROR)
2071 {
2072 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2073 if (ex.message != NULL)
2074 {
2075 char *stop_string;
2076 size_t size;
2077
2078 /* The error needs to live as long as the frame does.
2079 Allocate using stack local STOP_STRING then assign the
2080 pointer to the frame, this allows the STOP_STRING on the
2081 frame to be of type 'const char *'. */
2082 size = strlen (ex.message) + 1;
2083 stop_string = (char *) frame_obstack_zalloc (size);
2084 memcpy (stop_string, ex.message, size);
2085 this_frame->stop_string = stop_string;
2086 }
2087 prev_frame = NULL;
2088 }
2089 else
2090 throw_exception (ex);
2091 }
2092 END_CATCH
2093
2094 return prev_frame;
2095 }
2096
2097 /* Construct a new "struct frame_info" and link it previous to
2098 this_frame. */
2099
2100 static struct frame_info *
2101 get_prev_frame_raw (struct frame_info *this_frame)
2102 {
2103 struct frame_info *prev_frame;
2104
2105 /* Allocate the new frame but do not wire it in to the frame chain.
2106 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2107 frame->next to pull some fancy tricks (of course such code is, by
2108 definition, recursive). Try to prevent it.
2109
2110 There is no reason to worry about memory leaks, should the
2111 remainder of the function fail. The allocated memory will be
2112 quickly reclaimed when the frame cache is flushed, and the `we've
2113 been here before' check above will stop repeated memory
2114 allocation calls. */
2115 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2116 prev_frame->level = this_frame->level + 1;
2117
2118 /* For now, assume we don't have frame chains crossing address
2119 spaces. */
2120 prev_frame->pspace = this_frame->pspace;
2121 prev_frame->aspace = this_frame->aspace;
2122
2123 /* Don't yet compute ->unwind (and hence ->type). It is computed
2124 on-demand in get_frame_type, frame_register_unwind, and
2125 get_frame_id. */
2126
2127 /* Don't yet compute the frame's ID. It is computed on-demand by
2128 get_frame_id(). */
2129
2130 /* The unwound frame ID is validate at the start of this function,
2131 as part of the logic to decide if that frame should be further
2132 unwound, and not here while the prev frame is being created.
2133 Doing this makes it possible for the user to examine a frame that
2134 has an invalid frame ID.
2135
2136 Some very old VAX code noted: [...] For the sake of argument,
2137 suppose that the stack is somewhat trashed (which is one reason
2138 that "info frame" exists). So, return 0 (indicating we don't
2139 know the address of the arglist) if we don't know what frame this
2140 frame calls. */
2141
2142 /* Link it in. */
2143 this_frame->prev = prev_frame;
2144 prev_frame->next = this_frame;
2145
2146 if (frame_debug)
2147 {
2148 fprintf_unfiltered (gdb_stdlog, "-> ");
2149 fprint_frame (gdb_stdlog, prev_frame);
2150 fprintf_unfiltered (gdb_stdlog, " }\n");
2151 }
2152
2153 return prev_frame;
2154 }
2155
2156 /* Debug routine to print a NULL frame being returned. */
2157
2158 static void
2159 frame_debug_got_null_frame (struct frame_info *this_frame,
2160 const char *reason)
2161 {
2162 if (frame_debug)
2163 {
2164 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2165 if (this_frame != NULL)
2166 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2167 else
2168 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2169 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2170 }
2171 }
2172
2173 /* Is this (non-sentinel) frame in the "main"() function? */
2174
2175 static int
2176 inside_main_func (struct frame_info *this_frame)
2177 {
2178 struct bound_minimal_symbol msymbol;
2179 CORE_ADDR maddr;
2180
2181 if (symfile_objfile == 0)
2182 return 0;
2183 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2184 if (msymbol.minsym == NULL)
2185 return 0;
2186 /* Make certain that the code, and not descriptor, address is
2187 returned. */
2188 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2189 BMSYMBOL_VALUE_ADDRESS (msymbol),
2190 &current_target);
2191 return maddr == get_frame_func (this_frame);
2192 }
2193
2194 /* Test whether THIS_FRAME is inside the process entry point function. */
2195
2196 static int
2197 inside_entry_func (struct frame_info *this_frame)
2198 {
2199 CORE_ADDR entry_point;
2200
2201 if (!entry_point_address_query (&entry_point))
2202 return 0;
2203
2204 return get_frame_func (this_frame) == entry_point;
2205 }
2206
2207 /* Return a structure containing various interesting information about
2208 the frame that called THIS_FRAME. Returns NULL if there is entier
2209 no such frame or the frame fails any of a set of target-independent
2210 condition that should terminate the frame chain (e.g., as unwinding
2211 past main()).
