Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 /* Local non-gdb includes. */
23 #include "annotate.h"
24 #include "block.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "frame.h"
30 #include "gdb_obstack.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "hashtab.h"
35 #include "inferior.h"
36 #include "inline-frame.h"
37 #include "language.h"
38 #include "objfiles.h"
39 #include "observable.h"
40 #include "regcache.h"
41 #include "sentinel-frame.h"
42 #include "target.h"
43 #include "tracepoint.h"
44 #include "user-regs.h"
45 #include "valprint.h"
46 #include "value.h"
47
48 /* The sentinel frame terminates the innermost end of the frame chain.
49 If unwound, it returns the information needed to construct an
50 innermost frame.
51
52 The current frame, which is the innermost frame, can be found at
53 sentinel_frame->prev. */
54
55 static struct frame_info *sentinel_frame;
56
57 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
58 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
59
60 /* Status of some values cached in the frame_info object. */
61
62 enum cached_copy_status
63 {
64 /* Value is unknown. */
65 CC_UNKNOWN,
66
67 /* We have a value. */
68 CC_VALUE,
69
70 /* Value was not saved. */
71 CC_NOT_SAVED,
72
73 /* Value is unavailable. */
74 CC_UNAVAILABLE
75 };
76
77 /* We keep a cache of stack frames, each of which is a "struct
78 frame_info". The innermost one gets allocated (in
79 wait_for_inferior) each time the inferior stops; sentinel_frame
80 points to it. Additional frames get allocated (in get_prev_frame)
81 as needed, and are chained through the next and prev fields. Any
82 time that the frame cache becomes invalid (most notably when we
83 execute something, but also if we change how we interpret the
84 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
85 which reads new symbols)), we should call reinit_frame_cache. */
86
87 struct frame_info
88 {
89 /* Level of this frame. The inner-most (youngest) frame is at level
90 0. As you move towards the outer-most (oldest) frame, the level
91 increases. This is a cached value. It could just as easily be
92 computed by counting back from the selected frame to the inner
93 most frame. */
94 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
95 reserved to indicate a bogus frame - one that has been created
96 just to keep GDB happy (GDB always needs a frame). For the
97 moment leave this as speculation. */
98 int level;
99
100 /* The frame's program space. */
101 struct program_space *pspace;
102
103 /* The frame's address space. */
104 const address_space *aspace;
105
106 /* The frame's low-level unwinder and corresponding cache. The
107 low-level unwinder is responsible for unwinding register values
108 for the previous frame. The low-level unwind methods are
109 selected based on the presence, or otherwise, of register unwind
110 information such as CFI. */
111 void *prologue_cache;
112 const struct frame_unwind *unwind;
113
114 /* Cached copy of the previous frame's architecture. */
115 struct
116 {
117 int p;
118 struct gdbarch *arch;
119 } prev_arch;
120
121 /* Cached copy of the previous frame's resume address. */
122 struct {
123 enum cached_copy_status status;
124 CORE_ADDR value;
125 } prev_pc;
126
127 /* Cached copy of the previous frame's function address. */
128 struct
129 {
130 CORE_ADDR addr;
131 int p;
132 } prev_func;
133
134 /* This frame's ID. */
135 struct
136 {
137 int p;
138 struct frame_id value;
139 } this_id;
140
141 /* The frame's high-level base methods, and corresponding cache.
142 The high level base methods are selected based on the frame's
143 debug info. */
144 const struct frame_base *base;
145 void *base_cache;
146
147 /* Pointers to the next (down, inner, younger) and previous (up,
148 outer, older) frame_info's in the frame cache. */
149 struct frame_info *next; /* down, inner, younger */
150 int prev_p;
151 struct frame_info *prev; /* up, outer, older */
152
153 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
154 could. Only valid when PREV_P is set. */
155 enum unwind_stop_reason stop_reason;
156
157 /* A frame specific string describing the STOP_REASON in more detail.
158 Only valid when PREV_P is set, but even then may still be NULL. */
159 const char *stop_string;
160 };
161
162 /* A frame stash used to speed up frame lookups. Create a hash table
163 to stash frames previously accessed from the frame cache for
164 quicker subsequent retrieval. The hash table is emptied whenever
165 the frame cache is invalidated. */
166
167 static htab_t frame_stash;
168
169 /* Internal function to calculate a hash from the frame_id addresses,
170 using as many valid addresses as possible. Frames below level 0
171 are not stored in the hash table. */
172
173 static hashval_t
174 frame_addr_hash (const void *ap)
175 {
176 const struct frame_info *frame = (const struct frame_info *) ap;
177 const struct frame_id f_id = frame->this_id.value;
178 hashval_t hash = 0;
179
180 gdb_assert (f_id.stack_status != FID_STACK_INVALID
181 || f_id.code_addr_p
182 || f_id.special_addr_p);
183
184 if (f_id.stack_status == FID_STACK_VALID)
185 hash = iterative_hash (&f_id.stack_addr,
186 sizeof (f_id.stack_addr), hash);
187 if (f_id.code_addr_p)
188 hash = iterative_hash (&f_id.code_addr,
189 sizeof (f_id.code_addr), hash);
190 if (f_id.special_addr_p)
191 hash = iterative_hash (&f_id.special_addr,
192 sizeof (f_id.special_addr), hash);
193
194 return hash;
195 }
196
197 /* Internal equality function for the hash table. This function
198 defers equality operations to frame_id_eq. */
199
200 static int
201 frame_addr_hash_eq (const void *a, const void *b)
202 {
203 const struct frame_info *f_entry = (const struct frame_info *) a;
204 const struct frame_info *f_element = (const struct frame_info *) b;
205
206 return frame_id_eq (f_entry->this_id.value,
207 f_element->this_id.value);
208 }
209
210 /* Internal function to create the frame_stash hash table. 100 seems
211 to be a good compromise to start the hash table at. */
212
213 static void
214 frame_stash_create (void)
215 {
216 frame_stash = htab_create (100,
217 frame_addr_hash,
218 frame_addr_hash_eq,
219 NULL);
220 }
221
222 /* Internal function to add a frame to the frame_stash hash table.
223 Returns false if a frame with the same ID was already stashed, true
224 otherwise. */
225
226 static int
227 frame_stash_add (struct frame_info *frame)
228 {
229 struct frame_info **slot;
230
231 /* Do not try to stash the sentinel frame. */
232 gdb_assert (frame->level >= 0);
233
234 slot = (struct frame_info **) htab_find_slot (frame_stash,
235 frame,
236 INSERT);
237
238 /* If we already have a frame in the stack with the same id, we
239 either have a stack cycle (corrupted stack?), or some bug
240 elsewhere in GDB. In any case, ignore the duplicate and return
241 an indication to the caller. */
242 if (*slot != NULL)
243 return 0;
244
245 *slot = frame;
246 return 1;
247 }
248
249 /* Internal function to search the frame stash for an entry with the
250 given frame ID. If found, return that frame. Otherwise return
251 NULL. */
252
253 static struct frame_info *
254 frame_stash_find (struct frame_id id)
255 {
256 struct frame_info dummy;
257 struct frame_info *frame;
258
259 dummy.this_id.value = id;
260 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
261 return frame;
262 }
263
264 /* Internal function to invalidate the frame stash by removing all
265 entries in it. This only occurs when the frame cache is
266 invalidated. */
267
268 static void
269 frame_stash_invalidate (void)
270 {
271 htab_empty (frame_stash);
272 }
273
274 /* See frame.h */
275 scoped_restore_selected_frame::scoped_restore_selected_frame ()
276 {
277 m_fid = get_frame_id (get_selected_frame (NULL));
278 }
279
280 /* See frame.h */
281 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
282 {
283 frame_info *frame = frame_find_by_id (m_fid);
284 if (frame == NULL)
285 warning (_("Unable to restore previously selected frame."));
286 else
287 select_frame (frame);
288 }
289
290 /* Flag to control debugging. */
291
292 unsigned int frame_debug;
293 static void
294 show_frame_debug (struct ui_file *file, int from_tty,
295 struct cmd_list_element *c, const char *value)
296 {
297 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
298 }
299
300 /* Flag to indicate whether backtraces should stop at main et.al. */
301
302 static int backtrace_past_main;
303 static void
304 show_backtrace_past_main (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306 {
307 fprintf_filtered (file,
308 _("Whether backtraces should "
309 "continue past \"main\" is %s.\n"),
310 value);
311 }
312
313 static int backtrace_past_entry;
314 static void
315 show_backtrace_past_entry (struct ui_file *file, int from_tty,
316 struct cmd_list_element *c, const char *value)
317 {
318 fprintf_filtered (file, _("Whether backtraces should continue past the "
319 "entry point of a program is %s.\n"),
320 value);
321 }
322
323 static unsigned int backtrace_limit = UINT_MAX;
324 static void
325 show_backtrace_limit (struct ui_file *file, int from_tty,
326 struct cmd_list_element *c, const char *value)
327 {
328 fprintf_filtered (file,
329 _("An upper bound on the number "
330 "of backtrace levels is %s.\n"),
331 value);
332 }
333
334
335 static void
336 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
337 {
338 if (p)
339 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
340 else
341 fprintf_unfiltered (file, "!%s", name);
342 }
343
344 void
345 fprint_frame_id (struct ui_file *file, struct frame_id id)
346 {
347 fprintf_unfiltered (file, "{");
348
349 if (id.stack_status == FID_STACK_INVALID)
350 fprintf_unfiltered (file, "!stack");
351 else if (id.stack_status == FID_STACK_UNAVAILABLE)
352 fprintf_unfiltered (file, "stack=<unavailable>");
353 else if (id.stack_status == FID_STACK_SENTINEL)
354 fprintf_unfiltered (file, "stack=<sentinel>");
355 else
356 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
357 fprintf_unfiltered (file, ",");
358
359 fprint_field (file, "code", id.code_addr_p, id.code_addr);
360 fprintf_unfiltered (file, ",");
361
362 fprint_field (file, "special", id.special_addr_p, id.special_addr);
363
364 if (id.artificial_depth)
365 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
366
367 fprintf_unfiltered (file, "}");
368 }
369
370 static void
371 fprint_frame_type (struct ui_file *file, enum frame_type type)
372 {
373 switch (type)
374 {
375 case NORMAL_FRAME:
376 fprintf_unfiltered (file, "NORMAL_FRAME");
377 return;
378 case DUMMY_FRAME:
379 fprintf_unfiltered (file, "DUMMY_FRAME");
380 return;
381 case INLINE_FRAME:
382 fprintf_unfiltered (file, "INLINE_FRAME");
383 return;
384 case TAILCALL_FRAME:
385 fprintf_unfiltered (file, "TAILCALL_FRAME");
386 return;
387 case SIGTRAMP_FRAME:
388 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
389 return;
390 case ARCH_FRAME:
391 fprintf_unfiltered (file, "ARCH_FRAME");
392 return;
393 case SENTINEL_FRAME:
394 fprintf_unfiltered (file, "SENTINEL_FRAME");
395 return;
396 default:
397 fprintf_unfiltered (file, "<unknown type>");
398 return;
399 };
400 }
401
402 static void
403 fprint_frame (struct ui_file *file, struct frame_info *fi)
404 {
405 if (fi == NULL)
406 {
407 fprintf_unfiltered (file, "<NULL frame>");
408 return;
409 }
410 fprintf_unfiltered (file, "{");
411 fprintf_unfiltered (file, "level=%d", fi->level);
412 fprintf_unfiltered (file, ",");
413 fprintf_unfiltered (file, "type=");
414 if (fi->unwind != NULL)
415 fprint_frame_type (file, fi->unwind->type);
416 else
417 fprintf_unfiltered (file, "<unknown>");
418 fprintf_unfiltered (file, ",");
419 fprintf_unfiltered (file, "unwind=");
420 if (fi->unwind != NULL)
421 gdb_print_host_address (fi->unwind, file);
422 else
423 fprintf_unfiltered (file, "<unknown>");
424 fprintf_unfiltered (file, ",");
425 fprintf_unfiltered (file, "pc=");
426 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
427 fprintf_unfiltered (file, "<unknown>");
428 else if (fi->next->prev_pc.status == CC_VALUE)
429 fprintf_unfiltered (file, "%s",
430 hex_string (fi->next->prev_pc.value));
431 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
432 val_print_not_saved (file);
433 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
434 val_print_unavailable (file);
435 fprintf_unfiltered (file, ",");
436 fprintf_unfiltered (file, "id=");
437 if (fi->this_id.p)
438 fprint_frame_id (file, fi->this_id.value);
439 else
440 fprintf_unfiltered (file, "<unknown>");
441 fprintf_unfiltered (file, ",");
442 fprintf_unfiltered (file, "func=");
443 if (fi->next != NULL && fi->next->prev_func.p)
444 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
445 else
446 fprintf_unfiltered (file, "<unknown>");
447 fprintf_unfiltered (file, "}");
448 }
449
450 /* Given FRAME, return the enclosing frame as found in real frames read-in from
451 inferior memory. Skip any previous frames which were made up by GDB.