2212
2213 This function should not contain target-dependent tests, such as
2214 checking whether the program-counter is zero. */
2215
2216 struct frame_info *
2217 get_prev_frame (struct frame_info *this_frame)
2218 {
2219 CORE_ADDR frame_pc;
2220 int frame_pc_p;
2221
2222 /* There is always a frame. If this assertion fails, suspect that
2223 something should be calling get_selected_frame() or
2224 get_current_frame(). */
2225 gdb_assert (this_frame != NULL);
2226
2227 /* If this_frame is the current frame, then compute and stash
2228 its frame id prior to fetching and computing the frame id of the
2229 previous frame. Otherwise, the cycle detection code in
2230 get_prev_frame_if_no_cycle() will not work correctly. When
2231 get_frame_id() is called later on, an assertion error will
2232 be triggered in the event of a cycle between the current
2233 frame and its previous frame. */
2234 if (this_frame->level == 0)
2235 get_frame_id (this_frame);
2236
2237 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2238
2239 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2240 sense to stop unwinding at a dummy frame. One place where a dummy
2241 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2242 pcsqh register (space register for the instruction at the head of the
2243 instruction queue) cannot be written directly; the only way to set it
2244 is to branch to code that is in the target space. In order to implement
2245 frame dummies on HPUX, the called function is made to jump back to where
2246 the inferior was when the user function was called. If gdb was inside
2247 the main function when we created the dummy frame, the dummy frame will
2248 point inside the main function. */
2249 if (this_frame->level >= 0
2250 && get_frame_type (this_frame) == NORMAL_FRAME
2251 && !backtrace_past_main
2252 && frame_pc_p
2253 && inside_main_func (this_frame))
2254 /* Don't unwind past main(). Note, this is done _before_ the
2255 frame has been marked as previously unwound. That way if the
2256 user later decides to enable unwinds past main(), that will
2257 automatically happen. */
2258 {
2259 frame_debug_got_null_frame (this_frame, "inside main func");
2260 return NULL;
2261 }
2262
2263 /* If the user's backtrace limit has been exceeded, stop. We must
2264 add two to the current level; one of those accounts for backtrace_limit
2265 being 1-based and the level being 0-based, and the other accounts for
2266 the level of the new frame instead of the level of the current
2267 frame. */
2268 if (this_frame->level + 2 > backtrace_limit)
2269 {
2270 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2271 return NULL;
2272 }
2273
2274 /* If we're already inside the entry function for the main objfile,
2275 then it isn't valid. Don't apply this test to a dummy frame -
2276 dummy frame PCs typically land in the entry func. Don't apply
2277 this test to the sentinel frame. Sentinel frames should always
2278 be allowed to unwind. */
2279 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2280 wasn't checking for "main" in the minimal symbols. With that
2281 fixed asm-source tests now stop in "main" instead of halting the
2282 backtrace in weird and wonderful ways somewhere inside the entry
2283 file. Suspect that tests for inside the entry file/func were
2284 added to work around that (now fixed) case. */
2285 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2286 suggested having the inside_entry_func test use the
2287 inside_main_func() msymbol trick (along with entry_point_address()