452 Return FRAME if FRAME is a non-artificial frame.
453 Return NULL if FRAME is the start of an artificial-only chain. */
454
455 static struct frame_info *
456 skip_artificial_frames (struct frame_info *frame)
457 {
458 /* Note we use get_prev_frame_always, and not get_prev_frame. The
459 latter will truncate the frame chain, leading to this function
460 unintentionally returning a null_frame_id (e.g., when the user
461 sets a backtrace limit).
462
463 Note that for record targets we may get a frame chain that consists
464 of artificial frames only. */
465 while (get_frame_type (frame) == INLINE_FRAME
466 || get_frame_type (frame) == TAILCALL_FRAME)
467 {
468 frame = get_prev_frame_always (frame);
469 if (frame == NULL)
470 break;
471 }
472
473 return frame;
474 }
475
476 struct frame_info *
477 skip_unwritable_frames (struct frame_info *frame)
478 {
479 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
480 {
481 frame = get_prev_frame (frame);
482 if (frame == NULL)
483 break;
484 }
485
486 return frame;
487 }
488
489 /* See frame.h. */
490
491 struct frame_info *
492 skip_tailcall_frames (struct frame_info *frame)
493 {
494 while (get_frame_type (frame) == TAILCALL_FRAME)
495 {
496 /* Note that for record targets we may get a frame chain that consists of
497 tailcall frames only. */
498 frame = get_prev_frame (frame);
499 if (frame == NULL)
500 break;
501 }
502
503 return frame;
504 }
505
506 /* Compute the frame's uniq ID that can be used to, later, re-find the
507 frame. */
508
509 static void
510 compute_frame_id (struct frame_info *fi)
511 {
512 gdb_assert (!fi->this_id.p);
513
514 if (frame_debug)
515 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
516 fi->level);
517 /* Find the unwinder. */
518 if (fi->unwind == NULL)
519 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
520 /* Find THIS frame's ID. */
521 /* Default to outermost if no ID is found. */
522 fi->this_id.value = outer_frame_id;
523 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
524 gdb_assert (frame_id_p (fi->this_id.value));
525 fi->this_id.p = 1;
526 if (frame_debug)
527 {
528 fprintf_unfiltered (gdb_stdlog, "-> ");
529 fprint_frame_id (gdb_stdlog, fi->this_id.value);
530 fprintf_unfiltered (gdb_stdlog, " }\n");
531 }
532 }
533
534 /* Return a frame uniq ID that can be used to, later, re-find the
535 frame. */
536
537 struct frame_id
538 get_frame_id (struct frame_info *fi)
539 {
540 if (fi == NULL)
541 return null_frame_id;
542
543 if (!fi->this_id.p)
544 {
545 int stashed;
546
547 /* If we haven't computed the frame id yet, then it must be that
548 this is the current frame. Compute it now, and stash the
549 result. The IDs of other frames are computed as soon as
550 they're created, in order to detect cycles. See
551 get_prev_frame_if_no_cycle. */
552 gdb_assert (fi->level == 0);
553
554 /* Compute. */
555 compute_frame_id (fi);
556
557 /* Since this is the first frame in the chain, this should
558 always succeed. */
559 stashed = frame_stash_add (fi);
560 gdb_assert (stashed);
561 }
562
563 return fi->this_id.value;
564 }
565
566 struct frame_id
567 get_stack_frame_id (struct frame_info *next_frame)
568 {
569 return get_frame_id (skip_artificial_frames (next_frame));
570 }
571
572 struct frame_id
573 frame_unwind_caller_id (struct frame_info *next_frame)
574 {
575 struct frame_info *this_frame;
576
577 /* Use get_prev_frame_always, and not get_prev_frame. The latter
578 will truncate the frame chain, leading to this function
579 unintentionally returning a null_frame_id (e.g., when a caller
580 requests the frame ID of "main()"s caller. */
581
582 next_frame = skip_artificial_frames (next_frame);
583 if (next_frame == NULL)
584 return null_frame_id;
585
586 this_frame = get_prev_frame_always (next_frame);
587 if (this_frame)
588 return get_frame_id (skip_artificial_frames (this_frame));
589 else
590 return null_frame_id;
591 }
592
593 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
594 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
595 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
596
597 struct frame_id
598 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
599 CORE_ADDR special_addr)
600 {
601 struct frame_id id = null_frame_id;
602
603 id.stack_addr = stack_addr;
604 id.stack_status = FID_STACK_VALID;
605 id.code_addr = code_addr;
606 id.code_addr_p = 1;
607 id.special_addr = special_addr;
608 id.special_addr_p = 1;
609 return id;
610 }
611
612 /* See frame.h. */
613
614 struct frame_id
615 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
616 {
617 struct frame_id id = null_frame_id;
618
619 id.stack_status = FID_STACK_UNAVAILABLE;
620 id.code_addr = code_addr;
621 id.code_addr_p = 1;
622 return id;
623 }
624
625 /* See frame.h. */
626
627 struct frame_id
628 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
629 CORE_ADDR special_addr)
630 {
631 struct frame_id id = null_frame_id;
632
633 id.stack_status = FID_STACK_UNAVAILABLE;
634 id.code_addr = code_addr;
635 id.code_addr_p = 1;
636 id.special_addr = special_addr;
637 id.special_addr_p = 1;
638 return id;
639 }
640
641 struct frame_id
642 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
643 {
644 struct frame_id id = null_frame_id;
645
646 id.stack_addr = stack_addr;
647 id.stack_status = FID_STACK_VALID;
648 id.code_addr = code_addr;
649 id.code_addr_p = 1;
650 return id;
651 }
652
653 struct frame_id
654 frame_id_build_wild (CORE_ADDR stack_addr)
655 {
656 struct frame_id id = null_frame_id;
657
658 id.stack_addr = stack_addr;
659 id.stack_status = FID_STACK_VALID;
660 return id;
661 }
662
663 int
664 frame_id_p (struct frame_id l)
665 {
666 int p;
667
668 /* The frame is valid iff it has a valid stack address. */
669 p = l.stack_status != FID_STACK_INVALID;
670 /* outer_frame_id is also valid. */
671 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
672 p = 1;
673 if (frame_debug)
674 {
675 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
676 fprint_frame_id (gdb_stdlog, l);
677 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
678 }
679 return p;
680 }
681
682 int
683 frame_id_artificial_p (struct frame_id l)
684 {
685 if (!frame_id_p (l))
686 return 0;
687
688 return (l.artificial_depth != 0);
689 }
690
691 int
692 frame_id_eq (struct frame_id l, struct frame_id r)
693 {
694 int eq;
695
696 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
697 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
698 /* The outermost frame marker is equal to itself. This is the
699 dodgy thing about outer_frame_id, since between execution steps
700 we might step into another function - from which we can't
701 unwind either. More thought required to get rid of
702 outer_frame_id. */
703 eq = 1;
704 else if (l.stack_status == FID_STACK_INVALID
705 || r.stack_status == FID_STACK_INVALID)
706 /* Like a NaN, if either ID is invalid, the result is false.
707 Note that a frame ID is invalid iff it is the null frame ID. */
708 eq = 0;
709 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
710 /* If .stack addresses are different, the frames are different. */
711 eq = 0;
712 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
713 /* An invalid code addr is a wild card. If .code addresses are
714 different, the frames are different. */
715 eq = 0;
716 else if (l.special_addr_p && r.special_addr_p
717 && l.special_addr != r.special_addr)
718 /* An invalid special addr is a wild card (or unused). Otherwise
719 if special addresses are different, the frames are different. */
720 eq = 0;
721 else if (l.artificial_depth != r.artificial_depth)
722 /* If artifical depths are different, the frames must be different. */
723 eq = 0;
724 else
725 /* Frames are equal. */
726 eq = 1;
727
728 if (frame_debug)
729 {
730 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
731 fprint_frame_id (gdb_stdlog, l);
732 fprintf_unfiltered (gdb_stdlog, ",r=");
733 fprint_frame_id (gdb_stdlog, r);
734 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
735 }
736 return eq;
737 }
738
739 /* Safety net to check whether frame ID L should be inner to
740 frame ID R, according to their stack addresses.
741
742 This method cannot be used to compare arbitrary frames, as the
743 ranges of valid stack addresses may be discontiguous (e.g. due
744 to sigaltstack).
745
746 However, it can be used as safety net to discover invalid frame
747 IDs in certain circumstances. Assuming that NEXT is the immediate
748 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
749
750 * The stack address of NEXT must be inner-than-or-equal to the stack
751 address of THIS.
752
753 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
754 error has occurred.
755
756 * If NEXT and THIS have different stack addresses, no other frame
757 in the frame chain may have a stack address in between.
758
759 Therefore, if frame_id_inner (TEST, THIS) holds, but
760 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
761 to a valid frame in the frame chain.
762
763 The sanity checks above cannot be performed when a SIGTRAMP frame
764 is involved, because signal handlers might be executed on a different
765 stack than the stack used by the routine that caused the signal
766 to be raised. This can happen for instance when a thread exceeds
767 its maximum stack size. In this case, certain compilers implement
768 a stack overflow strategy that cause the handler to be run on a
769 different stack. */
770
771 static int
772 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
773 {
774 int inner;
775
776 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
777 /* Like NaN, any operation involving an invalid ID always fails.
778 Likewise if either ID has an unavailable stack address. */
779 inner = 0;
780 else if (l.artificial_depth > r.artificial_depth
781 && l.stack_addr == r.stack_addr
782 && l.code_addr_p == r.code_addr_p
783 && l.special_addr_p == r.special_addr_p
784 && l.special_addr == r.special_addr)
785 {
786 /* Same function, different inlined functions. */
787 const struct block *lb, *rb;
788
789 gdb_assert (l.code_addr_p && r.code_addr_p);
790
791 lb = block_for_pc (l.code_addr);
792 rb = block_for_pc (r.code_addr);
793
794 if (lb == NULL || rb == NULL)
795 /* Something's gone wrong. */
796 inner = 0;
797 else
798 /* This will return true if LB and RB are the same block, or
799 if the block with the smaller depth lexically encloses the
800 block with the greater depth. */
801 inner = contained_in (lb, rb);
802 }
803 else
804 /* Only return non-zero when strictly inner than. Note that, per
805 comment in "frame.h", there is some fuzz here. Frameless
806 functions are not strictly inner than (same .stack but
807 different .code and/or .special address). */
808 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
809 if (frame_debug)
810 {
811 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
812 fprint_frame_id (gdb_stdlog, l);
813 fprintf_unfiltered (gdb_stdlog, ",r=");
814 fprint_frame_id (gdb_stdlog, r);
815 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
816 }
817 return inner;
818 }
819
820 struct frame_info *
821 frame_find_by_id (struct frame_id id)
822 {
823 struct frame_info *frame, *prev_frame;
824
825 /* ZERO denotes the null frame, let the caller decide what to do
826 about it. Should it instead return get_current_frame()? */
827 if (!frame_id_p (id))
828 return NULL;
829
830 /* Check for the sentinel frame. */
831 if (frame_id_eq (id, sentinel_frame_id))
832 return sentinel_frame;
833
834 /* Try using the frame stash first. Finding it there removes the need
835 to perform the search by looping over all frames, which can be very
836 CPU-intensive if the number of frames is very high (the loop is O(n)
837 and get_prev_frame performs a series of checks that are relatively
838 expensive). This optimization is particularly useful when this function
839 is called from another function (such as value_fetch_lazy, case
840 VALUE_LVAL (val) == lval_register) which already loops over all frames,
841 making the overall behavior O(n^2). */
842 frame = frame_stash_find (id);
843 if (frame)
844 return frame;
845
846 for (frame = get_current_frame (); ; frame = prev_frame)
847 {
848 struct frame_id self = get_frame_id (frame);
849
850 if (frame_id_eq (id, self))
851 /* An exact match. */
852 return frame;
853
854 prev_frame = get_prev_frame (frame);
855 if (!prev_frame)
856 return NULL;
857
858 /* As a safety net to avoid unnecessary backtracing while trying
859 to find an invalid ID, we check for a common situation where
860 we can detect from comparing stack addresses that no other
861 frame in the current frame chain can have this ID. See the
862 comment at frame_id_inner for details. */
863 if (get_frame_type (frame) == NORMAL_FRAME
864 && !frame_id_inner (get_frame_arch (frame), id, self)
865 && frame_id_inner (get_frame_arch (prev_frame), id,
866 get_frame_id (prev_frame)))
867 return NULL;
868 }
869 return NULL;
870 }
871
872 static CORE_ADDR
873 frame_unwind_pc (struct frame_info *this_frame)
874 {
875 if (this_frame->prev_pc.status == CC_UNKNOWN)
876 {
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
900 {
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
907 {
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
915 }
916 else if (ex.error == OPTIMIZED_OUT_ERROR)
917 {
918 this_frame->prev_pc.status = CC_NOT_SAVED;
919
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
925 }
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
941 }
942 }
943
944 if (this_frame->prev_pc.status == CC_VALUE)
945 return this_frame->prev_pc.value;
946 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
947 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
948 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
949 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
950 else
951 internal_error (__FILE__, __LINE__,
952 "unexpected prev_pc status: %d",
953 (int) this_frame->prev_pc.status);
954 }
955
956 CORE_ADDR
957 frame_unwind_caller_pc (struct frame_info *this_frame)
958 {
959 this_frame = skip_artificial_frames (this_frame);
960
961 /* We must have a non-artificial frame. The caller is supposed to check
962 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
963 in this case. */
964 gdb_assert (this_frame != NULL);
965
966 return frame_unwind_pc (this_frame);
967 }
968
969 int
970 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
971 {
972 struct frame_info *next_frame = this_frame->next;
973
974 if (!next_frame->prev_func.p)
975 {
976 CORE_ADDR addr_in_block;
977
978 /* Make certain that this, and not the adjacent, function is
979 found. */
980 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
981 {
982 next_frame->prev_func.p = -1;
983 if (frame_debug)
984 fprintf_unfiltered (gdb_stdlog,
985 "{ get_frame_func (this_frame=%d)"
986 " -> unavailable }\n",
987 this_frame->level);
988 }
989 else
990 {
991 next_frame->prev_func.p = 1;
992 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
993 if (frame_debug)
994 fprintf_unfiltered (gdb_stdlog,
995 "{ get_frame_func (this_frame=%d) -> %s }\n",
996 this_frame->level,
997 hex_string (next_frame->prev_func.addr));
998 }
999 }
1000
1001 if (next_frame->prev_func.p < 0)
1002 {
1003 *pc = -1;
1004 return 0;
1005 }
1006 else
1007 {
1008 *pc = next_frame->prev_func.addr;
1009 return 1;
1010 }
1011 }
1012
1013 CORE_ADDR
1014 get_frame_func (struct frame_info *this_frame)
1015 {
1016 CORE_ADDR pc;
1017
1018 if (!get_frame_func_if_available (this_frame, &pc))
1019 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1020
1021 return pc;
1022 }
1023
1024 std::unique_ptr<readonly_detached_regcache>
1025 frame_save_as_regcache (struct frame_info *this_frame)
1026 {
1027 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1028 {
1029 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1030 return REG_UNAVAILABLE;
1031 else
1032 return REG_VALID;
1033 };
1034
1035 std::unique_ptr<readonly_detached_regcache> regcache
1036 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1037
1038 return regcache;
1039 }
1040
1041 void
1042 frame_pop (struct frame_info *this_frame)
1043 {
1044 struct frame_info *prev_frame;
1045
1046 if (get_frame_type (this_frame) == DUMMY_FRAME)
1047 {
1048 /* Popping a dummy frame involves restoring more than just registers.
1049 dummy_frame_pop does all the work. */
1050 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1051 return;
1052 }
1053
1054 /* Ensure that we have a frame to pop to. */
1055 prev_frame = get_prev_frame_always (this_frame);
1056
1057 if (!prev_frame)
1058 error (_("Cannot pop the initial frame."));
1059
1060 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1061 entering THISFRAME. */
1062 prev_frame = skip_tailcall_frames (prev_frame);
1063
1064 if (prev_frame == NULL)
1065 error (_("Cannot find the caller frame."));
1066
1067 /* Make a copy of all the register values unwound from this frame.
1068 Save them in a scratch buffer so that there isn't a race between
1069 trying to extract the old values from the current regcache while
1070 at the same time writing new values into that same cache. */
1071 std::unique_ptr<readonly_detached_regcache> scratch
1072 = frame_save_as_regcache (prev_frame);
1073
1074 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1075 target's register cache that it is about to be hit with a burst
1076 register transfer and that the sequence of register writes should
1077 be batched. The pair target_prepare_to_store() and
1078 target_store_registers() kind of suggest this functionality.
1079 Unfortunately, they don't implement it. Their lack of a formal
1080 definition can lead to targets writing back bogus values
1081 (arguably a bug in the target code mind). */
1082 /* Now copy those saved registers into the current regcache. */
1083 get_current_regcache ()->restore (scratch.get ());
1084
1085 /* We've made right mess of GDB's local state, just discard
1086 everything. */
1087 reinit_frame_cache ();
1088 }
1089
1090 void
1091 frame_register_unwind (frame_info *next_frame, int regnum,
1092 int *optimizedp, int *unavailablep,
1093 enum lval_type *lvalp, CORE_ADDR *addrp,
1094 int *realnump, gdb_byte *bufferp)
1095 {
1096 struct value *value;
1097
1098 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1099 that the value proper does not need to be fetched. */
1100 gdb_assert (optimizedp != NULL);
1101 gdb_assert (lvalp != NULL);
1102 gdb_assert (addrp != NULL);
1103 gdb_assert (realnump != NULL);
1104 /* gdb_assert (bufferp != NULL); */
1105
1106 value = frame_unwind_register_value (next_frame, regnum);
1107
1108 gdb_assert (value != NULL);
1109
1110 *optimizedp = value_optimized_out (value);
1111 *unavailablep = !value_entirely_available (value);
1112 *lvalp = VALUE_LVAL (value);
1113 *addrp = value_address (value);
1114 if (*lvalp == lval_register)
1115 *realnump = VALUE_REGNUM (value);
1116 else
1117 *realnump = -1;
1118
1119 if (bufferp)
1120 {
1121 if (!*optimizedp && !*unavailablep)
1122 memcpy (bufferp, value_contents_all (value),
1123 TYPE_LENGTH (value_type (value)));
1124 else
1125 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1126 }
1127
1128 /* Dispose of the new value. This prevents watchpoints from
1129 trying to watch the saved frame pointer. */
1130 release_value (value);
1131 }
1132
1133 void
1134 frame_register (struct frame_info *frame, int regnum,
1135 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1136 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1137 {
1138 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1139 that the value proper does not need to be fetched. */
1140 gdb_assert (optimizedp != NULL);
1141 gdb_assert (lvalp != NULL);
1142 gdb_assert (addrp != NULL);
1143 gdb_assert (realnump != NULL);
1144 /* gdb_assert (bufferp != NULL); */
1145
1146 /* Obtain the register value by unwinding the register from the next
1147 (more inner frame). */
1148 gdb_assert (frame != NULL && frame->next != NULL);
1149 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1150 lvalp, addrp, realnump, bufferp);
1151 }
1152
1153 void
1154 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1155 {
1156 int optimized;
1157 int unavailable;
1158 CORE_ADDR addr;
1159 int realnum;
1160 enum lval_type lval;
1161
1162 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1163 &lval, &addr, &realnum, buf);
1164
1165 if (optimized)
1166 throw_error (OPTIMIZED_OUT_ERROR,
1167 _("Register %d was not saved"), regnum);
1168 if (unavailable)
1169 throw_error (NOT_AVAILABLE_ERROR,
1170 _("Register %d is not available"), regnum);
1171 }
1172
1173 void
1174 get_frame_register (struct frame_info *frame,
1175 int regnum, gdb_byte *buf)
1176 {
1177 frame_unwind_register (frame->next, regnum, buf);
1178 }
1179
1180 struct value *
1181 frame_unwind_register_value (frame_info *next_frame, int regnum)
1182 {
1183 struct gdbarch *gdbarch;
1184 struct value *value;
1185
1186 gdb_assert (next_frame != NULL);
1187 gdbarch = frame_unwind_arch (next_frame);
1188
1189 if (frame_debug)
1190 {
1191 fprintf_unfiltered (gdb_stdlog,
1192 "{ frame_unwind_register_value "