2288 I guess) to determine the address range of the start function.
2289 That should provide a far better stopper than the current
2290 heuristics. */
2291 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2292 applied tail-call optimizations to main so that a function called
2293 from main returns directly to the caller of main. Since we don't
2294 stop at main, we should at least stop at the entry point of the
2295 application. */
2296 if (this_frame->level >= 0
2297 && get_frame_type (this_frame) == NORMAL_FRAME
2298 && !backtrace_past_entry
2299 && frame_pc_p
2300 && inside_entry_func (this_frame))
2301 {
2302 frame_debug_got_null_frame (this_frame, "inside entry func");
2303 return NULL;
2304 }
2305
2306 /* Assume that the only way to get a zero PC is through something
2307 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2308 will never unwind a zero PC. */
2309 if (this_frame->level > 0
2310 && (get_frame_type (this_frame) == NORMAL_FRAME
2311 || get_frame_type (this_frame) == INLINE_FRAME)
2312 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2313 && frame_pc_p && frame_pc == 0)
2314 {
2315 frame_debug_got_null_frame (this_frame, "zero PC");
2316 return NULL;
2317 }
2318
2319 return get_prev_frame_always (this_frame);
2320 }
2321
2322 struct frame_id
2323 get_prev_frame_id_by_id (struct frame_id id)
2324 {
2325 struct frame_id prev_id;
2326 struct frame_info *frame;
2327
2328 frame = frame_find_by_id (id);
2329
2330 if (frame != NULL)
2331 prev_id = get_frame_id (get_prev_frame (frame));
2332 else
2333 prev_id = null_frame_id;
2334
2335 return prev_id;
2336 }
2337
2338 CORE_ADDR
2339 get_frame_pc (struct frame_info *frame)
2340 {
2341 gdb_assert (frame->next != NULL);
2342 return frame_unwind_pc (frame->next);
2343 }
2344
2345 int
2346 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2347 {
2348
2349 gdb_assert (frame->next != NULL);
2350
2351 TRY
2352 {
2353 *pc = frame_unwind_pc (frame->next);
2354 }
2355 CATCH (ex, RETURN_MASK_ERROR)
2356 {
2357 if (ex.error == NOT_AVAILABLE_ERROR)
2358 return 0;
2359 else
2360 throw_exception (ex);
2361 }
2362 END_CATCH
2363
2364 return 1;
2365 }
2366
2367 /* Return an address that falls within THIS_FRAME's code block. */
2368
2369 CORE_ADDR
2370 get_frame_address_in_block (struct frame_info *this_frame)
2371 {
2372 /* A draft address. */
2373 CORE_ADDR pc = get_frame_pc (this_frame);
2374
2375 struct frame_info *next_frame = this_frame->next;
2376
2377 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2378 Normally the resume address is inside the body of the function
2379 associated with THIS_FRAME, but there is a special case: when
2380 calling a function which the compiler knows will never return
2381 (for instance abort), the call may be the very last instruction
2382 in the calling function. The resume address will point after the
2383 call and may be at the beginning of a different function
2384 entirely.
2385
2386 If THIS_FRAME is a signal frame or dummy frame, then we should
2387 not adjust the unwound PC. For a dummy frame, GDB pushed the
2388 resume address manually onto the stack. For a signal frame, the
2389 OS may have pushed the resume address manually and invoked the
2390 handler (e.g. GNU/Linux), or invoked the trampoline which called
2391 the signal handler - but in either case the signal handler is
2392 expected to return to the trampoline. So in both of these
2393 cases we know that the resume address is executable and
2394 related. So we only need to adjust the PC if THIS_FRAME
2395 is a normal function.