1193 "(frame=%d,regnum=%d(%s),...) ",
1194 next_frame->level, regnum,
1195 user_reg_map_regnum_to_name (gdbarch, regnum));
1196 }
1197
1198 /* Find the unwinder. */
1199 if (next_frame->unwind == NULL)
1200 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1201
1202 /* Ask this frame to unwind its register. */
1203 value = next_frame->unwind->prev_register (next_frame,
1204 &next_frame->prologue_cache,
1205 regnum);
1206
1207 if (frame_debug)
1208 {
1209 fprintf_unfiltered (gdb_stdlog, "->");
1210 if (value_optimized_out (value))
1211 {
1212 fprintf_unfiltered (gdb_stdlog, " ");
1213 val_print_optimized_out (value, gdb_stdlog);
1214 }
1215 else
1216 {
1217 if (VALUE_LVAL (value) == lval_register)
1218 fprintf_unfiltered (gdb_stdlog, " register=%d",
1219 VALUE_REGNUM (value));
1220 else if (VALUE_LVAL (value) == lval_memory)
1221 fprintf_unfiltered (gdb_stdlog, " address=%s",
1222 paddress (gdbarch,
1223 value_address (value)));
1224 else
1225 fprintf_unfiltered (gdb_stdlog, " computed");
1226
1227 if (value_lazy (value))
1228 fprintf_unfiltered (gdb_stdlog, " lazy");
1229 else
1230 {
1231 int i;
1232 const gdb_byte *buf = value_contents (value);
1233
1234 fprintf_unfiltered (gdb_stdlog, " bytes=");
1235 fprintf_unfiltered (gdb_stdlog, "[");
1236 for (i = 0; i < register_size (gdbarch, regnum); i++)
1237 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1238 fprintf_unfiltered (gdb_stdlog, "]");
1239 }
1240 }
1241
1242 fprintf_unfiltered (gdb_stdlog, " }\n");
1243 }
1244
1245 return value;
1246 }
1247
1248 struct value *
1249 get_frame_register_value (struct frame_info *frame, int regnum)
1250 {
1251 return frame_unwind_register_value (frame->next, regnum);
1252 }
1253
1254 LONGEST
1255 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1256 {
1257 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1258 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1259 int size = register_size (gdbarch, regnum);
1260 struct value *value = frame_unwind_register_value (next_frame, regnum);
1261
1262 gdb_assert (value != NULL);
1263
1264 if (value_optimized_out (value))
1265 {
1266 throw_error (OPTIMIZED_OUT_ERROR,
1267 _("Register %d was not saved"), regnum);
1268 }
1269 if (!value_entirely_available (value))
1270 {
1271 throw_error (NOT_AVAILABLE_ERROR,
1272 _("Register %d is not available"), regnum);
1273 }
1274
1275 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1276 byte_order);
1277
1278 release_value (value);
1279 return r;
1280 }
1281
1282 LONGEST
1283 get_frame_register_signed (struct frame_info *frame, int regnum)
1284 {
1285 return frame_unwind_register_signed (frame->next, regnum);
1286 }
1287
1288 ULONGEST
1289 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1290 {
1291 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1293 int size = register_size (gdbarch, regnum);
1294 struct value *value = frame_unwind_register_value (next_frame, regnum);
1295
1296 gdb_assert (value != NULL);
1297
1298 if (value_optimized_out (value))
1299 {
1300 throw_error (OPTIMIZED_OUT_ERROR,
1301 _("Register %d was not saved"), regnum);
1302 }
1303 if (!value_entirely_available (value))
1304 {
1305 throw_error (NOT_AVAILABLE_ERROR,
1306 _("Register %d is not available"), regnum);
1307 }
1308
1309 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1310 byte_order);
1311
1312 release_value (value);
1313 return r;
1314 }
1315
1316 ULONGEST
1317 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1318 {
1319 return frame_unwind_register_unsigned (frame->next, regnum);
1320 }
1321
1322 int
1323 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1324 ULONGEST *val)
1325 {
1326 struct value *regval = get_frame_register_value (frame, regnum);
1327
1328 if (!value_optimized_out (regval)
1329 && value_entirely_available (regval))
1330 {
1331 struct gdbarch *gdbarch = get_frame_arch (frame);
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1334
1335 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1336 return 1;
1337 }
1338
1339 return 0;
1340 }
1341
1342 void
1343 put_frame_register (struct frame_info *frame, int regnum,
1344 const gdb_byte *buf)
1345 {
1346 struct gdbarch *gdbarch = get_frame_arch (frame);
1347 int realnum;
1348 int optim;
1349 int unavail;
1350 enum lval_type lval;
1351 CORE_ADDR addr;
1352
1353 frame_register (frame, regnum, &optim, &unavail,
1354 &lval, &addr, &realnum, NULL);
1355 if (optim)
1356 error (_("Attempt to assign to a register that was not saved."));
1357 switch (lval)
1358 {
1359 case lval_memory:
1360 {
1361 write_memory (addr, buf, register_size (gdbarch, regnum));
1362 break;
1363 }
1364 case lval_register:
1365 get_current_regcache ()->cooked_write (realnum, buf);
1366 break;
1367 default:
1368 error (_("Attempt to assign to an unmodifiable value."));
1369 }
1370 }
1371
1372 /* This function is deprecated. Use get_frame_register_value instead,
1373 which provides more accurate information.
1374
1375 Find and return the value of REGNUM for the specified stack frame.
1376 The number of bytes copied is REGISTER_SIZE (REGNUM).
1377
1378 Returns 0 if the register value could not be found. */
1379
1380 int
1381 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1382 gdb_byte *myaddr)
1383 {
1384 int optimized;
1385 int unavailable;
1386 enum lval_type lval;
1387 CORE_ADDR addr;
1388 int realnum;
1389
1390 frame_register (frame, regnum, &optimized, &unavailable,
1391 &lval, &addr, &realnum, myaddr);
1392
1393 return !optimized && !unavailable;
1394 }
1395
1396 int
1397 get_frame_register_bytes (struct frame_info *frame, int regnum,
1398 CORE_ADDR offset, int len, gdb_byte *myaddr,
1399 int *optimizedp, int *unavailablep)
1400 {
1401 struct gdbarch *gdbarch = get_frame_arch (frame);
1402 int i;
1403 int maxsize;
1404 int numregs;
1405
1406 /* Skip registers wholly inside of OFFSET. */
1407 while (offset >= register_size (gdbarch, regnum))
1408 {
1409 offset -= register_size (gdbarch, regnum);
1410 regnum++;
1411 }
1412
1413 /* Ensure that we will not read beyond the end of the register file.
1414 This can only ever happen if the debug information is bad. */
1415 maxsize = -offset;
1416 numregs = gdbarch_num_cooked_regs (gdbarch);
1417 for (i = regnum; i < numregs; i++)
1418 {
1419 int thissize = register_size (gdbarch, i);
1420
1421 if (thissize == 0)
1422 break; /* This register is not available on this architecture. */
1423 maxsize += thissize;
1424 }
1425 if (len > maxsize)
1426 error (_("Bad debug information detected: "
1427 "Attempt to read %d bytes from registers."), len);
1428
1429 /* Copy the data. */
1430 while (len > 0)
1431 {
1432 int curr_len = register_size (gdbarch, regnum) - offset;
1433
1434 if (curr_len > len)
1435 curr_len = len;
1436
1437 if (curr_len == register_size (gdbarch, regnum))
1438 {
1439 enum lval_type lval;
1440 CORE_ADDR addr;
1441 int realnum;
1442
1443 frame_register (frame, regnum, optimizedp, unavailablep,
1444 &lval, &addr, &realnum, myaddr);
1445 if (*optimizedp || *unavailablep)
1446 return 0;
1447 }
1448 else
1449 {
1450 struct value *value = frame_unwind_register_value (frame->next,
1451 regnum);
1452 gdb_assert (value != NULL);
1453 *optimizedp = value_optimized_out (value);
1454 *unavailablep = !value_entirely_available (value);
1455
1456 if (*optimizedp || *unavailablep)
1457 {
1458 release_value (value);
1459 return 0;
1460 }
1461 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1462 release_value (value);
1463 }
1464
1465 myaddr += curr_len;
1466 len -= curr_len;
1467 offset = 0;
1468 regnum++;
1469 }
1470
1471 *optimizedp = 0;
1472 *unavailablep = 0;
1473 return 1;
1474 }
1475
1476 void
1477 put_frame_register_bytes (struct frame_info *frame, int regnum,
1478 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1479 {
1480 struct gdbarch *gdbarch = get_frame_arch (frame);
1481
1482 /* Skip registers wholly inside of OFFSET. */
1483 while (offset >= register_size (gdbarch, regnum))
1484 {
1485 offset -= register_size (gdbarch, regnum);
1486 regnum++;
1487 }
1488
1489 /* Copy the data. */
1490 while (len > 0)
1491 {
1492 int curr_len = register_size (gdbarch, regnum) - offset;
1493
1494 if (curr_len > len)
1495 curr_len = len;
1496
1497 if (curr_len == register_size (gdbarch, regnum))
1498 {
1499 put_frame_register (frame, regnum, myaddr);
1500 }
1501 else
1502 {
1503 struct value *value = frame_unwind_register_value (frame->next,
1504 regnum);
1505 gdb_assert (value != NULL);
1506
1507 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1508 curr_len);
1509 put_frame_register (frame, regnum, value_contents_raw (value));
1510 release_value (value);
1511 }
1512
1513 myaddr += curr_len;
1514 len -= curr_len;
1515 offset = 0;
1516 regnum++;
1517 }
1518 }
1519
1520 /* Create a sentinel frame. */
1521
1522 static struct frame_info *
1523 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1524 {
1525 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1526
1527 frame->level = -1;
1528 frame->pspace = pspace;
1529 frame->aspace = regcache->aspace ();
1530 /* Explicitly initialize the sentinel frame's cache. Provide it
1531 with the underlying regcache. In the future additional
1532 information, such as the frame's thread will be added. */
1533 frame->prologue_cache = sentinel_frame_cache (regcache);
1534 /* For the moment there is only one sentinel frame implementation. */
1535 frame->unwind = &sentinel_frame_unwind;
1536 /* Link this frame back to itself. The frame is self referential
1537 (the unwound PC is the same as the pc), so make it so. */
1538 frame->next = frame;
1539 /* The sentinel frame has a special ID. */
1540 frame->this_id.p = 1;
1541 frame->this_id.value = sentinel_frame_id;
1542 if (frame_debug)
1543 {
1544 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1545 fprint_frame (gdb_stdlog, frame);
1546 fprintf_unfiltered (gdb_stdlog, " }\n");
1547 }
1548 return frame;
1549 }
1550
1551 /* Cache for frame addresses already read by gdb. Valid only while
1552 inferior is stopped. Control variables for the frame cache should
1553 be local to this module. */
1554
1555 static struct obstack frame_cache_obstack;
1556
1557 void *
1558 frame_obstack_zalloc (unsigned long size)
1559 {
1560 void *data = obstack_alloc (&frame_cache_obstack, size);
1561
1562 memset (data, 0, size);
1563 return data;
1564 }
1565
1566 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1567
1568 struct frame_info *
1569 get_current_frame (void)
1570 {
1571 struct frame_info *current_frame;
1572
1573 /* First check, and report, the lack of registers. Having GDB
1574 report "No stack!" or "No memory" when the target doesn't even
1575 have registers is very confusing. Besides, "printcmd.exp"
1576 explicitly checks that ``print $pc'' with no registers prints "No
1577 registers". */
1578 if (!target_has_registers)
1579 error (_("No registers."));
1580 if (!target_has_stack)
1581 error (_("No stack."));
1582 if (!target_has_memory)
1583 error (_("No memory."));
1584 /* Traceframes are effectively a substitute for the live inferior. */
1585 if (get_traceframe_number () < 0)
1586 validate_registers_access ();
1587
1588 if (sentinel_frame == NULL)
1589 sentinel_frame =
1590 create_sentinel_frame (current_program_space, get_current_regcache ());
1591
1592 /* Set the current frame before computing the frame id, to avoid
1593 recursion inside compute_frame_id, in case the frame's
1594 unwinder decides to do a symbol lookup (which depends on the
1595 selected frame's block).
1596
1597 This call must always succeed. In particular, nothing inside
1598 get_prev_frame_always_1 should try to unwind from the
1599 sentinel frame, because that could fail/throw, and we always
1600 want to leave with the current frame created and linked in --
1601 we should never end up with the sentinel frame as outermost
1602 frame. */
1603 current_frame = get_prev_frame_always_1 (sentinel_frame);
1604 gdb_assert (current_frame != NULL);
1605
1606 return current_frame;
1607 }
1608
1609 /* The "selected" stack frame is used by default for local and arg
1610 access. May be zero, for no selected frame. */
1611
1612 static struct frame_info *selected_frame;
1613
1614 int
1615 has_stack_frames (void)
1616 {
1617 if (!target_has_registers || !target_has_stack || !target_has_memory)
1618 return 0;
1619
1620 /* Traceframes are effectively a substitute for the live inferior. */
1621 if (get_traceframe_number () < 0)
1622 {
1623 /* No current inferior, no frame. */
1624 if (inferior_ptid == null_ptid)
1625 return 0;
1626
1627 thread_info *tp = inferior_thread ();
1628 /* Don't try to read from a dead thread. */
1629 if (tp->state == THREAD_EXITED)
1630 return 0;
1631
1632 /* ... or from a spinning thread. */
1633 if (tp->executing)
1634 return 0;
1635 }
1636
1637 return 1;
1638 }
1639
1640 /* Return the selected frame. Always non-NULL (unless there isn't an
1641 inferior sufficient for creating a frame) in which case an error is
1642 thrown. */
1643
1644 struct frame_info *
1645 get_selected_frame (const char *message)
1646 {
1647 if (selected_frame == NULL)
1648 {
1649 if (message != NULL && !has_stack_frames ())
1650 error (("%s"), message);
1651 /* Hey! Don't trust this. It should really be re-finding the
1652 last selected frame of the currently selected thread. This,
1653 though, is better than nothing. */
1654 select_frame (get_current_frame ());
1655 }
1656 /* There is always a frame. */
1657 gdb_assert (selected_frame != NULL);
1658 return selected_frame;
1659 }
1660
1661 /* If there is a selected frame, return it. Otherwise, return NULL. */
1662
1663 struct frame_info *
1664 get_selected_frame_if_set (void)
1665 {
1666 return selected_frame;
1667 }
1668
1669 /* This is a variant of get_selected_frame() which can be called when
1670 the inferior does not have a frame; in that case it will return
1671 NULL instead of calling error(). */
1672
1673 struct frame_info *
1674 deprecated_safe_get_selected_frame (void)
1675 {
1676 if (!has_stack_frames ())
1677 return NULL;
1678 return get_selected_frame (NULL);
1679 }
1680
1681 /* Select frame FI (or NULL - to invalidate the current frame). */
1682
1683 void
1684 select_frame (struct frame_info *fi)
1685 {
1686 selected_frame = fi;
1687 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1688 frame is being invalidated. */
1689
1690 /* FIXME: kseitz/2002-08-28: It would be nice to call
1691 selected_frame_level_changed_event() right here, but due to limitations
1692 in the current interfaces, we would end up flooding UIs with events
1693 because select_frame() is used extensively internally.
1694
1695 Once we have frame-parameterized frame (and frame-related) commands,
1696 the event notification can be moved here, since this function will only
1697 be called when the user's selected frame is being changed. */
1698
1699 /* Ensure that symbols for this frame are read in. Also, determine the
1700 source language of this frame, and switch to it if desired. */
1701 if (fi)
1702 {
1703 CORE_ADDR pc;
1704
1705 /* We retrieve the frame's symtab by using the frame PC.
1706 However we cannot use the frame PC as-is, because it usually
1707 points to the instruction following the "call", which is
1708 sometimes the first instruction of another function. So we
1709 rely on get_frame_address_in_block() which provides us with a
1710 PC which is guaranteed to be inside the frame's code
1711 block. */
1712 if (get_frame_address_in_block_if_available (fi, &pc))
1713 {
1714 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1715
1716 if (cust != NULL
1717 && compunit_language (cust) != current_language->la_language
1718 && compunit_language (cust) != language_unknown
1719 && language_mode == language_mode_auto)
1720 set_language (compunit_language (cust));
1721 }
1722 }
1723 }
1724
1725 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1726 Always returns a non-NULL value. */
1727
1728 struct frame_info *
1729 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1730 {
1731 struct frame_info *fi;
1732
1733 if (frame_debug)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
1736 "{ create_new_frame (addr=%s, pc=%s) ",
1737 hex_string (addr), hex_string (pc));
1738 }
1739
1740 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1741
1742 fi->next = create_sentinel_frame (current_program_space,
1743 get_current_regcache ());
1744
1745 /* Set/update this frame's cached PC value, found in the next frame.
1746 Do this before looking for this frame's unwinder. A sniffer is
1747 very likely to read this, and the corresponding unwinder is
1748 entitled to rely that the PC doesn't magically change. */
1749 fi->next->prev_pc.value = pc;
1750 fi->next->prev_pc.status = CC_VALUE;
1751
1752 /* We currently assume that frame chain's can't cross spaces. */
1753 fi->pspace = fi->next->pspace;
1754 fi->aspace = fi->next->aspace;
1755
1756 /* Select/initialize both the unwind function and the frame's type
1757 based on the PC. */
1758 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1759
1760 fi->this_id.p = 1;
1761 fi->this_id.value = frame_id_build (addr, pc);
1762
1763 if (frame_debug)
1764 {
1765 fprintf_unfiltered (gdb_stdlog, "-> ");
1766 fprint_frame (gdb_stdlog, fi);
1767 fprintf_unfiltered (gdb_stdlog, " }\n");
1768 }
1769
1770 return fi;
1771 }
1772
1773 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1774 innermost frame). Be careful to not fall off the bottom of the
1775 frame chain and onto the sentinel frame. */
1776
1777 struct frame_info *
1778 get_next_frame (struct frame_info *this_frame)
1779 {
1780 if (this_frame->level > 0)
1781 return this_frame->next;
1782 else
1783 return NULL;
1784 }
1785
1786 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1787 innermost (i.e. current) frame, return the sentinel frame. Thus,
1788 unlike get_next_frame(), NULL will never be returned. */
1789
1790 struct frame_info *
1791 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1792 {
1793 gdb_assert (this_frame != NULL);
1794
1795 /* Note that, due to the manner in which the sentinel frame is
1796 constructed, this_frame->next still works even when this_frame
1797 is the sentinel frame. But we disallow it here anyway because
1798 calling get_next_frame_sentinel_okay() on the sentinel frame
1799 is likely a coding error. */
1800 gdb_assert (this_frame != sentinel_frame);
1801
1802 return this_frame->next;
1803 }
1804
1805 /* Observer for the target_changed event. */
1806
1807 static void
1808 frame_observer_target_changed (struct target_ops *target)
1809 {
1810 reinit_frame_cache ();
1811 }
1812
1813 /* Flush the entire frame cache. */
1814
1815 void
1816 reinit_frame_cache (void)
1817 {
1818 struct frame_info *fi;
1819
1820 /* Tear down all frame caches. */
1821 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1822 {
1823 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1824 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1825 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1826 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1827 }
1828
1829 /* Since we can't really be sure what the first object allocated was. */
1830 obstack_free (&frame_cache_obstack, 0);
1831 obstack_init (&frame_cache_obstack);
1832
1833 if (sentinel_frame != NULL)
1834 annotate_frames_invalid ();
1835
1836 sentinel_frame = NULL; /* Invalidate cache */
1837 select_frame (NULL);
1838 frame_stash_invalidate ();
1839 if (frame_debug)
1840 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1841 }
1842
1843 /* Find where a register is saved (in memory or another register).
1844 The result of frame_register_unwind is just where it is saved
1845 relative to this particular frame. */
1846
1847 static void
1848 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1849 int *optimizedp, enum lval_type *lvalp,
1850 CORE_ADDR *addrp, int *realnump)
1851 {
1852 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1853
1854 while (this_frame != NULL)
1855 {
1856 int unavailable;
1857
1858 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1859 lvalp, addrp, realnump, NULL);
1860
1861 if (*optimizedp)
1862 break;
1863
1864 if (*lvalp != lval_register)
1865 break;
1866
1867 regnum = *realnump;
1868 this_frame = get_next_frame (this_frame);
1869 }
1870 }
1871
1872 /* Get the previous raw frame, and check that it is not identical to
1873 same other frame frame already in the chain. If it is, there is
1874 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1875 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1876 validity tests, that compare THIS_FRAME and the next frame, we do
1877 this right after creating the previous frame, to avoid ever ending
1878 up with two frames with the same id in the frame chain. */
1879
1880 static struct frame_info *
1881 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1882 {
1883 struct frame_info *prev_frame;
1884
1885 prev_frame = get_prev_frame_raw (this_frame);
1886
1887 /* Don't compute the frame id of the current frame yet. Unwinding
1888 the sentinel frame can fail (e.g., if the thread is gone and we
1889 can't thus read its registers). If we let the cycle detection
1890 code below try to compute a frame ID, then an error thrown from
1891 within the frame ID computation would result in the sentinel
1892 frame as outermost frame, which is bogus. Instead, we'll compute
1893 the current frame's ID lazily in get_frame_id. Note that there's
1894 no point in doing cycle detection when there's only one frame, so
1895 nothing is lost here. */
1896 if (prev_frame->level == 0)
1897 return prev_frame;
1898
1899 TRY
1900 {
1901 compute_frame_id (prev_frame);
1902 if (!frame_stash_add (prev_frame))
1903 {
1904 /* Another frame with the same id was already in the stash. We just
1905 detected a cycle. */
1906 if (frame_debug)
1907 {
1908 fprintf_unfiltered (gdb_stdlog, "-> ");
1909 fprint_frame (gdb_stdlog, NULL);
1910 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1911 }
1912 this_frame->stop_reason = UNWIND_SAME_ID;
1913 /* Unlink. */
1914 prev_frame->next = NULL;
1915 this_frame->prev = NULL;
1916 prev_frame = NULL;
1917 }
1918 }
1919 CATCH (ex, RETURN_MASK_ALL)
1920 {
1921 prev_frame->next = NULL;
1922 this_frame->prev = NULL;
1923
1924 throw_exception (ex);
1925 }
1926 END_CATCH
1927
1928 return prev_frame;
1929 }
1930
1931 /* Helper function for get_prev_frame_always, this is called inside a
1932 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1933 there is no such frame. This may throw an exception. */
1934
1935 static struct frame_info *
1936 get_prev_frame_always_1 (struct frame_info *this_frame)
1937 {
1938 struct gdbarch *gdbarch;
1939
1940 gdb_assert (this_frame != NULL);
1941 gdbarch = get_frame_arch (this_frame);
1942
1943 if (frame_debug)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1946 if (this_frame != NULL)
1947 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1948 else
1949 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1950 fprintf_unfiltered (gdb_stdlog, ") ");
1951 }
1952
1953 /* Only try to do the unwind once. */
1954 if (this_frame->prev_p)
1955 {
1956 if (frame_debug)
1957 {
1958 fprintf_unfiltered (gdb_stdlog, "-> ");
1959 fprint_frame (gdb_stdlog, this_frame->prev);
1960 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1961 }
1962 return this_frame->prev;
1963 }
1964
1965 /* If the frame unwinder hasn't been selected yet, we must do so
1966 before setting prev_p; otherwise the check for misbehaved
1967 sniffers will think that this frame's sniffer tried to unwind
1968 further (see frame_cleanup_after_sniffer). */
1969 if (this_frame->unwind == NULL)
1970 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1971
1972 this_frame->prev_p = 1;
1973 this_frame->stop_reason = UNWIND_NO_REASON;
1974
1975 /* If we are unwinding from an inline frame, all of the below tests
1976 were already performed when we unwound from the next non-inline
1977 frame. We must skip them, since we can not get THIS_FRAME's ID
1978 until we have unwound all the way down to the previous non-inline
1979 frame. */
1980 if (get_frame_type (this_frame) == INLINE_FRAME)
1981 return get_prev_frame_if_no_cycle (this_frame);
1982
1983 /* Check that this frame is unwindable. If it isn't, don't try to
1984 unwind to the prev frame. */
1985 this_frame->stop_reason
1986 = this_frame->unwind->stop_reason (this_frame,
1987 &this_frame->prologue_cache);
1988
1989 if (this_frame->stop_reason != UNWIND_NO_REASON)
1990 {
1991 if (frame_debug)
1992 {
1993 enum unwind_stop_reason reason = this_frame->stop_reason;
1994
1995 fprintf_unfiltered (gdb_stdlog, "-> ");
1996 fprint_frame (gdb_stdlog, NULL);
1997 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1998 frame_stop_reason_symbol_string (reason));
1999 }
2000 return NULL;
2001 }
2002
2003 /* Check that this frame's ID isn't inner to (younger, below, next)
2004 the next frame. This happens when a frame unwind goes backwards.