2396
2397 If the program has been interrupted while THIS_FRAME is current,
2398 then clearly the resume address is inside the associated
2399 function. There are three kinds of interruption: debugger stop
2400 (next frame will be SENTINEL_FRAME), operating system
2401 signal or exception (next frame will be SIGTRAMP_FRAME),
2402 or debugger-induced function call (next frame will be
2403 DUMMY_FRAME). So we only need to adjust the PC if
2404 NEXT_FRAME is a normal function.
2405
2406 We check the type of NEXT_FRAME first, since it is already
2407 known; frame type is determined by the unwinder, and since
2408 we have THIS_FRAME we've already selected an unwinder for
2409 NEXT_FRAME.
2410
2411 If the next frame is inlined, we need to keep going until we find
2412 the real function - for instance, if a signal handler is invoked
2413 while in an inlined function, then the code address of the
2414 "calling" normal function should not be adjusted either. */
2415
2416 while (get_frame_type (next_frame) == INLINE_FRAME)
2417 next_frame = next_frame->next;
2418
2419 if ((get_frame_type (next_frame) == NORMAL_FRAME
2420 || get_frame_type (next_frame) == TAILCALL_FRAME)
2421 && (get_frame_type (this_frame) == NORMAL_FRAME
2422 || get_frame_type (this_frame) == TAILCALL_FRAME
2423 || get_frame_type (this_frame) == INLINE_FRAME))
2424 return pc - 1;
2425
2426 return pc;
2427 }
2428
2429 int
2430 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2431 CORE_ADDR *pc)
2432 {
2433
2434 TRY
2435 {
2436 *pc = get_frame_address_in_block (this_frame);
2437 }
2438 CATCH (ex, RETURN_MASK_ERROR)
2439 {
2440 if (ex.error == NOT_AVAILABLE_ERROR)
2441 return 0;
2442 throw_exception (ex);
2443 }
2444 END_CATCH
2445
2446 return 1;
2447 }
2448
2449 void
2450 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2451 {
2452 struct frame_info *next_frame;
2453 int notcurrent;
2454 CORE_ADDR pc;
2455
2456 /* If the next frame represents an inlined function call, this frame's
2457 sal is the "call site" of that inlined function, which can not
2458 be inferred from get_frame_pc. */
2459 next_frame = get_next_frame (frame);
2460 if (frame_inlined_callees (frame) > 0)
2461 {
2462 struct symbol *sym;
2463
2464 if (next_frame)
2465 sym = get_frame_function (next_frame);
2466 else
2467 sym = inline_skipped_symbol (inferior_ptid);
2468
2469 /* If frame is inline, it certainly has symbols. */
2470 gdb_assert (sym);
2471 init_sal (sal);
2472 if (SYMBOL_LINE (sym) != 0)
2473 {
2474 sal->symtab = symbol_symtab (sym);
2475 sal->line = SYMBOL_LINE (sym);
2476 }
2477 else
2478 /* If the symbol does not have a location, we don't know where
2479 the call site is. Do not pretend to. This is jarring, but
2480 we can't do much better. */
2481 sal->pc = get_frame_pc (frame);
2482
2483 sal->pspace = get_frame_program_space (frame);
2484
2485 return;
2486 }
2487
2488 /* If FRAME is not the innermost frame, that normally means that
2489 FRAME->pc points at the return instruction (which is *after* the
2490 call instruction), and we want to get the line containing the
2491 call (because the call is where the user thinks the program is).
2492 However, if the next frame is either a SIGTRAMP_FRAME or a
2493 DUMMY_FRAME, then the next frame will contain a saved interrupt
2494 PC and such a PC indicates the current (rather than next)
2495 instruction/line, consequently, for such cases, want to get the
2496 line containing fi->pc. */
2497 if (!get_frame_pc_if_available (frame, &pc))
2498 {
2499 init_sal (sal);
2500 return;
2501 }
2502
2503 notcurrent = (pc != get_frame_address_in_block (frame));
2504 (*sal) = find_pc_line (pc, notcurrent);
2505 }
2506
2507 /* Per "frame.h", return the ``address'' of the frame. Code should
2508 really be using get_frame_id(). */
2509 CORE_ADDR
2510 get_frame_base (struct frame_info *fi)
2511 {
2512 return get_frame_id (fi).stack_addr;
2513 }
2514
2515 /* High-level offsets into the frame. Used by the debug info. */
2516
2517 CORE_ADDR
2518 get_frame_base_address (struct frame_info *fi)
2519 {
2520 if (get_frame_type (fi) != NORMAL_FRAME)
2521 return 0;
2522 if (fi->base == NULL)
2523 fi->base = frame_base_find_by_frame (fi);
2524 /* Sneaky: If the low-level unwind and high-level base code share a
2525 common unwinder, let them share the prologue cache. */
2526 if (fi->base->unwind == fi->unwind)
2527 return fi->base->this_base (fi, &fi->prologue_cache);
2528 return fi->base->this_base (fi, &fi->base_cache);
2529 }
2530
2531 CORE_ADDR