2005 This check is valid only if this frame and the next frame are NORMAL.
2006 See the comment at frame_id_inner for details. */
2007 if (get_frame_type (this_frame) == NORMAL_FRAME
2008 && this_frame->next->unwind->type == NORMAL_FRAME
2009 && frame_id_inner (get_frame_arch (this_frame->next),
2010 get_frame_id (this_frame),
2011 get_frame_id (this_frame->next)))
2012 {
2013 CORE_ADDR this_pc_in_block;
2014 struct minimal_symbol *morestack_msym;
2015 const char *morestack_name = NULL;
2016
2017 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2018 this_pc_in_block = get_frame_address_in_block (this_frame);
2019 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2020 if (morestack_msym)
2021 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2022 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2023 {
2024 if (frame_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog, "-> ");
2027 fprint_frame (gdb_stdlog, NULL);
2028 fprintf_unfiltered (gdb_stdlog,
2029 " // this frame ID is inner }\n");
2030 }
2031 this_frame->stop_reason = UNWIND_INNER_ID;
2032 return NULL;
2033 }
2034 }
2035
2036 /* Check that this and the next frame do not unwind the PC register
2037 to the same memory location. If they do, then even though they
2038 have different frame IDs, the new frame will be bogus; two
2039 functions can't share a register save slot for the PC. This can
2040 happen when the prologue analyzer finds a stack adjustment, but
2041 no PC save.
2042
2043 This check does assume that the "PC register" is roughly a
2044 traditional PC, even if the gdbarch_unwind_pc method adjusts
2045 it (we do not rely on the value, only on the unwound PC being
2046 dependent on this value). A potential improvement would be
2047 to have the frame prev_pc method and the gdbarch unwind_pc
2048 method set the same lval and location information as
2049 frame_register_unwind. */
2050 if (this_frame->level > 0
2051 && gdbarch_pc_regnum (gdbarch) >= 0
2052 && get_frame_type (this_frame) == NORMAL_FRAME
2053 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2054 || get_frame_type (this_frame->next) == INLINE_FRAME))
2055 {
2056 int optimized, realnum, nrealnum;
2057 enum lval_type lval, nlval;
2058 CORE_ADDR addr, naddr;
2059
2060 frame_register_unwind_location (this_frame,
2061 gdbarch_pc_regnum (gdbarch),
2062 &optimized, &lval, &addr, &realnum);
2063 frame_register_unwind_location (get_next_frame (this_frame),
2064 gdbarch_pc_regnum (gdbarch),
2065 &optimized, &nlval, &naddr, &nrealnum);
2066
2067 if ((lval == lval_memory && lval == nlval && addr == naddr)
2068 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2069 {
2070 if (frame_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "-> ");
2073 fprint_frame (gdb_stdlog, NULL);
2074 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2075 }
2076
2077 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2078 this_frame->prev = NULL;
2079 return NULL;
2080 }
2081 }
2082
2083 return get_prev_frame_if_no_cycle (this_frame);
2084 }
2085
2086 /* Return a "struct frame_info" corresponding to the frame that called
2087 THIS_FRAME. Returns NULL if there is no such frame.
2088
2089 Unlike get_prev_frame, this function always tries to unwind the
2090 frame. */
2091
2092 struct frame_info *
2093 get_prev_frame_always (struct frame_info *this_frame)
2094 {
2095 struct frame_info *prev_frame = NULL;
2096
2097 TRY
2098 {
2099 prev_frame = get_prev_frame_always_1 (this_frame);
2100 }
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 if (ex.error == MEMORY_ERROR)
2104 {
2105 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2106 if (ex.message != NULL)
2107 {
2108 char *stop_string;
2109 size_t size;
2110
2111 /* The error needs to live as long as the frame does.
2112 Allocate using stack local STOP_STRING then assign the
2113 pointer to the frame, this allows the STOP_STRING on the
2114 frame to be of type 'const char *'. */
2115 size = strlen (ex.message) + 1;
2116 stop_string = (char *) frame_obstack_zalloc (size);
2117 memcpy (stop_string, ex.message, size);
2118 this_frame->stop_string = stop_string;
2119 }
2120 prev_frame = NULL;
2121 }
2122 else
2123 throw_exception (ex);
2124 }
2125 END_CATCH
2126
2127 return prev_frame;
2128 }
2129
2130 /* Construct a new "struct frame_info" and link it previous to
2131 this_frame. */
2132
2133 static struct frame_info *
2134 get_prev_frame_raw (struct frame_info *this_frame)
2135 {
2136 struct frame_info *prev_frame;
2137
2138 /* Allocate the new frame but do not wire it in to the frame chain.
2139 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2140 frame->next to pull some fancy tricks (of course such code is, by
2141 definition, recursive). Try to prevent it.
2142
2143 There is no reason to worry about memory leaks, should the
2144 remainder of the function fail. The allocated memory will be
2145 quickly reclaimed when the frame cache is flushed, and the `we've
2146 been here before' check above will stop repeated memory
2147 allocation calls. */
2148 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2149 prev_frame->level = this_frame->level + 1;
2150
2151 /* For now, assume we don't have frame chains crossing address
2152 spaces. */
2153 prev_frame->pspace = this_frame->pspace;
2154 prev_frame->aspace = this_frame->aspace;
2155
2156 /* Don't yet compute ->unwind (and hence ->type). It is computed
2157 on-demand in get_frame_type, frame_register_unwind, and
2158 get_frame_id. */
2159
2160 /* Don't yet compute the frame's ID. It is computed on-demand by
2161 get_frame_id(). */
2162
2163 /* The unwound frame ID is validate at the start of this function,
2164 as part of the logic to decide if that frame should be further
2165 unwound, and not here while the prev frame is being created.
2166 Doing this makes it possible for the user to examine a frame that
2167 has an invalid frame ID.
2168
2169 Some very old VAX code noted: [...] For the sake of argument,
2170 suppose that the stack is somewhat trashed (which is one reason
2171 that "info frame" exists). So, return 0 (indicating we don't
2172 know the address of the arglist) if we don't know what frame this
2173 frame calls. */
2174
2175 /* Link it in. */
2176 this_frame->prev = prev_frame;
2177 prev_frame->next = this_frame;
2178
2179 if (frame_debug)
2180 {
2181 fprintf_unfiltered (gdb_stdlog, "-> ");
2182 fprint_frame (gdb_stdlog, prev_frame);
2183 fprintf_unfiltered (gdb_stdlog, " }\n");
2184 }
2185
2186 return prev_frame;
2187 }
2188
2189 /* Debug routine to print a NULL frame being returned. */
2190
2191 static void
2192 frame_debug_got_null_frame (struct frame_info *this_frame,
2193 const char *reason)
2194 {
2195 if (frame_debug)
2196 {
2197 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2198 if (this_frame != NULL)
2199 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2200 else
2201 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2202 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2203 }
2204 }
2205
2206 /* Is this (non-sentinel) frame in the "main"() function? */
2207
2208 static int
2209 inside_main_func (struct frame_info *this_frame)
2210 {
2211 struct bound_minimal_symbol msymbol;
2212 CORE_ADDR maddr;
2213
2214 if (symfile_objfile == 0)
2215 return 0;
2216 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2217 if (msymbol.minsym == NULL)
2218 return 0;
2219 /* Make certain that the code, and not descriptor, address is
2220 returned. */
2221 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2222 BMSYMBOL_VALUE_ADDRESS (msymbol),
2223 current_top_target ());
2224 return maddr == get_frame_func (this_frame);
2225 }
2226
2227 /* Test whether THIS_FRAME is inside the process entry point function. */
2228
2229 static int
2230 inside_entry_func (struct frame_info *this_frame)
2231 {
2232 CORE_ADDR entry_point;
2233
2234 if (!entry_point_address_query (&entry_point))
2235 return 0;
2236
2237 return get_frame_func (this_frame) == entry_point;
2238 }
2239
2240 /* Return a structure containing various interesting information about
2241 the frame that called THIS_FRAME. Returns NULL if there is entier
2242 no such frame or the frame fails any of a set of target-independent
2243 condition that should terminate the frame chain (e.g., as unwinding
2244 past main()).
2245
2246 This function should not contain target-dependent tests, such as
2247 checking whether the program-counter is zero. */
2248
2249 struct frame_info *
2250 get_prev_frame (struct frame_info *this_frame)
2251 {
2252 CORE_ADDR frame_pc;
2253 int frame_pc_p;
2254
2255 /* There is always a frame. If this assertion fails, suspect that
2256 something should be calling get_selected_frame() or
2257 get_current_frame(). */
2258 gdb_assert (this_frame != NULL);
2259
2260 /* If this_frame is the current frame, then compute and stash
2261 its frame id prior to fetching and computing the frame id of the
2262 previous frame. Otherwise, the cycle detection code in
2263 get_prev_frame_if_no_cycle() will not work correctly. When
2264 get_frame_id() is called later on, an assertion error will
2265 be triggered in the event of a cycle between the current
2266 frame and its previous frame. */
2267 if (this_frame->level == 0)
2268 get_frame_id (this_frame);
2269
2270 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2271
2272 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2273 sense to stop unwinding at a dummy frame. One place where a dummy
2274 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2275 pcsqh register (space register for the instruction at the head of the
2276 instruction queue) cannot be written directly; the only way to set it
2277 is to branch to code that is in the target space. In order to implement
2278 frame dummies on HPUX, the called function is made to jump back to where
2279 the inferior was when the user function was called. If gdb was inside
2280 the main function when we created the dummy frame, the dummy frame will
2281 point inside the main function. */
2282 if (this_frame->level >= 0
2283 && get_frame_type (this_frame) == NORMAL_FRAME
2284 && !backtrace_past_main
2285 && frame_pc_p
2286 && inside_main_func (this_frame))
2287 /* Don't unwind past main(). Note, this is done _before_ the
2288 frame has been marked as previously unwound. That way if the
2289 user later decides to enable unwinds past main(), that will
2290 automatically happen. */
2291 {
2292 frame_debug_got_null_frame (this_frame, "inside main func");
2293 return NULL;
2294 }
2295
2296 /* If the user's backtrace limit has been exceeded, stop. We must
2297 add two to the current level; one of those accounts for backtrace_limit
2298 being 1-based and the level being 0-based, and the other accounts for
2299 the level of the new frame instead of the level of the current
2300 frame. */
2301 if (this_frame->level + 2 > backtrace_limit)
2302 {
2303 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2304 return NULL;
2305 }
2306
2307 /* If we're already inside the entry function for the main objfile,
2308 then it isn't valid. Don't apply this test to a dummy frame -
2309 dummy frame PCs typically land in the entry func. Don't apply
2310 this test to the sentinel frame. Sentinel frames should always
2311 be allowed to unwind. */
2312 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2313 wasn't checking for "main" in the minimal symbols. With that
2314 fixed asm-source tests now stop in "main" instead of halting the
2315 backtrace in weird and wonderful ways somewhere inside the entry
2316 file. Suspect that tests for inside the entry file/func were
2317 added to work around that (now fixed) case. */
2318 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2319 suggested having the inside_entry_func test use the
2320 inside_main_func() msymbol trick (along with entry_point_address()
2321 I guess) to determine the address range of the start function.
2322 That should provide a far better stopper than the current
2323 heuristics. */
2324 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2325 applied tail-call optimizations to main so that a function called
2326 from main returns directly to the caller of main. Since we don't
2327 stop at main, we should at least stop at the entry point of the
2328 application. */
2329 if (this_frame->level >= 0
2330 && get_frame_type (this_frame) == NORMAL_FRAME
2331 && !backtrace_past_entry
2332 && frame_pc_p
2333 && inside_entry_func (this_frame))
2334 {
2335 frame_debug_got_null_frame (this_frame, "inside entry func");
2336 return NULL;
2337 }
2338
2339 /* Assume that the only way to get a zero PC is through something
2340 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2341 will never unwind a zero PC. */
2342 if (this_frame->level > 0
2343 && (get_frame_type (this_frame) == NORMAL_FRAME
2344 || get_frame_type (this_frame) == INLINE_FRAME)
2345 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2346 && frame_pc_p && frame_pc == 0)
2347 {
2348 frame_debug_got_null_frame (this_frame, "zero PC");
2349 return NULL;
2350 }
2351
2352 return get_prev_frame_always (this_frame);
2353 }
2354
2355 struct frame_id
2356 get_prev_frame_id_by_id (struct frame_id id)
2357 {
2358 struct frame_id prev_id;
2359 struct frame_info *frame;
2360
2361 frame = frame_find_by_id (id);
2362
2363 if (frame != NULL)
2364 prev_id = get_frame_id (get_prev_frame (frame));
2365 else
2366 prev_id = null_frame_id;
2367
2368 return prev_id;
2369 }
2370
2371 CORE_ADDR
2372 get_frame_pc (struct frame_info *frame)
2373 {
2374 gdb_assert (frame->next != NULL);
2375 return frame_unwind_pc (frame->next);
2376 }
2377
2378 int
2379 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2380 {
2381
2382 gdb_assert (frame->next != NULL);
2383
2384 TRY
2385 {
2386 *pc = frame_unwind_pc (frame->next);
2387 }
2388 CATCH (ex, RETURN_MASK_ERROR)
2389 {
2390 if (ex.error == NOT_AVAILABLE_ERROR)
2391 return 0;
2392 else
2393 throw_exception (ex);
2394 }
2395 END_CATCH
2396
2397 return 1;
2398 }
2399
2400 /* Return an address that falls within THIS_FRAME's code block. */
2401
2402 CORE_ADDR
2403 get_frame_address_in_block (struct frame_info *this_frame)
2404 {
2405 /* A draft address. */
2406 CORE_ADDR pc = get_frame_pc (this_frame);
2407
2408 struct frame_info *next_frame = this_frame->next;
2409
2410 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2411 Normally the resume address is inside the body of the function
2412 associated with THIS_FRAME, but there is a special case: when
2413 calling a function which the compiler knows will never return
2414 (for instance abort), the call may be the very last instruction
2415 in the calling function. The resume address will point after the
2416 call and may be at the beginning of a different function
2417 entirely.
2418
2419 If THIS_FRAME is a signal frame or dummy frame, then we should
2420 not adjust the unwound PC. For a dummy frame, GDB pushed the
2421 resume address manually onto the stack. For a signal frame, the
2422 OS may have pushed the resume address manually and invoked the
2423 handler (e.g. GNU/Linux), or invoked the trampoline which called
2424 the signal handler - but in either case the signal handler is
2425 expected to return to the trampoline. So in both of these
2426 cases we know that the resume address is executable and
2427 related. So we only need to adjust the PC if THIS_FRAME
2428 is a normal function.
2429
2430 If the program has been interrupted while THIS_FRAME is current,
2431 then clearly the resume address is inside the associated
2432 function. There are three kinds of interruption: debugger stop
2433 (next frame will be SENTINEL_FRAME), operating system
2434 signal or exception (next frame will be SIGTRAMP_FRAME),
2435 or debugger-induced function call (next frame will be
2436 DUMMY_FRAME). So we only need to adjust the PC if
2437 NEXT_FRAME is a normal function.
2438
2439 We check the type of NEXT_FRAME first, since it is already
2440 known; frame type is determined by the unwinder, and since
2441 we have THIS_FRAME we've already selected an unwinder for
2442 NEXT_FRAME.
2443
2444 If the next frame is inlined, we need to keep going until we find
2445 the real function - for instance, if a signal handler is invoked
2446 while in an inlined function, then the code address of the
2447 "calling" normal function should not be adjusted either. */
2448
2449 while (get_frame_type (next_frame) == INLINE_FRAME)
2450 next_frame = next_frame->next;
2451
2452 if ((get_frame_type (next_frame) == NORMAL_FRAME
2453 || get_frame_type (next_frame) == TAILCALL_FRAME)
2454 && (get_frame_type (this_frame) == NORMAL_FRAME
2455 || get_frame_type (this_frame) == TAILCALL_FRAME
2456 || get_frame_type (this_frame) == INLINE_FRAME))
2457 return pc - 1;
2458
2459 return pc;
2460 }
2461
2462 int
2463 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2464 CORE_ADDR *pc)
2465 {
2466
2467 TRY
2468 {
2469 *pc = get_frame_address_in_block (this_frame);
2470 }
2471 CATCH (ex, RETURN_MASK_ERROR)
2472 {
2473 if (ex.error == NOT_AVAILABLE_ERROR)
2474 return 0;
2475 throw_exception (ex);
2476 }
2477 END_CATCH
2478
2479 return 1;
2480 }
2481
2482 symtab_and_line
2483 find_frame_sal (frame_info *frame)
2484 {
2485 struct frame_info *next_frame;
2486 int notcurrent;
2487 CORE_ADDR pc;
2488
2489 /* If the next frame represents an inlined function call, this frame's
2490 sal is the "call site" of that inlined function, which can not
2491 be inferred from get_frame_pc. */
2492 next_frame = get_next_frame (frame);
2493 if (frame_inlined_callees (frame) > 0)
2494 {
2495 struct symbol *sym;
2496
2497 if (next_frame)
2498 sym = get_frame_function (next_frame);
2499 else
2500 sym = inline_skipped_symbol (inferior_thread ());
2501
2502 /* If frame is inline, it certainly has symbols. */
2503 gdb_assert (sym);
2504
2505 symtab_and_line sal;
2506 if (SYMBOL_LINE (sym) != 0)
2507 {
2508 sal.symtab = symbol_symtab (sym);
2509 sal.line = SYMBOL_LINE (sym);
2510 }
2511 else
2512 /* If the symbol does not have a location, we don't know where
2513 the call site is. Do not pretend to. This is jarring, but
2514 we can't do much better. */
2515 sal.pc = get_frame_pc (frame);
2516
2517 sal.pspace = get_frame_program_space (frame);
2518 return sal;
2519 }
2520
2521 /* If FRAME is not the innermost frame, that normally means that
2522 FRAME->pc points at the return instruction (which is *after* the
2523 call instruction), and we want to get the line containing the
2524 call (because the call is where the user thinks the program is).