2532 get_frame_locals_address (struct frame_info *fi)
2533 {
2534 if (get_frame_type (fi) != NORMAL_FRAME)
2535 return 0;
2536 /* If there isn't a frame address method, find it. */
2537 if (fi->base == NULL)
2538 fi->base = frame_base_find_by_frame (fi);
2539 /* Sneaky: If the low-level unwind and high-level base code share a
2540 common unwinder, let them share the prologue cache. */
2541 if (fi->base->unwind == fi->unwind)
2542 return fi->base->this_locals (fi, &fi->prologue_cache);
2543 return fi->base->this_locals (fi, &fi->base_cache);
2544 }
2545
2546 CORE_ADDR
2547 get_frame_args_address (struct frame_info *fi)
2548 {
2549 if (get_frame_type (fi) != NORMAL_FRAME)
2550 return 0;
2551 /* If there isn't a frame address method, find it. */
2552 if (fi->base == NULL)
2553 fi->base = frame_base_find_by_frame (fi);
2554 /* Sneaky: If the low-level unwind and high-level base code share a
2555 common unwinder, let them share the prologue cache. */
2556 if (fi->base->unwind == fi->unwind)
2557 return fi->base->this_args (fi, &fi->prologue_cache);
2558 return fi->base->this_args (fi, &fi->base_cache);
2559 }
2560
2561 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2562 otherwise. */
2563
2564 int
2565 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2566 {
2567 if (fi->unwind == NULL)
2568 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2569 return fi->unwind == unwinder;
2570 }
2571
2572 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2573 or -1 for a NULL frame. */
2574
2575 int
2576 frame_relative_level (struct frame_info *fi)
2577 {
2578 if (fi == NULL)
2579 return -1;
2580 else
2581 return fi->level;
2582 }
2583
2584 enum frame_type
2585 get_frame_type (struct frame_info *frame)
2586 {
2587 if (frame->unwind == NULL)
2588 /* Initialize the frame's unwinder because that's what
2589 provides the frame's type. */
2590 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2591 return frame->unwind->type;
2592 }
2593
2594 struct program_space *
2595 get_frame_program_space (struct frame_info *frame)
2596 {
2597 return frame->pspace;
2598 }
2599
2600 struct program_space *
2601 frame_unwind_program_space (struct frame_info *this_frame)
2602 {
2603 gdb_assert (this_frame);
2604
2605 /* This is really a placeholder to keep the API consistent --- we
2606 assume for now that we don't have frame chains crossing
2607 spaces. */
2608 return this_frame->pspace;
2609 }
2610
2611 struct address_space *
2612 get_frame_address_space (struct frame_info *frame)
2613 {
2614 return frame->aspace;
2615 }
2616
2617 /* Memory access methods. */
2618
2619 void
2620 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2621 gdb_byte *buf, int len)
2622 {
2623 read_memory (addr, buf, len);
2624 }
2625
2626 LONGEST
2627 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2628 int len)
2629 {
2630 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2632
2633 return read_memory_integer (addr, len, byte_order);
2634 }
2635
2636 ULONGEST
2637 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2638 int len)
2639 {
2640 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2642
2643 return read_memory_unsigned_integer (addr, len, byte_order);
2644 }
2645
2646 int
2647 safe_frame_unwind_memory (struct frame_info *this_frame,
2648 CORE_ADDR addr, gdb_byte *buf, int len)
2649 {
2650 /* NOTE: target_read_memory returns zero on success! */
2651 return !target_read_memory (addr, buf, len);
2652 }
2653
2654 /* Architecture methods. */
2655
2656 struct gdbarch *
2657 get_frame_arch (struct frame_info *this_frame)
2658 {
2659 return frame_unwind_arch (this_frame->next);
2660 }
2661
2662 struct gdbarch *
2663 frame_unwind_arch (struct frame_info *next_frame)
2664 {
2665 if (!next_frame->prev_arch.p)
2666 {
2667 struct gdbarch *arch;
2668
2669 if (next_frame->unwind == NULL)
2670 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2671
2672 if (next_frame->unwind->prev_arch != NULL)
2673 arch = next_frame->unwind->prev_arch (next_frame,
2674 &next_frame->prologue_cache);
2675 else
2676 arch = get_frame_arch (next_frame);
2677
2678 next_frame->prev_arch.arch = arch;
2679 next_frame->prev_arch.p = 1;
2680 if (frame_debug)
2681 fprintf_unfiltered (gdb_stdlog,
2682 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2683 next_frame->level,
2684 gdbarch_bfd_arch_info (arch)->printable_name);
2685 }
2686
2687 return next_frame->prev_arch.arch;
2688 }
2689
2690 struct gdbarch *
2691 frame_unwind_caller_arch (struct frame_info *next_frame)
2692 {
2693 next_frame = skip_artificial_frames (next_frame);
2694
2695 /* We must have a non-artificial frame. The caller is supposed to check
2696 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2697 in this case. */
2698 gdb_assert (next_frame != NULL);
2699
2700 return frame_unwind_arch (next_frame);
2701 }
2702
2703 /* Gets the language of FRAME. */
2704
2705 enum language
2706 get_frame_language (struct frame_info *frame)
2707 {
2708 CORE_ADDR pc = 0;
2709 int pc_p = 0;
2710
2711 gdb_assert (frame!= NULL);
2712
2713 /* We determine the current frame language by looking up its
2714 associated symtab. To retrieve this symtab, we use the frame
2715 PC. However we cannot use the frame PC as is, because it
2716 usually points to the instruction following the "call", which
2717 is sometimes the first instruction of another function. So
2718 we rely on get_frame_address_in_block(), it provides us with
2719 a PC that is guaranteed to be inside the frame's code
2720 block. */
2721
2722 TRY
2723 {
2724 pc = get_frame_address_in_block (frame);
2725 pc_p = 1;
2726 }
2727 CATCH (ex, RETURN_MASK_ERROR)
2728 {
2729 if (ex.error != NOT_AVAILABLE_ERROR)
2730 throw_exception (ex);
2731 }
2732 END_CATCH
2733
2734 if (pc_p)
2735 {
2736 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2737
2738 if (cust != NULL)
2739 return compunit_language (cust);
2740 }
2741
2742 return language_unknown;
2743 }
2744
2745 /* Stack pointer methods. */
2746
2747 CORE_ADDR
2748 get_frame_sp (struct frame_info *this_frame)
2749 {
2750 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2751
2752 /* Normality - an architecture that provides a way of obtaining any
2753 frame inner-most address. */
2754 if (gdbarch_unwind_sp_p (gdbarch))
2755 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2756 operate on THIS_FRAME now. */
2757 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2758 /* Now things are really are grim. Hope that the value returned by
2759 the gdbarch_sp_regnum register is meaningful. */
2760 if (gdbarch_sp_regnum (gdbarch) >= 0)
2761 return get_frame_register_unsigned (this_frame,
2762 gdbarch_sp_regnum (gdbarch));
2763 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2764 }
2765
2766 /* Return the reason why we can't unwind past FRAME. */
2767
2768 enum unwind_stop_reason
2769 get_frame_unwind_stop_reason (struct frame_info *frame)
2770 {
2771 /* Fill-in STOP_REASON. */
2772 get_prev_frame_always (frame);
2773 gdb_assert (frame->prev_p);
2774
2775 return frame->stop_reason;
2776 }
2777
2778 /* Return a string explaining REASON. */
2779
2780 const char *
2781 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2782 {
2783 switch (reason)
2784 {
2785 #define SET(name, description) \
2786 case name: return _(description);
2787 #include "unwind_stop_reasons.def"
2788 #undef SET
2789
2790 default:
2791 internal_error (__FILE__, __LINE__,
2792 "Invalid frame stop reason");
2793 }
2794 }
2795
2796 const char *
2797 frame_stop_reason_string (struct frame_info *fi)
2798 {
2799 gdb_assert (fi->prev_p);
2800 gdb_assert (fi->prev == NULL);
2801
2802 /* Return the specific string if we have one. */
2803 if (fi->stop_string != NULL)
2804 return fi->stop_string;
2805
2806 /* Return the generic string if we have nothing better. */
2807 return unwind_stop_reason_to_string (fi->stop_reason);
2808 }
2809
2810 /* Return the enum symbol name of REASON as a string, to use in debug
2811 output. */
2812
2813 static const char *
2814 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2815 {
2816 switch (reason)
2817 {
2818 #define SET(name, description) \
2819 case name: return #name;
2820 #include "unwind_stop_reasons.def"
2821 #undef SET
2822
2823 default:
2824 internal_error (__FILE__, __LINE__,
2825 "Invalid frame stop reason");
2826 }
2827 }
2828
2829 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2830 FRAME. */
2831
2832 static void
2833 frame_cleanup_after_sniffer (void *arg)
2834 {
2835 struct frame_info *frame = (struct frame_info *) arg;
2836
2837 /* The sniffer should not allocate a prologue cache if it did not
2838 match this frame. */
2839 gdb_assert (frame->prologue_cache == NULL);
2840
2841 /* No sniffer should extend the frame chain; sniff based on what is
2842 already certain. */
2843 gdb_assert (!frame->prev_p);
2844
2845 /* The sniffer should not check the frame's ID; that's circular. */
2846 gdb_assert (!frame->this_id.p);
2847
2848 /* Clear cached fields dependent on the unwinder.