2525 However, if the next frame is either a SIGTRAMP_FRAME or a
2526 DUMMY_FRAME, then the next frame will contain a saved interrupt
2527 PC and such a PC indicates the current (rather than next)
2528 instruction/line, consequently, for such cases, want to get the
2529 line containing fi->pc. */
2530 if (!get_frame_pc_if_available (frame, &pc))
2531 return {};
2532
2533 notcurrent = (pc != get_frame_address_in_block (frame));
2534 return find_pc_line (pc, notcurrent);
2535 }
2536
2537 /* Per "frame.h", return the ``address'' of the frame. Code should
2538 really be using get_frame_id(). */
2539 CORE_ADDR
2540 get_frame_base (struct frame_info *fi)
2541 {
2542 return get_frame_id (fi).stack_addr;
2543 }
2544
2545 /* High-level offsets into the frame. Used by the debug info. */
2546
2547 CORE_ADDR
2548 get_frame_base_address (struct frame_info *fi)
2549 {
2550 if (get_frame_type (fi) != NORMAL_FRAME)
2551 return 0;
2552 if (fi->base == NULL)
2553 fi->base = frame_base_find_by_frame (fi);
2554 /* Sneaky: If the low-level unwind and high-level base code share a
2555 common unwinder, let them share the prologue cache. */
2556 if (fi->base->unwind == fi->unwind)
2557 return fi->base->this_base (fi, &fi->prologue_cache);
2558 return fi->base->this_base (fi, &fi->base_cache);
2559 }
2560
2561 CORE_ADDR
2562 get_frame_locals_address (struct frame_info *fi)
2563 {
2564 if (get_frame_type (fi) != NORMAL_FRAME)
2565 return 0;
2566 /* If there isn't a frame address method, find it. */
2567 if (fi->base == NULL)
2568 fi->base = frame_base_find_by_frame (fi);
2569 /* Sneaky: If the low-level unwind and high-level base code share a
2570 common unwinder, let them share the prologue cache. */
2571 if (fi->base->unwind == fi->unwind)
2572 return fi->base->this_locals (fi, &fi->prologue_cache);
2573 return fi->base->this_locals (fi, &fi->base_cache);
2574 }
2575
2576 CORE_ADDR
2577 get_frame_args_address (struct frame_info *fi)
2578 {
2579 if (get_frame_type (fi) != NORMAL_FRAME)
2580 return 0;
2581 /* If there isn't a frame address method, find it. */
2582 if (fi->base == NULL)
2583 fi->base = frame_base_find_by_frame (fi);
2584 /* Sneaky: If the low-level unwind and high-level base code share a
2585 common unwinder, let them share the prologue cache. */
2586 if (fi->base->unwind == fi->unwind)
2587 return fi->base->this_args (fi, &fi->prologue_cache);
2588 return fi->base->this_args (fi, &fi->base_cache);
2589 }
2590
2591 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2592 otherwise. */
2593
2594 int
2595 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2596 {
2597 if (fi->unwind == NULL)
2598 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2599 return fi->unwind == unwinder;
2600 }
2601
2602 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2603 or -1 for a NULL frame. */
2604
2605 int
2606 frame_relative_level (struct frame_info *fi)
2607 {
2608 if (fi == NULL)
2609 return -1;
2610 else
2611 return fi->level;
2612 }
2613
2614 enum frame_type
2615 get_frame_type (struct frame_info *frame)
2616 {
2617 if (frame->unwind == NULL)
2618 /* Initialize the frame's unwinder because that's what
2619 provides the frame's type. */
2620 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2621 return frame->unwind->type;
2622 }
2623
2624 struct program_space *
2625 get_frame_program_space (struct frame_info *frame)
2626 {
2627 return frame->pspace;
2628 }
2629
2630 struct program_space *
2631 frame_unwind_program_space (struct frame_info *this_frame)
2632 {
2633 gdb_assert (this_frame);
2634
2635 /* This is really a placeholder to keep the API consistent --- we
2636 assume for now that we don't have frame chains crossing
2637 spaces. */
2638 return this_frame->pspace;
2639 }
2640
2641 const address_space *
2642 get_frame_address_space (struct frame_info *frame)
2643 {
2644 return frame->aspace;
2645 }
2646
2647 /* Memory access methods. */
2648
2649 void
2650 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2651 gdb_byte *buf, int len)
2652 {
2653 read_memory (addr, buf, len);
2654 }
2655
2656 LONGEST
2657 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2658 int len)
2659 {
2660 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2662
2663 return read_memory_integer (addr, len, byte_order);
2664 }
2665
2666 ULONGEST
2667 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2668 int len)
2669 {
2670 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2671 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2672
2673 return read_memory_unsigned_integer (addr, len, byte_order);
2674 }
2675
2676 int
2677 safe_frame_unwind_memory (struct frame_info *this_frame,
2678 CORE_ADDR addr, gdb_byte *buf, int len)
2679 {
2680 /* NOTE: target_read_memory returns zero on success! */
2681 return !target_read_memory (addr, buf, len);
2682 }
2683
2684 /* Architecture methods. */
2685
2686 struct gdbarch *
2687 get_frame_arch (struct frame_info *this_frame)
2688 {
2689 return frame_unwind_arch (this_frame->next);
2690 }
2691
2692 struct gdbarch *
2693 frame_unwind_arch (struct frame_info *next_frame)
2694 {
2695 if (!next_frame->prev_arch.p)
2696 {
2697 struct gdbarch *arch;
2698
2699 if (next_frame->unwind == NULL)
2700 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2701
2702 if (next_frame->unwind->prev_arch != NULL)
2703 arch = next_frame->unwind->prev_arch (next_frame,
2704 &next_frame->prologue_cache);
2705 else
2706 arch = get_frame_arch (next_frame);
2707
2708 next_frame->prev_arch.arch = arch;
2709 next_frame->prev_arch.p = 1;
2710 if (frame_debug)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2713 next_frame->level,
2714 gdbarch_bfd_arch_info (arch)->printable_name);
2715 }
2716
2717 return next_frame->prev_arch.arch;
2718 }
2719
2720 struct gdbarch *
2721 frame_unwind_caller_arch (struct frame_info *next_frame)
2722 {
2723 next_frame = skip_artificial_frames (next_frame);
2724
2725 /* We must have a non-artificial frame. The caller is supposed to check
2726 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2727 in this case. */
2728 gdb_assert (next_frame != NULL);
2729
2730 return frame_unwind_arch (next_frame);
2731 }
2732
2733 /* Gets the language of FRAME. */
2734
2735 enum language
2736 get_frame_language (struct frame_info *frame)
2737 {
2738 CORE_ADDR pc = 0;
2739 int pc_p = 0;
2740
2741 gdb_assert (frame!= NULL);
2742
2743 /* We determine the current frame language by looking up its
2744 associated symtab. To retrieve this symtab, we use the frame
2745 PC. However we cannot use the frame PC as is, because it
2746 usually points to the instruction following the "call", which
2747 is sometimes the first instruction of another function. So
2748 we rely on get_frame_address_in_block(), it provides us with
2749 a PC that is guaranteed to be inside the frame's code
2750 block. */
2751
2752 TRY
2753 {
2754 pc = get_frame_address_in_block (frame);
2755 pc_p = 1;
2756 }
2757 CATCH (ex, RETURN_MASK_ERROR)
2758 {
2759 if (ex.error != NOT_AVAILABLE_ERROR)
2760 throw_exception (ex);
2761 }
2762 END_CATCH
2763
2764 if (pc_p)
2765 {
2766 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2767
2768 if (cust != NULL)
2769 return compunit_language (cust);
2770 }
2771
2772 return language_unknown;
2773 }
2774
2775 /* Stack pointer methods. */
2776
2777 CORE_ADDR
2778 get_frame_sp (struct frame_info *this_frame)
2779 {
2780 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2781
2782 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2783 operate on THIS_FRAME now. */
2784 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2785 }
2786
2787 /* Return the reason why we can't unwind past FRAME. */
2788
2789 enum unwind_stop_reason
2790 get_frame_unwind_stop_reason (struct frame_info *frame)
2791 {
2792 /* Fill-in STOP_REASON. */
2793 get_prev_frame_always (frame);
2794 gdb_assert (frame->prev_p);
2795
2796 return frame->stop_reason;
2797 }
2798
2799 /* Return a string explaining REASON. */
2800
2801 const char *
2802 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2803 {
2804 switch (reason)
2805 {
2806 #define SET(name, description) \
2807 case name: return _(description);
2808 #include "unwind_stop_reasons.def"
2809 #undef SET
2810
2811 default:
2812 internal_error (__FILE__, __LINE__,
2813 "Invalid frame stop reason");
2814 }
2815 }
2816
2817 const char *
2818 frame_stop_reason_string (struct frame_info *fi)
2819 {
2820 gdb_assert (fi->prev_p);
2821 gdb_assert (fi->prev == NULL);
2822
2823 /* Return the specific string if we have one. */
2824 if (fi->stop_string != NULL)
2825 return fi->stop_string;
2826
2827 /* Return the generic string if we have nothing better. */
2828 return unwind_stop_reason_to_string (fi->stop_reason);
2829 }
2830
2831 /* Return the enum symbol name of REASON as a string, to use in debug
2832 output. */
2833
2834 static const char *
2835 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2836 {
2837 switch (reason)
2838 {
2839 #define SET(name, description) \
2840 case name: return #name;
2841 #include "unwind_stop_reasons.def"
2842 #undef SET
2843
2844 default:
2845 internal_error (__FILE__, __LINE__,
2846 "Invalid frame stop reason");
2847 }
2848 }
2849
2850 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2851 FRAME. */
2852
2853 void
2854 frame_cleanup_after_sniffer (struct frame_info *frame)
2855 {
2856 /* The sniffer should not allocate a prologue cache if it did not
2857 match this frame. */
2858 gdb_assert (frame->prologue_cache == NULL);
2859
2860 /* No sniffer should extend the frame chain; sniff based on what is
2861 already certain. */
2862 gdb_assert (!frame->prev_p);
2863
2864 /* The sniffer should not check the frame's ID; that's circular. */
2865 gdb_assert (!frame->this_id.p);
2866
2867 /* Clear cached fields dependent on the unwinder.
2868
2869 The previous PC is independent of the unwinder, but the previous
2870 function is not (see get_frame_address_in_block). */
2871 frame->prev_func.p = 0;
2872 frame->prev_func.addr = 0;
2873
2874 /* Discard the unwinder last, so that we can easily find it if an assertion
2875 in this function triggers. */
2876 frame->unwind = NULL;
2877 }
2878
2879 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2880 If sniffing fails, the caller should be sure to call
2881 frame_cleanup_after_sniffer. */
2882
2883 void
2884 frame_prepare_for_sniffer (struct frame_info *frame,
2885 const struct frame_unwind *unwind)
2886 {
2887 gdb_assert (frame->unwind == NULL);
2888 frame->unwind = unwind;
2889 }
2890
2891 static struct cmd_list_element *set_backtrace_cmdlist;
2892 static struct cmd_list_element *show_backtrace_cmdlist;
2893
2894 static void
2895 set_backtrace_cmd (const char *args, int from_tty)
2896 {
2897 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2898 gdb_stdout);
2899 }
2900
2901 static void
2902 show_backtrace_cmd (const char *args, int from_tty)
2903 {
2904 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2905 }
2906
2907 void
2908 _initialize_frame (void)
2909 {
2910 obstack_init (&frame_cache_obstack);
2911
2912 frame_stash_create ();
2913
2914 gdb::observers::target_changed.attach (frame_observer_target_changed);
2915
2916 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2917 Set backtrace specific variables.\n\
2918 Configure backtrace variables such as the backtrace limit"),
2919 &set_backtrace_cmdlist, "set backtrace ",
2920 0/*allow-unknown*/, &setlist);
2921 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2922 Show backtrace specific variables\n\
2923 Show backtrace variables such as the backtrace limit"),
2924 &show_backtrace_cmdlist, "show backtrace ",
2925 0/*allow-unknown*/, &showlist);
2926
2927 add_setshow_boolean_cmd ("past-main", class_obscure,
2928 &backtrace_past_main, _("\
2929 Set whether backtraces should continue past \"main\"."), _("\
2930 Show whether backtraces should continue past \"main\"."), _("\
2931 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2932 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2933 of the stack trace."),
2934 NULL,
2935 show_backtrace_past_main,
2936 &set_backtrace_cmdlist,
2937 &show_backtrace_cmdlist);
2938
2939 add_setshow_boolean_cmd ("past-entry", class_obscure,
2940 &backtrace_past_entry, _("\
2941 Set whether backtraces should continue past the entry point of a program."),
2942 _("\
2943 Show whether backtraces should continue past the entry point of a program."),
2944 _("\
2945 Normally there are no callers beyond the entry point of a program, so GDB\n\
2946 will terminate the backtrace there. Set this variable if you need to see\n\
2947 the rest of the stack trace."),
2948 NULL,
2949 show_backtrace_past_entry,
2950 &set_backtrace_cmdlist,
2951 &show_backtrace_cmdlist);
2952
2953 add_setshow_uinteger_cmd ("limit", class_obscure,
2954 &backtrace_limit, _("\
2955 Set an upper bound on the number of backtrace levels."), _("\
2956 Show the upper bound on the number of backtrace levels."), _("\
2957 No more than the specified number of frames can be displayed or examined.\n\
2958 Literal \"unlimited\" or zero means no limit."),
2959 NULL,
2960 show_backtrace_limit,
2961 &set_backtrace_cmdlist,
2962 &show_backtrace_cmdlist);
2963
2964 /* Debug this files internals. */
2965 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2966 Set frame debugging."), _("\
2967 Show frame debugging."), _("\
2968 When non-zero, frame specific internal debugging is enabled."),
2969 NULL,
2970 show_frame_debug,
2971 &setdebuglist, &showdebuglist);
2972 }
This page took 0.126482 seconds and 5 git commands to generate.