2849
2850 The previous PC is independent of the unwinder, but the previous
2851 function is not (see get_frame_address_in_block). */
2852 frame->prev_func.p = 0;
2853 frame->prev_func.addr = 0;
2854
2855 /* Discard the unwinder last, so that we can easily find it if an assertion
2856 in this function triggers. */
2857 frame->unwind = NULL;
2858 }
2859
2860 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2861 Return a cleanup which should be called if unwinding fails, and
2862 discarded if it succeeds. */
2863
2864 struct cleanup *
2865 frame_prepare_for_sniffer (struct frame_info *frame,
2866 const struct frame_unwind *unwind)
2867 {
2868 gdb_assert (frame->unwind == NULL);
2869 frame->unwind = unwind;
2870 return make_cleanup (frame_cleanup_after_sniffer, frame);
2871 }
2872
2873 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2874
2875 static struct cmd_list_element *set_backtrace_cmdlist;
2876 static struct cmd_list_element *show_backtrace_cmdlist;
2877
2878 static void
2879 set_backtrace_cmd (char *args, int from_tty)
2880 {
2881 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2882 gdb_stdout);
2883 }
2884
2885 static void
2886 show_backtrace_cmd (char *args, int from_tty)
2887 {
2888 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2889 }
2890
2891 void
2892 _initialize_frame (void)
2893 {
2894 obstack_init (&frame_cache_obstack);
2895
2896 frame_stash_create ();
2897
2898 observer_attach_target_changed (frame_observer_target_changed);
2899
2900 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2901 Set backtrace specific variables.\n\
2902 Configure backtrace variables such as the backtrace limit"),
2903 &set_backtrace_cmdlist, "set backtrace ",
2904 0/*allow-unknown*/, &setlist);
2905 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2906 Show backtrace specific variables\n\
2907 Show backtrace variables such as the backtrace limit"),
2908 &show_backtrace_cmdlist, "show backtrace ",
2909 0/*allow-unknown*/, &showlist);
2910
2911 add_setshow_boolean_cmd ("past-main", class_obscure,
2912 &backtrace_past_main, _("\
2913 Set whether backtraces should continue past \"main\"."), _("\
2914 Show whether backtraces should continue past \"main\"."), _("\
2915 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2916 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2917 of the stack trace."),
2918 NULL,
2919 show_backtrace_past_main,
2920 &set_backtrace_cmdlist,
2921 &show_backtrace_cmdlist);
2922
2923 add_setshow_boolean_cmd ("past-entry", class_obscure,
2924 &backtrace_past_entry, _("\
2925 Set whether backtraces should continue past the entry point of a program."),
2926 _("\
2927 Show whether backtraces should continue past the entry point of a program."),
2928 _("\
2929 Normally there are no callers beyond the entry point of a program, so GDB\n\
2930 will terminate the backtrace there. Set this variable if you need to see\n\
2931 the rest of the stack trace."),
2932 NULL,
2933 show_backtrace_past_entry,
2934 &set_backtrace_cmdlist,
2935 &show_backtrace_cmdlist);
2936
2937 add_setshow_uinteger_cmd ("limit", class_obscure,
2938 &backtrace_limit, _("\
2939 Set an upper bound on the number of backtrace levels."), _("\
2940 Show the upper bound on the number of backtrace levels."), _("\
2941 No more than the specified number of frames can be displayed or examined.\n\
2942 Literal \"unlimited\" or zero means no limit."),
2943 NULL,
2944 show_backtrace_limit,
2945 &set_backtrace_cmdlist,
2946 &show_backtrace_cmdlist);
2947
2948 /* Debug this files internals. */
2949 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2950 Set frame debugging."), _("\
2951 Show frame debugging."), _("\
2952 When non-zero, frame specific internal debugging is enabled."),
2953 NULL,
2954 show_frame_debug,
2955 &setdebuglist, &showdebuglist);
2956 }
This page took 0.095089 seconds and 5 git commands to generate.